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Towards Globally Optimal Crowdsourcing Quality Management: 
The Uniform Worker Setting

Akash Das Sarma,
Stanford University

Aditya Parameswaran, and
University of Illinois (UIUC)

Jennifer Widom
Stanford University

Abstract

We study crowdsourcing quality management, that is, given worker responses to a set of tasks, our 

goal is to jointly estimate the true answers for the tasks, as well as the quality of the workers. Prior 

work on this problem relies primarily on applying Expectation-Maximization (EM) on the 

underlying maximum likelihood problem to estimate true answers as well as worker quality. 

Unfortunately, EM only provides a locally optimal solution rather than a globally optimal one. 

Other solutions to the problem (that do not leverage EM) fail to provide global optimality 

guarantees as well.

In this paper, we focus on filtering, where tasks require the evaluation of a yes/no predicate, and 

rating, where tasks elicit integer scores from a finite domain. We design algorithms for finding the 

global optimal estimates of correct task answers and worker quality for the underlying maximum 

likelihood problem, and characterize the complexity of these algorithms. Our algorithms 

conceptually consider all mappings from tasks to true answers (typically a very large number), 

leveraging two key ideas to reduce, by several orders of magnitude, the number of mappings under 

consideration, while preserving optimality. We also demonstrate that these algorithms often find 

more accurate estimates than EM-based algorithms. This paper makes an important contribution 

towards understanding the inherent complexity of globally optimal crowdsourcing quality 

management.

1. INTRODUCTION

Crowdsourcing enables data scientists to collect human-labeled data at scale for machine 

learning algorithms, including those involving image, video, or text analysis. However, since 

human workers often make mistakes while answering these tasks, crowdsourcing quality 
management, i.e., jointly estimating human worker quality as well as answer quality—the 

probability of different answers for the tasks—is essential. While knowing the answer 

quality helps us with the set of tasks at hand, knowing the quality of workers helps us 

estimate the true answers for future tasks.

We focus on rating tasks, i.e., tasks where the answer is one from a fixed set of ratings ∈ {1, 

2, …, R}. This includes, as a special case, filtering tasks, where the ratings are binary, i.e., 
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{0, 1}. Consider the following example: say a data scientist intends to design a sentiment 

analysis algorithm for tweets. To train such an algorithm, she needs a training dataset of 

tweets, rated on sentiment. Each tweet needs to be rated on a scale of {1, 2, 3}, where 1 is 

negative, 2 is neutral, and 3 is positive. A natural way to do this is to display each tweet, or 

item, to human workers hired via a crowdsourcing marketplace like Amazon’s Mechanical 

Turk, and have workers rate each item on sentiment from 1—3. Since workers may answer 

these rating tasks incorrectly, we may have multiple workers rate each item. Our goal is then 

to jointly estimate sentiment of each tweet and the accuracy of the workers.

Standard techniques for solving this estimation problem typically involve the use of the 

Expectation-Maximization (EM). Applications of EM, however, provide no theoretical 

guarantees. Furthermore, as we will show in this paper, EM-based algorithms are highly 

dependent on initialization parameters and can often get stuck in undesirable local optima. 

Other techniques for quality assurance, some specific to only filtering [5, 8, 12], are not 

provably optimal either, in that they only give bounds on the errors of their estimates, and do 

not provide globally optimal quality estimates. We cover this and other related work in detail 

in the next section.

In this paper, we present a technique for globally optimal quality management, that is, 

finding the maximum likelihood item (tweet) ratings, and worker quality estimates. A 

straightforward technique for globally optimal quality management is to simply consider all 

possible mappings from items to ratings, and for each mapping, infer its overall likelihood. 

(It can be shown that the best worker error rates are easy to determine once the mapping is 

fixed.) The mapping with the highest likelihood is then the global optimum.

However, even in this simple example, if we have 500 tweets and 3 possible ratings, the total 

number of mappings from tweets to ratings is 3500, an exceedingly large number. Therefore, 

this straightforward technique is infeasible.

Key Insights

To reduce this exponential complexity, we use two simple ideas to greatly prune the set of 

mappings that need to be considered, from 3500, to a much more manageable number.

Let us assume that workers are indistinguishable, and they all have the same quality 

(which is unknown). It is well-understood that at least on Mechanical Turk, the worker 

pool is constantly in flux, and it is often hard to find workers who have attempted enough 

tasks in order to get robust estimates of worker quality. (Our techniques also apply to a 

generalization of this case.)

Suppose we have 3 ratings for each tweet—a common strategy in crowdsourcing is to get 

a small, fixed number of answers for each question. First, we hash “similar” tweets that 

receive the same set of worker ratings into a common bucket. As shown in Figure 1, 

suppose that 300 items each receive three ratings of 3 (positive), 100 items each receive 

one rating of 1, one rating of 2 and one rating of 3, and 100 items each receive three 

ratings of 1. That is, we have three buckets of items, corresponding to the worker answer 

sets B1 = {3, 3, 3}, B2 = {1, 2, 3}, and B3 = {1, 1, 1}. We now exploit the intuition that if 

two items receive the same set of worker responses they should be treated identically. We 
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therefore only consider mappings that assign the same rating to all items (tweets) within a 

bucket. Now, since in our example, we only have 3 buckets each of which can be 

assigned a rating of 1,2, or 3, we are left with just 33 = 27 mappings to consider.

Next, we impose a partial ordering on the set of buckets based on our belief that items in 

certain buckets should receive a higher final rating than items in other buckets. Our 

intuition is simple: if an item received “higher” worker ratings than another item, then its 

final assigned rating should be higher as well. In this example, our partial ordering, or 

dominance ordering on the buckets is B1 ≥ B2 ≥ B3, that is, intuitively items which 

received all three worker ratings of 3 should not have a true rating smaller than items in 

the second or third buckets where items receive lower ratings. This means that we can 

further reduce our space of 27 remaining mappings by removing all those mappings that 

do not respect this partial ordering. The number of such remaining mappings is 10, 

corresponding to when all items in the buckets (B1, B2, B3) are mapped respectively to 

ratings (3, 3, 3), (3, 3, 2), (3, 3, 1), (3, 2, 2), (3, 2, 1), (3, 1, 1), (2, 2, 2), (2, 2, 1), (2, 1, 1), 

and (1, 1, 1).

In this paper, we formally show that restricting the mappings in this way does not take away 

from the optimality of the solution; i.e., there exists a mapping with the highest likelihood 

that obeys the property that all items with same scores are mapped to the same rating, and at 

the same time obeys the dominance ordering relationship described above.

We primarily focus on the setting where workers independently draw their responses from a 

common error distribution. That said, we do propose generalizations to the worker model in 

Appendix B, for instance, when workers are known to come from a small number of distinct 

classes with separate error distributions. In either case, one concern may be that these 

assumptions may be too restrictive, relative to the vast body of related work on the topic 

(Section 1.1). However, we still believe a thorough study of this setting is useful, for three 

reasons:

• To the best of our knowledge, no related papers provide global optimality 

guarantees (even for restricted settings), so it is of independent theoretical 

interest.

• It is common for practitioners to not track individual worker identities, but 

simply assume them to come from a generic pool, especially given the transient 

nature of crowdsourcing marketplaces, in which case our setting applies directly.

• Lastly, and most importantly, we find that even when the datasets violate our 

assumptions (that is, workers have distinct error rates), there are a variety of 

settings where our algorithms have higher accuracy than EM-based algorithms 

that take individual worker error rates into account. In fact, these settings 

correspond precisely to the real-world marketplace scenario where workers are 

fleeting and have limited attention spans.

Thus, our primary contributions are as follows:
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• [Theoretical Insights] We develop an intuitive algorithm based on simple, but key 
insights that finds a provably optimal maximum likelihood solution to the 

problem of jointly estimating true item labels and worker error behavior for 

crowdsourced filtering and rating tasks. Our approach involves reducing the 

space of potential ground truth mappings while preserving optimality, enabling 
an exhaustive search on an otherwise prohibitive domain. Our work represents a 

significant first step towards understanding the nature and complexity of exact 
globally optimal solutions for the joint estimation problem.

• [Experimental Insights] We perform experiments to evaluate the performance of 

our algorithm on a variety of different metrics. Though we optimize for 

likelihood, we show that our algorithm also does well on other metrics such as 

the accuracy of predicted item labels and worker response distributions, and 

latency. We also test our algorithm in settings where certain worker model 

assumptions (uniformity of worker error rate) do not necessarily hold. We show 

that despite a competitive disadvantage in such settings, our algorithm still 

performs comparably to state-of-the-art EM-based algorithms, while having the 

advantage of simplicity and ease of implementation over them.

1.1 Related Literature

Crowdsourcing is gaining importance as a platform for a variety of different applications 

where automated machine learning techniques don’t always perform well, e.g., filtering [15] 

or labeling [17, 19, 26] of text, images, or video, and entity resolution [1, 24, 25, 27]. One 

crucial problem in crowdsourced applications is that of worker quality: since human workers 

often make mistakes, it is important to model and characterize their behavior in order to 

aggregate high-quality answers.

EM-based joint estimation techniques: We study the particular problem of jointly 

estimating hidden values (item ratings) and a related latent set of parameters (worker error 

rates) given a set of observed data (worker responses). A standard machine learning 

technique for estimating parameters with unobserved latent variables is Expectation 

Maximization [9]. There has been significant work in using EM-based techniques to 

estimate true item values and worker error rates, such as [7, 22, 28], and subsequent 

modifications using Bayesian techniques [3, 14]. In [18], the authors use a supervised 

learning approach to learn a classifier and the ground truth labels simultaneously. In general, 

these machine learning based techniques only provide probabilistic guarantees and cannot 

ensure optimality of the estimates. We solve the problem of finding a global, provably 

maximum likelihood solution for both the item values and the worker error rates. That said, 

our worker error model is simpler than the models considered in these papers—in particular, 

we do not consider worker identities or difficulties of individual items. However, we study 

this simpler model in more depth, providing optimality guarantees. Since our work 

represents the first providing optimality guarantees (even for a restricted setting), it 

represents an important step forward in our understanding of crowdsourcing quality 

management. Additionally, anecdotally, even the simpler model is commonly used for 

platforms like Mechanical Turk, where the workers are fleeting.
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Furthermore, we experimentally test our algorithm on the general setting where worker 

identities are available. Although our algorithm is at a natural disadvantage due to its 

assumption of identical workers, we find that it compares well against EM-based heuristics 

that use the available worker-specific information.

Other techniques with no guarantees: There has been some work that adapts techniques 

different from EM to solve the problem of worker quality estimation. For instance, Chen et 

al. [4] adopts approximate Markov Decision Processes to perform simultaneous worker 

quality estimation and budget allocation. Liu et al. [13] uses variational inference for worker 

quality management on filtering tasks (in our case, our techniques apply to both filtering and 

rating). Venanzi et al. [23] uses a Bayesian Classifier Combination model and probabilistic 

inference to determine different classes of worker quality. Like EM-based techniques, these 

papers do not provide any theoretical guarantees.

Weaker guarantees: There has been a lot of recent work on providing partial probabilistic 

guarantees or asymptotic guarantees on accuracies of answers or worker estimates, for 

various problem settings and assumptions, and using various techniques. We first describe 

the problem settings adopted by these papers, then their solution techniques, and then 

describe their partial guarantees.

The most general problem setting adopted by these papers is identical to us (i.e., rating tasks 

with arbitrary bipartite graphs connecting workers and tasks) [29]; most papers focus only 

on filtering [5, 8, 12], or operate only when the graph is assumed to be randomly generated 

[11, 12]. Furthermore, most of these papers assume that the false positive and false negative 

rates are the same.

The papers draw from various techniques, including just spectral methods [5, 8], just 

message passing [12], a combination of spectral methods and message passing [11], or a 

combination of spectral methods and EM [29].

In terms of guarantees, most of the papers provide probabilistic bounds [5, 11, 12, 29], while 

some only provide asymptotic bounds [8]. For example, Dalvi et al. [5], which represents the 

most recent in a line of papers [8, 11, 12], show that under certain assumptions about the 

graph structure (depending on the eigenvalues) the error in their estimates of worker quality 

is lower than some quantity with probability greater than 1 − δ.

Thus, overall, all the work discussed so far provides probabilistic guarantees on their item 

value predictions, and error bound guarantees on their estimated worker qualities. In 

contrast, we consider the problem of finding a global maximum likelihood estimate for the 

correct answers to tasks and the worker error rates.

Other related papers: Joglekar et al. [10] consider the problem of finding confidence bounds 

on worker error rates. Our paper is complementary to theirs; while they solve the problem of 

obtaining confidence bounds on the worker error rates, we consider the problem of finding 

the maximum likelihood estimates to the item ground truth and worker error rates.
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Zhou et al. [30, 31] use minimax entropy to perform worker quality estimation as well as 

inherent item difficulty estimation; here the inherent item difficulty is represented as a 

vector. Their technique only applies when the number of workers attempting each task is 

very large; here, overfitting (given the large number of hidden parameters) is no longer a 

concern. For cases where the number of workers attempting each task is in the order of 50 or 

100 (highly unrealistic in practical applications), the authors demonstrate that the scheme 

outperforms vanilla EM.

Summary: In summary, at the highest level, our work differs from previous works in its 

focus on finding a globally optimal solution to the maximum likelihood problem. We focus 

on a simpler setting, but do so in more depth, representing significant progress in our 

understanding of global optimality. Our globally optimal solution uses simple and intuitive 

insights to reduce the search space of possible ground truths, enabling exhaustive evaluation. 

Our general framework leaves room for further study and has the potential for more 

sophisticated algorithms that build on our reduced space.

2. PRELIMINARIES

We start by introducing some notation, and then describe the general problem that we study 

in this paper; specific variants will be considered in subsequent sections.

Items and Rating Questions: We let I be a set of |I| = n items. Items could be, for example, 

images, videos, or pieces of text. Given an item I ∈ I, we can ask a worker w to answer a 
rating question on that item. That is, we ask a worker: What is your rating r for the item I?. 

We assume that every item has a true rating in [1, R] that is not known to us in advance, and 

allow workers to rate items with any value ∈ {1, 2, …, R}.

Example 2.1: Recall our example application from Section 1, where we have R = 3 and 

workers can rate tweets as being negative (r = 1), neutral (r = 2), or positive (r = 3). Suppose 

we have two items, I = {I1, I2} where I1 is positive, or has a true rating of 3, and I2 is 

neutral, or has a true rating of 2.

Response Set: We assume that each item I is shown to m arbitrary workers, and therefore 

receives m ratings ∈ [1, R]. We denote the set of ratings given by workers for item I as M(I) 
and write M(I) = (vR, vR−1, …, v1) if item I ∈ I receives a rating of i, 1 ≤ i ≤ R, from vi 

workers. Thus, . We call M(I) the response set of I, and M the worker response set 

in general.

Continuing with Example 2.1, suppose we have m = 2 workers rating each item on the scale 

of {1, 2, 3}. Let I1 receive one worker response of 2 and one worker response of 3. Then, we 

write M(I1) = (1, 1, 0). Similarly, if I2 receives one response of 3 and one response of 1, then 

we have M(I2) = (1, 0, 1).
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Modeling Worker Errors: We assume every worker draws their responses from a common 

(discrete) response probability matrix, p, of size R × R. Thus, p(i, j) is the probability that a 

worker rates an item with true value j as having rating i. The matrix p is in general not 

known to us. We aim to estimate both, p and the true ratings of items in I as part of our 

computation.

Note that we assume that every response to a rating question returned by every worker is 

independently and identically drawn from this matrix: thus, each worker responds to each 

rating question independently of other questions they may have answered, and other ratings 

for the same question given by other workers; and furthermore, all the workers have the 

same response matrix. We recognize that assuming the same response matrix is somewhat 

stringent—to mitigate this, we evaluate our algorithm experimentally on settings where 

distinct workers have different error rates and show that making this assumption is 

appropriate (and leads to good performance) for certain settings that occur often in practice. 

We also consider generalizations of our algorithm to the case where we can categorize 

workers into different classes in Appendix B.

That said, while our (generalized) techniques can still indeed be applied when there are a 

large number of workers or worker classes with distinct response matrices, they may be 

impractical. Since our focus is on understanding the theoretical limits of global optimality 

for a simple case, we defer to future work fully generalizing our techniques to apply to 

workers with distinct response matrices, or when worker answers are not independent of 

each other.

Mapping and Likelihood: We call a function f: I → {1, 2, …, R} that assigns ratings to 

items a mapping. The set of actual ratings of items is also a mapping. We call that the 

ground truth mapping, T. For instance, for Example 2.1, T(I1) = 3, T(I2) = 2.

Let Pr(M|f, p) be the probability of workers providing the responses in M, had f been the 

ground truth mapping and p been the true worker error matrix. We call this value the 

likelihood of the pair, f, p. Thus, our goal is to solve the following problem:

Problem 2.1 (Maximum Likelihood Problem): Given M, I, find .

We illustrate this concept on our example. Consider the matrix:

Let us compute the likelihood of the pair f, p when f(I1) = 2, f(I2) = 2. We have Pr(M|f, p) = 

Pr(M(I1)|f, p) Pr(M(I2)|f, p) assuming that rating questions on items are answered 

independently. The quantity Pr(M(I1)|f, p) is the probability that workers drawing their 

responses from p respond with M(I1) to an item with true rating f(I1). Assuming 

independence of worker responses, this quantity can be written as the product of the 

probability of seeing each of the responses that I1 receives. Therefore, the probability of 
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seeing M(1, 1, 0), that is, one response of 3 and one response of 2, is p(3, 2)p(2, 2) = 0.1 × 

0.8 = 0.08. Similarly, Pr(M(I2)|f, p) = p(3, 2) × p(1, 2) = 0.1 × 0.1 = 0.01. Combining, we 

have Pr(M|f, p) = 0.01 × 0.08 = 8 × 10−4. A naive solution would be to look at every possible 

mapping f′, compute  and choose the f′ maximizing the likelihood 

value Pr(M|f′, p′). The number of such mappings, R|I|, is however exponentially large, 

prompting the need for a more efficient algorithm. We list our notation in Table 1 for ready 

reference.

3. FILTERING PROBLEM

Filtering can be regarded as a special case of rating where R = 2. We discuss it separately, 

first, because its analysis is significantly simpler, and at the same time provides useful 

insights that we then build upon for the generalization to rating, that is, to the case where R 
> 2. For example, consider the filtering task of finding all images of Barack Obama from a 

given set of images. For each image, we ask workers the question “is this a picture of Barack 

Obama”. We can represent an answer of “no” to the question above by a score 0, and an 

answer of “yes” by a score 1. Each item (image) I ∈ I now has an inherent true value in {0, 

1} where 1 means that the item is one that satisfies the filter, in this case, the image is one of 

Barack Obama. Mappings here are functions f: I → {0, 1}.

Next, we formalize the filtering problem in Section 3.1, describe our algorithm in Section 

3.2, prove a maximum likelihood result in Section 3.3 and evaluate our algorithm in Section 

3.5.

3.1 Formalization

Given the response set M, we wish to find the maximum likelihood mapping f: I → {0, 1} 

and 2 × 2 response probability matrix, p. For the filtering problem, each item has an inherent 

true value of either 0 or 1, and sees m responses of 0 or 1 from different workers. If item I 
receives m − j responses of 1 and j responses of 0, we can represent its response set with the 

tuple M(I) = (m − j, j).

Consider a worker response probability matrix of . The first column 

represents the probabilities of worker responses when an item’s true rating is 0 and the 

second column represents probabilities when an item’s true rating is 1. Given that all 

workers have the same response probabilities, we can characterize their response matrix by 

just the corresponding worker false positive (FP) and false negative (FN) rates, e0 and e1. 

Here, we can describe the entire matrix p with just the two values, e0 = 0.3 and e1 = 0.2.

Filtering Estimation Problem: Let M be the observed response set on item-set I. Our goal is 

to find
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Here, Pr(M|f, e0, e1) is the probability of getting the response set M, given that f is the 

ground truth mapping and the true worker response matrix is defined by e0, e1.

Dependance of Response Probability Matrices on Mappings: Due to the probabilistic 

nature of our workers, for a fixed ground truth mapping T, different worker error rates, e0 

and e1 can produce the same response set M. These different worker error rates, however 

have varying likelihoods of occurrence. This leads us to observe that worker error rates (e0, 

e1) and mapping functions (f) are not independent and are related through any given M. In 

fact, we show that for the maximum likelihood estimation problem, fixing a mapping f 
enforces a maximum likelihood choice of e0, e1. We leverage this fact to simplify our 

problem from searching for the maximum likelihood tuple f, e0, e1 to just searching for the 

maximum likelihood mapping, f. Given a response set M and a mapping, f, we call this 

maximum likelihood choice of e0, e1 as the parameter set of f, M, and represent it as 

Params(f, M). The choice of Params(f, M) is very intuitive and simple. We show that we just 

can estimate e0 as the fraction of times a worker disagreed with f on an item I in M when f(I) 
= 0, and correspondingly, e1 as the fraction of times a worker responded 0 to an item I, when 

f(I) = 1. Under this constraint, we can prove that our original estimation problem, 

 simplifies to that of finding  where  are 

the constants given by Params(f, M).

Example 3.1: Suppose we are given 4 items I = {I1, I2, I3, I4} with ground truth mapping T 

= (T(I1), T(I2), T(I3), T(I4)) = (1, 0, 1, 1). Suppose we ask m = 3 workers to evaluate each 

item and receive the following number of (“1”,“0”) responses for each respective item: 

M(I1) = (3, 0), M(I2) = (1, 2), M(I3) = (2, 1), M(I4) = (2, 1). Then, we can evaluate our 

worker false positive and false negative rates as described above:  (from items 

I1, I3 and I4) and  (from I2).

We shall henceforth refer to Pr(M|f) = Pr(M|f, Params(f, M)) as the likelihood of a mapping 
f. For now, we focus on the problem of finding the maximum likelihood mapping with the 

understanding that finding the error rates is straightforward given the mapping is fixed. We 

formally show that the problem of jointly finding the maximum likelihood response matrix 

and mapping can be solved by just finding the most likely mapping f* in Section 3.4. The 

most likely triple f, e0, e1 is then given by f*, Params(f*, M).

It is easy to calculate the likelihood of a given mapping. We have 

, where e0, e1 = Params(f, M) and Pr(M(I)|f, e0, e1) is the 

probability of seeing the response set M(I) on an item I ∈ I. Say M(I) = (m − j, j). Then, we 

have
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This can be evaluated in O(m) for each I ∈ I by doing one pass over M(I). Thus, Pr(M|f) = 

ΠI∈I Pr(M(I)|f) can be evaluated in O(m|I|). We use this as a building block in our algorithm.

3.2 Globally Optimal Algorithm

In this section, we describe our algorithm for finding the maximum likelihood mapping, 

given a response set M on an item set I. A naive algorithm could be to scan all possible 

mappings, f, calculating for each,  and the likelihood . 

The number of all possible mappings is, however, exponential in the number of items. Given 

n = |I| items, we can assign a value of 0 or 1 to any of them, resulting in 2n different 

mappings. This makes the naive algorithm prohibitively expensive.

Our algorithm is essentially a pruning based method that uses two simple insights (described 

below) to narrow the search for the maximum likelihood mapping. Starting with the entire 

set of 2n possible mappings, we eliminate all those that do not satisfy one of our two 

requirements, and reduce the space of mappings to be considered to O(m), where m is the 

number of worker responses per item. We then show that just an exhaustive evaluation on 

this small set of remaining mappings is still sufficient to find a global maximum likelihood 

mapping.

We illustrate our ideas on the example from Section 3.1, represented graphically in Figure 2. 

We will explain this figure below.

Bucketizing: Since we assume (for now) that all workers draw their responses from the same 

probability matrix p (i.e., have the same e0, e1 values), we observe that items with the exact 

same set of worker responses can be treated identically. This allows us to bucket items based 

on their observed response sets. Given that there are m worker responses for each item, we 

have m + 1 buckets, starting from m “1” and zero “0” responses, down to zero “1” and m 
“0” responses. We represent these buckets in Figure 2. The x-axis represents the number of 1 

responses an item receives and the y-axis represents the number of 0 responses an item 

receives. We hash items into the buckets corresponding to their observed response sets. 

Intuitively, since all items within a bucket receive the same set of responses and are for all 

purposes identical, two items within a bucket should receive the same value.

In our example (Figure 2), the set of possible responses to or bucket of any item is {(3, 0), 

(2, 1), (1, 2), (0, 3)}, where (3 − j, j) represents seeing 3 − j responses of “1” and j responses 

of “0”. We only consider mappings, f, where items in the same bucket are assigned the same 

value, that is, f(I3) = f(I4). This leaves 24 mappings corresponding to assigning a value of 0/1 

to each bucket. In general, given m worker responses per item, we have m + 1 buckets and 

2m+1 mappings that satisfy our bucketizing condition. Although for this example m + 1 = n, 

typically we have m ≪ n.

Dominance Ordering: Second, we observe that buckets have an inherent ordering. If 

workers are better than random, we intuitively expect items with more “1” responses to be 

more likely to have true value 1 than items with fewer “1” responses. Ordering buckets by 

the number of “1” responses, we have (m, 0) → (m − 1, 1) → … → (1, m − 1) → (0, m). 
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We eliminate all mappings that give a value of 0 to a bucket with a larger number of “1” 

responses while assigning a value of 1 to a bucket with fewer “1” responses. We formalize 

this intuition as a dominance relation, or ordering on buckets, (m, 0) > (m − 1, 1) > … > (1, 

m − 1) > (0, m), and only consider mappings where dominating buckets receive a value not 

lower than any of their dominated buckets.

Figure 2 shows the dominance relation in the form of directed edges, with the source node 

being the dominating bucket and the target node being the dominated one. Here, we discard 

all mappings which assign a value of “0” to a dominating bucket (say response set (3, 0)) 

while assigning a value of “1” to one of its dominated buckets (say response set (2, 1)).

Dominance-Consistent Mappings: We consider the space of mappings satisfying our above 

bucketizing and dominance constraints, and call them dominance-consistent mappings. We 

can prove that the maximum likelihood mapping from this small set of mappings is in fact a 

global maximum likelihood mapping across the space of all possible “reasonable” 

mappings: mappings corresponding to better than random worker behavior.

To construct a mapping satisfying our above two constraints, we choose a cut-point to cut 

the ordered set of response sets into two partitions. The corresponding dominance-consistent 
mapping then assigns value “1” to all (items in) buckets in the first (better) half, and value 

“0” to the rest. For instance, choosing the cut-point between response sets (2, 1) and (1, 2) in 

Figure 2 results in the corresponding dominance-consistent mapping, where {I1, I3, I4}, are 

mapped to “1”, while {I2}, is mapped to “0”. We have 5 different cut-points, 0, 1, 2, 3, 4, 

each corresponding to one dominance-consistent mapping. Cut-point 0 corresponds to the 

mapping where all items are assigned a value of 0 and cut-point 4 corresponds to the 

mapping where all items are assigned a value of 1. In particular, the figure shows the 

dominance-consistent mapping corresponding to the cut-point c = 2. In general, if we have 

m responses to each item, we obtain m + 2 dominance-consistent mappings.

Definition 3.1: (Dominance-consistent mapping fc). For any cut-point c ∈ 0, 1, …, m+1, we 

define the corresponding dominance-point mapping fc as

Our algorithm enumerates all dominance-consistent mappings, computes their likelihoods, 

and returns the most likely one among them. The details of our algorithm can be found in 

our technical report. As there are (m + 2) mappings, each of whose likelihoods can be 

evaluated in O(m|I|), (See Section 3.1) the running time of our algorithm is O(m2|I|).

In the next section we prove that in spite of only searching the much smaller space of 

dominance-consistent mappings, our algorithm finds a global maximum likelihood solution.
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3.3 Proof of Correctness

Reasonable Mappings: A reasonable mapping is one which corresponds to a better than 

random worker behavior. Consider a mapping f corresponding to a false positive rate of e0 > 

0.5 (as given by Params(f, M)). This mapping is unreasonable because workers perform 

worse than random for items with value “0”. Given I, M, let f: I → {0, 1}, with e0, e1 = 

Params(f, M) be a mapping such that e0 ≤ 0.5 and e1 ≤ 0.5. Then f is a reasonable mapping. 

It is easy to show that all dominance-consistent mappings are reasonable mappings.

Now, we present our main result on the optimality of our algorithm. We show that in spite of 

only considering the local space of dominance-consistent mappings, we are able to find a 

global maximum likelihood mapping.

Theorem 3.1 (Maximum Likelihood): We let M be the given response set on the input item-

set I. Let F be the set of all reasonable mappings and Fdom be the set of all dominance-

consistent mappings. Then, maxf*∈Fdom Pr(M|f*) = maxf∈F Pr(M|f)

Proof: We provide an outline of our proof below. Further details can be found in the 

Appendix A.1.

Step 1: Suppose f is not a dominance-consistent mapping. Then, either it does not 

satisfy the bucketizing constraint, or it does not satisfy the dominance-constraint. We 

claim that if f is reasonable, we can always construct a dominance-consistent 

mapping, f* such that Pr(M|f*) ≥ Pr(M|f). Then, it trivially follows that max f*∈Fdom 

Pr(M|f*) = maxf∈F Pr(M|f). We show the construction of such an f* for every 

reasonable mapping f below.

Step 2: (Bucketizing Inconsistency). Suppose f does not satisfy the bucketizing 

constraint. Then, we have at least one pair of items I1, I2 such that M(I1) = M(I2) and 

f(I1) ≠ f(I2). Consider the two mappings f1 and f2 defined as follows:

The mappings f1 and f2 are identical to f everywhere except for at I1 and I2, where 

f1(I1) = f1(I2) = f(I2) and f2(I1) = f2(I2) = f(I1). We show that max(Pr(M|f1), Pr(M|f2)) 

≥ Pr(M|f). Let f′ = argmax f1,f2 (Pr(M|f1), Pr(M|f2)).

Step 3: (Dominance Inconsistency). Suppose f does not satisfy the dominance 

constraint. Then, there exists at least one pair of items I1, I2 such that M(I1) > M(I2) 

and f(I1) = 0, f (I2) = 1. Define mapping f′ as follows:
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Mapping f′ is identical to f everywhere except at I1 and I2, where it swaps their 

values. We show that Pr(M|f′) ≥ Pr(M|f).

Step 4: (Reducing Inconsistencies). Suppose f is not a dominance-consistent 

mapping. We have shown that by reducing either a bucketizing inconsistency (Step 

2), or a dominance inconsistency (Step 3), we can construct a new mapping, f′ with 

likelihood greater than or equal to that of f. Now, if f′ is a dominance-consistent 

mapping, set f* = f′ and we are done. If not, look at an inconsistency in f′ and apply 

steps 2 or 3 to it. We can show that with each iteration, we are reducing at least one 

inconsistency while increasing likelihood. We repeat this process iteratively, and 

since there are only a finite number of inconsistencies in f to begin with, we are 

guaranteed to end up with a desired dominance-consistent mapping f* satisfying 

Pr(M|f*) ≥ Pr(M|f). This completes our proof sketch.

3.4 Calculating error rates from mappings

In this section, we formalize the correspondence between mappings and worker error rates 

that we introduced in Section 3.1. Given a response set M and a mapping f, say we calculate 

the corresponding worker error rates e0(f, M), e1(f, M) = Params(f, M) as follows:

1.
Let Ij ⊆ I ∋ f(I) = 0, M(I) = (m − j, j)∀I ∈ Ij. Then, 

2.
Let Ij ⊆ I ∋ f(I) = 1, M(I) = (m − j, j)∀I ∈ Ij. Then, 

Intuitively, e0(f, M) (respectively e1(f, M)) is just the fraction of times a worker responds 

with a value of 1 (respectively 0) for an item whose true value is 0 (respectively 1), under 

response set M assuming that f is the ground truth mapping. We show that for each mapping 

f, this intuitive set of false positive and false negative error rates, (e0, e1) maximizes Pr(M|f, 
e0, e1). We express this idea formally below.

Lemma 3.1 (Params(f, M)): Given response set M, and mapping f, let Pr(e0, e1|f, M) be the 

probability that the underlying worker false positive and negative rates are e0 and e1 

respectively, conditioned on f being the true mapping. Then,

Next, we show that instead of simultaneously trying to find the most likely mapping and 

false positive and false negative error rates, it is sufficient to just find the most likely 

mapping while assuming that the error rates corresponding to any chosen mapping, f, are 

always given by Params(f, M). We formalize this intuition in Lemma 3.2 below. The details 

of its proof, which are simple and follow from Lemma 3.1, can also be found in the full 

technical report [6].
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Lemma 3.2 (Likelihood of a Mapping): Let f ∈ F be any mapping and M be the given 

response set on I. We have,

3.5 Experiments

In this section, we evaluate the performance of our algorithm, OPT, on synthetic and real 

data, and compare it against baselines. We report our performance in terms of (a) accuracy 
of label predictions, (b) accuracy of worker error rates, and (c) time taken.

We discuss four experiments: our first experiment is on synthetic data, our second 

experiment is on data from [10] on image comparison, our third experiment is on data from 

[21] on classification, and our last experiment summarizes results on other datasets.

In all our experiments, our algorithm, OPT, assumes a single error rate across all workers, 

despite that not holding true, so is at a considerable disadvantage to other algorithms that do 

take individual worker identities and error rates into account.

We also note that while our gains for the filtering setting are small, as we will see in Section 

4.3, the gains are significantly higher for the case of rating, where multiple error rate 

parameters are being simultaneously estimated. (For the filtering case, only false positive 

and false negative error rates are being estimated.)

Experiment 1: Synthetic Data Experiments—For the synthetic data, we perform 

experiments under two settings: In the first setting, data is generated using the assumption 

that workers draw their responses from a fixed common error distribution. This is the same 

assumption that is also made by our algorithm, denoted OPT. We compare OPT against an 

EM baseline that also makes the same assumption. Here, our goal is to explore the effects of 

optimizing on likelihood on other parameters of interest, e.g., the quality of the predicted 

item values, or the estimated error rates, on an equal footing with EM baselines.

In the second setting, data is generated using the assumption that different workers draw 

their responses from different error distributions, with worker identities known. While our 

algorithm continues to operate as before (with the single error rate assumption), for our EM 

baseline, we use a richer algorithm that can take worker identities and individual error rates 

into account. Here, our goal is to study the impact of OPT in settings where our assumptions 

do not hold, and when worker identities are indeed available.

Setting 1: Identical worker error distribution

Dataset generation: To generate ground truth values for items, given a fixed selectivity s, for 

each item, we assign a ground truth value of 1 with probability s, and 0 with probability 1 − 

s. This gives a set of items I, |I| = n, and ground truth mapping T. Then, we generate an 

underlying worker response probability matrix, with the only constraint that workers are 

better than random (false positive and false negative rates are ≤ 0.5). We then simulate 
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worker responses based on this matrix to generate a response set M. Different algorithms 

being compared now take I, M as input and return a mapping f : I → {0, 1}, and a worker 

response matrix p.

Algorithms: We compare our algorithm, OPT, against the basic EM algorithm that is also 

solving the same maximum likelihood problem. We discuss details of the EM algorithm in 

[6]. EM takes an initial estimate or guess for worker error rates as a parameter — we 

experiment with three different initializations here. EM(1) starts with an initialization of e0, 

e1 = 0.25 (workers are better than random), EM(2) with e0, e1 = 0.5 (workers are random), 

and EM(3) with e0, e1 = 0.75 (workers are worse than random). EM(*) is the consolidated 

algorithm which runs each of the three EM instances and best among them in terms of 

maximum likelihood.

Setup: We experiment with different choices over both input parameters and comparison 

metrics over the output. We observe that changing the number of items, n, does not 

significantly affect our accuracy results, so we set n = 1000. We vary the selectivity, s, and 

the number of worker responses per item, m; due to space limitations, we show a 

representative set of results below. Each experiment is repeated across 1000 random trials.

Likelihood: Figure 3(a) shows the likelihoods of mappings returned by OPT and different 

EM instances on varying the number of worker responses, for s = 0.5. The y-axis is on log 

scale, with a higher value being more desirable. We observe that OPT returns higher 

likelihood mappings with the marginal improvement going down as m increases. We believe 

that in practice it is unlikely that m > 5 (more than 5 answers per item).

Fraction incorrect: In addition to likelihood, we are also interested in other metrics that 

measure the quality of our predictions. In Figure 3(b) (s = 0.7), we plot the fraction of item 

values each of the algorithms predict incorrectly (a lower score is better). Here, again, OPT 

estimates true values of items with a higher accuracy than EM instances; with EM(2) and 

EM(3) being especially bad.

EMD score: Then, to evaluate the predicted worker error rates against actual ones, we plot 

the Earth Movers distance (EMD) between our predicted matrix and the actual one in Figure 

3(c) (s = 0.5 – lower better). For a detailed description of distance metrics, see technical 

report [6]. We observe that OPT’s predictions are closer to the actual probability matrix than 

all the EM instances. We observe that EM(2) and EM(3) get stuck in bad local minima.

Summary: For all metrics, OPT displays slightly higher accuracy, in addition to giving a 

global likelihood guarantee. (Our results for rating are even better since there are multiple 

parameters being estimated.) Our experiments also show that optimizing for likelihood does 

not adversely affect other metrics of interest. We experiment with additional parameter 

settings and comparison metrics, and present more extensive results in our technical report 

[6].

Setting 2: Distinct worker error distributions: Next, we consider the setting where data is 

generated using distinct worker error rates, with worker identities available to the 
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algorithms. Furthermore, different workers may respond to different items, giving a general 

item-worker response matrix. For this setting, we consider a generalized version of the 

previous EM, algorithm GEN_EM, that assumes and estimates a distinct error distribution 

for each worker. (The previous EM instances assumed a single common error distribution.) 

OPT, on the other hand, ignores worker identities, and uses a single common error 

distribution. The item-worker response matrix can be dense or sparse depending on how 

many items different workers respond to.

Our expectation is that if the matrix is dense, with a small number of workers, each 

answering many items, then GEN_EM will do well, since it will converge to high-

confidence estimates for worker accuracies. If, on the other hand, the matrix is sparse, which 

is often the case when there is a large and fluid worker pool, with each worker answering a 

small number of items, then we expect OPT to do as well as GEN_EM, which may 

extrapolate worker accuracies without much evidence.

Dataset generation, Setup, and Algorithms: We use m′ distinct workers each with a 

uniformly drawn, independent error rate that is better than random (≥ 0.5). Each of the n 
items receives responses from m workers randomly sampled from m′, so workers answer an 

average of nm/m′ items. We keep n constant at 1000, making m/m′ a good measure of the 

density of the item-worker matrix.

The generalized version of EM for this setting, GEN_EM, starts with an initial error rate 

estimate for each worker, and then converges to distinct error rates for them. We use the 

same initialization as EM(1) from the experiments in Setting 1 for each worker, as that was 

observed to have the best performance.

Accuracy Results: Figure 4(a) depicts the performance as a function of m, when m′ = 50. 

We observe that GEN_EM performs better throughout. This is not surprising given that with 

just 50 total workers, each worker would answer 1000 × 10/50 = 200 items for m = 10, 

giving GEN_EM very fine-grained information about each individual worker. Contrast this 

to Figure 4(b), where m′ = 1000 — here, the item-worker response matrix is much sparser 

(average number of responses per worker is 10) and we consequently observe that OPT is 

comparable to (even marginally better than) GEN_EM in spite of working with a much 

coarser granularity of information! The latter case is often true in marketplaces where 

requesters have little control over which workers attempt their tasks, or if the workers are 

anonymous.

In Figure 4(c), we show the performance as a function of the maximum size of the worker 

pool, m′ (log-scale), while keeping the number of responses per item, m, fixed. While 

GEN_EM outperforms OPT for smaller m′ (dense response matrix), OPT catches up for m′ 
> 1000.

Efficiency Results: In Figures 5(a), 5(b), 5(c), we compare the efficiency of OPT against 

GEN_EM in terms of actual execution time. As before, we explore the effects of both m and 

m′. In Figures 5(a), 5(b) we vary m from 3 to 10 along the x-axis, for a fixed value of m′ = 

100, 1000 in the two plots respectively. In Figure 5(c), we vary m′ while keeping m fixed at 
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4. We observe that while the time taken by OPT is typically of the order of 0.001 seconds, 

GEN_EM (which scales linearly with number of iterations, set at 40 for these plots) takes 

several seconds to execute for higher values of m′. In fact, OPT is almost not visible in these 

plots. This further supports the case for OPT in settings with a large worker pool. Note that 

OPT is linear in m, but its low latency values hide this trend at this scale.

We also perform experiments where we inject a small fraction of “bad” (random) workers 

into the worker pool for both the settings above. We observe that for reasonable numbers, 

this injection does not significantly affect our previous results. More detailed experimental 

results on this can be found in our technical report.

Experiment 2: Real Data Experiment on [10]—We now describe our results on a real 

dataset. Since the dataset contains answers from a small worker pool, it is naturally dense, 

and is therefore unfavorable to OPT. We compare OPT versus GEN_EM here. Additional 

results can be found in the Appendix. For each of these experiments we “vary” the size of 

the dataset by hiding some of the worker responses and report results from the different, 

remaining, partial sets.

Dataset: Our dataset is an image comparison dataset [10], where 19 workers are asked to 

each evaluate 48 tasks. Each task requires a worker to identify if two images show the same 

sportsperson. We have ground-truth yes/no answers for each task, but do not know the 

worker error rates. To evaluate the performance of OPT with GEN_EM, we compare the 

estimates for the item values (the yes/no answers) against the given ground truth.

Results: While in our synthetic experiments, we had the luxury of generating datasets with 

arbitrary m′, here, we have m′ ≤ 19. We fix m (number of responses per item) for a given 

plot and vary m′ (number of total workers present) along the x-axis, and compare the 

fraction of item values predicted incorrectly along the y-axis. We show our results for m = 5 

in Figure 6(a) and for m = 2 in Figure 6(b). Again, we observe that for the denser item-

worker response matrix (m = 5), GEN_EM is more accurate than OPT, while for the sparser 

(m = 2) case, OPT is more accurate than GEN_EM. Thus, even on settings which violate our 

assumptions, such as this dataset with a finite, small worker pool, OPT is more accurate than 

GEN_EM for sparse item-worker response matrices.

Experiment 3: Real Data Experiment on [21]—We now present results on our second 

real dataset, from Tian et al. [21]. This is a dataset of images with simple classification 

(example, is this an image of the sky) or counting tasks. It contains a set of 64 images each 

responded to by 402 workers. From this, we selected the subset of 36 images corresponding 

to the filtering tasks, as opposed to the counting tasks. Below we show plots 6(c) and 7(a) 

where we keep m fixed for a plot and vary m′ along the x-axis. We observe here that our 

algorithm OPT predicts item values more accurately than GEN_EM for nearly all parameter 

settings. Full details of our experimental setup can be found in [6].

Experiment 4: Comparison against other baselines—We also evaluated our 

approach on a few other datasets and against other baseline algorithms. We present our 

results on two datasets, TEMP and RTE from [16]—both these datasets are part of the 
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SQUARE benchmark [20]. The TEMP dataset contains judgments for temporal ordering of 

events in text, while the RTE dataset contains judgments for textual entailment (both binary 

tasks).

OPT predicts the labels for TEMP with a 93.94% accuracy, similar to that of the best 

algorithm for this dataset, whose accuracy is 93.9% [20].

On the RTE dataset, OPT predicts labels with an error rate of 11.3% (accuracy of 88.7%). 

We compare this against the results from [29], where their sophisticated Opt-D&S algorithm 

has an error rate of 7.1% (while other methods have much poorer performance, for example, 

KOS — 39.7% [11] and Ghosh-SVD — 49.13% [8]). We argue that while OPT is not the 

most accurate (since it ignores worker identities), it is competitive in its accuracy while 

having the advantage of simplicity over some of the more sophisticated baselines such as 

Opt-D&S.

Indeed, all the datasets in the SQUARE benchmark are dense datasets; if the datasets were 

sparse (like in Experiment 3), we expect OPT to not just match the performance of these 

algorithms, but also beat them.

4. RATING PROBLEM

In this section, we extend our techniques from filtering to the problem of rating items. Even 

though the main change resides in the possible values of items ({0, 1} for filtering and {1, 

…, R} for rating), this small change adds significant complexity to our dominance idea. We 

show how our notions of bucketizing and dominance generalize from the filtering case.

4.1 Formalization

Recall from Section 2 that, for the rating problem, workers are shown an item and asked to 

provide a score from 1 to R, with R being the best (highest) and 1 being the worst (lowest) 

score possible. Each item from the set I receives m worker responses and all the responses 

are recorded in M. We write M(I) = (vR, vR−1, …, v1) if item I ∈ I receives vi responses of 

“i”, 1 ≤ i ≤ R. Recall that . Mappings are functions f : I → {1, 2, …, R} and 

workers are described by the response probability matrix p, where p(i, j) (i, j ∈ {1, 2, …, R}) 

denotes the probability that a worker will give an item with true value j a score of i. Our 

problem is defined as that of finding  given M.

As in the case of filtering, we use the relation between p and f through M to define the 

likelihood of a mapping. We observe that for maximum likelihood solutions given M, fixing 

a mapping f automatically fixes an optimal p = Params(f, M). Thus, similar to Filtering, we 

can focus our attention on the mappings, implicitly finding the maximum likelihood p as 

well. Intuitively, Params(f, M)(i, j) is just the fraction of times a worker responded i to an 

item that is mapped by f to a value of j. Let the ith dimension of the response set of any item 
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I by Mi(I). That is, if M(I) = (vR, …, v1), then Mi(I) = vi. Let Ii ⊆ I ∋ f(I) = i∀i, I ∈ Ii. Then, 

, j.

Denoting the likelihood of a mapping, Pr(M|f, Params(f, M)), as Pr(M|f), our maximum 

likelihood rating problem is now equivalent to that of finding the most likely mapping. Thus, 

we wish to solve for .

4.2 Algorithm

Now, we generalize our idea of bucketized, dominance-consistent mappings from Section 

3.2 to find a maximum likelihood solution for the rating problem.

Bucketizing: For every item, we are given m worker responses, each in 1, 2, …, R. It can be 

shown that there are  different possible worker response sets, or buckets. The 

bucketizing idea is the same as before: items with the same response sets can be treated 

identically and should be mapped to the same values. So we only consider mappings that 

give the same rating score to all items in a common response set bucket.

Dominance Ordering: Next we generalize our dominance constraint. Recall that for filtering 

with m responses per item, we had a total ordering on the dominance relation over response 

set buckets, (m, 0) > (m − 1, 1) > … > (1, m − 1) > (0, m) where no dominated bucket could 

have a higher score (“1”) than a dominating bucket (“0”). Let us consider the simple 

example where R = 3 and we have m = 3 worker responses per item. Let (i, j, k) denote the 

response set where i workers give a score of “3”, j workers give a score of “2” and k workers 

give a score of “1”. Since we have 3 responses per item, i + j + k = 3. Intuitively, the 

response set (3, 0, 0) dominates the response set (2, 1, 0) because in the first, three workers 

gave items a score of “3”, while in the second, only two workers give a score of “3” while 

one gives a score of “2”. Assuming a “reasonable” worker behavior, we would expect the 

value assigned to the dominating bucket to be at least as high as the value assigned to the 

dominated bucket. Now consider the buckets (2, 0, 1) and (1, 2, 0). For items in the first 

bucket, two workers have given a score of “3”, while one worker has given a score of “1”. 

For items in the second bucket, one worker has given a score of “3”, while two workers have 

given a score of “2”. Based solely on these scores, we cannot claim that either of these 

buckets dominates the other. So, for the rating problem we only have a partial dominance 

ordering, which we can represent as a DAG. We show the dominance-DAG for the R = 3, m 
= 3 case in Figure 8. For arbitrary m, R, we can define the following dominance relation.

Definition 4.1 (Rating Dominance): Bucket B1 with response set ( ) 

dominates bucket B2 with response set ( ) if and only if 

 and .
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Intuitively, a bucket B1 dominates B2 if increasing the score given by a single worker to B2 

by 1 makes its response set equal to that of items in B1. Note that a bucket can dominate 

multiple buckets, and a dominated bucket can have multiple dominating buckets, depending 

on which worker’s response is increased by 1. For instance, in Figure 8, bucket (2, 1, 0) 

dominates both (2, 0, 1) (increase one score from “1” to “2”) and (1, 2, 0) (increase one 

score from “2” to “3”), both of which dominate (1, 1, 1).

Dominance-Consistent Mappings: As with filtering, we consider the set of mappings 

satisfying both the bucketizing and dominance constraints, and call them dominance-
consistent mappings.

Dominance-consistent mappings can be represented using cuts in the dominance-DAG. To 

construct a dominance-consistent mapping, we split the DAG into at most R partitions such 

that no parent node belongs to an intuitively “lower” partition than its children. Then we 

assign ratings to items in a top-down fashion such that all nodes within a partition get a 

common rating value lower than the value assigned to the partition just above it. Figure 8 

shows one such dominance-consistent mapping corresponding to a set of cuts. A cut with 

label c = i essentially partitions the DAG into two sets: the set of nodes above all receive 

ratings ≥ i while all nodes below receive ratings < i. To find the most likely mapping, we sort 

the items into buckets and look for mappings over buckets that are consistent with the 

dominance-DAG. We use an iterative top-down approach to enumerate all consistent 

mappings. First, we label our nodes in the DAG from  according to their 

topological ordering, with the root node starting at 1. In the ith iteration, we assume we have 

the set of all possible consistent mappings assigning values to nodes 1 … i − 1 and extend 

them to all consistent mappings over nodes 1 … i. When the last  node has 

been added, we are left with the complete set of all dominance-consistent mappings. Details 

of our algorithm appear in [6].

Complexity: As with the filtering problem, an exhaustive search of only the dominance-

consistent mappings under this dominance DAG constraint gives us a global maximum 

likelihood mapping across a much larger space of reasonable mappings. Suppose we have n 
items, R rating values, and m worker responses per item. The number of buckets of possible 

worker response sets (nodes in the DAG) is . Then, the number of 

unconstrained mappings is Rn and number of mappings with just the bucketizing condition, 

i.e., where items with the same response sets get assigned the same value, is 

. It is easy to see that this is an upper bound to the number of dominance-

consistent mappings.

We can also derive a reasonable lower bound by observing that one way of generating (a 

subset of) dominance-consistent mappings is to assign ratings to the DAG such that all nodes 
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at the same depth have identical ratings, and all nodes at any depth have a higher rating than 

all nodes at the subsequent lower depth. Note that all mappings generated this way are 

dominance-consistent, as no lower node can dominate a higher one. Furthermore, observe 

that this bound is achieved in the limiting case when the DAG has a width of 1, i.e., it is a 

chain. Suppose the DAG has a total depth of d. Then, using the standard combinatorial stars 
and bars technique, we can show that the number of such mappings is given by 

. Now, by observing that the root node (depth 1) is given by (m, 0, 0, …, 0), the 

bottom node (depth d) is given by (0, 0, …, m), and that the ratings given to any node in 

depth d sum up to Rm − d + 1, we have d = Rm − m + 1. Substituting this value, we have 

 as a lower bound for the number of dominance-consistent mappings for the 

rating problem.

We leave the (challenging) problem of finding a closed form expression for the actual 

number of dominance-consistent mappings as future work. Instead, we enumerate a sample 

set of values in Table 2 for n = 100 items. We see that the number of dominance-consistent 

mappings is significantly smaller than the number of unconstrained mappings. The fact that 

this greatly reduced set of intuitive mappings contains a global maximum likelihood solution 

displays the power of our approach. Furthermore, n is typically much larger, which would 

make the number of unconstrained mappings exponentially larger, while the number of 

dominance-consistent mappings remains unaffected.

4.3 Experiments

In this section, we evaluate the performance of our algorithm, OPT, on synthetic and real 

rating data. Similar to our analyses in Section 3.5, we report our performance in terms of (a) 

accuracy of label predictions, (b) accuracy of worker error rates, and (c) time taken. As 

before, in all our experiments, OPT assumes a single error rate across all workers. Here, we 

discuss two experiments: our first experiment is on synthetic data, and our second 

experiment is on data from [2], on website relevance judgment.

Experiment 1: Synthetic Data Experiments—We perform experiments on the 

identical, as well as distinct worker synthetic data settings using setups similar to those 

described in Section 3.5. We present a sample of our experiments and results below, and 

refer interested readers to our technical report for a more extensive experimental analysis.

Setting 1: Identical worker error distribution: Similar to Section 3.5, we first perform 

experiments under the setting where data generation, OPT, as well as EM are all based on a 

single error rate matrix. Details of the setup can be found in [6].

Likelihood: Figure 7(b) plots the likelihoods (on log scale) of the mappings output by 

different algorithms along the y-axis. We observe that the likelihoods of the mappings 

returned by OPT, are much higher than those of any of the EM algorithms. For example, 

consider m = 5: we observe that our algorithm finds mappings that are on average 9 orders 

of magnitude more likely than those returned by EM(*) (here, the best EM instance). As 
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with filtering, the gap between the performance of our algorithm and the EM instances 

decreases as the number of workers increases.

Quality of item rating predictions: In Figure 7(c) we compare the predicted ratings of items 

against actual values. We measure a weighted score based on how far the predicted value is 

from the true value. This score lies in the range [0, 2] (details in [6]), with a lower score 

implying more accurate predictions. Again, we observe that in spite of optimizing for, and 

providing a global maximum likelihood guarantee, our algorithm predicts item ratings with a 

high degree of accuracy, with significantly better performance than all the EM instances. For 

example, at m = 2 we observe that OPT deviates from the true rating by less than 0.4 on 

average, while the EM instances are off by 0.8 or higher.

Setting 2: Distinct worker error distributions

Accuracy Results: Here, we compare the distance-weighted scores (plotted along the y-axis) 

of our algorithm, OPT, against GEN_EM while varying m (number of responses per item) 

along the x-axis (for a fixed m′). We observe that GEN_EM is more accurate than OPT for 

the case when m′ = 50 (Figure 9(a)), but is significantly worse than OPT for the sparse 

item-worker response matrix setting (Figure 9(b)), where the size of the worker pool, m′ = 

1000 is large. For example, at m = 5, OPT deviates from the true ratings by less than 0.2 on 

average, while GEN_EM deviates by nearly 0.3. Comparing these results to those in Section 

3.5, our gains in accuracy of item predictions for rating are significantly higher because the 

number of parameters being estimated is much higher, and the EM algorithm has more 

“ways” it can go wrong if the parameters are initialized incorrectly. That is, with a higher 

dimensionality we expect that EM converges more often to non-optimal local maxima.

Similar to Figure 4(c), in Figure 9(c), we also show the results obtained when we vary m′ 
along the x-axis (log-scale), while keeping m fixed at 4. For m′ < 100 (smaller worker pool, 

denser item-worker response matrix), GEM_EM outperforms our algorithm, while for 

higher values of m′, OPT is significantly more accurate.

Efficiency Results: In Figures 10(a), 10(b), 10(c), we compare the efficiency of OPT against 

GEN_EM. Similar to our experiments for filtering, in Figures 10(a), 10(b) we vary m, for 

fixed values of m′ = 100, 1000 respectively. In Figure 10(c), we vary m′ while keeping m 
fixed at 4. We observe that OPT appears to scale exponentially in m, and is less efficient 

than GEN_EM for higher values of m and small values of m′ (m′ ≤ 100, m > 5). However, 

for a large worker pool (m′ ≥ 1000), we see that OPT is much more efficient. Since 

typically m is fixed to be a small value by the task requester, we conclude that in practice 

OPT scales better than GEN_EM. Note again, that although these plots are drawn with 

GEN_EM performing 40 iterations, reducing the number of iterations (at the cost of 

accuracy) will only linearly scale down GEN_EM’s latency; it will still be inefficient 

compared to OPT for higher values of m′.

Again, we conclude that even when distinct worker-level information is available to EM, 

OPT performs very well in spite of its simplifying assumptions, especially under the very 

realistic settings where worker pools are large and non-persistent.
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Experiment 2: Real Data Experiment on [2]—We also performed experiments on a 

subset of the HC dataset from [2, 20]. This dataset contains judgements given by Mechanical 

Turk workers on the relevance of displayed webpages to given search queries. Relevance 

was judged on a ternary scale: highly relevant, relevant, and non-relevant. From this dataset, 

we chose the subset where every item (webpage-query pair) had gold truth available and at 

least 6 worker judgements. On this subset (spanning around 500 workers, 1000 items, 10000 

judgements), we observed that both OPT and GEN_EM exactly matched the gold truth 

labels roughly 46% of the time, as compared to the Median strategy (always predict median 

of observed labels) which got roughly 35% correct. The distance weighted score (average 

absolute deviation from gold truth on a scale of 0 to 2) obtained by OPT was 0.65, while that 

by GEN_EM and Median were 0.74 and 0.85 respectively, showing that OPT predicted 

values closer to the gold truth in more cases than simple vanilla-EM or Median based 

strategies.

5. CONCLUSIONS

We have taken a first step towards finding a global maximum likelihood solution to the 

problem of jointly estimating the item ground truth, and worker quality, in crowdsourced 

filtering and rating tasks. Given worker ratings on a set of items, we showed that the 

problem of jointly estimating the ratings of items and worker quality can be split into their 

two respective, independent estimation problems. We used a few key, intuitive ideas to first 

find a global maximum likelihood mapping from items to ratings, thereby finding the most 

likely ground truth. We then showed that the worker quality, modeled by a common response 

probability matrix, can be inferred automatically from the corresponding maximum 

likelihood mapping. We develop a novel pruning and search-based approach, in which we 

greatly reduce the space of (originally exponential) potential mappings to be considered, and 

prove that an exhaustive search in the reduced space is guaranteed to return a maximum 

likelihood solution.

Via our experiments, we demonstrated that our algorithm outperforms EM-based algorithms 

on datasets where worker errors are all alike, and in fact, even outperforms EM-based 

algorithms on datasets where the worker errors are distinct, as long the worker pools are 

large. The latter setting is common in practice in crowd-sourcing marketplaces where 

workers are fleeting and easily distracted. It should be noted that even in the case of real 

datasets with a small set of distinct workers where our algorithm (due to its ignoring of 

worker identities) is at a disadvantage, its performance is still comparable to state-of-the-art 

algorithms while providing the significant benefit of being simple and intuitive. We also 

demonstrated that despite being optimized for the likelihood of mappings, our algorithm 

estimates ground truth of item ratings and worker error rates with high accuracy, and 

performs well on other metrics.

Our algorithms can be generalized to the setting where there is a small number of worker 

classes, each with their own error rates. Likewise, in this paper we assume a fixed number of 

responses for each item, but we can be generalized to the case where different items may 

receive different numbers of responses. We briefly discuss both these generalizations in our 

Appendix B.
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It should be noted that although our framework extends to these generalizations, including 

the case where each worker has an independent, different quality, the algorithms can be 

inefficient in practice. We have not considered the problem of item difficulties in this paper, 

assuming that workers have the same quality of responses on all items. As future work, we 

hope that the ideas described in this paper can be built upon to design efficient algorithms 

that find a global maximum likelihood mapping under more general settings.
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APPENDIX

A. FILTERING

A.1 Proof of Correctness

In this section, we show that if a mapping, f, is not dominance-consistent for some given 

response matrix M, then we can construct an alternate, dominance-consistent mapping f′, 

such that Pr(M|f′) ≥ Pr(M|f). This is Step 3 in the proof for Theorem 3.3, and the proof for 

Step 2 follows in a similar fashion.

Suppose f does not satisfy the dominance constraint. Then, there exists at least one pair of 

items I1, I2 such that M(I1) > M(I2) and f(I1) = 0, f(I2) = 1. Define mapping f′ as follows:

Let I1 have realization (m−i, i), that is, it receives m−i responses of 1 and i responses of 0 

from workers. Similarly, let I2 have realization (m − j, j). Now, suppose i < j, that is, M(I1) > 

M(I2) and f(I1) = 0, f(I2) = 1, f′(I1) = 1, f′(I2) = 0. Now, we need to show that Pr(M|f′) ≥ 

Pr(M|f).
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Let nk1, nk0 denote the number of items mapped to 1 and 0 respectively under f (and f′) in I 
\ {I1 ∪ I2} with realization (m − k, k). With this notation, we can compute each of Pr(M|f) 
and Pr(M|f′).

Likelihood of f′ : I1 → 1, I2 → 0.

Let

and

Here,  (respectively ) represents the underlying (maximum likelihood) probability of a 

worker responding 1 (respectively 0) for an item with true value 1 (respectively 0). Further, 

(for ease of exposition), let a1 = Σk nk1(m − k) + (m − i), a0 = Σk nk0(m − k) + j, c1 = Σk 

nk1m + m, and c0 = Σk nk0m + m. Then, from the independence of items assumption, we 

have, .

Likelihood of f : I1 → 0, I2 → 1.

Similarly, we let

and

Suppose b1 = Σk nk1(m − k) + (m − j), and b0 = Σk nk0(m − k)+i, we can similarly show that 

P(M|f) = (p11)b1(1 − p11)c1−b1 × (p00)b0(1 − p00)c0−b0.

Therefore, we can write  as X1X0, where: , and 

.
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We claim, that for reasonable mappings, X1, X0 ≥ 1, which implies that P(M|f′) ≥ P(M|f), 
thereby completing our proof. We show below that X1 ≥ 1. The proof for X0 follows in a 

similar fashion.

We can rewrite X1 as . We drop the “1” subscript from this point for 

ease of notation. Here, we have a < b (follows from i < j). It can be shown that when a < b, a

+b ≥ c ⇒ X ≥ 1. It is easy to see that if f and f′ are reasonable mappings, then we have , 

p11 ≥ 0.5 (follows from the definition in Section 3.3). But , and . Therefore, 

. This completes our proof.

A.2 Real Data Additional Experiments

Here, we report some additional experiments for our first real dataset [10]. In particular, we 

would like to estimate the performance of OPT versus vanilla EM instances. Under this 

setting, OPT, as well as EM assume a single worker error distribution and infer item values 

based on this assumption and learned error distribution.

Setup

We vary the number of workers used from 1 to 19 and plot the performance of algorithms 

OPT, EM(1), EM(2), EM(3), EM(*) similar to Section 3.5. We plot the number of worker 

responses used along the x-axis. For instance, a value of m = 4 indicates that for each item, 

four random worker responses are chosen. The four workers answering one item may be 

different from those answering another item. This random sample of the response set is 

given as input to the different algorithms. Similar to our synthetic data experiments, we 

average our results across 100 different trials for each data point in our subsequent plots.

Likelihood

Figure 11(b) plots the likelihoods of the final solution for different algorithms. We observe 

that except for EM(2), all algorithms have a high likelihood. This can be explained as 

follows: EM(2) which starts with an initialization of e0 and e1 rates around 0.5 and 

converges to a final response probability matrix in that neighborhood. Final error rates of 

around 0.5 (random) will have naturally low likelihood when there is a high amount of 

agreement between workers. EM(1) and EM(3) on the other hand start with, and converge to 

near opposite extremes with EM(1) predicting e0/e1 rates ≈ 0 and EM(3) predicting error 

rates ≈ 1. Both of these, however, result in a high likelihood of observing the given response, 

with EM(1) predicting that the worker is always correct, and EM(3) predicting that the 

worker is always incorrect, i.e., adversarial. Even though EM(1) and EM(3) often converge 

to completely opposite predictions of item-values because of their initializations, their 

solutions still have similar likelihoods corresponding to the intuitive extremes of perfect and 

adversarial worker behavior. This behavior thus demonstrates the strong dependence of EM-

based approaches on the initialization parameters.
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Fraction Incorrect

Figure 11(a) plots the fraction of items predicted incorrectly along the y-axis for OPT and 

the EM algorithms. We observe that both EM(1) and our algorithm OPT do fairly well on 

this dataset even when a very few number of worker responses are used. However, EM(*), 

which one may expect would typically do better than the individual EM initializations, 

sometimes does poorly compared to OPT by picking solutions of high likelihood that are 

nevertheless not very good. Note that here we assume that worker identities are unknown 

and arbitrary workers could be answering different tasks — our goal is to characterize the 

behavior of the worker population as a whole. For larger datasets, we expect the effects of 

population smoothing to be greater and our assumptions on worker homogeneity to be closer 

to the truth. So, even though our algorithm provides theoretical global guarantees under 

somewhat strong assumptions, it also performs well for settings where not all our 

assumptions are true.

B. EXTENSIONS

In this section we discuss the generalization of our bucketizing and dominance-based 

approach to some extensions of the filtering and rating problems. Recall our two major 

assumptions: (1) every item receives the same number (m) of responses, and (2) all workers 

are randomly assigned and their responses are drawn from a common distribution, p(i, j). We 

now relax each of these requirements and describe how our framework can be applied.

B.1 Variable number of responses

Suppose different items may receive different numbers of worker responses, e.g. because 

items are randomly chosen, or workers choose some questions preferentially over others. 

Note in this section we are still assuming that all workers have the same response probability 

matrix p.

For this discussion we restrict ourselves to the filtering problem; a similar analysis can be 

applied to rating. Suppose each item can receive a maximum of m worker responses, with 

different items receiving different numbers of responses. Again, we bucketize items by their 

response sets and try to impose a dominance-ordering on the buckets. Now, instead of only 

considering response sets of the form (m − j, j), we consider arbitrary (i, j). Recall that a 

response set (i, j) denotes that an item received i “1” responses and j “0” responses. We show 

the imposed dominance ordering in Figure 13.

We expect an item that receives i “1” responses and j “0” responses to be more likely to have 

true value “1” than an item with i − 1 “1” responses and j “0” responses, or an item with i 
“1” responses and j + 1 “0” responses. So, we have the dominance relations (i, j) > (i − 1, j) 
where i ≥ 1, j ≥ 0, i + j ≤ m, and (i, j) > (i, j + 1) with i, j ≥ 0, i + j + 1 ≤ m. Note that the 

dominance ordering imposed in Section 3, (m, 0) > (m − 1, 1) > … > (0, m), is implied 

transitively here. For instance, (m, 0) > (m − 1, 0) ∧ (m − 1, 0) > (m − 1, 1) ⇒ (m, 0) > (m 
− 1, 1). Also note that this is a partial ordering as certain pairs of buckets, (0, 0) and (1, 1) 

for example, cannot intuitively be compared.
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Again, we can reduce our search for the maximum likelihood mapping to the space of all 

bucketized mappings consistent with this dominance (partial) ordering. That is, given item 

set I and response set M, we consider mappings f : I → {0, 1}, where M(I1) = M(I2) ⇒ 
f(I1) = f(I2) and M(I1) > M(I2) ⇒ f(I1) ≥ f(I2). We show two such dominance consistent 

mappings, fi and fj in Figure 13. Mapping fi assigns all items with at least i “1” worker 

responses to a value of 1 and the rest to a value of 0. Similarly, mapping fj assigns all items 

with at most j “0” responses a value of 1 and the rest a value of 0. We can construct a third 

dominance-consistent mapping fij from a conjunction of these two: fij(I) = 1 if and only if fi 

= 1 ∧ fj = 1, that is, fij assigns only gives those items that have at least i “1” worker 

responses and at most j “0” responses, a value of 1. We can now describe fi and fj as special 

instances of the dominance-consistent mapping fij when j = m and i = 0 respectively.

We show below that all dominance-consistent mappings for this setting can be described as 

the union of different fijs for a set of 0 ≤ i, j ≤ m, for a total of O(2m) dominance-consistent 

mappings. Note that although this expression is exponential in the maximum number of 

worker responses per item, m, for most practical applications this is a very small constant.

Let f be any dominance-consistent mapping under this setting. Let (i, j) be a response set 

with i responses of 1 and j responses of 0 such that f(i, j) = 1. Then, by our dominance 

constraint, we know that f(i + Δi, j + Δj) = 1∀Δi ≥ 0, Δj ≥ 0. We represent this figuratively in 

Figure 12(a). If f(i, j) = 1, then all response sets, or points, in the shaded area also get 

mapped to a value of 1.

Now, by applying the dominance constraint as shown in Figure 12(a) to every (i, j) such that 

f(i, j) = 1, we can show that f can now be described intuitively by its “boundary”. We 

demonstrate this intuition in Figure 12(b). Every point, (i, j), on f’s boundary satisfies f(i, j) 
= 1. Additionally, every point “within” the boundary, every point that is to the right of and 

below the boundary gets mapped to a value of 1 under f. Finally, every point that is not on or 

within the boundary gets mapped to a value of 0 under f.

It follows from the dominance constraint that every dominance-consistent mapping, f, can be 

represented by a unique such continuous boundary. Furthermore, it is easy to see that any 

such boundary satisfies three conditions:

• Its leftmost (corner) point lies on one of the axes.

• Its topmost (corner) point lies on the line x + y = m.

• If (x1, y1) and (x2, y2) lie on the boundary, then x1 ≤ x2 ⇔ y1 ≤ y2.

Intuitively the above three conditions give us a constructive definition for any dominance-

consistent mapping’s boundary. Every dominance-consistent mapping can be constructed 

uniquely as follows: (1) Choose a left corner point lying on one of the axes. (2) Choose a 

topmost corner point (necessarily above and to the right of the first corner point) lying on the 

line x + y = m. (3) Finally, define the boundary as a unique grid traversal from the left corner 

to the top corner where you are allowed to extend the boundary only to the right or upwards. 

Each such boundary corresponds to a unique dominance-consistent mapping where every 
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point on or under the boundary is mapped to 1 and every other point is mapped to 0. 

Furthermore, every dominance-consistent mapping has a unique such boundary.

Therefore our problem of counting the number of dominance-consistent mappings for this 

setting reduces to counting the number of such boundaries. We use our constructive 

definition for the boundary to compute this number. First, suppose the leftmost corner point, 

L = (p, 0), 0 ≤ p ≤ m, lies on the x-axis (we can calculate similarly for (0, q)). Now, the 

topmost corner point lies to the right of the first corner point, and on the line x + y = m. 

Therefore it is of the form T = (p + i, m − (p + i)) for some 0 ≤ i ≤ m − p. The number of 

unique grid traversals (respectively boundaries) from L to T is given by . 

Combining, we have the number of unique boundaries that have their left corner on the x-

axis is . Calculating similarly for boundaries that 

start with their leftmost corner on the y-axis ((0, q), 1 ≤ q ≤ m) and including the empty 

boundary (corresponding to the mapping where all items get assigned a value of 0), we get 

an additional 2m boundaries. Therefore, we conclude that there are O(2m) such boundaries, 

corresponding to O(2m) dominance-consistent mappings. It should be noted that although 

this is exponential in the maximum number of worker responses to an item, typical values of 

m are small enough that all mappings can very easily be enumerated and evaluated.

B.2 Worker classes

So far we have assumed that all workers are identical, in that they draw their answers from 

the same response probability matrix, a strong assumption that does not hold in general. 

Although we could argue that different worker matrices could be aggregated into one 

average probability matrix that our previous approach discovers, if we have fine-grained 

knowledge about workers, we would like to exploit it. In this section we consider the setting 

where there are two of classes of workers, expert and regular workers to evaluate the same 

set of items. We discuss the generalization to larger numbers of worker classes below.

We now model worker behavior as two different response probability matrices, the first 

corresponding to expert workers who have low error rates, and the second corresponding to 

regular workers who have higher error rates. Our problem now becomes that of estimating 

the items’ true values in addition to both of the response probability matrices. For this 

discussion, we consider the filtering problem; a similar analysis can be applied to the rating 

case.

Again, we extend our ideas of bucketizing and dominance to this setting. Let (ye, ne, yr, nr) 

be the bucket representing all items that receive ye and ne responses of “1” and “0” 

respectively from experts, and yr and nr responses of “1” and “0” respectively from regular 

workers. A dominance partial ordering can be defined using the following rules. An item 

(respectively bucket) with response set  dominates an item (respectively 

bucket) with response set  if and only if one of the following is satisfied:
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• B1 sees more responses of “1” and fewer responses of “0” than B2. That is, 

 where at least one of the 

inequalities is strict.

• B1 and B2 see the same number of “1” and “0” responses in total, but more 

experts respond “1” to B1 and “0” to B2. That is, 

 where at least one 

of the inequalities is strict.

As before, we consider only the set of mappings that assign all items in a bucket the same 

value while preserving the dominance relationship, that is, dominating buckets get at least as 

high a value as dominated buckets.

Note that the second dominance condition above leverages the assumption that experts have 

smaller error probabilities than regular workers. If we were just given two classes of workers 

with no information about their response probability matrices, we could only use the first 

dominance condition. In general, having more information about the error probabilities of 

worker classes allows us to construct stronger dominance conditions, which in turn reduces 

the number of dominance-consistent mappings. This property allows our framework to be 

flexible and adaptable to different granularities of prior knowledge.

Example (2 worker classes, 2 responses per item)

We demonstrate the OPT solution for a simple generalization to filtering, where we have two 

worker classes: “good”, and “bad”, and each item receives 2 responses. Suppose we denote 

the responses by a good worker as “Y” (yes, or 1) and “N” (no, or 0), and those by a bad 

worker as “y”, and “n”. Any item can receive one of the following 10 possible sets of 

responses: (YY), (Yy), (yy), (Yn), (yn), (YN), (yN), (nn), (Nn), (NN). If the only 

information about these worker classes is that the good class has lower (false positive and 

false negative) error rates, then the corresponding (least constrained) dominance-consistent 

DAG is shown in Figure 14. For this DAG, we have 18 dominance-consistent mappings.

We evaluated the performance of OPT against GEN_EM under this setting on a synthetic 

dataset. Workers were randomly chosen to belong to one of the two classes. Workers from 

the good class were uniformly randomly assigned an error rate between 0.9 and 1.0, while 

workers from the bad class were given an error rate between 0.6 and 0.7. In Figure 11(c) we 

vary the total size of the worker pool, m′ along the x-axis, and show the fraction of items 

predicted incorrectly along the y-axis. We also plot the times taken by OPT and GEN_EM 

(20 iterations) to label all items in Figure 12(c). We observe that OPT is faster, as well as 

more accurate than GEN_EM under this setting.

Complexity

The complexity introduced by worker classes can not be estimated for the general case, 

since it is governed not only by the number of worker classes, but also by the input 

constraints specified on the error rates of workers from different classes. Finer grained 

constraints imply fewer dominance-consistent mappings and hence, a lower complexity, 

while coarser grained (or fewer) constraints imply a higher complexity. For instance, in the 
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limiting case where we have no prior information about the worker class error rates, we have 

no constraints, and the dominance-consistent DAG correspondingly has no edges. Therefore, 

the complexity of OPT, which scales linearly with the number of mappings, is (Rk), where 

R = 2 for filtering, and k is the number of possible responses (or nodes in the DAG) seen by 

an item. At the other extreme, when the different error rates of the respective classes are 

highly constrained (for instance, if we know that one class is significantly better than 

another, and any responses from workers of the first class dominate all responses of workers 

from the second class), the dominance-consistent DAG can be reduced to a single chain: in 

this case, given any pair of sets of responses, it can be calculated exactly which set gives a 

higher likelihood of an item passing the filter. In this extreme, the resulting complexity of 

OPT is  (derivable in a similar fashion to the lower bound shown for rating 

in Section 4.2). Note that k itself is not easy to compute for arbitrary values of R, m and w 
(number of worker classes). For m = 1, we have k = wR (each response can be given by any 

of the worker classes, and can be anything between [1, R]). For arbitrary values, k can scale 

exponentially with w.

While this extension is reasonable when the number of distinct worker classes is small, it is 

impractical to generalize it to a large number of classes. One heuristic approach to tackling 

the problem of a large number of worker classes, or independent workers, could be to divide 

items into a large number discrete groups and assign a small distinct set of workers to 

evaluate each group of items. We then treat and solve each of the groups independently as a 

problem instance with a small number worker classes. We leave the problems of formally 

computing the complexity, and finding more efficient algorithms for this general setting as a 

topic for future work.

Das Sarma et al. Page 32

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2017 January 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Mapping Example
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Figure 2. 
Filtering: Example 3.1 (cut-point = 2)
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Figure 3. 
Filtering, Synthetic, Setting 1: (a)Likelihood, s = 0.5 (b) Fraction Incorrect, s = 0.7 (c) EMD 

Score, s = 0.5
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Figure 4. 
Filtering, Synthetic, Setting 2: (a) m′ = 50, varying m (b) m′ = 1000, varying m (c) (m = 4), 

varying m′
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Figure 5. 
Filtering, Synthetic, Setting 2; Vary m: (a) m′ = 100 (b) m′ = 1000; Vary m′: (c) m = 4
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Figure 6. 
Filtering Real Dataset 1 (a) m = 5, (b) m = 2; Filtering Real Dataset 2 (c) m = 2
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Figure 7. 
(a) Filtering, Real Dataset 2, m = 6; (b) Rating, Synthetic, Setting 1: Likelihood; (c) Rating, 

Setting 1: Worker Quality Predictions;
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Figure 8. 
Dominance-DAG for 3 workers and scores in {1, 2, 3}
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Figure 9. 
Rating, Synthetic: (a) Setting 2, item rating predictions: m′ = 50, (b) m′ = 1000 (c) Rating 

(m = 4), Synthetic, Vary m′
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Figure 10. 
Rating, Synthetic, Setting 2; Vary m: (a) m′ = 100 (b) m′ = 1000; Vary m′: (c) m = 4
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Figure 11. 
Filtering, Real, Setting 1: (a) Item predictions, (b) Likelihood; (c) 2 worker classes: Fraction 

incorrect
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Figure 12. 
Variable number of responses: (a) Dominance constraint 1, (b) Dominance constraint 2; 2 

worker classes: (c) Time taken
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Figure 13. 
Variable number of responses
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Figure 14. 
2 worker classes: Dominance DAG
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Table 1

Notation Table

Symbol Explanation

I Set of items

M Items-workers response set

f Items-values mapping

p Worker response probability matrix

Pr(M|f, p) Likelihood of (f, p)

m Number of worker responses per item

T Ground truth mapping
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Table 2

Number of Mappings for n = 100 items

R m Unconstrained Bucketized Dom-Consistent

3 3 1047 6 × 104 126

3 4 1047 107 462

3 5 1047 1010 1716

4 3 1060 1012 2.8 × 104

4 4 1060 1021 2.7 × 106

5 2 1069 1010 2.8 × 104

5 3 1069 1024 1.1 × 108

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2017 January 30.


	Abstract
	1. INTRODUCTION
	1.1 Related Literature
	EM-based joint estimation techniques: We study the particular problem of jointly estimating hidden values (item ratings) and a related latent set of parameters (worker error rates) given a set of observed data (worker responses). A standard machine learning technique for estimating parameters with unobserved latent variables is Expectation Maximization [9]. There has been significant work in using EM-based techniques to estimate true item values and worker error rates, such as [7, 22, 28], and subsequent modifications using Bayesian techniques [3, 14]. In [18], the authors use a supervised learning approach to learn a classifier and the ground truth labels simultaneously. In general, these machine learning based techniques only provide probabilistic guarantees and cannot ensure optimality of the estimates. We solve the problem of finding a global, provably maximum likelihood solution for both the item values and the worker error rates. That said, our worker error model is simpler than the models considered in these papers—in particular, we do not consider worker identities or difficulties of individual items. However, we study this simpler model in more depth, providing optimality guarantees. Since our work represents the first providing optimality guarantees (even for a restricted setting), it represents an important step forward in our understanding of crowdsourcing quality management. Additionally, anecdotally, even the simpler model is commonly used for platforms like Mechanical Turk, where the workers are fleeting.Furthermore, we experimentally test our algorithm on the general setting where worker identities are available. Although our algorithm is at a natural disadvantage due to its assumption of identical workers, we find that it compares well against EM-based heuristics that use the available worker-specific information.Other techniques with no guarantees: There has been some work that adapts techniques different from EM to solve the problem of worker quality estimation. For instance, Chen et al. [4] adopts approximate Markov Decision Processes to perform simultaneous worker quality estimation and budget allocation. Liu et al. [13] uses variational inference for worker quality management on filtering tasks (in our case, our techniques apply to both filtering and rating). Venanzi et al. [23] uses a Bayesian Classifier Combination model and probabilistic inference to determine different classes of worker quality. Like EM-based techniques, these papers do not provide any theoretical guarantees.Weaker guarantees: There has been a lot of recent work on providing partial probabilistic guarantees or asymptotic guarantees on accuracies of answers or worker estimates, for various problem settings and assumptions, and using various techniques. We first describe the problem settings adopted by these papers, then their solution techniques, and then describe their partial guarantees.The most general problem setting adopted by these papers is identical to us (i.e., rating tasks with arbitrary bipartite graphs connecting workers and tasks) [29]; most papers focus only on filtering [5, 8, 12], or operate only when the graph is assumed to be randomly generated [11, 12]. Furthermore, most of these papers assume that the false positive and false negative rates are the same.The papers draw from various techniques, including just spectral methods [5, 8], just message passing [12], a combination of spectral methods and message passing [11], or a combination of spectral methods and EM [29].In terms of guarantees, most of the papers provide probabilistic bounds [5, 11, 12, 29], while some only provide asymptotic bounds [8]. For example, Dalvi et al. [5], which represents the most recent in a line of papers [8, 11, 12], show that under certain assumptions about the graph structure (depending on the eigenvalues) the error in their estimates of worker quality is lower than some quantity with probability greater than 1 − δ.Thus, overall, all the work discussed so far provides probabilistic guarantees on their item value predictions, and error bound guarantees on their estimated worker qualities. In contrast, we consider the problem of finding a global maximum likelihood estimate for the correct answers to tasks and the worker error rates.Other related papers: Joglekar et al. [10] consider the problem of finding confidence bounds on worker error rates. Our paper is complementary to theirs; while they solve the problem of obtaining confidence bounds on the worker error rates, we consider the problem of finding the maximum likelihood estimates to the item ground truth and worker error rates.Zhou et al. [30, 31] use minimax entropy to perform worker quality estimation as well as inherent item difficulty estimation; here the inherent item difficulty is represented as a vector. Their technique only applies when the number of workers attempting each task is very large; here, overfitting (given the large number of hidden parameters) is no longer a concern. For cases where the number of workers attempting each task is in the order of 50 or 100 (highly unrealistic in practical applications), the authors demonstrate that the scheme outperforms vanilla EM.Summary: In summary, at the highest level, our work differs from previous works in its focus on finding a globally optimal solution to the maximum likelihood problem. We focus on a simpler setting, but do so in more depth, representing significant progress in our understanding of global optimality. Our globally optimal solution uses simple and intuitive insights to reduce the search space of possible ground truths, enabling exhaustive evaluation. Our general framework leaves room for further study and has the potential for more sophisticated algorithms that build on our reduced space.
	EM-based joint estimation techniques: We study the particular problem of jointly estimating hidden values (item ratings) and a related latent set of parameters (worker error rates) given a set of observed data (worker responses). A standard machine learning technique for estimating parameters with unobserved latent variables is Expectation Maximization [9]. There has been significant work in using EM-based techniques to estimate true item values and worker error rates, such as [7, 22, 28], and subsequent modifications using Bayesian techniques [3, 14]. In [18], the authors use a supervised learning approach to learn a classifier and the ground truth labels simultaneously. In general, these machine learning based techniques only provide probabilistic guarantees and cannot ensure optimality of the estimates. We solve the problem of finding a global, provably maximum likelihood solution for both the item values and the worker error rates. That said, our worker error model is simpler than the models considered in these papers—in particular, we do not consider worker identities or difficulties of individual items. However, we study this simpler model in more depth, providing optimality guarantees. Since our work represents the first providing optimality guarantees (even for a restricted setting), it represents an important step forward in our understanding of crowdsourcing quality management. Additionally, anecdotally, even the simpler model is commonly used for platforms like Mechanical Turk, where the workers are fleeting.Furthermore, we experimentally test our algorithm on the general setting where worker identities are available. Although our algorithm is at a natural disadvantage due to its assumption of identical workers, we find that it compares well against EM-based heuristics that use the available worker-specific information.Other techniques with no guarantees: There has been some work that adapts techniques different from EM to solve the problem of worker quality estimation. For instance, Chen et al. [4] adopts approximate Markov Decision Processes to perform simultaneous worker quality estimation and budget allocation. Liu et al. [13] uses variational inference for worker quality management on filtering tasks (in our case, our techniques apply to both filtering and rating). Venanzi et al. [23] uses a Bayesian Classifier Combination model and probabilistic inference to determine different classes of worker quality. Like EM-based techniques, these papers do not provide any theoretical guarantees.Weaker guarantees: There has been a lot of recent work on providing partial probabilistic guarantees or asymptotic guarantees on accuracies of answers or worker estimates, for various problem settings and assumptions, and using various techniques. We first describe the problem settings adopted by these papers, then their solution techniques, and then describe their partial guarantees.The most general problem setting adopted by these papers is identical to us (i.e., rating tasks with arbitrary bipartite graphs connecting workers and tasks) [29]; most papers focus only on filtering [5, 8, 12], or operate only when the graph is assumed to be randomly generated [11, 12]. Furthermore, most of these papers assume that the false positive and false negative rates are the same.The papers draw from various techniques, including just spectral methods [5, 8], just message passing [12], a combination of spectral methods and message passing [11], or a combination of spectral methods and EM [29].In terms of guarantees, most of the papers provide probabilistic bounds [5, 11, 12, 29], while some only provide asymptotic bounds [8]. For example, Dalvi et al. [5], which represents the most recent in a line of papers [8, 11, 12], show that under certain assumptions about the graph structure (depending on the eigenvalues) the error in their estimates of worker quality is lower than some quantity with probability greater than 1 − δ.Thus, overall, all the work discussed so far provides probabilistic guarantees on their item value predictions, and error bound guarantees on their estimated worker qualities. In contrast, we consider the problem of finding a global maximum likelihood estimate for the correct answers to tasks and the worker error rates.Other related papers: Joglekar et al. [10] consider the problem of finding confidence bounds on worker error rates. Our paper is complementary to theirs; while they solve the problem of obtaining confidence bounds on the worker error rates, we consider the problem of finding the maximum likelihood estimates to the item ground truth and worker error rates.Zhou et al. [30, 31] use minimax entropy to perform worker quality estimation as well as inherent item difficulty estimation; here the inherent item difficulty is represented as a vector. Their technique only applies when the number of workers attempting each task is very large; here, overfitting (given the large number of hidden parameters) is no longer a concern. For cases where the number of workers attempting each task is in the order of 50 or 100 (highly unrealistic in practical applications), the authors demonstrate that the scheme outperforms vanilla EM.Summary: In summary, at the highest level, our work differs from previous works in its focus on finding a globally optimal solution to the maximum likelihood problem. We focus on a simpler setting, but do so in more depth, representing significant progress in our understanding of global optimality. Our globally optimal solution uses simple and intuitive insights to reduce the search space of possible ground truths, enabling exhaustive evaluation. Our general framework leaves room for further study and has the potential for more sophisticated algorithms that build on our reduced space.
	EM-based joint estimation techniques
	Other techniques with no guarantees
	Weaker guarantees
	Other related papers
	Summary




	2. PRELIMINARIES
	Items and Rating Questions: We let I be a set of |I| = n items. Items could be, for example, images, videos, or pieces of text. Given an item I ∈ I, we can ask a worker w to answer a rating question on that item. That is, we ask a worker: What is your rating r for the item I?. We assume that every item has a true rating in [1, R] that is not known to us in advance, and allow workers to rate items with any value ∈ {1, 2, …, R}.Example 2.1: Recall our example application from Section 1, where we have R = 3 and workers can rate tweets as being negative (r = 1), neutral (r = 2), or positive (r = 3). Suppose we have two items, I = {I1, I2} where I1 is positive, or has a true rating of 3, and I2 is neutral, or has a true rating of 2.Response Set: We assume that each item I is shown to m arbitrary workers, and therefore receives m ratings ∈ [1, R]. We denote the set of ratings given by workers for item I as M(I) and write M(I) = (vR, vR−1, …, v1) if item I ∈ I receives a rating of i, 1 ≤ i ≤ R, from vi workers. Thus, . We call M(I) the response set of I, and M the worker response set in general.Continuing with Example 2.1, suppose we have m = 2 workers rating each item on the scale of {1, 2, 3}. Let I1 receive one worker response of 2 and one worker response of 3. Then, we write M(I1) = (1, 1, 0). Similarly, if I2 receives one response of 3 and one response of 1, then we have M(I2) = (1, 0, 1).Modeling Worker Errors: We assume every worker draws their responses from a common (discrete) response probability matrix, p, of size R × R. Thus, p(i, j) is the probability that a worker rates an item with true value j as having rating i. The matrix p is in general not known to us. We aim to estimate both, p and the true ratings of items in I as part of our computation.Note that we assume that every response to a rating question returned by every worker is independently and identically drawn from this matrix: thus, each worker responds to each rating question independently of other questions they may have answered, and other ratings for the same question given by other workers; and furthermore, all the workers have the same response matrix. We recognize that assuming the same response matrix is somewhat stringent—to mitigate this, we evaluate our algorithm experimentally on settings where distinct workers have different error rates and show that making this assumption is appropriate (and leads to good performance) for certain settings that occur often in practice. We also consider generalizations of our algorithm to the case where we can categorize workers into different classes in Appendix B.That said, while our (generalized) techniques can still indeed be applied when there are a large number of workers or worker classes with distinct response matrices, they may be impractical. Since our focus is on understanding the theoretical limits of global optimality for a simple case, we defer to future work fully generalizing our techniques to apply to workers with distinct response matrices, or when worker answers are not independent of each other.Mapping and Likelihood: We call a function f: I → {1, 2, …, R} that assigns ratings to items a mapping. The set of actual ratings of items is also a mapping. We call that the ground truth mapping, T. For instance, for Example 2.1, T(I1) = 3, T(I2) = 2.Let Pr(M|f, p) be the probability of workers providing the responses in M, had f been the ground truth mapping and p been the true worker error matrix. We call this value the likelihood of the pair, f, p. Thus, our goal is to solve the following problem:Problem 2.1 (Maximum Likelihood Problem): Given M, I, find 
.We illustrate this concept on our example. Consider the matrix:
Let us compute the likelihood of the pair f, p when f(I1) = 2, f(I2) = 2. We have Pr(M|f, p) = Pr(M(I1)|f, p) Pr(M(I2)|f, p) assuming that rating questions on items are answered independently. The quantity Pr(M(I1)|f, p) is the probability that workers drawing their responses from p respond with M(I1) to an item with true rating f(I1). Assuming independence of worker responses, this quantity can be written as the product of the probability of seeing each of the responses that I1 receives. Therefore, the probability of seeing M(1, 1, 0), that is, one response of 3 and one response of 2, is p(3, 2)p(2, 2) = 0.1 × 0.8 = 0.08. Similarly, Pr(M(I2)|f, p) = p(3, 2) × p(1, 2) = 0.1 × 0.1 = 0.01. Combining, we have Pr(M|f, p) = 0.01 × 0.08 = 8 × 10−4. A naive solution would be to look at every possible mapping f′, compute 
 and choose the f′ maximizing the likelihood value Pr(M|f′, p′). The number of such mappings, R|I|, is however exponentially large, prompting the need for a more efficient algorithm. We list our notation in Table 1 for ready reference.
	Items and Rating Questions: We let I be a set of |I| = n items. Items could be, for example, images, videos, or pieces of text. Given an item I ∈ I, we can ask a worker w to answer a rating question on that item. That is, we ask a worker: What is your rating r for the item I?. We assume that every item has a true rating in [1, R] that is not known to us in advance, and allow workers to rate items with any value ∈ {1, 2, …, R}.Example 2.1: Recall our example application from Section 1, where we have R = 3 and workers can rate tweets as being negative (r = 1), neutral (r = 2), or positive (r = 3). Suppose we have two items, I = {I1, I2} where I1 is positive, or has a true rating of 3, and I2 is neutral, or has a true rating of 2.Response Set: We assume that each item I is shown to m arbitrary workers, and therefore receives m ratings ∈ [1, R]. We denote the set of ratings given by workers for item I as M(I) and write M(I) = (vR, vR−1, …, v1) if item I ∈ I receives a rating of i, 1 ≤ i ≤ R, from vi workers. Thus, . We call M(I) the response set of I, and M the worker response set in general.Continuing with Example 2.1, suppose we have m = 2 workers rating each item on the scale of {1, 2, 3}. Let I1 receive one worker response of 2 and one worker response of 3. Then, we write M(I1) = (1, 1, 0). Similarly, if I2 receives one response of 3 and one response of 1, then we have M(I2) = (1, 0, 1).Modeling Worker Errors: We assume every worker draws their responses from a common (discrete) response probability matrix, p, of size R × R. Thus, p(i, j) is the probability that a worker rates an item with true value j as having rating i. The matrix p is in general not known to us. We aim to estimate both, p and the true ratings of items in I as part of our computation.Note that we assume that every response to a rating question returned by every worker is independently and identically drawn from this matrix: thus, each worker responds to each rating question independently of other questions they may have answered, and other ratings for the same question given by other workers; and furthermore, all the workers have the same response matrix. We recognize that assuming the same response matrix is somewhat stringent—to mitigate this, we evaluate our algorithm experimentally on settings where distinct workers have different error rates and show that making this assumption is appropriate (and leads to good performance) for certain settings that occur often in practice. We also consider generalizations of our algorithm to the case where we can categorize workers into different classes in Appendix B.That said, while our (generalized) techniques can still indeed be applied when there are a large number of workers or worker classes with distinct response matrices, they may be impractical. Since our focus is on understanding the theoretical limits of global optimality for a simple case, we defer to future work fully generalizing our techniques to apply to workers with distinct response matrices, or when worker answers are not independent of each other.Mapping and Likelihood: We call a function f: I → {1, 2, …, R} that assigns ratings to items a mapping. The set of actual ratings of items is also a mapping. We call that the ground truth mapping, T. For instance, for Example 2.1, T(I1) = 3, T(I2) = 2.Let Pr(M|f, p) be the probability of workers providing the responses in M, had f been the ground truth mapping and p been the true worker error matrix. We call this value the likelihood of the pair, f, p. Thus, our goal is to solve the following problem:Problem 2.1 (Maximum Likelihood Problem): Given M, I, find 
.We illustrate this concept on our example. Consider the matrix:
Let us compute the likelihood of the pair f, p when f(I1) = 2, f(I2) = 2. We have Pr(M|f, p) = Pr(M(I1)|f, p) Pr(M(I2)|f, p) assuming that rating questions on items are answered independently. The quantity Pr(M(I1)|f, p) is the probability that workers drawing their responses from p respond with M(I1) to an item with true rating f(I1). Assuming independence of worker responses, this quantity can be written as the product of the probability of seeing each of the responses that I1 receives. Therefore, the probability of seeing M(1, 1, 0), that is, one response of 3 and one response of 2, is p(3, 2)p(2, 2) = 0.1 × 0.8 = 0.08. Similarly, Pr(M(I2)|f, p) = p(3, 2) × p(1, 2) = 0.1 × 0.1 = 0.01. Combining, we have Pr(M|f, p) = 0.01 × 0.08 = 8 × 10−4. A naive solution would be to look at every possible mapping f′, compute 
 and choose the f′ maximizing the likelihood value Pr(M|f′, p′). The number of such mappings, R|I|, is however exponentially large, prompting the need for a more efficient algorithm. We list our notation in Table 1 for ready reference.
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.We illustrate this concept on our example. Consider the matrix:
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	3. FILTERING PROBLEM
	3.1 Formalization
	Filtering Estimation Problem: Let M be the observed response set on item-set I. Our goal is to findHere, Pr(M|f, e0, e1) is the probability of getting the response set M, given that f is the ground truth mapping and the true worker response matrix is defined by e0, e1.Dependance of Response Probability Matrices on Mappings: Due to the probabilistic nature of our workers, for a fixed ground truth mapping T, different worker error rates, e0 and e1 can produce the same response set M. These different worker error rates, however have varying likelihoods of occurrence. This leads us to observe that worker error rates (e0, e1) and mapping functions (f) are not independent and are related through any given M. In fact, we show that for the maximum likelihood estimation problem, fixing a mapping f enforces a maximum likelihood choice of e0, e1. We leverage this fact to simplify our problem from searching for the maximum likelihood tuple f, e0, e1 to just searching for the maximum likelihood mapping, f. Given a response set M and a mapping, f, we call this maximum likelihood choice of e0, e1 as the parameter set of f, M, and represent it as Params(f, M). The choice of Params(f, M) is very intuitive and simple. We show that we just can estimate e0 as the fraction of times a worker disagreed with f on an item I in M when f(I) = 0, and correspondingly, e1 as the fraction of times a worker responded 0 to an item I, when f(I) = 1. Under this constraint, we can prove that our original estimation problem,  simplifies to that of finding  where  are the constants given by Params(f, M).Example 3.1: Suppose we are given 4 items I = {I1, I2, I3, I4} with ground truth mapping T = (T(I1), T(I2), T(I3), T(I4)) = (1, 0, 1, 1). Suppose we ask m = 3 workers to evaluate each item and receive the following number of (“1”,“0”) responses for each respective item: M(I1) = (3, 0), M(I2) = (1, 2), M(I3) = (2, 1), M(I4) = (2, 1). Then, we can evaluate our worker false positive and false negative rates as described above:  (from items I1, I3 and I4) and  (from I2).We shall henceforth refer to Pr(M|f) = Pr(M|f, Params(f, M)) as the likelihood of a mapping f. For now, we focus on the problem of finding the maximum likelihood mapping with the understanding that finding the error rates is straightforward given the mapping is fixed. We formally show that the problem of jointly finding the maximum likelihood response matrix and mapping can be solved by just finding the most likely mapping f* in Section 3.4. The most likely triple f, e0, e1 is then given by f*, Params(f*, M).It is easy to calculate the likelihood of a given mapping. We have , where e0, e1 = Params(f, M) and Pr(M(I)|f, e0, e1) is the probability of seeing the response set M(I) on an item I ∈ I. Say M(I) = (m − j, j). Then, we haveThis can be evaluated in O(m) for each I ∈ I by doing one pass over M(I). Thus, Pr(M|f) = ΠI∈I Pr(M(I)|f) can be evaluated in O(m|I|). We use this as a building block in our algorithm.
	Filtering Estimation Problem: Let M be the observed response set on item-set I. Our goal is to findHere, Pr(M|f, e0, e1) is the probability of getting the response set M, given that f is the ground truth mapping and the true worker response matrix is defined by e0, e1.Dependance of Response Probability Matrices on Mappings: Due to the probabilistic nature of our workers, for a fixed ground truth mapping T, different worker error rates, e0 and e1 can produce the same response set M. These different worker error rates, however have varying likelihoods of occurrence. This leads us to observe that worker error rates (e0, e1) and mapping functions (f) are not independent and are related through any given M. In fact, we show that for the maximum likelihood estimation problem, fixing a mapping f enforces a maximum likelihood choice of e0, e1. We leverage this fact to simplify our problem from searching for the maximum likelihood tuple f, e0, e1 to just searching for the maximum likelihood mapping, f. Given a response set M and a mapping, f, we call this maximum likelihood choice of e0, e1 as the parameter set of f, M, and represent it as Params(f, M). The choice of Params(f, M) is very intuitive and simple. We show that we just can estimate e0 as the fraction of times a worker disagreed with f on an item I in M when f(I) = 0, and correspondingly, e1 as the fraction of times a worker responded 0 to an item I, when f(I) = 1. Under this constraint, we can prove that our original estimation problem,  simplifies to that of finding  where  are the constants given by Params(f, M).Example 3.1: Suppose we are given 4 items I = {I1, I2, I3, I4} with ground truth mapping T = (T(I1), T(I2), T(I3), T(I4)) = (1, 0, 1, 1). Suppose we ask m = 3 workers to evaluate each item and receive the following number of (“1”,“0”) responses for each respective item: M(I1) = (3, 0), M(I2) = (1, 2), M(I3) = (2, 1), M(I4) = (2, 1). Then, we can evaluate our worker false positive and false negative rates as described above:  (from items I1, I3 and I4) and  (from I2).We shall henceforth refer to Pr(M|f) = Pr(M|f, Params(f, M)) as the likelihood of a mapping f. For now, we focus on the problem of finding the maximum likelihood mapping with the understanding that finding the error rates is straightforward given the mapping is fixed. We formally show that the problem of jointly finding the maximum likelihood response matrix and mapping can be solved by just finding the most likely mapping f* in Section 3.4. The most likely triple f, e0, e1 is then given by f*, Params(f*, M).It is easy to calculate the likelihood of a given mapping. We have , where e0, e1 = Params(f, M) and Pr(M(I)|f, e0, e1) is the probability of seeing the response set M(I) on an item I ∈ I. Say M(I) = (m − j, j). Then, we haveThis can be evaluated in O(m) for each I ∈ I by doing one pass over M(I). Thus, Pr(M|f) = ΠI∈I Pr(M(I)|f) can be evaluated in O(m|I|). We use this as a building block in our algorithm.
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	3.2 Globally Optimal Algorithm
	Bucketizing: Since we assume (for now) that all workers draw their responses from the same probability matrix p (i.e., have the same e0, e1 values), we observe that items with the exact same set of worker responses can be treated identically. This allows us to bucket items based on their observed response sets. Given that there are m worker responses for each item, we have m + 1 buckets, starting from m “1” and zero “0” responses, down to zero “1” and m “0” responses. We represent these buckets in Figure 2. The x-axis represents the number of 1 responses an item receives and the y-axis represents the number of 0 responses an item receives. We hash items into the buckets corresponding to their observed response sets. Intuitively, since all items within a bucket receive the same set of responses and are for all purposes identical, two items within a bucket should receive the same value.In our example (Figure 2), the set of possible responses to or bucket of any item is {(3, 0), (2, 1), (1, 2), (0, 3)}, where (3 − j, j) represents seeing 3 − j responses of “1” and j responses of “0”. We only consider mappings, f, where items in the same bucket are assigned the same value, that is, f(I3) = f(I4). This leaves 24 mappings corresponding to assigning a value of 0/1 to each bucket. In general, given m worker responses per item, we have m + 1 buckets and 2m+1 mappings that satisfy our bucketizing condition. Although for this example m + 1 = n, typically we have m ≪ n.Dominance Ordering: Second, we observe that buckets have an inherent ordering. If workers are better than random, we intuitively expect items with more “1” responses to be more likely to have true value 1 than items with fewer “1” responses. Ordering buckets by the number of “1” responses, we have (m, 0) → (m − 1, 1) → … → (1, m − 1) → (0, m). We eliminate all mappings that give a value of 0 to a bucket with a larger number of “1” responses while assigning a value of 1 to a bucket with fewer “1” responses. We formalize this intuition as a dominance relation, or ordering on buckets, (m, 0) > (m − 1, 1) > … > (1, m − 1) > (0, m), and only consider mappings where dominating buckets receive a value not lower than any of their dominated buckets.Figure 2 shows the dominance relation in the form of directed edges, with the source node being the dominating bucket and the target node being the dominated one. Here, we discard all mappings which assign a value of “0” to a dominating bucket (say response set (3, 0)) while assigning a value of “1” to one of its dominated buckets (say response set (2, 1)).Dominance-Consistent Mappings: We consider the space of mappings satisfying our above bucketizing and dominance constraints, and call them dominance-consistent mappings. We can prove that the maximum likelihood mapping from this small set of mappings is in fact a global maximum likelihood mapping across the space of all possible “reasonable” mappings: mappings corresponding to better than random worker behavior.To construct a mapping satisfying our above two constraints, we choose a cut-point to cut the ordered set of response sets into two partitions. The corresponding dominance-consistent mapping then assigns value “1” to all (items in) buckets in the first (better) half, and value “0” to the rest. For instance, choosing the cut-point between response sets (2, 1) and (1, 2) in Figure 2 results in the corresponding dominance-consistent mapping, where {I1, I3, I4}, are mapped to “1”, while {I2}, is mapped to “0”. We have 5 different cut-points, 0, 1, 2, 3, 4, each corresponding to one dominance-consistent mapping. Cut-point 0 corresponds to the mapping where all items are assigned a value of 0 and cut-point 4 corresponds to the mapping where all items are assigned a value of 1. In particular, the figure shows the dominance-consistent mapping corresponding to the cut-point c = 2. In general, if we have m responses to each item, we obtain m + 2 dominance-consistent mappings.Definition 3.1: (Dominance-consistent mapping fc). For any cut-point c ∈ 0, 1, …, m+1, we define the corresponding dominance-point mapping fc asOur algorithm enumerates all dominance-consistent mappings, computes their likelihoods, and returns the most likely one among them. The details of our algorithm can be found in our technical report. As there are (m + 2) mappings, each of whose likelihoods can be evaluated in O(m|I|), (See Section 3.1) the running time of our algorithm is O(m2|I|).In the next section we prove that in spite of only searching the much smaller space of dominance-consistent mappings, our algorithm finds a global maximum likelihood solution.
	Bucketizing: Since we assume (for now) that all workers draw their responses from the same probability matrix p (i.e., have the same e0, e1 values), we observe that items with the exact same set of worker responses can be treated identically. This allows us to bucket items based on their observed response sets. Given that there are m worker responses for each item, we have m + 1 buckets, starting from m “1” and zero “0” responses, down to zero “1” and m “0” responses. We represent these buckets in Figure 2. The x-axis represents the number of 1 responses an item receives and the y-axis represents the number of 0 responses an item receives. We hash items into the buckets corresponding to their observed response sets. Intuitively, since all items within a bucket receive the same set of responses and are for all purposes identical, two items within a bucket should receive the same value.In our example (Figure 2), the set of possible responses to or bucket of any item is {(3, 0), (2, 1), (1, 2), (0, 3)}, where (3 − j, j) represents seeing 3 − j responses of “1” and j responses of “0”. We only consider mappings, f, where items in the same bucket are assigned the same value, that is, f(I3) = f(I4). This leaves 24 mappings corresponding to assigning a value of 0/1 to each bucket. In general, given m worker responses per item, we have m + 1 buckets and 2m+1 mappings that satisfy our bucketizing condition. Although for this example m + 1 = n, typically we have m ≪ n.Dominance Ordering: Second, we observe that buckets have an inherent ordering. If workers are better than random, we intuitively expect items with more “1” responses to be more likely to have true value 1 than items with fewer “1” responses. Ordering buckets by the number of “1” responses, we have (m, 0) → (m − 1, 1) → … → (1, m − 1) → (0, m). We eliminate all mappings that give a value of 0 to a bucket with a larger number of “1” responses while assigning a value of 1 to a bucket with fewer “1” responses. We formalize this intuition as a dominance relation, or ordering on buckets, (m, 0) > (m − 1, 1) > … > (1, m − 1) > (0, m), and only consider mappings where dominating buckets receive a value not lower than any of their dominated buckets.Figure 2 shows the dominance relation in the form of directed edges, with the source node being the dominating bucket and the target node being the dominated one. Here, we discard all mappings which assign a value of “0” to a dominating bucket (say response set (3, 0)) while assigning a value of “1” to one of its dominated buckets (say response set (2, 1)).Dominance-Consistent Mappings: We consider the space of mappings satisfying our above bucketizing and dominance constraints, and call them dominance-consistent mappings. We can prove that the maximum likelihood mapping from this small set of mappings is in fact a global maximum likelihood mapping across the space of all possible “reasonable” mappings: mappings corresponding to better than random worker behavior.To construct a mapping satisfying our above two constraints, we choose a cut-point to cut the ordered set of response sets into two partitions. The corresponding dominance-consistent mapping then assigns value “1” to all (items in) buckets in the first (better) half, and value “0” to the rest. For instance, choosing the cut-point between response sets (2, 1) and (1, 2) in Figure 2 results in the corresponding dominance-consistent mapping, where {I1, I3, I4}, are mapped to “1”, while {I2}, is mapped to “0”. We have 5 different cut-points, 0, 1, 2, 3, 4, each corresponding to one dominance-consistent mapping. Cut-point 0 corresponds to the mapping where all items are assigned a value of 0 and cut-point 4 corresponds to the mapping where all items are assigned a value of 1. In particular, the figure shows the dominance-consistent mapping corresponding to the cut-point c = 2. In general, if we have m responses to each item, we obtain m + 2 dominance-consistent mappings.Definition 3.1: (Dominance-consistent mapping fc). For any cut-point c ∈ 0, 1, …, m+1, we define the corresponding dominance-point mapping fc asOur algorithm enumerates all dominance-consistent mappings, computes their likelihoods, and returns the most likely one among them. The details of our algorithm can be found in our technical report. As there are (m + 2) mappings, each of whose likelihoods can be evaluated in O(m|I|), (See Section 3.1) the running time of our algorithm is O(m2|I|).In the next section we prove that in spite of only searching the much smaller space of dominance-consistent mappings, our algorithm finds a global maximum likelihood solution.
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	3.3 Proof of Correctness
	Reasonable Mappings: A reasonable mapping is one which corresponds to a better than random worker behavior. Consider a mapping f corresponding to a false positive rate of e0 > 0.5 (as given by Params(f, M)). This mapping is unreasonable because workers perform worse than random for items with value “0”. Given I, M, let f: I → {0, 1}, with e0, e1 = Params(f, M) be a mapping such that e0 ≤ 0.5 and e1 ≤ 0.5. Then f is a reasonable mapping. It is easy to show that all dominance-consistent mappings are reasonable mappings.Now, we present our main result on the optimality of our algorithm. We show that in spite of only considering the local space of dominance-consistent mappings, we are able to find a global maximum likelihood mapping.Theorem 3.1 (Maximum Likelihood): We let M be the given response set on the input item-set I. Let F be the set of all reasonable mappings and Fdom be the set of all dominance-consistent mappings. Then, maxf*∈Fdom Pr(M|f*) = maxf∈F Pr(M|f)Proof: We provide an outline of our proof below. Further details can be found in the Appendix A.1.Step 1: Suppose f is not a dominance-consistent mapping. Then, either it does not satisfy the bucketizing constraint, or it does not satisfy the dominance-constraint. We claim that if f is reasonable, we can always construct a dominance-consistent mapping, f* such that Pr(M|f*) ≥ Pr(M|f). Then, it trivially follows that max f*∈Fdom Pr(M|f*) = maxf∈F Pr(M|f). We show the construction of such an f* for every reasonable mapping f below.Step 2: (Bucketizing Inconsistency). Suppose f does not satisfy the bucketizing constraint. Then, we have at least one pair of items I1, I2 such that M(I1) = M(I2) and f(I1) ≠ f(I2). Consider the two mappings f1 and f2 defined as follows:The mappings f1 and f2 are identical to f everywhere except for at I1 and I2, where f1(I1) = f1(I2) = f(I2) and f2(I1) = f2(I2) = f(I1). We show that max(Pr(M|f1), Pr(M|f2)) ≥ Pr(M|f). Let f′ = argmax f1,f2 (Pr(M|f1), Pr(M|f2)).Step 3: (Dominance Inconsistency). Suppose f does not satisfy the dominance constraint. Then, there exists at least one pair of items I1, I2 such that M(I1) > M(I2) and f(I1) = 0, f (I2) = 1. Define mapping f′ as follows:Mapping f′ is identical to f everywhere except at I1 and I2, where it swaps their values. We show that Pr(M|f′) ≥ Pr(M|f).Step 4: (Reducing Inconsistencies). Suppose f is not a dominance-consistent mapping. We have shown that by reducing either a bucketizing inconsistency (Step 2), or a dominance inconsistency (Step 3), we can construct a new mapping, f′ with likelihood greater than or equal to that of f. Now, if f′ is a dominance-consistent mapping, set f* = f′ and we are done. If not, look at an inconsistency in f′ and apply steps 2 or 3 to it. We can show that with each iteration, we are reducing at least one inconsistency while increasing likelihood. We repeat this process iteratively, and since there are only a finite number of inconsistencies in f to begin with, we are guaranteed to end up with a desired dominance-consistent mapping f* satisfying Pr(M|f*) ≥ Pr(M|f). This completes our proof sketch.
	Reasonable Mappings: A reasonable mapping is one which corresponds to a better than random worker behavior. Consider a mapping f corresponding to a false positive rate of e0 > 0.5 (as given by Params(f, M)). This mapping is unreasonable because workers perform worse than random for items with value “0”. Given I, M, let f: I → {0, 1}, with e0, e1 = Params(f, M) be a mapping such that e0 ≤ 0.5 and e1 ≤ 0.5. Then f is a reasonable mapping. It is easy to show that all dominance-consistent mappings are reasonable mappings.Now, we present our main result on the optimality of our algorithm. We show that in spite of only considering the local space of dominance-consistent mappings, we are able to find a global maximum likelihood mapping.Theorem 3.1 (Maximum Likelihood): We let M be the given response set on the input item-set I. Let F be the set of all reasonable mappings and Fdom be the set of all dominance-consistent mappings. Then, maxf*∈Fdom Pr(M|f*) = maxf∈F Pr(M|f)Proof: We provide an outline of our proof below. Further details can be found in the Appendix A.1.Step 1: Suppose f is not a dominance-consistent mapping. Then, either it does not satisfy the bucketizing constraint, or it does not satisfy the dominance-constraint. We claim that if f is reasonable, we can always construct a dominance-consistent mapping, f* such that Pr(M|f*) ≥ Pr(M|f). Then, it trivially follows that max f*∈Fdom Pr(M|f*) = maxf∈F Pr(M|f). We show the construction of such an f* for every reasonable mapping f below.Step 2: (Bucketizing Inconsistency). Suppose f does not satisfy the bucketizing constraint. Then, we have at least one pair of items I1, I2 such that M(I1) = M(I2) and f(I1) ≠ f(I2). Consider the two mappings f1 and f2 defined as follows:The mappings f1 and f2 are identical to f everywhere except for at I1 and I2, where f1(I1) = f1(I2) = f(I2) and f2(I1) = f2(I2) = f(I1). We show that max(Pr(M|f1), Pr(M|f2)) ≥ Pr(M|f). Let f′ = argmax f1,f2 (Pr(M|f1), Pr(M|f2)).Step 3: (Dominance Inconsistency). Suppose f does not satisfy the dominance constraint. Then, there exists at least one pair of items I1, I2 such that M(I1) > M(I2) and f(I1) = 0, f (I2) = 1. Define mapping f′ as follows:Mapping f′ is identical to f everywhere except at I1 and I2, where it swaps their values. We show that Pr(M|f′) ≥ Pr(M|f).Step 4: (Reducing Inconsistencies). Suppose f is not a dominance-consistent mapping. We have shown that by reducing either a bucketizing inconsistency (Step 2), or a dominance inconsistency (Step 3), we can construct a new mapping, f′ with likelihood greater than or equal to that of f. Now, if f′ is a dominance-consistent mapping, set f* = f′ and we are done. If not, look at an inconsistency in f′ and apply steps 2 or 3 to it. We can show that with each iteration, we are reducing at least one inconsistency while increasing likelihood. We repeat this process iteratively, and since there are only a finite number of inconsistencies in f to begin with, we are guaranteed to end up with a desired dominance-consistent mapping f* satisfying Pr(M|f*) ≥ Pr(M|f). This completes our proof sketch.
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	Experiment 2: Real Data Experiment on [10]
	Dataset: Our dataset is an image comparison dataset [10], where 19 workers are asked to each evaluate 48 tasks. Each task requires a worker to identify if two images show the same sportsperson. We have ground-truth yes/no answers for each task, but do not know the worker error rates. To evaluate the performance of OPT with GEN_EM, we compare the estimates for the item values (the yes/no answers) against the given ground truth.Results: While in our synthetic experiments, we had the luxury of generating datasets with arbitrary m′, here, we have m′ ≤ 19. We fix m (number of responses per item) for a given plot and vary m′ (number of total workers present) along the x-axis, and compare the fraction of item values predicted incorrectly along the y-axis. We show our results for m = 5 in Figure 6(a) and for m = 2 in Figure 6(b). Again, we observe that for the denser item-worker response matrix (m = 5), GEN_EM is more accurate than OPT, while for the sparser (m = 2) case, OPT is more accurate than GEN_EM. Thus, even on settings which violate our assumptions, such as this dataset with a finite, small worker pool, OPT is more accurate than GEN_EM for sparse item-worker response matrices.
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	4. RATING PROBLEM
	4.1 Formalization
	4.2 Algorithm
	Bucketizing: For every item, we are given m worker responses, each in 1, 2, …, R. It can be shown that there are  different possible worker response sets, or buckets. The bucketizing idea is the same as before: items with the same response sets can be treated identically and should be mapped to the same values. So we only consider mappings that give the same rating score to all items in a common response set bucket.Dominance Ordering: Next we generalize our dominance constraint. Recall that for filtering with m responses per item, we had a total ordering on the dominance relation over response set buckets, (m, 0) > (m − 1, 1) > … > (1, m − 1) > (0, m) where no dominated bucket could have a higher score (“1”) than a dominating bucket (“0”). Let us consider the simple example where R = 3 and we have m = 3 worker responses per item. Let (i, j, k) denote the response set where i workers give a score of “3”, j workers give a score of “2” and k workers give a score of “1”. Since we have 3 responses per item, i + j + k = 3. Intuitively, the response set (3, 0, 0) dominates the response set (2, 1, 0) because in the first, three workers gave items a score of “3”, while in the second, only two workers give a score of “3” while one gives a score of “2”. Assuming a “reasonable” worker behavior, we would expect the value assigned to the dominating bucket to be at least as high as the value assigned to the dominated bucket. Now consider the buckets (2, 0, 1) and (1, 2, 0). For items in the first bucket, two workers have given a score of “3”, while one worker has given a score of “1”. For items in the second bucket, one worker has given a score of “3”, while two workers have given a score of “2”. Based solely on these scores, we cannot claim that either of these buckets dominates the other. So, for the rating problem we only have a partial dominance ordering, which we can represent as a DAG. We show the dominance-DAG for the R = 3, m = 3 case in Figure 8. For arbitrary m, R, we can define the following dominance relation.Definition 4.1 (Rating Dominance): Bucket B1 with response set ( ) dominates bucket B2 with response set ( ) if and only if  and .Intuitively, a bucket B1 dominates B2 if increasing the score given by a single worker to B2 by 1 makes its response set equal to that of items in B1. Note that a bucket can dominate multiple buckets, and a dominated bucket can have multiple dominating buckets, depending on which worker’s response is increased by 1. For instance, in Figure 8, bucket (2, 1, 0) dominates both (2, 0, 1) (increase one score from “1” to “2”) and (1, 2, 0) (increase one score from “2” to “3”), both of which dominate (1, 1, 1).Dominance-Consistent Mappings: As with filtering, we consider the set of mappings satisfying both the bucketizing and dominance constraints, and call them dominance-consistent mappings.Dominance-consistent mappings can be represented using cuts in the dominance-DAG. To construct a dominance-consistent mapping, we split the DAG into at most R partitions such that no parent node belongs to an intuitively “lower” partition than its children. Then we assign ratings to items in a top-down fashion such that all nodes within a partition get a common rating value lower than the value assigned to the partition just above it. Figure 8 shows one such dominance-consistent mapping corresponding to a set of cuts. A cut with label c = i essentially partitions the DAG into two sets: the set of nodes above all receive ratings ≥ i while all nodes below receive ratings < i. To find the most likely mapping, we sort the items into buckets and look for mappings over buckets that are consistent with the dominance-DAG. We use an iterative top-down approach to enumerate all consistent mappings. First, we label our nodes in the DAG from  according to their topological ordering, with the root node starting at 1. In the ith iteration, we assume we have the set of all possible consistent mappings assigning values to nodes 1 … i − 1 and extend them to all consistent mappings over nodes 1 … i. When the last  node has been added, we are left with the complete set of all dominance-consistent mappings. Details of our algorithm appear in [6].Complexity: As with the filtering problem, an exhaustive search of only the dominance-consistent mappings under this dominance DAG constraint gives us a global maximum likelihood mapping across a much larger space of reasonable mappings. Suppose we have n items, R rating values, and m worker responses per item. The number of buckets of possible worker response sets (nodes in the DAG) is . Then, the number of unconstrained mappings is Rn and number of mappings with just the bucketizing condition, i.e., where items with the same response sets get assigned the same value, is . It is easy to see that this is an upper bound to the number of dominance-consistent mappings.We can also derive a reasonable lower bound by observing that one way of generating (a subset of) dominance-consistent mappings is to assign ratings to the DAG such that all nodes at the same depth have identical ratings, and all nodes at any depth have a higher rating than all nodes at the subsequent lower depth. Note that all mappings generated this way are dominance-consistent, as no lower node can dominate a higher one. Furthermore, observe that this bound is achieved in the limiting case when the DAG has a width of 1, i.e., it is a chain. Suppose the DAG has a total depth of d. Then, using the standard combinatorial stars and bars technique, we can show that the number of such mappings is given by . Now, by observing that the root node (depth 1) is given by (m, 0, 0, …, 0), the bottom node (depth d) is given by (0, 0, …, m), and that the ratings given to any node in depth d sum up to Rm − d + 1, we have d = Rm − m + 1. Substituting this value, we have  as a lower bound for the number of dominance-consistent mappings for the rating problem.We leave the (challenging) problem of finding a closed form expression for the actual number of dominance-consistent mappings as future work. Instead, we enumerate a sample set of values in Table 2 for n = 100 items. We see that the number of dominance-consistent mappings is significantly smaller than the number of unconstrained mappings. The fact that this greatly reduced set of intuitive mappings contains a global maximum likelihood solution displays the power of our approach. Furthermore, n is typically much larger, which would make the number of unconstrained mappings exponentially larger, while the number of dominance-consistent mappings remains unaffected.
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