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Abstract

This paper analyzes generalization of the classic Rescorla-Wagner (R-
W) learning algorithm and studies their relationship to Maximum Like-
lihood estimation of causal parameters. We prove that the parameters
of two popular causal models,∆P andPC, can be learnt by the same
generalized linear Rescorla-Wagner (GLRW) algorithm provided gener-
icity conditions apply. We characterize the fixed points of these GLRW
algorithms and calculate the fluctuations about them, assuming that the
input is a set of i.i.d. samples from a fixed (unknown) distribution. We
describe how to determine convergence conditions and calculate conver-
gence rates for the GLRW algorithms under these conditions.

1 Introduction

There has recently been growing interest in models of causal learning formulated as proba-
bilistic inference [1,2,3,4,5]. There has also been considerable interest in relating this work
to the Rescorla-Wagner learning model [3,5,6] (also known as the delta rule). In addition,
there are studies of the equilibria of the Rescorla-Wagner model [6].

This paper proves mathematical results about these related topics. In Section (2), we de-
scribe two influential models,∆P andPC, for causal inference and how their parameters
can be learnt by maximum likelihood estimation from training data. Section (3) introduces
the generalized linear Rescorla-Wagner (GLRW) algorithm, characterize its fixed points
and quantify its fluctuations. We demonstrate that a simple GLRW can estimate the M-
L parameters for both the∆P andPC models provided certain genericity conditions are
satisfied. But the experimental conditions studied by Cheng [2] require a non-linear gener-
alization of Rescorla-Wagner (Yuille, in preparation). Section (4) gives a way to determine
convergence conditions and calculate the convergence rates of GLRW algorithms. Finally
Section (5) sketches how the results in this paper can be extended to allow for arbitrary
number of causes.



2 Causal Learning and Probabilistic Inference

The task is to estimate the causal effect of variables. There is an observed eventE and
two causesC1, C2. Observers are asked to determine thecausal powerof the two causes.
The variables are binary-valued.E = 1 means the event occurs,E = 0 means it does
not. Similarly for causesC1 andC2. Much of the work in this section can be generalized
to cases where there are an arbitrary number of causesC1, C2, ..., CN , see section (5).
The training data{(Eµ, Cµ1 , C

µ
2 )} is assumed to be samples from an unknown distribution

Pemp(E,C1, C2).

Two simple models,∆P [1] andPC [2,3], have been proposed to account for how people
estimate causal power. There is also a more recent theory based on model selection [4].

The ∆P andPC theories are equivalent to assuming probability distributions for how
the training data is generated. Then thepower of the causes is given by the maximum
likelihood estimation of the distribution parametersω1, ω2. The two theories correspond to
probability distributionsP∆P (E|C1, C2, ω1, ω2) andPPC(E|C1, C2, ω1, ω2) given by:

P∆P (E = 1|C1, C2, ω1, ω2) = ω1C1 + ω2C2. ∆P model. (1)

PPC(E = 1|C1, C2, ω1, ω2) = ω1C1 + ω2C2 − ω1ω2C1C2. PC model. (2)

The later is a noisy-or model. The eventE = 1 can be caused byC1 = 1 with probability
ω1, byC2 = 1 with probabilityω2, or caused by both. The model can be derived by setting
PPC(E = 0|C1, C2, ω1, ω2) = (1− ω1C1)(1− ω2C2).

We assume that there is also a distribution on the causesP (C1, C2|~γ) which the observer-
s also learn from the training data. This is equivalent to maximizing (with respect to
ω1, ω2, ~γ)):

P ({(Eµ, ~Cµ)} : ~ω,~γ) =
∏
µ

P (Eµ, ~Cµ : ~ω,~γ) =
∏
µ

P (Eµ|~Cµ : ~ω)P ( ~Cµ : ~γ). (3)

By taking logarithms, we see that estimatingω1, ω2 and~γ are independent. So we will
concentrate on estimating theω1, ω2.

If the training data{Eµ, ~Cµ} is consistent with the model – i.e. there exist parameters
ω1, ω2 suchPemp(E|C1, C2) = P (E|C1, C2, ω1, ω

)
2 – then we can calculate the solution

directly.

For the∆P model, we have:

ω1 = Pemp(E = 1|C1 = 1, C2 = 0) = Pemp(E = 1|C1 = 1),
ω2 = Pemp(E = 1|C1 = 0, C2 = 1) = Pemp(E = 1|C2 = 1). (4)

For thePPC model, we obtain Cheng’s measures of causality [2,3].

ω1 =
Pemp(E = 1|C1 = 1, C2)− Pemp(E = 1|C1 = 0, C2)

1− Pemp(E = 1|C1 = 0, C2)}

ω2 =
Pemp(E = 1|C1, C2 = 1)− Pemp(E = 1|C1, C2 = 0)

1− Pemp(E = 1|C1, C2 = 0)}
. (5)

3 Generalized Linear Rescorla-Wagner

The Rescorla-Wagner model [7] is an alternative way to account for human learning. This
iterative algorithm specifies an update rule for weights. These weights could measure the
strength of a cause, such as the parameters of the Maximum Likelihood estimation. Follow-
ing recent work [3,6], we seek to find relationships between generalized linear Rescorla-
Wagner (GLRW) and ML estimation.



3.1 GLRW and two special cases

The Rescorla-Wagner algorithm updates weights{~V } using training data{Eµ, ~Cµ}. It is
of form:

~V t+1 = ~V t + ∆~V t. (6)

In this paper, we are particularly concerned with two special cases for choice of the update
∆V .

∆V1 = α1C1(E − C1V1 − C2V2), ∆V2 = α2C2(E − C1V1 − C2V2), basic (7)

∆V1 = α1C1(1− C2)(E − V1), ∆V2 = α2C2(1− C1)(E − V2), variant. (8)

The first (7) is thebasic RW algorithm. The second (8) is avariant of RWwith a natural
interpretation – a weightV1 is updated only if one cause is present,C1 = 1, and the other
cause is absent,C2 = 0.

The most general GLRW is of form:

∆V ti =
N∑
j=1

V tj fij(E
t, ~Ct) + gi(Et, ~Ct), ∀i, (9)

where{fij(., .) : i, j = 1, ..., N} and{gi(.) : i = 1, ..., N} are functions of the data
samplesEµ, ~Cµ.

3.2 GLRW and Stochastic Samples

Our analysis assumes that the data samples{Eµ, ~Cµ)} are independent identical (i.i.d.)
samples from an unknown distributionPemp(E|~C)P ( ~C).

In this case, the GLRW becomes stochastic. It defines a distribution on weights which is
updated as follows:

P (~V t+1|~V t) =
∫
dEt d~Ct

N∏
i=1

δ(V t+1
i − V ti −∆V ti )P (Et, ~Ct). (10)

This defines a Markov Chain. If certain conditions are satisfied (see section (4), the chain
will converge to a fixed distributionP ∗(V ). This distribution can be characterized by its
expected mean< V >∗=

∑
V V P

∗(V ) and its expected covarianceΣ∗ =
∑
V (V− <

V >∗)(V− < V >∗)TP ∗(V ). In other words, even after convergence the weights will
fluctuate about the expected mean< V >∗ and the magnitude of the fluctuations will be
given by the expected covariance.

3.3 What Does GLRW Converge to?

We now compute the means and covariance of the fixed point distributionP ∗(~V ). We first
do this for the GLRW, equation (9), and then we restrict ourselves to the two special cases,
equations (7,8).

Theorem 1. The means~V ∗ and the covarianceΣ∗ of the fixed point distributionP ∗(~V ),
using the GLRW equation (9) and any empirical distributionPemp(E, ~C) are given by the
solutions to the linear equations,

N∑
j=1

V ∗j
∑
E,~C

fij(E, ~C)Pemp(E, ~C) +
∑
E,~C

gi(E, ~C)Pemp(E, ~C) = 0, ∀i, (11)



and∀i, j:

Σ∗ik =
∑
jl

Σ∗jl
∑
E,~C

Aij(E, ~C)Akl(E, ~C)Pemp(E, ~C)

+
∑
E,~C

Bi(E, ~C)Bk(E, ~C)Pemp(E, ~C), (12)

whereAij(E, ~C) = δij + fij(E, ~C) andBi(E, ~C) =
∑
j V
∗
j fij(E, ~C) + gi(E, ~C) (here

δij is the Kronecker delta function defined byδij = 1, if i = j and = 0 otherwise).
The means have a unique solution provided

∑
E,~C Pemp(E, ~C)fij(E, ~C) is an invertible

matrix.

Proof.We derive the formula for the means~V ∗ by taking the expectation of the update rule,
see equations (9), with respect toP ∗(~V ) andPemp(E, ~C). To calculate the covariances,
we express the update rule as:

V t+1
i − V ∗i =

∑
j

(V tj − V ∗j )Aij(E, ~C) +Bi(E, ~C), ∀i (13)

with Aij(E, ~C) andBi(E, ~C) defined as above. Then we multiply both sides of equa-
tion (13) by their transpose (e.g. the left hand side by(V t+1

k − V ∗k )) and taking the expec-
tation with respect toP ∗(~V ) andPemp(E, ~C) (making use of the result that the expected
value ofV tj − V ∗j is zero ast→∞.

We can apply these results to study the behaviour of the two special cases, equations (7,8),
when the data is generated by either the∆P or PC model.

First consider the basic RW algorithm (7) when the data is generated by theP∆P model.
We can use Theorem 1 to rederive the result that< ~V >∗= ~ω [3,6], and so basic RW
performs ML estimation for theP∆P model. It also follows directly. that if the data is
generated by thePPC model, then< ~V >∗ 6= ~ω (although they are related by a nonlinear
equation).

Now consider the variant RW, equation (8).

Theorem 2. The expected means of the fixed points of the variant RW equation (8) when
the data is generated by probability modelPPC(E|~C, ~ω) or P∆P (E|~C; ~ω) are given by:

V ∗1 = ω1, V
∗
2 = ω2, (14)

providedPemp(~C) satisfies genericity conditions so that< C1(1−C2) >< C2(1−C1) > 6=
0.

The expected covariances are given by:

Σ11 = ω1(1− ω1)
α1

2− α1
,Σ22 = ω2(1− ω2)

α2

2− α2
,Σ12 = Σ21 = 0. (15)

. Proof. This is a direct calculation of quantities specified in Theorem 1. For example, we
calculate the expected value of∆V1 and∆V2 first with respect toP (E|~C) and then with
respect toP ∗(V ). This gives:

< ∆V1 >P (E|~C)P∗(V )= α1C1(1− C2)(ω1 − V ∗1 ),

< ∆V2 >P (E|~C)P∗(V )= α2C2(1− C1)(ω2 − V ∗2 ), (16)

where we have used
∑
V P

∗(V )V = V ∗,
∑
E EPPC(E|~C) = ω1C1+ω2C2−ω1ω2C1C2,

and logical relations to simply the terms (e.g.C2
1 = C1, C1(1− C1) = 0).



Taking the expectation of< ∆V1 >P (E|~C)P∗(V ) with respect toP (C) gives,

α1ω1 < C1(1− C2) >P (C) −α1V
∗
1 < C1(1− C2) >= 0,

α2ω2 < C2(1− C1) >P (C) −α2V
∗
2 < C2(1− C1) >= 0, (17)

and the result follows directly, except for non-generic cases where< C1(1−C2) >= 0 or
< C2(1− C1) >= 0. These degenerate cases are analyzed separately.

It is perhaps surprising that the same GLRW algorithm can perform ML estimation when
the data is generated by either modelP∆P or PPC (and this can be generalized, see sec-
tion (5)). Moreover, the expected covariance is the same for both models. Observe that the
covariance decreases if we make the update coefficientsα1, α2 of the algorithm small. The
convergence rates are given in the next section.

The non-generic cases include the situation studied in [2] whereC1 is a background cause
that it assumed to be always present, so< C1 >= 1. In this caseV ∗1 = ω1, but V ∗2 is
unspecified. It can be shown (Yuille, in preparation) that a nonlinear generalization of RW
can perform ML on this problem (but it is eay to check that no GLRW can). But an even
more ambiguous case occurs whenω1 = 1 (i.e. causeC1 always causes eventE), then
there is no way to estimateω2 and Cheng’s measure of causality, equation (5), becomes
undefined.

4 Convergence of Rescorla-Wagner

We now analyze the convergence of the GLRW algorithm. We obtain conditions for the
algorithm to converge and give the convergence rates. For simplicity, the results will be
illustrated only on the simple models.

Our results are based on the following theorem for the convergence of the state vector
of a stochastic iterative equation. The theorem gives necessary and sufficient conditions
for convergence, shows what the expected state vector converges to, and gives the rate of
convergence.

Theorem 3. Let~zt+1 = At~zt be an iterative update equation, where~z is a state vector and
the update matricesAt are i.i.d. samples fromP (A). The convergence properties ast →
∞ depends on< A >=

∑
A AP (A). If < A > has a unit eigenvalue with eigenvector

~z∗ and the next largest eigenvalue has modulusλ < 1, thenlimt→∞ < ~zt >∝ ~z∗ and the
rate of convergence iset log λ. If the moduli of the eigenvalues of< A > are all less than
1, thenlimt→∞ < ~zt >= 0. If < A > has an eigenvalue with modulus greater than1,
then< ~zt > diverges ast→∞.

Proof.This is a standard result. To obtain it, write~zt+1 = AtAt−1....A1~z1, where~z1 is the
initial condition. Now take the expectation of~zt+1 with respect to the samples{(at, bt)}.
By the i.i.d. assumption, this gives< ~zt+1 >=< A >t ~z1. The result follows by linear
algebra. Let the eigenvectors and eigenvalues of< A > be{(λi, ~ei)}. Express the initial
conditions as~z1 =

∑
γi~ei where the{γi} are coefficients. Then< ~zt >=

∑
i γiλ

t~ei, and
the result follows.

We use Theorem 3 to obtain convergence results for the GLRW algorithm. To ensure con-
vergence, we need both the expected covariance and the expected means to converge. Then
Markov’s lemma can be used to bound the fluctuations. (If we just require the expected
means to converge, then the fluctuations of the weights may be infinitely large). This can
be done by a suitable choice of the state vector~z.

For simplicity of algebra, we demonstrate this for a GLRW algorithm with a single weight.
The update rule isVt+1 = atVt + bt whereat, bt are random samples. We define the state
vector to be~z = (V 2

t , Vt, 1).



Theorem 4. Consider the stochastic update ruleVt+1 = atVt + bt whereat and bt are
samples from distributionsPa(a) andPb(b). Defineα1 =

∑
a a

2P (a), α2 =
∑
a aP (a),

β1 =
∑
b b

2P (b), β2 =
∑
b bP (b), andγ = 2

∑
a,b abP (a, b). The algorithm converges

if, and only if,α1 < 1, α2 < 1. If so, thenlimt→∞ < Vt >=< V >= β2
1−α2

, limt→∞ <

(Vt− < V >)2 >= β1(1−α2)+γβ2
(1−α1)(1−α2) −

β2
2

(1−α2)2 . The convergence rate is{max{α1, |α2|}t.

Proof.Define~zt = (V 2
t , Vt, 1) and express the update rule in matrix form: V 2

t+1
Vt+1

1

 =

 a2
t 2atbt b2t

0 at bt
0 0 1

 V 2
t
Vt
1


This is of the form analyzed in Theorem 3 provided we set:

A =

 a2
t 2atbt b2t

0 at bt
0 0 1

 and < A >=

(
α1 γ β1

0 α2 β2

0 0 1

)
,

whereα1 =
∑
a a

2P (a), α2 =
∑
a aP (a), β1 =

∑
b b

2P (b), β2 =
∑
b bP (b), and

γ = 2
∑
a,b abP (a, b).

The eigenvalues{λ} and eigenvectors{~e} of< A > are:

λ1 = 1, ~e1 ∝ (
β1(1− α2) + γβ2

(1− α1)(1− α2)
,

β2

1− α2
, 1)

λ2 = α1, ~e2 = (1, 0, 0), λ3 = α2, ~e3 ∝ (
γ

α2 − α1
, 1, 0). (18)

The result follows from Theorem 3.

Observe that if|α2| < 1 butα1 > 1, then< Vt > will converge but the expected variance
does not. The fluctuations in the GLRW algorithm will be infinitely large.

We can extend Theorem 4 to the variant of RW equation (8). LetP = Pemp, then

β12 =
∑
E,~C

P (E|~C)P ( ~C)C1(1− C2), β21 =
∑
E,~C

P (E|~C)P (~C)C2(1− C1),

γ12 =
∑
E,~C

P (E|~C)P ( ~C)EC1(1− C2), γ21 =
∑
E,~C

P (E|~C)P (~C)EC2(1− C1). (19)

If the data is generated byP∆P or PPC , thenβ12, β21, γ12, γ21 take the same values:
β12 =< C1(1− C2) >, β21 =< (1− C1)C2 >,

γ12 = ω1 < C1(1− C2) >, γ21 = ω2 < (1− C1)C2 > . (20)
Theorem 5. The algorithm specified by equation (8) converges providedλ∗ =
max{|λ2|, |λ3|, |λ4|, |λ5|} < 1, whereλ2 = 1− (2α1−α2

1)β12, λ3 = 1− (2α2−α2
2)β21,

λ4 = 1 − α1β12 λ5 = 1 − α2β21. The convergence rate iset log λ∗ . The expected means
and covariances can be calculated from the first eigenvector.

Proof. We define the state vector~z = (V 2
1 , V

2
2 , V1, V2, 1) and derive the update matrix

A from equation (8). The eigenvectors and eigenvalues can be calculated (calculations
omitted due to space constraints). The eigenvalues are1, λ1, λ2, λ3, λ4. The convergence
conditions and rates follow from Theorem 3. The expected means and covariances can be
calculated from the first eigenvector, which is:

~e1 = (
2(α1 − α2

1)γ2
12

(2α1 − α2
1)β2

12

+
α2

1γ12

(2α1 − α2
1)β12

,
2(α2 − α2

2)γ2
21

(2α2 − α2
2)β2

21

+
α2

2γ21

(2α2 − α2
2)β21

,
γ12

β12
,
γ21

β21
, 1),

(21)
and they agree with the calculations given in Theorem 2.



5 Generalization

The results of the previous sections can be generalized to cases where there are more than
two causes. For example, we can use the generalization of thePC model to include multi-
plegenerative causes~C andpreventative causes~L, [5] extending [2].

The probability distribution for this generalizedPC model is:

PPC(E = 1|~C, ~L; ~ω, ~Ω) = {1−
n∏
i=0

(1− ωiCi)}
m∏
j=1

(1− ΩjLj), (22)

where there aren+ 1 generative causes{Ci} andm preventative causes{Lj} specified in
terms of parameters{ωi} and{Ωj} (constrained to lie between0 and1).

We assume that there is a single background causeC0 which is always on (i.e.C0 = 1)
and whose strengthω0 is known (for relaxing this constraint, see Yuille in preparation).

Then it can be shown that the following GLRW algorithm will converge to the ML estimates
of the remaining parameters{ω1 : 1 = 1, ..., n} and{Ωj : j = 1, ...,m} of the generalized
PC model:

∆V tk = Ck{
m∏
i=1

(1− Li)
n∏

j=1:j 6=k

(1− Cj)}(E − ω0 − (1− ω0)V tk ),

∆U tl = Ll{
m∏

k=1:k 6=l

(1− Lk)
n∏
j=1

(1− Cj)}(E − ω0 − ω0U
t
l ), (23)

where{Vk : k = 1, ..., n} and{Ul : l = 1, ...,m} are weights.

The proof is straightforward algebra and is based on the following identity for binary vari-
ables:

∏
j(1− ΩjLj)

∏
j(1− Lj) =

∏
j(1− Lj).

The GLRW algorithm (23) will also perform ML estimation for data generated by other
probability distributions which share the same linear terms as the generalizedPC model
(i.e. the terms linear in the{ωi} and{Ωj}.) The convergence conditions and the conver-
gence rates can be calculated using the techniques in section (4).

These results all assume genericity conditions so that none of the generative or preventative
causes is either always on or always off (i.e. ruling out case like [2]).

6 Conclusion

This paper introduced and studied generalized linear Rescorla-Wagner (GLRW) algorithm-
s. We showed that two influential theories,∆P andPC, for estimating causal effects can
be implemented by the same GLRW, see (8). We obtained convergence results for GLR-
W including classifying the fixed points, calculating the asymptotic fluctuations, and the
convergence rates. Our results assume that the GLRW are i.i.d. samples from an unknown
empirical distributionPemp(E, ~C). Observe that the fluctuations of GLRW can be removed
by introducing damping coefficients which decrease over time. Stochastic approximation
theory [8] can then be used to give conditions for convergence.

More recent work (Yuille in preparation) clarifies the class of maximum likelihood infer-
ence problems that can be “solved” by GLRW and by non-linear GLRW. In particular, we
show that a non-linear RW can perform ML estimation for the non-generic case studied by
Cheng. We also investigate similarities to Kalman filter models [9].
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