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ABSTRACT OF THE THESIS

The photo-sketch correspondence problem:
a new benchmark and a self-supervised approach

by

Xuanchen Lu

Master of Science in Computer Science

University of California San Diego, 2022

Professor Xiaolong Wang, Chair
Professor Hao Su, Co-Chair

Humans effortlessly grasp the connection between sketches and real-world objects, even

when these sketches are far from realistic. Moreover, human sketch understanding goes beyond

categorization — critically, it also entails understanding how individual elements within a sketch

correspond to parts of the physical world it represents. What are the computational ingredients

needed to support this ability? Towards answering this question, we make two contributions: first,

we introduce a new sketch-photo correspondence benchmark, PSC6k, containing 150K annota-

tions of 6250 sketch-photo pairs across 125 object categories, augmenting the existing Sketchy

dataset [67] with fine-grained correspondence metadata. Second, we propose a self-supervised
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method for learning dense correspondences between sketch-photo pairs, building upon recent

advances in correspondence learning for pairs of photos. Our model uses a spatial transformer

network to estimate the warp flow between latent representations of a sketch and photo extracted

by a contrastive learning-based ConvNet backbone. We found that this approach outperformed

several strong baselines and produced predictions that were quantitatively consistent with other

warp-flow methods. However, our benchmark also revealed systematic biases shared by the

suite of models we tested that are distinct from those of humans. Taken together, our work

suggests a promising path towards developing artificial systems that achieve more human-like

understanding of visual images at different levels of abstraction.
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Introduction

Sketching is a powerful technique humans use to create images that capture key aspects

of the visual world. It is also among the most enduring and versatile of image generation

techniques, with the earliest known sketch-like images dating to at least 40,000-60,000 years

ago [30, 1]. Although the retinal image cast by a sketch and a real-world object are highly

distinct, humans are nevertheless able to grasp the meaning of that sketch at multiple levels of

abstraction, including the category label that best applies to it, the specific object instance it

represents, as well as detailed correspondences between elements in the sketch and the parts of

the object [17, 55, 85]. What are the computational ingredients needed to achieve such robust

image understanding across domains and at multiple levels of abstraction?

Generalizing across photorealistic and stylized image distributions. There has been

substantial recent progress in the development of artificial vision systems that capture some

key aspects of sketch understanding, especially sketch categorization and sketch-based image

retrieval [15, 67, 86, 87, 4]. In addition, the availability of larger models that have been trained

on vast quantities of paired image and text data have led to encouraging results on tasks involving

images exhibiting different visual styles [60], including sketch generation [78]. However, recent

evidence suggests that even otherwise high-performing vision models trained on photorealistic

image data do not generalize well to other image distributions as well as neurons in primate

inferotemporal cortex (a key brain region supporting object categorization) [2], indicating that a

large gap remains between the capabilities of current computer vision systems and those achieved

by biological systems.

Perceiving semantic correspondences between images. In particular, a core and
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unsolved aspect of human sketch understanding concerns the computational ingredients required

to encode the internal structure of a sketch with sufficient fidelity to establish a detailed mapping

between parts of a sketch with parts of the object it represents [47, 18]. The problem of

discovering semantic correspondences between images is a well established problem in computer

vision. In the typical setting, the goal is to establish dense correspondences between images

containing objects belonging to the same class. Classic methods [3, 42, 50] determine the

alignment with hand-crafted feature descriptors such as SIFT [52] or DOG [11]. More recently

developed methods [24, 63, 76], which benefit from the robust feature representations learned by

deep neural networks are more robust to variations in appearance and shape. However, finding

correspondence between photos and sketches is particularly challenging as human-generated

sketches are inherently selective, highlighting the most relevant aspects of an object’s appearance

at the expense of other aspects [16, 32]. Moreover, sketches typically lack the texture and color

cues that can facilitate dense correspondence learning for color photos. As a consequence,

the task of learning dense semantic correspondences between photos and sketches relies on a

substantial degree of visual abstraction in order to establish strong semantic alignment between

images from different modalities.

Self-supervised representation learning. A robust finding from the past decade is that

deep neural networks trained with supervision on large, labeled image datasets can achieve

state-of-the-art performance [46, 70, 26]. Moreover, models trained in this way currently provide

the most quantitatively accurate models of biological vision in non-human primates and humans

[84, 41, 61, 5]. Nevertheless, such models are unlikely to explain how humans are capable of

achieving such robust image understanding across different modalities given the implausibility

that such large, labeled datasets were available to or necessary for humans to learn to understand

natural visual inputs, much less to interpret sketches [29, 40]. Recent advances in self-supervised

representation learning have begun to approach the performance of supervised models without

the need for such labels [82, 25], while also emulating key aspects of visual processing in

biological systems [91, 45]. However, it remains unclear to what degree these advances are
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sufficient to support challenging multi-domain image understanding tasks, including predicting

dense photo-sketch correspondences.

Evaluating a self-supervised method for learning photo-sketch correspondences.

Towards meeting these challenges, our paper makes two key contributions: first, we establish

a new benchmark for photo-sketch dense correspondence learning: PSC6k. This benchmark

consists of 150,000 pairs of keypoint annotations for 6250 photo-sketch pairs spanning 125

object categories, shown in Figure 1.1. Each annotation consists of a keypoint marked by a

human participant on an object in a color photo that they judged to correspond to a given keypoint

appearing on a sketch of the same object.

All photo-sketch pairs were sampled from the well established Sketchy dataset [67], a

collection of 75K sketches produced by humans to depict objects in 12.5K color photographs of

objects spanning 125 categories.

Our second contribution is a self-supervised method for learning photo-sketch correspon-

dences that leverages a learned nonlinear “warping” function to map one image to the other.

This approach embodies the hypothesis that sketches preserve key information about spatial

relations between an object’s constituent parts, even if they also manifest distortions in the size

and shape of these parts. This hypothesis is broadly consistent with the view that line drawings,

as sparse as they are, are meant to accurately convey 3D shape [27], as opposed to the view

that they are arbitrary arrangements of marks whose associations with objects are established

purely by convention [22]. On the other hand, the nonlinear “warping” approach we propose

diverges from the strongest version of the shape-based view, which is not well equipped to

handle the kinds of visual distortions that human-generated sketches exhibit [15, 67, 17]. Our

system consists of two main components: the first is a multimodal image encoder trained with a

contrastive loss [82, 91], with photos and sketches of the same object being treated as positive

examples, and those depicting different objects as negative examples. The second component

is a spatial transformer network [36] that estimates the transformation between each photo and

sketch and aims to maximize the similarity between the feature maps for both images. Using

3



our newly developed PSC6k benchmark, we find that our system outperforms other existing

self-supervised and weakly supervised correspondence learning methods, and thus establishes

the new state-of-the-art for sketch-photo dense correspondence prediction. We will publicly

release PSC6k with extensive documentation and code to enhance its usability to the research

community.
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Chapter 1

Photo-Sketch Correspondence Benchmark

Our first goal was to establish a novel photo-sketch correspondence benchmark satisfying

two criteria: first, it should build directly upon existing benchmarks in sketch understanding

and second, it should provide broad coverage of a wide variety of visual concepts. Towards

that end, we developed PSC6k by directly augmenting the Sketchy dataset [67], which already

contains 75,471 human sketches produced from 12,500 unique photographs spanning 125 object

categories.

1.1 Sampling Photo-Sketch Pairs

We sampled photo-sketch pairs from the original test split of the Sketchy dataset, which

consisted of 1250 photos and their corresponding sketches. We manually filtered out sketches that

were completely off-target or that depicted the photographed object from the wrong perspective

[67]. We then randomly sampled 5 sketches from among the remaining valid sketches produced

of each photo, resulting in 6250 unique photo-sketch pairs.

1.2 Collecting Human Keypoint Annotations

We formalize the problem of identifying photo-sketch correspondences as the ability to

map a keypoint located on a sketch to the location in the source photograph that best corresponds

to it. For example, a keypoint appearing on the left wing of a sketch of an airplane should be
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mapped to the “same” location on the left wing of the photograph of that same airplane. For

each photo-sketch pair, we sampled 8 keypoints spanning as much of the object as possible. To

determine these keypoints, we first computed segmentation masks for each sketch, relying upon

the heuristic that outermost contour of the sketch naturally serves as the contour of the object

in the sketch. The pixels covered by the segmentation mask were then clustered into 8 groups

to estimate 8 “pseudo-part” regions. We employ nearest-neighbor-based spectral clustering to

prioritize connectivity within each pseudo-part. A keypoint was then placed at the centroid for

each pseudo-part. Next, we recruited 1384 participants using the Prolific crowdsourcing platform

to provide annotations. Participants provided informed consent in accordance with the UC San

Diego IRB. On each trial, participants were cued with a keypoint appearing on a sketch and

indicated its corresponding location in a photo appearing next to it (Figure 1.1). Each participant

provided annotations for 125 photo-sketch pairs, one from each category. We collected three

annotations from different participants for each keypoint in every sketch, resulting in 150,000

annotations across all 6250 photo-sketch pairs. We defined the centroid over these annotations as

the ground-truth keypoint in the photo. In rare cases, there was one annotation out of three with

an exceptionally large distance from the median location of all three annotations; there were

flagged as outliers and excluded from the determination of the centroid.
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Figure 1.1. Examples of human-annotated photo-sketch pairs from our new correspondence
benchmark.
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Chapter 2

Weakly-supervised Photo-Sketch Corre-
spondence

Figure 2.1. We propose a self-supervised framework for learning photo-sketch correspondence
by estimating a dense flow that warps one image to the other. The framework consists of a
multi-modal feature encoder that aligns the photo-sketch representation with a contrastive loss,
and a STN-based warp estimator to predict transformation that maximizes the similarity between
feature maps of the two images. The estimator learns to optimize a combination of similarity
metric, forward-backward consistency, and the synthetic pseudo groundtruth flow.

In this section, we present our weakly-supervised model for finding the pixel-level

correspondence between photo-sketch pairs. We formulate the problem as estimating the

displacement field across a sketch Is ∈ Rh×w×3 and an RGB photowea Ip ∈ Rh×w×3 that depict

the same object (Figure 2.1). Our goal is to find the cross-modal photo-sketch alignment in a

weakly-supervised manner, by maximizing the perceptual similarity of an image in (Ip, Is) and its

warped counterpart. Our framework consists of a feature encoder φ that learns a shared feature

space of photo and sketch, and a warp estimator T based on the spatial transformer network
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(STN) that directly predicts the displacement field F ∈ Rh×w×2, where we extract the dense

correspondence.

2.1 Feature Encoder φ

Here we leverage advances in contrastive learning to develop a weakly-supervised feature

encoder on photo-sketch data pairs. Contrastive learning obtains a feature representation by

contrasting similar and dissimilar pairs. Here, the photo Ip and the sketch Is depicting the same

object become a natural choice to construct similar pairs. Unlike typical contrastive learning

schemes [82, 6, 25] that take augmented views of the same image I as positives, our model uses

augmented views from the same photo-sketch pair (Ip, Is). To minimize the contrastive loss over

a set of photo-sketch pairs, the encoder must learn a feature space that attracts photo/sketch from

the same pair and separates photo/sketch from distinct pairs.

Similar to [25], we formulate pair-level contrastive learning as a dictionary look-up

problem. For a given photo-sketch pair (Ip, Is), random data augmentation is applied to generate

the view pair (Ĩp, Ĩs). One view in the pair is randomly selected as the query and the other

becomes the corresponding key. We denote their representations encoded by φ as q and k+,

respectively. The query token q should match its key k+ over a set of negative keys k− sampled

from other photo-sketch pairs. To optimize this target, we minimize InfoNCE[57] as follows:

Lnce =− log
exp(q·k+/τ)

exp(q·k+/τ)+∑k− exp(q·k−/τ)
, (2.1)

where τ is a temperature hyperparameter scaling the data distribution in the metric space.

To explore the inherent similarity between photos and sketches, we use a shared encoder

φ for images from both modalities. We replace batch normalization (BN) [34] in the encoder

with conditional batch normalization [12] for better domain alignment. Detailed implementation

and experiment are reported in chapter 3.
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2.2 Warp Estimator T

Given the representation of the source and target image from encoder, we estimate

the displacement field with T as FIs→It = T (Is, It). Inspired by [71], we propose a simplified

pyramidal warp estimation module for ResNet backbone.

Affinity function f . We start by considering the affinity at a single layer. With the source

and target image feature maps xs ∈ Rc×h×w and xt ∈ Rc×h×w, we construct the pairwise affinity

matrix as A(s,t) ∈ Rhw×hw. We compute affinity as the correlation between feature embeddings,

with pixel i in feature map xs and pixel j in feature map xt , A(s,t)(i, j) = xs(i)T xt( j).

While it is possible to estimate the correspondence based on the feature affinity at a

specific layer of the encoder φ , e.g. the final convolutional layer, it is beneficial to evaluate

affinities at multiple layers along the feature pyramid. We select a set of n feature layers of

interest, denoted as Xs = {xi
s}n−1

i=0 and Xt = {xi
t}n−1

i=0 . Since the affinity matrix A(s,t) is irrelevant to

the feature dimension, we compute the affinity on each of the selected layers, giving {Ai
(s,t)}

n−1
i=0 .

We bi-linearly upsample all selected feature maps to the same spatial resolution, so as to

align the shape of affinity matrices. They are concatenated to obtain the final affinity matrix

A∗
(s,t) ∈ Rn×hw×hw.

Now, we formally define the affinity function we use f : f (Xs,Xt) := A∗
(s,t) ∈ Rn×hw×hw.

Estimation Module g. Module g takes in the final affinity matrix A∗
(s,t) and directly

estimates the displacement field F from the source image to the target image. Following the

idea of coarse-to-fine refinement, it consists of three STN-blocks at different scales with residual

connections, denoted as g1, g2 and g3. Each STN-block (except the first block) takes the feature

affinity warped by previous block and regresses displacement field at corresponding scale. The

first block g1 regresses at the 4×4 scale, estimating displacement field F(0) ∈ R4×4×2. g2 and

g3 regress at the 8×8 and 16×16 scale, respectively. The displacement field at each block is

computed as

F(1) = g1( f (Xs,Xt)), (2.2)
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F(k) = F(k−1)+gi( f (warp(Xs,F(k−1)),Xt)), (2.3)

where warp(I,F) operation warps image I to target according to the displacement field F . It is

implemented with bilinear interpolation.

After g3 generates the 16×16 displacement field, it is upsampled to full image resolution

as the final estimation.

2.3 Weighted Perceptual Similarity

We propose using weighted perceptual similarity to evaluate the quality of estimated

displacement field between the photo-sketch pair. We find that by passing the warped source

image into the feature encoder again and evaluating similarity using the new feature map, the

feature encoder serves as a soft constraint that reduces warping artifacts and stabilizes training.

We use subscripts to indicate the direction of warp; for example, the displacement field from Is

to It is denoted as Fs→t . We also denote the warped image as Is→t = warp(Is,Fs→t).

Perceptual similarity s. For an image pair (Is, It), the model estimates flow Fs→t and

renders the warped source image Is→t . The warped source image is passed through the encoder

φ to generate its new set of feature maps Xs→t , as well as its new affinity with the target A∗
(s→t,t).

The new affinity matrix represents how well the warped source image aligns semantically with

the target.

In the ideal case, each pixel in the warped source Xs→t will have the largest correlation

with the pixel at the same location in the target Xt . This is reflected in the affinity space

A∗
(s→t,t) ∈ Rn×hw×hw as a maximized diagonal along the second and third axes. For a pixel in

warped source Xs→t , we formulate the optimization as selecting the correctly matching pixel

from all pixels in target Xt :

s(n, i) =− log
exp

(
A∗
(s→t,t)(n, i, i)/τ

)
∑ j exp

(
A∗
(s→t,t)(n, i, j)/τ

) , (2.4)
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where n is the index of the feature layer to evaluate on; i, j are indexes of pixel in the source and

target feature map.

Weight function w. While it is possible to optimize flow estimation with the formula

above, there are two problems. First, sketches contain a large number of empty pixels, and photos

often suffer from background clutter. Moreover, while the encoder activation generally lies over

the entire object in the photo, activation concentrates along the strokes in a sketch. As a result,

optimizing the correspondence of every pixel is inefficient and biased toward the background.

To focus optimization on important matches, we consider an intuitive rule: important pixels in

one image should have greater affinities to the other image. It is formulated as a weight function:

w(n, i) = scale(max
j
[norm(A∗

(s→t,t))(n, i)] (2.5)

where norm is the normalization over the affinity matrix to penalize pixels that have multiple

large affinities in the other image. scale is an arbitrary operation to standardize the weight

function. We use Min-Max to scale its distribution to [0,1].

Therefore, the final perceptual similarity loss is given by

Lsim(n, i) = w(n, i)s(n, i) (2.6)

We visualize the image pairs, feature maps, weight maps, and final results of samples from

the photo-sketch correspondence benchmark to exhibit the function of each part in Figure 2.2.

2.4 Additional Objectives

In addition to the perceptual similarity loss, we consider two other weakly-supervised

losses to assist robust warp estimation and stabilize training.

Synthetic warp. Many approaches [63] use synthetically generated image pair as a

direct supervision to the warp estimator, where the estimator is trained to optimize toward

12



Figure 2.2. Example image pairs, feature maps, weight maps, and final results processed in
our warp estimator. The weight maps highlight semnatic parts that have the largest correlation
between the two images. We use PCA to project the feature dimentions to 3 principal components
as RGB.
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the constructed ground-truth flow. It not only accelerates convergence, but also prevents the

network from converging to trivial solutions during initialization. With an arbitrary source image

Is, we randomly sample a displacement field F̂s→s′ and generate the synthetic target image as

Is′ = warp(Is, F̂s→s′). Following [71], each STN block has a different weight in the loss function.

The goal is to minimize

Lsyn = ∑
k

αk∥F(k)
s→s′ − F̂s→s′∥, (2.7)

In practice, we sample the synthetic flow as a composition of affine and Thin-plate Spline

(TPS) transformations.

Forward-backward consistency. Forward-backward consistency is a classic idea in

tracking [79, 81, 35] and flow estimation [53, 62, 37, 76, 31] as constraints. Namely, we expect

the estimated forward flow Fs→t to be the inverse of the estimated backward flow Ft→s. It poses

a strict constraint on the network for symmetric prediction. We apply this loss to both real

photo-sketch pairs and synthetic image pairs, by minimizing the L2 norm between the identity

flow and the composition of the forward flow and backward flow:

Lcon = ∥warp(Fs→t ,Ft→s)−FI∥, (2.8)

where FI is the identity displacement that maps all locations to themselves.

Overall, our final objective is

L = λsimLsim +λsynLsyn +λconLcon, (2.9)
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Chapter 3

Experiments and Results

In this section, we empirically evaluate our method and compare it to existing approaches

in dense correspondence learning on the photo-sketch correspondence benchmark. We analyze

the difference between human annotations and predictions from existing methods. We show that

our method establishes the state-of-the-art in the photo-sketch correspondence benchmark and

learns a more human-like representation from the photo-sketch contrastive learning objectives.

3.1 Implementation Details

The input image size is set to 256 following our photo-sketch correspondence benchmark.

We use ResNet-18 and ResNet-101 as our feature encoder. The encoder is initialized with

pretrained weights from MoCo training [25] on ImageNet-2012 [13]. We then train our encoder

on the training split of Sketchy for 1300 epochs. Since there are multiple sketches for each photo

in the dataset, at each epoch we iterate through all photos and sample a corresponding sketch for

each photo. We follow the recipe from MoCo [25, 8], with dim = 128,m = 0.999, t = 0.07, lr =

0.03 and a two-layer MLP head. Noticeably, we set the size of memory queue to K = 8192 to

prevent multiple positive pairs from appearing at the same time.

We then train the estimator for 1200 epochs with a learning rate 0.003, leading to 2500

epochs of training in total. We set the weights of the objectives to λsim = 0.1,λsyn = 1.0,λcon =

1.0. We compute Lsim using the features after ResNet stages 2 and 3, and the temperature is set
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to τ = 0.001. The weights of the STN blocks in Lsyn are α1 = 1.0,α2 = 0.5,α3 = 0.25.

We train the network with the SGD optimizer[66], weight decay of 1e− 4, the native

mixed precision of Pytorch [58], and the batch size of 256. We adopt a cosine learning rate decay

schedule [51].

3.2 Photo-sketch Correspondence Estimation

We evaluate our correspondence estimation results qualitatively and quantitatively. We

compare our method with existing approaches in correspondence learning with image or pair

level supervision, and present a state-of-the-art comparison on photo-sketch correspondence in

Table 3.1. For fair comparisons, we retrain existing open-sourced methods on the same photo-

sketch dataset we used to develop our own model [67]. We report their PCK for α = (0.05,0.1) in

two settings: tranfer (directly evaluate on photo-sketch correspondence with pretrained weights)

and retrain (train from scratch on photo-sketch correspondence). Methods that fail to converge

on photo-sketch dataset are left blank.

Our approach sets a new state-of-the-art in the field of photo-sketch correspondence.

Although we only regress flow at the 16×16 scale which is less than the granularity of PCK-

05, our ResNet-101 model gains a substantial increase of +0.77%/+4.38% compared to the

second best method WarpC-SemanticGLU-Net[76]. This is surprising as the latter method

Table 3.1. State-of-the-art comparison for photo-sketch correspondence learning.

Transfer Retrain
Methods Encoder PCK-5 PCK-10 PCK-5 PCK-10

CNNGeo [63] ResNet-101 27.59 57.71 19.19 42.57
WeakAlign [63] ResNet-101 35.65 68.76 43.55 78.60
NC-Net [65] ResNet-101 40.60 63.50 – –
DCCNet [31] ResNet-101 42.43 66.53 – –
PMD [74] VGG-16 35.77 71.24 – –
WarpC-SemanticGLUNet [76] VGG-16 48.79 71.43 56.78 79.70
Ours ResNet-18 – – 54.32 82.12
Ours ResNet-101 – – 57.55 84.08
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benefits from flow resolution four times as large as ours, and additional two-stage training

on CityScape[10], DPED[33], and ADE[89]. Our smaller ResNet-18 model also outperforms

most existing methods despite a significantly shallower feature encoder, demonstrating the

effectiveness of our pair-based contrastive learning scheme in finding dense correspondences

between images from different image modalities. We visualize more examples of the dense

correspondence our model predicts in photo-to-sketch correspondence (Figure 5.1, Figure 5.2)

and sketch-to-photo correspondence(Figure 5.3).

3.3 Ablation Study

In Table 3.2 we analyze different training schemes for our encoder. In the first row, we

directly use the pretrained weights from ImageNet contrastive learning. The following rows

compare the performance of different ways of constructing positive pairs: 1) two augmented

views from single images from the photo-sketch dataset, as in classical contrastive learning;

2) a photo and a sketch randomly sampled from the same class; and 3) a photo and a sketch

from the same photo-sketch pair. We find that classical contrastive learning on the photo-sketch

dataset harms model performance, because the domains of photo and sketch are separated in the

representation space. The best result comes from contrastive learning on photo-sketch pairs as

it provides strongest supervision for learning discriminative features. In Table 3.3 we analyze

the key components of our correspondence estimation on the ResNet-18 version of our model.

We first show the importance of our perceptual similarity loss, which is essential in aligning the

feature space from the two modalities. Using multiple feature layers, conditional BN, and the

weight function further improves model performance.
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Table 3.2. Ablation study on the feature encoder training.

Training Description PCK-5 PCK-10

ImageNet only 41.67 76.80
CL on individual image 36.75 68.26
CL on image class 52.03 80.69
CL on image pair 54.32 82.12

Table 3.3. Ablation study on correspondence estimation.

Ablation Description PCK-5 PCK-10

No Lsim 22.62 57.68
No perceptual Lsim 37.19 73.79
No multiple feature layers 52.11 82.03
No conditional BN 52.37 81.43
No weight function w 50.96 81.66
Complete model 54.32 82.12

3.4 Comparing model and human error patterns

To what degree do any of the models tested generate predictions that achieve the degree

of consistency that we observe between individual human annotators? To evaluate this question,

for each pair of systems (whether two models, two humans, or a model and a human), we

computed the normalized mean pixel distance between the predictions they generated for a given

photo-sketch pair, then normalized this distance by the image size.

We find that while higher-performing models tend to produce predictions that are more

similar to one another, all of the models taken together display systematic biases that are distinct

from those of humans performing the photo-sketch correspondence task Figure 3.1. These

results indicate the size of the current human-model gap and suggest that future progress on this

benchmark will entail bringing human-model consistency values closer to that observed between

individual humans.

18



Human1
Human2
Human3
Ours(PS)

WarpC(PS)
Weakalign(PS)

CNNGeo(PS)
WarpC(PF)

PMD(PF)
DCCNet(PF)

NCNet(PF)
Weakalign(PF)

CNNGeo(PF)

0 0.06 0.06 0.12 0.13 0.13 0.21 0.14 0.12 0.2 0.18 0.14 0.15
0.06 0 0.06 0.12 0.13 0.13 0.21 0.14 0.12 0.2 0.18 0.14 0.15
0.06 0.06 0 0.12 0.13 0.13 0.21 0.14 0.12 0.2 0.18 0.14 0.15
0.12 0.12 0.12 0 0.07 0.06 0.15 0.1 0.08 0.17 0.13 0.07 0.09
0.13 0.13 0.13 0.07 0 0.08 0.17 0.07 0.1 0.18 0.14 0.09 0.11
0.13 0.13 0.13 0.06 0.08 0 0.15 0.11 0.08 0.18 0.14 0.07 0.09
0.21 0.21 0.21 0.15 0.17 0.15 0 0.2 0.14 0.24 0.18 0.12 0.1
0.14 0.14 0.14 0.1 0.07 0.11 0.2 0 0.12 0.2 0.16 0.12 0.14
0.12 0.12 0.12 0.08 0.1 0.08 0.14 0.12 0 0.18 0.14 0.09 0.1
0.2 0.2 0.2 0.17 0.18 0.18 0.24 0.2 0.18 0 0.2 0.18 0.2
0.18 0.18 0.18 0.13 0.14 0.14 0.18 0.16 0.14 0.2 0 0.13 0.14
0.14 0.14 0.14 0.07 0.09 0.07 0.12 0.12 0.09 0.18 0.13 0 0.06
0.15 0.15 0.15 0.09 0.11 0.09 0.1 0.14 0.1 0.2 0.14 0.06 0

Figure 3.1. Measuring human and model consistency. Each cell represents the mean pixel
distance between correspondence predictions generated by two systems (whether artificial or
human), normalized by the image size. We denote models trained on Photo-sketch pairs with PS,
and models trained on PF-Pascal[24] as PF.
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3.5 Shape Bias in Learned Representation

Recent work has shown that ImageNet-trained CNNs are biased towards object texture

compared to global object shape on image recognition tasks [20]. Since sketch recognition

requires relies on cues to object category apart from texture, we hypothesized that our photo-

sketch contrastive learning pre-training procedure would mitigate this texture bias.

To evaluate this hypothesis, we followed the same evaluation protocol as in [20, 19]. It

devises a cue-conflict experiment in which a model aims to classify images with conflicting

shape and texture. We report the shape bias of ResNet-18 models from several different training

objectives: ImageNet classification (20.06%), ImageNet contrastive learning (28.93%), photo-

sketch contrastive learning (46.36%), and the result of human participants (95.04%). The model

trained on photo-sketch contrastive learning exhibits a reliably weaker texture bias (i.e., and thus

stronger shape bias) than its photo-only counterparts (Figure 3.2).

ImageNet
CLS

ImageNet
CL

Sketch-photo
CL

Human
0.0

0.2

0.4

0.6

0.8

1.0

Sh
ap

e 
Bi
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Figure 3.2. Comparing the degree of shape vs. texture bias between models trained with different
objectives. Higher values suggest that the model recognition depends more on shape information.
Our model exhibits more human-like performance. Each dot represents an object category from
[20]. Error bars indicate 95% CI.
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Chapter 4

Related Work

4.1 Self-supervised Representation Learning

Learning with self-supervision aims to obtain generic representations for diverse down-

stream tasks with minimal dependence on human labels [80, 14, 59, 56, 88, 21, 82]. These

approaches are especially important for making progress towards human-like image understand-

ing, given that large numbers of labeled images are neither available to nor necessary for humans

to develop robust perceptual abilities [91, 45, 61], including the ability to understand sketches

[29, 40]. In particular, recently proposed contrastive learning techniques demonstrate competitive

performance with supervised baselines not only on visual recognition [28, 57, 82, 6, 25, 23, 7, 9],

but also on learning visual representations from inputs varying across sensory views [72, 73],

across frames in video [35, 83, 90], and even between text and images [60, 39]. Here we leverage

contrastive learning-based pretraining to achieve strong performance on visual correspondence

between images from highly distinct distributions (i.e., photos and sketches). To the best of

our knowledge, ours is the first paper to successfully apply these approaches to the problem of

photo-sketch dense correspondence prediction.

4.2 Weakly-supervised Semantic Correspondence Learning

Geometric matching [54, 49, 64, 69, 75] is perhaps the most basic form of correspondence

prediction, which aims to align two views of the same scene. By contrast, semantic matching
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[24, 63, 65, 31, 48, 76] aims to establish more abstract correspondences between the image of

objects in the same class, in a way that is tolerant to greater variation in appearance and shape.

Due to difficulties in collecting ground truth data for dense correspondence learning, prior work

has generally resorted to weak supervision, such as synthetic transformation on single images

[63, 37, 68], image pairs [65, 44, 43, 38, 31, 48, 76], and class labels [77]. Various objectives

have been proposed to explore the correspondence from weak supervision, including synthetic

supervision, optimization of the cost volume, forward-backward consistency, or a combination

of these objectives. Most work utilizes hierarchical features in deep models from supervised

pretraining on ImageNet. The dense correspondence is then predicted with a dense flow field

[24, 63, 37, 68, 48, 76] or a cost volume [65, 31, 77]. In this work, we propose a photo-sketch

correspondence learning framework that explicitly estimates the dense flow field with image

pair-level supervision.
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Chapter 5

Conclusions

What is needed to develop artificial systems that learn to perceive the visual world as

robustly as humans do? While there have been tremendous recent advances in the performance of

artificial vision systems on a variety of tasks, there are key aspects of human image understanding

that continue to pose major challenges. Here we focused on one of these aspects: the ability

to understand the semantic content of color photos and line drawings well enough to establish

a detailed mapping between them. Our paper introduces a new photo-sketch correspondence

benchmark containing 150K human annotations of 6250 sketch-photo pairs across 125 object

categories, augmenting existing photo-sketch benchmark datasets [67]. In addition, we conduct

several experiments to evaluate a self-supervised approach to learning to predict these corre-

spondences and compare this approach to several strong correspondence learning baselines.

Our results suggest that our approach based on contrastive learning and STN is effective in

capturing photo-sketch correspondence, but there remains a systematic gap with human perfor-

mance. Taken together, we hope that these findings, together with a new challenging fine-grained

multimodal image understanding benchmark will catalyze progress towards achieving more

human-like vision systems.
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Figure 5.1. More alignment examples on the PSC6K dataset.
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Figure 5.2. More alignment examples on the PSC6K dataset.
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Figure 5.3. More alignment examples on the PSC6K dataset.
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Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Ghesh-
laghi Azar, et al. Bootstrap your own latent-a new approach to self-supervised learning.
Advances in neural information processing systems, 33:21271–21284, 2020.

[24] Bumsub Ham, Minsu Cho, Cordelia Schmid, and Jean Ponce. Proposal flow. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3475–3484,
2016.

[25] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast
for unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 9729–9738, 2020.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[27] Aaron Hertzmann. Why do line drawings work? a realism hypothesis. Perception,
49(4):439–451, 2020.

[28] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman,
Adam Trischler, and Yoshua Bengio. Learning deep representations by mutual information
estimation and maximization. arXiv preprint arXiv:1808.06670, 2018.

[29] Julian Hochberg and Virginia Brooks. Pictorial recognition as an unlearned ability: A study
of one child’s performance. the american Journal of Psychology, 75(4):624–628, 1962.

[30] D. L. Hoffmann, C. D. Standish, M. Garcı́a-Diez, P. B. Pettitt, J. A. Milton, J. Zilhão,
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