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Abstract

There has been an increased interest in identifying gene-environment interaction (G×E) in the 

context of multiple environmental exposures. Most G×E studies analyze one exposure at a time, 

but we are exposed to multiple exposures in reality. Efficient analysis strategies for complex G×E 

with multiple environmental factors in a single model are still lacking. Using the data from the 

Multi-Ethnic Study of Atherosclerosis, we illustrate a two-step approach for modeling G×E with 

multiple environmental factors. First, we utilize common clustering and classification strategies 

(e.g., k-means, latent class analysis, classification and regression trees, Bayesian clustering using 

Dirichlet Process) to define subgroups corresponding to distinct environmental exposure profiles. 

Second, we illustrate the use of an additive main effects and multiplicative interaction model, 

instead of the conventional saturated interaction model using product terms of factors, to study 

G×E with the data-driven exposure sub-groups defined in the first step. We demonstrate useful 

analytic approaches to translate multiple environmental exposures into one summary class. These 

tools not only allow researchers to consider several environmental exposures in G×E analysis but 

also provide some insight into how genes modify the effect of a comprehensive exposure profile 

instead of examining effect modification for each exposure in isolation.

INTRODUCTION

There has been a growing interest in identifying gene-environment interaction (G×E) effects 

on quantitative traits associated with complex diseases in longitudinal cohort studies.1 Most 
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G×E studies study one environmental exposure and its interaction with candidate genes.2,3 

In reality, we are exposed to multiple often intercorrelated factors, and they can jointly 

modify genetic effects. Efforts to study multiple exposures in isolation can result in 

underestimated environmental modifying effects. Identifying the modifying effect of a 

complete environmental exposure profile is important not only to understand the etiologic 

genetic role but to identify subgroups for targeted intervention to address clustered 

environmental factors.

Very few studies considered multiple exposures when investigating G×E,4 possibly due to 

the challenges associated with variable selection, interpretation, and efficient statistical 

modeling. Existing analysis strategies for multiple environmental factors include an omnibus 

risk regression model (a full model that contains as many exposure variables as possible), a 

reduced model generated by some model selection methods (e.g., univariate thresholding, 

best subset, stepwise regression), and multilevel/hierarchical modeling methods.5 

Environmental epidemiologists have also used principal component analysis, factor analysis, 

or computing a risk score to reduce the dimensionality of the exposure measures.6,7

G×E studies are also challenged by multiple categories of exposures and genes. An 

interaction model including cross-product terms of gene (G) and environmental exposure (E) 

is typically used for testing G×E with quantitative traits.8 When both G and E are treated as 

categorical variables (commonly used in epidemiologic practice),9,10 a product form for 

G×E results in a saturated interaction structure. A saturated interaction structure estimates a 

parameter for each configuration of G and E without structural assumption for the 

interaction. The number of parameters and the degrees of freedom (df) for the interaction 

test grow with the number of G or E categories. This is not practical for finely cross-

classified data and may yield inefficient parameter estimates and loss of power compared to 

a parsimonious model. Although several parsimonious interaction models for G×E have 

been proposed (e.g., Tukey’s single df model for non-additivity11–13), they have limited 

power for detecting interaction if the model is misspecified.

The class of additive main effects and multiplicative interaction models,14 frequently used in 

crop cultivar trials, provides a solution to the problem of modeling interaction in cross-

classified tables with many categories. The additive main effects and multiplicative 

interaction model was proposed as the “FANOVA” (factor analysis of variance) model,15,16 

involving both additive and multiplicative components underlying a two-way data structure. 

The model first removes additive main effects and then applies principal component analysis 

to the residual to capture “non-additivity” under a new set of coordinate axes without 

imposing specific interaction structural assumptions. The interaction term can be 

approximated by a small number of leading multiplicative components, such that the 

effective df of the resultant G×E test is reduced. Addictive main effects and multiplicative 

interaction performs well across a spectrum of interaction structures.12 It is useful for 

detecting interaction effects in the absence of main effects.13

We illustrate a two-step approach for G×E test with multiple environmental factors using 

data from the Multi-Ethnic Study of Atherosclerosis (MESA).17 First, we describe four 

common clustering and classification strategies to synthesize information from multiple 
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environmental factors and define exposure profile subgroups. We also introduce the additive 

main effects and multiplicative interaction model. Next, to illustrate our analytical 

framework using the MESA data, we consider body mass index (BMI) as our outcome. 

Exposures include dietary intake, physical activity, and psychosocial factors. We apply the 

clustering or classification techniques to these environmental factors and create an overall 

exposure profile for each study participant, which is essentially a single categorical variable 

with categories defined by the measured “environmental characteristics”. Finally, we 

investigate G×E between BMI-related genes and the overall exposure profile using additive 

main effects and multiplicative interaction models and compare the results with saturated 

interaction and Tukey’s one df models.

METHODS

Clustering and Classification Methods to Define Exposure Groups

K-means Clustering—K-means clustering is a nonparametric partitioning method 

seeking a minimum for the error sum of squares and is suitable for quantitative 

variables.18,19 The k-means algorithm (1) randomly selects k centroids (k < number of data 

points) and assigns each data point to its closet centroid by minimizing the within-cluster 

sum of squares and (2) recalculates the centroids as the average of all data points in a cluster 

and again assigns data points to their closest centroids. Step (2) is continued until the 

observations are not reassigned or the maximum number of iterations is reached. The 

optimal number of clusters is chosen based on plotting the number of clusters and the 

corresponding total within-cluster sum of squares.

Latent Class Analysis—Latent class analysis detects latent classes so that observed 

variables can be explained by a single unobserved latent categorical variable based on their 

maximum likelihood class membership.20 The latent classes divide individuals into mutually 

exclusive groups. For example, people are categorized based on their eating habits into 

different dietary patterns (latent classes). This could lead to finding diet categories, such as 

Western pattern diet, Mediterranean diet, etc. The R package poLCA performs traditional 

latent class analysis using categorical variables, while mclust performs latent class analysis 

using continuous data.21 Model parameters are estimated using maximum likelihood, and 

the best normal mixture model is chosen according to Bayesian information criterion values 

among different covariance structures and different cluster numbers.

Classification and Regression Trees—Classification and regression trees are a 

supervised learning technique that recursively partitions data into smaller groups based on a 

categorical (for classification trees) or continuous (for regression trees) dependent variable 

and one or more independent variables (categorical or continuous) to enhance homogeneity 

within groups.22 At each split, data are partitioned into two mutually exclusive groups based 

on an independent variable. The splitting procedure is applied to each group separately. 

Classification and regression tree generates a sequence of sub-trees by growing a large tree 

and pruning it back.22 It sequentially collapses nodes that result in the smallest change in 

purity then uses cross-validation to select the optimal decision tree. rpart and tree are the 

primary R packages and can handle both categorical and continuous variables.
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Bayesian Dirichlet Process Clustering—Bayesian Dirichlet process clustering 

discovers subgroups by allowing the number of groups to vary and links cluster membership 

to the outcome via a regression model (supervised clustering). This method consists of two 

submodels.23 An allocation model (i.e., a discrete mixture model) is constructed to assign an 

individual to a cluster, which incorporates a Dirichlet process prior on the mixing 

distribution.24,25 Once individuals are assigned into groups, the cluster profiles are used as a 

categorical predictor in a disease submodel for the outcome (with or without covariates) 

simultaneously. Markov chain Monte Carlo methods are used to fit the model that allows the 

number of clusters to vary between iterations of the sampler. At each iteration, a score 

matrix is created to indicate whether two individuals belong to the same cluster. A 

probability matrix S is obtained at the end of iterations by averaging the score matrices to 

denote the pairwise probabilities that individuals are assigned to the same cluster. Finally, an 

optimal number of clusters can be found by minimizing the least-squared distance to S 
among all the partitions explored by Markov chain Monte Carlo or processing S through 

partitioning around medoids (an algorithm very similar to k-means). We illustrate the 

method using the R package PReMiuM.26

Remarks—There are several important distinctions among the four clustering algorithms. 

First, the exposure profile groups defined by classification and regression tree and Bayesian 

Dirichlet process clustering are conditional on the outcome variable (supervised learning), 

whereas those defined by k-means and latent class analysis are not, indicating that the 

formation of classification and regression tree/Bayesian Dirichlet process groups assumes 

some existing association between the exposures and the outcome. When these exposure 

clusters are used in G×E analysis, one may run the risk of over-fitting and underestimating 

sampling variance. Given that the attempt is to capture an individual’s exposure 

characteristics, it may be more meaningful to derive exposure clusters regardless of the 

outcome. Using unsupervised clusters at the first step may be more principled and desirable 

with the added advantage of the clusters being transportable across different health 

outcomes. Second, both latent class analysis and Bayesian Dirichlet process clustering have 

a solid statistical framework, while k-means and classification and regression trees are based 

on purely nonparametric algorithms. Nevertheless, the advantage of algorithm-based 

approaches lies in computational efficiency and as such, they may be preferable for large 

datasets. Third, standardized variables are required for k-means and latent class analysis, 

whereas classification and regression trees are invariant under monotone transformations of 

variables and are immune to outliers. Fourth, latent class analysis, classification and 

regression trees, and Bayesian Dirichlet process clustering can accommodate different data 

types, while the standard k-means algorithm can only handle numeric variables. 

Classification and regression trees tend to perform better for discrete/categorical features and 

tends to select categorical variables with many unique values for splits over ordinal 

variables27; they also feature an easily interpretable representation and are preferred in 

biomedical applications. Lastly, the primary advantage of Bayesian Dirichlet process 

clustering over traditional approaches with a fixed number of clusters is that the clustering 

uncertainty can be evaluated by re-examining the Markov chain Monte Carlo output. 

Regarding missing data, latent class analysis makes a missing at random assumption, but the 
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other approaches assume data are missing completely at random. Otherwise, multiple 

imputation of missing values can be conducted prior to applying the clustering methods.

Interaction Models for G×E

A G×E model for the outcome Y includes main effects of G and E and the G×E interaction 

as well as potential confounding factors. Let yij be the j-th observation for subject i. A linear 

mixed model including G×E as a fixed effect in longitudinal studies can be expressed as

where Gi is the genetic factor for subject i, and Eij is the j-th repeated measure of the 

environmental exposure on subject i, xij and uij are fixed-effects of other covariates and 

random-effects design matrix corresponding to the j-th observation for subject i; βg is the 

coefficient for genetic effect, βe is the coefficient for environmental effect, βge is the 

coefficient for interaction effect, β is a vector of covariate coefficients, bi ~ Nq (0, Φ) and Φ 
is the covariance matrix of random effects bi, and εij~N(0, σ2 is the measurement error, ni is 

the number of observations for subject i, and N is the total number of subjects. The 

covariance structure for εi = (εi1, εi1, … εini)
t can be defined such that it accounts for 

within-subject correlation. When G and E are categorical variables with R and C categories, 

G×E is often analyzed in the form of a R × C table. Due to the sum-to-zero constraints for 

parameter identifiability, we have (R − 1)(C − 1) interaction parameter estimates and also (R 

− 1)(C − 1) df for testing in a fully saturated interaction model. The number of parameters 

and the df for testing interaction increases significantly with increased R or C, which may 

contribute to decreased efficiency and loss of power to detect interactions.

Tukey’s One Degree-of-Freedom Model—Let TR×C be the interaction matrix (i.e., 

residual matrix after main effects and covariate effects removed) with τrc as the (r,c)-th 

element ((r=1, … ,R,c=1, … ,C). A Tukey’s one-df interaction28 has the form:

where  and  the parameters for genetic main effects and exposure main effects 

corresponding to the r-th and c-th categories of gene and exposure (with constraints 

), and θ is a scale parameter for the interaction effect. Testing 

interaction is equivalent to testing H0:θ = 0. Since the interaction term in Tukey’s model is a 

scaled product of main effects, the existence of interaction is conditional on the presence of 

main effects.

Additive Main Effects and Multiplicative Interaction Model—In additive main 

effects and multiplicative interaction models, a singular value decomposition is performed 

for the interaction matrix TR×C=ADΓT, where A and Γ are R × s and C × s orthonormal 

matrices (i.e., ATA = ΓTΓ = I) and D is a s× s diagonal matrix with elements d1 ≥ d2 ≥ … ≥ 
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ds (s = min(R − 1, C − 1)). Gollob15 proposed to retain the first M (M ≤ s) components of 

this representation,

The first few leading terms are considered as the signal of G×E, whereas the higher-order 

terms are regarded as random noise. This model was later named as additive main effects 

and multiplicative interaction (AMMI) models because the mean response was explained via 

additive main effects and multiplicative contrasts explaining the residual variation after 

fitting additive main effects.29 When M = s, then ϕrc = 0, and we have a fully saturated 

interaction model. When M < s, we have a lower rank representation of T and hence a 

reduced effective df for the interaction test. Given that three genotypes for each single 

nucleotide polymorphism (SNP) are considered (i.e., M ≤ 2), we focus on M = 1 in the 

additive main effects and multiplicative interaction model (calling it AMMI1), namely,

Concerning testing G×E of the above form, we adopt the parametric bootstrap method for 

additive main effects and multiplicative interaction to avoid computational iteration.13 

Briefly, a fully saturated interaction form is used for G×E modeling and then a singular 

value decomposition is applied to the estimated interaction matrix T̂. Then d̂1 can be 

approximated by the largest singular value, and α̂
r1 γ̂

c1 are approximated by the 

corresponding left and right singular vectors. Subsequently, a pivot based on likelihood ratio 

test is constructed using the two-step regression estimates. The null distribution of this pivot 

is derived using parametric bootstrap.

G×E ANALYSIS

Multi-Ethnic Study of Atherosclerosis

The Multi-Ethnic Study of Atherosclerosis (MESA) was initiated in 2000 to investigate the 

pathogenesis of subclinical cardiovascular disease (CVD) in 6,814 men and women aged 

45–84 years.17 Participants were recruited from six U.S. communities and were free of CVD 

at baseline. Baseline measurements included CVD risk factors, demographic and 

psychosocial factors, life habits, and subclinical atherosclerosis. Selected risk factor and 

outcome variables were collected in the follow-up visits. All participants provided informed 

consent, and the study was approved by the Institutional Review Board at each site. 

Participants had a baseline examination (exam 1) in 2000–2002 and four additional follow-

up examinations 18–24 months apart (exams 2–5). As exam 5 data were not available at the 

time of these analyses, only exams 1–4 were included. Obesity is an important CVD risk 

factor that is affected by genetics30 and is modifiable by changing lifestyles (e.g., dietary 

intake, physical activity).31,32 The goal of this analysis was to investigate how an overall 

exposure profile, including behavioral and psychosocial factors, modifies the genetic effects 

on body mass index (BMI). The analysis sample included 6429 MESA participants. Table 1 
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provides baseline demographic information for the study population. Approximately 39% of 

the cohort were Caucasian, 26% were African-American, 23% were Hispanic, and 12% 

were Chinese. The mean BMI at baseline was 28.8 kg/m2. We analyzed G×E using the 

exposure profile groups generated by the aforementioned clustering methods. Below we 

describe the genetic variables and environmental exposure variables. Next, we applied 

Tukey’s one df, saturated interaction model, and additive main effects and multiplicative 

interaction model with M=1 (AMMI1) for the interactions.

Genes—Of 32 BMI-related SNPs according to genome-wide association study findings, 

we considered 27 SNPs that were available in all four ethnic groups with good imputation 

quality (R2 ≥ 0.8). Details on MESA genotyping and imputation to the HapMap 1+2 

reference panel have been described previously.33 We used the imputed genotypes with the 

highest imputed genotype probability. Three genotypes (homozygous for the non-risk allele, 

heterozygous, or homozygous for the risk allele) were considered for each SNP. We 

calculated the genetic risk score by summing BMI-increasing allele counts for the 27 SNPs. 

The genetic risk score was categorized into quintile categories to illustrate the use of 

Tukey’s and AMMI1 models.

Environmental Exposures—Table 2 lists 11 exposure variables in three domains: (1) 

dietary intake, (2) physical activity, and (3) psychosocial factors. The diet variables included 

total energy intake (kcal/day), percent calories from carbohydrate intake, protein intake, 

saturated fat intake, and trans fat intake. The physical activity variables included total 

intentional exercise (metabolic equivalent -minute/week) and moderate and vigorous 

physical activity (metabolic equivalent-minute/week). The psychosocial variables were trait 

anxiety, trait anger, chronic burden, and depressive symptoms (details in eAppendix).

Overall Exposure Profile Groups—To classify participants based on their overall 

exposure profile using the 11 exposure variables, we applied k-means, latent class analysis, 

classification and regression trees, and Bayesian Dirichlet process clustering. Total energy 

intake, intentional exercise, physical activities, and the four psychosocial variables were log-

transformed to approximate normality. Since these methods are applicable to cross-sectional 

data, we conducted analysis with the 11 exposure variables at baseline as well as with 

subject-level averages for each exposure variable across MESA exams and found no 

appreciable difference in the exposure profile groups. We assumed constant exposure profile 

group membership (i.e. the probability of being in a latent class) across exams. Figure 1 

shows the mean of each exposure variable corresponding to the clusters determined by k-

means. Groups A, B, C, and D represent different dietary patterns. Group E has a physically 

active lifestyle, while Group F exhibits poor psychosocial health. Using latent class analysis, 

the best model was reached with an eight-class solution, but the model using six classes 

appeared to be more interpretable (eFigure 2 and eFigure 3 in eAppendix) and the Bayesian 

information criterion was close to the eight-cluster model. The classification and regression 

trees model demonstrated that percent calories from trans fats, chronic burden, and 

intentional exercise are significant predictors of BMI (Figure 2). To describe cluster 

characteristics in terms of the exposure variables using Bayesian Dirichlet process 
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clustering, eFigure 4 displays the posterior cluster means. eFigure 5 shows the posterior 

distributions of cluster parameters for the representative clustering.

Genetic and Environmental Exposure Main Effects—In a pooled analysis of four 

ethnicities, we examined the genetic main effects and the environmental main effects on 

BMI using fixed-effects models with unstructured correlation structure for within-subject 

correlation (based on the smallest Akaike Information Criteria value). For environmental 

main effects, covariates included age, age square, gender, race/ethnicity, education, 

household income, and diagnosis of cancer. Participants selected their highest education 

level from eight categories that were collapsed into two: whether the subject attained a 4-

year college degree. Participants identified their annual household income from 13 

categories with different ranges of income ($0–$9,999, $10,000–$19,999, etc.) at MESA 

exams 1, 2, and 3. Continuous income in US dollars was assigned as the interval midpoint of 

the selected category. Except for age and income, all other covariates were collected at the 

baseline visit. For genetic main effects, covariates included age, age square, gender, and the 

first three genetic principal components for population stratification (together explained 96% 

of the total genetic variation).

Only rs2867125 (near TMEM18) and rs7359397 (near SH2B1, APOB48R, and SULT1A2) 

were associated with BMI after multiple testing correction (adjusted p-value = 0.05/27 = 

0.0019). Except for trait anger and trait anxiety, all other environmental variables were 

associated with BMI. Table 3 shows the estimated main effects of the overall exposure 

profile clusters.

SNP/GRS × Overall Exposure Profile Interactions—We treated both G (three 

genotypes for each SNP) and E (represented by the exposure profile groups) as categorical 

variables and selected six SNP×E Profile interactions for subsequent tests based on a crude 

screening of all possible interactions. Table 4 shows the interaction test results between the 

six SNPs (and GRS) and overall exposure profile using Tukey’s, AMMI1, and saturated 

interaction models. When using k-means to generate the overall exposure profile, AMMI1 

and saturated models respectively detected two SNPs with modifying effects. rs1558902 

near FTO and rs7359397 near SH2B1 were found using the AMMI1 model (p=0.029 and 

p=0.047, respectively), and rs3817334 near MTCH2 and again rs7359397 near SH2B1 were 

found using the saturated interaction model (p=0.020 and p=0.043, respectively). Using 

classification and regression trees, rs543874 near SEC16B and again rs7359397 were found 

using both AMMI1 and saturated interaction models. Tukey’s model also detected 

rs7359397. Using Bayesian Dirichlet process clustering, rs713586 near RBJ was detected 

using the saturated model (p=0.009), and rs3817334 near MTCH2 was found using AMMI1 

model (p=0.039).

Genetic risk score was found to have a modifying effect on the association between the 

exposure clusters (defined by k-means) and BMI using all three models. Figure 3 shows 

different estimated effects of genetic risk score (comparing the 5th and the 1st quintile group) 

on BMI among six exposure profile groups, indicating a profound effect of genetic risk score 

on increased BMI for people with poor psychosocial health. Genetic risk score had a 

modifying effect on classification and regression tree groups using Tukey’s model 
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(p<0.0001) and the saturated model (p=0.014) and on Bayesian Dirichlet process clustering 

groups using the AMMI1 model (p=0.006) and saturated model (p=0.034). The results 

imply a Tukey’s 1-df form of interaction between genetic risk score and overall exposure 

profile (grouped by k-means or classification and regression trees).

DISCUSSION

We introduced a novel way to integrate multiple environmental exposures in G×E analysis. 

A number of existing clustering and classification methods can be used to summarize 

information of multiple environmental exposures into one variable. This approach discovers 

the underlying grouping to guide hypothesis development. Moreover, using the summary 

variable for further G×E analysis can avoid repeated tests that could lead to reduced power 

after multiple comparison adjustment.

We described additive main effect and multiplicative interaction models for modeling G×E, 

as opposed to traditional saturated interaction modeling approach, to enhance test power by 

adopting a parsimonious interaction model. Testing the significance of each multiplicative 

term and selecting the optimal number of multiplicative terms in these models are natural 

follow-up questions. Many researchers have studied this problem primarily under balanced 

settings in yield trials.34,35 Cross validation or parametric bootstrap can be applied to find 

the number of multiplicative interaction terms.36,37 A comprehensive comparison of model-

building strategies using the MESA data would be worthwhile but is beyond the scope of 

this paper.

The exposure profile group characteristics derived from k-means, latent class analysis, and 

Bayesian Dirichlet process clustering involve all 11 exposure variables under consideration, 

which can be difficult to interpret although we have described them qualitatively. The 

interpretation of classification and regression tree groups is straightforward because the 

algorithm identifies key factors and eliminates unimportant ones. We encourage researchers 

to know the strengths, limitations, and assumptions underlying each method to choose 

appropriate algorithms. G×G (or epistasis) was not considered here as they are typically of 

more interest to identify biological mechanisms. Our sample size also does not allow 

exploration of both G×G and G×E. From a technical point of view, creating clusters formed 

by multiple SNPs requires a different clustering treatment and entails an independent study. 

We restrict our attention to G×E with a focus on condensing exposure data.

A few limitations are worth noting. Since typical clustering approaches are not capable of 

handling repeated measurements, we computed the average exposure profile for each 

individual and performed cluster analysis. Not only does this simple strategy assume a time-

invariant exposure profile but possibly leads to an inefficient model estimation. Future 

studies should explore the application of longitudinal clustering methods to identify time-

changing exposure patterns and to discover time-varying G×E.

Cluster uncertainty is another critical issue. One can examine the uncertainty by 

bootstrapping the entire analytic process and create resampling-based sampling variance 

estimates. The PReMiuM package provides a principled and fully Bayesian way to account 
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for clustering uncertainty in outcome model parameters. However, for easier interpretability 

of the exposure clusters as well as comparability with the other methods, we extracted the 

best clustering offered by the PReMiuM package and used it in the second step G×E model. 

This hybrid Bayes-frequentist approach is ad hoc and is a limitation of the method. This 

strategy was adopted because the G×E test using the additive main effects and multiplicative 

interaction model depends on the number of exposure clusters and we wanted to interpret the 

exposure profile in each cluster while performing the analysis. An integrated full Bayes 

implementation will be methodologically more appropriate though the hybrid approach has a 

practical appeal and is simple to understand.

An alternative is to marginalize over the clustering distribution or employ some form of 

Bayesian model averaging while reporting the final inference. We propose to pre-specify a 

set of potential exposure cluster numbers, fit individual clustering models, and then obtain 

Bayesian information criterion values. Then, we perform separate G×E tests for all exposure 

cluster models. Lastly, we summarize the G×E tests by weighing each test using the 

Bayesian information criterion value of that particular clustering model (see eAppendix 

eTable 3 for the G×E tests using BMA). However, Bayesian model averaging does not allow 

derivation of point estimates and confidence intervals for a practical interaction 

interpretation.

This paper demonstrates the use of clustering methods for translating multiple 

environmental exposures to one summary variable in G×E studies. One argument for 

defining categorical exposure sub-groups could be to better handle non-linearity, 

measurement error, and potential exposure–exposure interactions. It provides a useful 

characterization of G×E in terms of overall exposure profiles. More research in longitudinal 

G×E with multiple time-varying exposures is needed. With the advancement of powerful 

statistical tool and the availability of rich longitudinal data, we may identify time-dependent 

G×E effects and ultimately understand relationships among genes, environments, and 

complex diseases over different life stages.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Cluster means of the 11 (standardized) environmental exposure variables using k-means in 

the MESA data
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Figure 2. 
Grouping criteria of classification and regression tree (CART) analysis results. Mean BMI 

value is shown for each group.
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Figure 3. 
Estimated effects of the genetic risk score (GRS) on BMI (and the corresponding 95% 

confidence intervals) comparing the fifth (Q5) to the first GRS quintile group (Q1) for the 

six exposure profile groups obtained by k-means.
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Table 3

Estimates of the exposure cluster main effects on BMI adjusted for age, age2, gender, race, education, income, 

and diagnosis of cancer

Effect Estimate 95% Confidence Limits

K-means: Group B vs. Group A 1.9 (1.4, 2.3)

K-means: Group C vs. Group A 0.76 (0.26, 1.1)

K-means: Group D vs. Group A 1.2 (0.82, 1.6)

K-means: Group E vs. Group A 0.15 (−0.41, 0.70)

K-means: Group F vs. Group A 1.2 (0.77, 1.7)

LCA: Group B vs. Group A 0.06 (−0.35, 0.47)

LCA: Group C vs. Group A 1.2 (0.70, 1.7)

LCA: Group D vs. Group A 0.83 (0.44, 1.2)

LCA: Group E vs. Group A 0.02 (−0.39, 0.4)

LCA: Group F vs. Group A 1.6 (1.1, 2.0)

CART: Group 2 vs. Group 1 1.2 (0.78, 1.6)

CART: Group 3 vs. Group 1 1.1 (0.86, 1.5)

CART: Group 4 vs. Group 1 2.0 (1.6, 2.4)

CART: Group 5 vs. Group 1 3.3 (2.8, 3.7)

BDPC: Group 2 vs. Group 1 1.7 (1.4, 2.1)

BDPC: Group 3 vs. Group 1 −0.50 (−1.0, 0.02)

BDPC: Group 4 vs. Group 1 0.79 (0.29, 1.3)

BDPC: Group 5 vs. Group 1 −1.5 (−1.8, −1.1)

See figures for the characteristics of each group classified by k-means, latent class analysis (LCA), and classification and regression tree (CART), 
and Bayesian Dirichlet Process clustering (BDPC).
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