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ABSTRACT

The full, three-dimensional Coriolis force includes the familiar sine-of-latitude terms as well

as frequently dropped cosine-of-latitude terms (Nontraditional Coriolis Terms [NCT]). The latter

are often ignored because they couple the zonal and vertical momentum equations which in the

large-scale limit of weak vertical velocity is insignificant almost everywhere. Here, we ask whether

equatorial clouds which fall outside the large-scale limit are affected by the NCT. A simple scaling

indicates that a parcel convecting at 10ms−1 through the depth of the troposphere should be

deflected over 2km to the west. An initial set of cloud resolving simulations indicate a preferential

lifting of surface parcels with positive zonal momentum and stronger convection on the western

side of convective updrafts. To explain these results, we develop a mathematical framework which

incorporates an azimuthally symmetric convective circulation with an incompressible poloidal

flow. Because the model incorporates the full 3-dimensional flow associated with convection, it

uniquely predicts not only a force acting to tilt clouds westward but also a force acting to spread

upper-level outflow meridionally. These predictions are confirmed with an additional pair of cloud

resolving simulations designed to mimic the steady-state flow of the model. Results suggest the

NCT are impactful to equatorial mesoscale convective circulations.
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1. Introduction22

In a typical introductory atmospheric dynamics class, students often derive the full form of23

the Coriolis force – the apparent force introduced by formulating our equations of motions in a24

non-inertial reference frame (de Coriolis 1835; Poisson 1838) attached to the rotating Earth. In25

three dimensions, in a rotating frame of reference, the momentum equations for an inviscid fluid26

are27

Du
Dt
+
∂p
∂x

= 2Ωsin(φ)v−2Ω0 cos(φ)w (1)

Dv

Dt
+
∂p
∂y

= −2Ω0 sin(φ)u (2)

Dw

Dt
+
∂p
∂z
= 2Ω0 cos(φ)u+B. (3)

In (1)-(3), u, v, and w are the vector components of the wind, Ω0 is the rotation rate of the Earth,28

and φ is the latitude, p is the geopotential, the analog of the pressure for incompressible flows, and29

B is the force of gravity, associated with buoyancy. In order to specify the geopotential, we require30

another equation. When the Mach number of the flow is small - as is relevant at convective scales31

in the atmosphere, pressure waves travel quickly, and the flow can be described through either32

the anelastic or incompressible approximation. In order to simply the discussion, we will use the33

incompressible approximation in what follows34

∂u
∂x
+
∂v

∂y
+
∂w

∂z
= 0, (4)

and the generalization to anelastic flows will be straightforward from the incompressible theory.35

Equations (1)-(4) describe the motion of an ideal fluid under the “full Coriolis force”.36

In an effort to meaningfully simplify the standard equations of motion, we often use scaling37

arguments which suggest that, in typical midlatitude conditions, the underlined term on the RHS of38

(1) is much smaller than the first, and so can be neglected. We then note that the underlined term on39

3



the right hand side of (3) is much smaller than the leading order vertical accelerations, gravity and40

the pressure gradient force. These assumptions lead to the so-called “TraditionalApproximation” of41

the Coriolis force. For standard, synoptic, midlatitude meteorology, the traditional approximation42

does not introduce any major errors. However, at or near the equator, these approximations are43

inaccurate due to the relative largeness of cos(φ) compared to sin(φ), all other magnitudes being44

equal. The underlined terms in (1)-(3) are sometimes called the “Non-traditional Coriolis Terms”45

(NCT) being derived from the “Non-traditional Approximation” of the Coriolis force.46

Of course, we are not the first to discuss the form or impact of the NCT. The NCT are commonly47

considered in hydrodynamic flows of deep-atmosphere planets (Savonije and Papaloizou 1997;48

Ogilvie and Lin 2004; Dintrans et al. 1999) and sometimes on terrestrial ocean dynamics (Denbo49

and Skyllingstad 1996;Marshall and Schott 1999). Their effect on the atmosphere is less commonly50

considered although reasonablywell understood in some contexts. Hayashi and Itoh (2012) examine51

the off-equatorial response of an MJO-like diabatic heating forced by the NCT. Ong and Roundy52

Ong and Roundy (2019) recently examined the response of equatorial synoptic flows to the NCT53

in a simplified model. Tort and Dubos Tort and Dubos (2014) developed a shallow water model54

for the complete Coriolis force. What these papers all have in common, besides a near universal55

message not to ignore the NCT, is a minimum length scale and time scale of consideration. Below56

the synoptic scale in the atmosphere, the NCT have received little systematic attention.57

In this paper, we ask a simple question about the NCT: what is its impact on tropical convective58

circulations? Part of the motivation for asking this question is practical. For example, the WRF59

documentation (http://www2.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf; pg 11) states60
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that for a standard Cartesian grid, the accelerations due to the NCT should be set to zero 1. But if61

the impact of the NCT on the kinds of cloud resolving simulations for which WRF was designed is62

consequential, WRF users may need to consider the impact of these ignored terms. CM1 (Bryan63

2015) also assumes the NCT are zero (as of version 19.2). RAMS (Cotton and Coauthors 2003;64

Saleeby and Cotton 2008) does not include the NCT. NICAM (Satoh et al. 2010) does include65

these terms – so their exclusion is not universal among cloud models. And, it has been argued that66

as grid spacing shrinks in global models, NCT should be added there as well (Kasahara 2003).67

That being said, we are more generally motivated by a suspicion that the NCT may play an68

underappreciated role in shaping the evolution of equatorial convective circulations and the resultant69

morphology of convection. In the preamble to their review of the impact of the NCT on geophysical70

flows, Gerkema et al. (2008) lament that,“[as] the interest in [NCT] haswaxed andwaned repeatedly,71

the literature is scattered, and much of it has slipped into oblivion”. Therefore, we think it is72

plausible that the NCT has been unintentionally ignored at the atmospheric mesoscales.73

In order to answer our motivating question, we rely on cloud modeling and analytic results.74

These are organized as follows. First, we examine the equatorial scales of motion implied by75

the NCT. Then we attempt to simulate the impact of the NCT in two cases: one will show the76

asymmetric impact zonal velocity has on convective motions and the other will show the impact77

of the NCT on the statistics of clouds and precipitation. Next, we develop an analytic model for78

the impact of the NCT on closed equatorial circulations. This analytic model uses an important79

intuition - pressure waves travel much more quickly than convective flows, so the atmosphere in the80

vicinity of a convective flow behaves incompressibly (more accurately, anelastically). Pressure in81

1The Coriolis underlined terms on the RHS of (1) and (3) are listed in that documentation as “curvature terms” instead of “Coriolis term”. In a

broad sense, this is merely a semantic choice by the document’s authors, but we would argue against this choice given that curvature terms are not

merely the result of changing one‘s reference frame as Coriolis terms are.
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incompressible flows, is determined diagnostically through the Leray projection. Using the Leray82

projection, we explicitly describe the force on a model convective flow. The mathematics works83

out extremely simply and shows one component of the force (we call it the Coriolis Rotation term)84

to be proportional to the sine of the longitude which drives the traditional cyclonic/anticyclonic85

motion associated with convection. The second component of the force is proportional to the86

cosine of the longitude, is strongest in the tropics, and is therefore the primary effect of the NCT.87

This Coriolis Shear force, as we call it, is westward in the ascending part of a convective flow88

and diffluent at the top of the circulation. Finally, we test this new analytic model with a pair of89

steady-state simulations designed to mimic the model.90

2. Exploratory Results91

a. Inertial Circles92

As a suggestive practice, we examine the nature of inertial circles induced by the NCT. If93

one considers an air parcel of always-neutral buoyancy that instantaneously adjusts to the local94

pressure, then (1)-(3) can be simplified and integrated in time to yield: U(t) =U0 sin(2Ω0 cos(φ)t)95

and W(t) =W0 cos(2Ω0 cos(φ)t). The dots in Fig. 1 mark the path of an initially slowly eastward96

moving (U0 = 1ms−1, W0 = 0ms−1) parcel. Only the NCT act on this parcel. Over the course of97

12 hours, the parcel traces out a 1400m wide circle and returns to its initial location. The parcel98

maintains its initial speed throughout the oscillation. In an idealized sense, this oscillation may be99

imaged as a simple Taylor column aligned with the rotation axis of the planet, which at the equator100

is perpendicular (i.e. into the page) to the local vertical (Gerkema et al. 2008; Busse 1976).101

The diamonds in Fig. 1 show the evolution of a westward moving (U0 = −1ms−1, W0 = 0ms−1)102

parcel initially 1km above the surface. These are identical conditions to the first parcel save for the103
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sign of zonal momentum. In this case, the parcel descends until it reaches the surface. At that time,104

its vertical momentum is transferred to the surface (by construction in our simple example), but its105

zonal momentum is unaffected. The parcel then skids along the surface with constant momentum106

thereafter. So, the behavior of two parcels with identical initial properties, except for the sign of107

their zonal velocity, is very different when influenced by the NCT and subject to a rigid surface. Of108

course, these examples are contrived and do not include all kinds of real world complexity inherent109

in parcel motion. That being said, the point they make well is that the NCT have the potential to110

act asymmetrically; a concept that we will reiterate below.111

b. Simple Scaling112

Next, we will suggest that the impact of (1)-(3) may be non-negligible at the mesoscale. The113

zonal displacement due to a constant acceleration and zero initial velocity in the zonal direction114

over a period, ∆t, is, of course,115

∆X =
1
2

Du
Dt
∆t2. (5)

If we assume that an arbitrary parcel ascends with constant vertical wind speed, W , over a depth116

of atmosphere, H, then117

∆X = −2Ω0cos(φ)
H2

W
. (6)

Equation (6) suggests that a zonal displacement of an ascending air parcel depends on the square118

of the depth of the ascent and inversely on the velocity. We will consider two cases relevant to119

the tropical atmosphere. The first is of a convecting, cloudy parcel. In this case, H = 18km and120

W = 10ms−1. This implies ∆X = −2.4km. Taken literally, this would suggest that up to 2.4km121

of the lateral deflection of a cloudy parcel is due purely to Coriolis acceleration. This deflection122

would mean that convection is not upright but rather tilted at 7.5% with the vertical toward the123

west.124
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The second case is one of a subsiding, clear air parcel. In this case, H = 18km and W =125

−0.10ms−1. This implies ∆X = 240km. Because of the inverse dependence of the displacement126

on the magnitude of W, the slowly subsiding parcel is displaced more than the relatively quickly127

convecting parcel.128

The change in speed of a parcel ascending over a depth of atmosphere is129

∆U = −2Ω0cos(φ)H. (7)

Equation (7) shows that unlike for the displacement of a parcel, the final velocity does not depend130

on vertical velocity such that ascending and descending parcels gain the same speed, although they131

are in opposite directions. The zonal velocity of a parcel that ascends through the depth of the132

tropical troposphere is slowed by 2.6ms−1.133

c. Initial RAMS Simulations134

1) Isolated Congestus Simulations135

Of course, both (6) and (7) are over-estimates of potential effects on real-world parcels which are136

subjected to friction and pressure forces. So next, we will add the NCT to the RAMSmodel (Cotton137

and Coauthors 2003) which will be run here in a cloud-resolving configuration. Our first set of138

simulations are run on an isotropic grid of 150 m spacing on a domain of 45 km on a side and 21139

km tall. The simulations are initialized with a mean sounding from the DYNAMO field campaign140

(Ciesielski et al. 2014) with a slightly moistened boundary layer to help sustain moist convection.141

We use the RAMS double moment (Igel et al. 2015), bin-emulating microphysics (Saleeby and142

Cotton 2004; Saleeby and van den Heever 2013), cyclic lateral boundaries, 20 damping layers at143

model top, and no radiation.144

8



We ran six simulations. Three each on an equatorial f-plane with (1)-(3) included (NCTon)145

and three with the standard RAMS equation set (NCToff). The three simulations differed in their146

intensity of the boundary layer convergence that was included in the model to excite convection.147

The intensities of convergence were: 4.0×10−4s−1, 2.5×10−4s−1, and 1.5×10−4s−1. We also tried148

0.5×10−4s−1, but it failed to excite sustained convection. We will focus on the onset of convection149

in these simulations while simulations are directly comparable.150

To make use of this mini-ensemble of LES, we will show the ensemble, time-integrated mean151

of physical quantities for 20 minutes of simulation. All three simulations within a set are averaged152

together to best ensure results are general and not just the result of numerical noise. Figure 2a/b153

shows the ensemble-mean zonal and vertical winds. These figures show the wind is convergent at154

the surface and convective from just above the surface to at least 4km. Figure 2c/d show differences155

of these quantities between the two simulations (taken as NCTon minus NCToff). These difference156

plots show two results that are not necessarily obvious from examining (1) and (3). First, zonal wind157

differences at the surface are uniformly negative. Second, there is a coherent, though somewhat158

noisy, velocity couplet in the vertical wind difference.159

We take these noted differences to be simulated examples of the symmetry breaking discussed in160

section 2a. The negative zonal velocity difference at the surface is the result of preferential lifting161

of parcels with positive zonal velocities and preferential sinking (in this case, to the ground) of162

parcels with negative zonal momentum. Figure 2d illustrates the impact of (3); air with positive163

zonal momentum has higher vertical velocity up to about 3 km height. The maximummagnitude of164

the velocity differences is approximately 1% of the magnitude of the composite velocities. While165

the impact of the NCT on short-lived convection appears to be weak, we want to stress that it is166

systematic.167
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2) Radiative Convective Equilibrium Simulations168

We also ran two sets of radiative convective equilibrium (RCE) simulations. New simulations169

were run starting after day 60 of the RCE simulations from Igel (2018). We ran for an additional170

ten days. Simulations were performed with a 200km square, doubly-periodic domain with 1km171

spacing and 65 vertical levels with stretched spacing (see 3). At the time of the restart, all the172

RAMS thermodynamic variables, including hydrometeor species, were used to initialize the new173

run but the dynamic fields were universally set to zero. We reset the dynamic fields to eliminate174

the imprint of any mean flow that may have developed in the 60 day run. It did not take long for175

the simulation to spin up new kinetic energy similar to the behavior seen in (Colin et al. 2018). We176

ran two simulations, RCEon and RCEoff , where “on” and “off” refers to the NCT. We show results177

averaged over the final five days of these simulations.178

Figure 3 shows the average convective vertical velocity conditioned on a minimum of 1ms−1.179

Unlike in the LES, the RCE statistics indicate weaker convective strength throughout the depth180

of the convecting layer. The magnitude of the difference is surprisingly large at approximately181

2ms−1. The structural difference in the velocity profile is the height of the maximum. In RCEon,182

the maximum vertical velocity occurs at around 6 km; in RCEoff , there is a local maximum near183

the same altitude but the global maximum occurs much higher at around 11km. Solid dots are184

included in Figure 3 to indicate levels at which vertical velocity distributions in RCEon and RCEoff185

are statistically different as determined by a two-sided t-test at the 99% level. Convective vertical186

wind distributions are distinguishable at every level below 15 km.187

Next, we contrast the nature of precipitation in RCEon with RCEoff . We do this by constructing188

composite surface precipitation intensity maps from the instantaneous output from RAMS. Maps189

are constructed so that the maximum precipitation value occurring within a contiguous region of190
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precipitation intensity greater than or equal to 1mmhr−1 occurs in its middle. All precipitation191

values outside this region are zeroed. Because of the doubly periodic nature of the RCE simulations,192

maps are padded out on all sides and then pared back to the size of the simulation grid (200km193

x 200km) centered on the precipitation maximum. Figure 4a shows that precipitation intensity194

is weakened most significantly just to the east of the composite centroid. This is consistent with195

weakened vertical velocities on the eastern side of convection shown in section 2c1.196

Figure 4b shows the azimuthally averaged, mean structure of precipitation intensity. In RCEoff ,197

maximum mean precipitation falls at approximately 15mmhr−1 while in RCEon, the maximum198

intensity is only 12mmhr−1. This could simply be a consequence of the decrease in maximum199

updraft speeds (Fig. 3). Or, it could be due to a change in the structure of clouds. Figure 4200

shows that while the peak intensity of composite precipitation in RCEon is lower, rain rates are201

actually higher beyond 10 km from the composite center. The right axis of Fig. 4 helps to show202

the importance of this difference. It indicates the total accumulation that occurs at any distance203

from the center (essentially just a distance-squared weighting). The peak accumulation occurs 5204

km from the composite storm centers and is 25% higher in RCEoff . But beyond 12 km, RCEon205

storms have as much as 300% more accumulation (due to small accumulation in RCEoff). That206

is, precipitation features are much wider in RCEon. An approximate visual-integration of the red207

curves indicates the total precipitation accumulation in the composite storm in RCEoff and RCEon208

are nearly the same (they are, indeed, within 1% of one another).209

3. The NCT and Complete Convective Circulations210

The simple scaling in section 2b is convenient but fundamentally flawed as it employs simple211

“parcel” thinking. Real convection occurs in a continuous fluid which means air movement causes212

pressure perturbations. The simulation results in section 2c show that the effects of the NCT are213
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not simply to introduce inertial oscillations within the cloud field. Simulation results often present214

logical consequences of the NCT, but they fail to suggest any kind of unified model. It is our215

supposition that complicated consequences of the NCT arising from even subtle indirect impacts216

of the NCT on the pressure field will be consequential to the complicated mesoscale evolution of217

convection. Not only will it result in behavior different than the simple scaling indicates in the218

vertical-zonal plane, but it will also have the potential to impact meridional flow since pressure219

is isotropic. Indeed, we observed some evidence of meridional flow differences in exploratory220

renderings of composite clouds from RCEon (not shown).221

As far as the authors are aware, there is no simple mathematical framework incorporating the222

NCT into the kind of mesoscale convective circulations in which we are interested. So, we now223

introduce one. Our goal in developing such a framework is to combine it with our simulations to224

provide generalizable insights into the impact of the NCT on convective circulations.225

4. Effect of the Non-traditional Coriolis force on a general poloidal circulation226

In this sectionwe describe analytically the effect of the Coriolis force on an axisymmetric poloidal227

flow. Our first insight is to consider a general poloidal flow and compute the net Coriolis force228

experienced by this flow. Instead of providing an exact solution for the circulation, this method229

shows where the Coriolis force is felt within a circulation, and how that force depends on the230

latitude of the circulation.231

Our second insight is to realize that in an incompressible or anelastic flow, the pressure adjusts232

instantaneously in order to yield a net force which is divergence-free. Even in a compressible flow,233

sound waves rapidly adjust the pressure field so that the net force rapidly becomes divergence-234

free. For incompressible fluids, the pressure (analagously, the geo-potential for atmospheric flows)235
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is determined from the velocity field by inverting a Laplacian through what is called the Leray236

projection.237

Although we will work on an f -plane, which means that we neglect the variation of the Coriolis238

force in our convective scales, we retain the latitudinal dependence of the Coriolis parameter so239

that we can describe the different effects of the net Coriolis force at different latitudes. Our analysis240

yields two structurally different net forces which the Coriolis force induces on a poloidal convective241

circulation, neither of which has any component in the vertical direction:242

1. A toroidal force which is cyclonic in the axially confluent region of the circulation and anti-243

cyclonic in the axially diffluent region of the circulation. Its strength is proportional to the244

sine of the latitude, and thereby vanishes at the equator and is maximal at the poles. This is the245

effect of the traditional Coriolis force which induces a cyclonic/anti-cyclonic first baroclinic246

structure.247

2. A force which is in the horizontal plane, having a dipolar, diffuluent structure around the center248

of convection. It acts westward (easterly) in the center of a convective updraft, recirculates249

poloidally away from the center, is maximal at the point of maximum vertical velocity, and250

varies as the cosine of latitude. These NCT effects are most pronounced at the equator, induce251

westward tilts in convective updrafts and diffluence at the top of the convective circulation.252

a. The equations for the net Coriolis force253

Consider the incompressible Euler equations (in vector form) in a stratified fluid in the presence254

of rotation (modeled by an f -plane),255

®ut + ®u · ®∇ ®u+ ®∇p+2 ®Ω× ®u = Bk̂ (8)

∇ · ®u = 0 (9)
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where256

®Ω =Ω0
[
cos(φ) ĵ + sin(φ)k̂

]
(10)

î, ĵ, k̂ are the unit vectors in the local eastward, northward, and upward directions, respectively. The257

other symbols are the same as described in the previous sections. Equations (8) and (9) are the258

vector form of equations (1)-(4), and thereby contain, both, traditional and non-traditional Coriolis259

terms. The anelastic generalization of these equations would replace (9) with ∇· (ρ(z)®u) = 0, where260

ρ(z) is a prescribed density stratification. While the details of the computation would change for261

the anelastic case, the principle of the Leray projection would remain.262

The Leray projection provides the algorithm for determining the pressure from the force and263

circulation, thereby constructing the net, divergence-free force required to maintain a divergence-264

free flow, ®u. By taking the divergence of (8) and substituting the time derivative of (9), the pressure265

can be determined by the inversion of the Laplacian266

∇2p = ∇ ·
[
Bk̂ −2 ®Ω× ®u− ®u · ∇®u

]
(11)

and thereby contains components due to buoyancy, the Coriolis force, and the fluid inertia, respec-267

tively. The boundary conditions for the pressure are determined by the boundary conditions for the268

flow. On a rigid boundary, the velocity field satisfies269

®u · n̂ = 0 (12)

where n̂ is the unit normal on the boundary. Taking the dot product of (8) with n̂, evaluating it270

on a rigid boundary, and using (12) yields a Neumann boundary condition for the pressure on the271

boundary272

∇p · n̂ = n̂ ·
[
Bk̂ −2 ®Ω× ®u− ®u · ∇®u

]
. (13)
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This is simply the mathematical expression for the balance of forces at a rigid boundary; since the273

flow cannot penetrate a rigid boundary, the total normal force due to bouyancy, Coriolis, and fluid274

inertia must be balanced by the normal pressure gradient at a rigid boundary.275

On a free boundary the boundary condition is simply continuity of pressure. In the atmosphere,276

we will consider a rigid lower boundary (which we will denote z = 0), and decay of pressure as277

|vecx | → ∞.278

The questionwe ask is, when considered at a fixed latitude and on scales appropriate to convective279

clouds, what is the net effect of only the Coriolis force on an idealized, axially symmetric, poloidal280

circulation. We leave to future work the discussion of the effect of the buoyancy, Bk̂, and inertia281

terms, ®u · ®∇ ®u. Therefore we must solve for the net Coriolis force which results after the Leray282

projection, since in an incompressible flow, the pressure (geopotential) adjusts instantaneously to283

maintain the divergence-free constraint. To solve this problem involves projecting out the portion284

of the Coriolis force which contains divergence. Defining the net Coriolis force as285

®F = −2 ®Ω× ®u−∇pC (14)

where pC, we call the Coriolis pressure, is determined by requiring ®F to be divergence-free,286

∇ · ®F = 0 =⇒ ∇2pC = −2∇ ·
[
®Ω× ®u

]
. (15)

The Neumann boundary condition on pC is results from requiring that the normal component of287

the net force ®F · n̂ equal zero on z = 0288

∂pC

∂z
= 2n̂ ·

(
®Ω× ®u

)
on z = 0. (16)

At large distances from the flow, the Coriolis force decays to zero, so we will require the pressure289

to decay to zero, also.290
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b. Computing the Coriolis pressure291

Now we construct the Coriolis pressure in (x,y) ∈ R2, z ≥ 0. The Coriolis pressure is the portion292

of the total pressure field arising from the Coriolis force acting on the velocity field of concern, in293

our case a poloidal flow which satisfies (15) and boundary conditions (16). To simplify the right294

hand side of equation (15) we use the vector identity ®∇ ·
[
®Ω× ®u

]
=

(
®∇× ®Ω

)
· ®u−

(
®∇× ®u

)
· ®Ω. The295

rotation vector is constant and the vorticity is defined as the curl of the velocity field ®ω = ®∇× ®u so296

equation (15) becomes297

∇2pC = 2 ®Ω · ®ω. (17)

In the following, we will show that, for axially symmetric poloidal flows, the Laplacian in (17)298

is explicitly invertable and yields an analytic description of the Coriolis pressure in terms of the299

Stokes Stream Function (Stokes (1842)) of the poloidal flow.300

c. Circularly symmetric poloidal circulation301

Since the vorticity field of a circularly symmetric poloidal circulation is purely toroidal, it302

behooves us to compute the basis vectors in cylindrical polar coordinates as a function of angle in303

the plane, and expressed in terms of the Cartesian basis. Clearly the vertical direction is the same304

in both coordinate systems and we need only express305

r̂ = cos(θ)î+ sin(θ) ĵ

θ̂ = −sin(θ)î+ cos(θ) ĵ,
(18)

being the axially outward, toroidal unit vectors, respectively.306

Focusing on general axisymmetric, poloidal, incompressible circulations, we consider a local307

cylindrical coordinate system in which the velocity is written in component form as308

®u = ur(r,z) r̂ +uθ(r,z) θ̂ +uz(r,z) k̂ . (19)
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The poloidal nature of the flow implies uθ = 0 and axisymmetry implies ∂ur/∂θ = ∂uz/∂θ = 0.309

Incompressibility of the flow in the (r,z)-plane yields the divergence-free constraint for ®u in that310

plane,311

1
r
∂ (rur)

∂r
+
∂uz

∂z
= 0. (20)

Any divergence-free vector field can be expressed as the curl of a vector potential, so we can express312

the toroidally symmetric poloidal flow, ®u as313

®u = ∇×
(
Ψθ̂

)
(21)

where ®Ψ = Ψ(r,z) θ̂ is the (divergence-free) vector potential, in analogy to the vector potential314

of magnetostatics. Since we will only consider poloidal circulations, and thereby toroidal vector315

potentials for the remainder of the discussion, hereafter we will refer to the scalar function Ψ as316

the vector potential - despite the fact that it is actually the magnitude of the vector potential. Using317

Ψ, the components of the poloidal velocity field are318

ur = −
∂Ψ

∂z
, uθ = 0, uz =

1
r
∂ (rΨ)
∂r

. (22)

Although Ψ has the dimensions of a stream function, the flow is not tangent to contours of Ψ.319

The “Stokes Stream function” (Stokes 1842) is designed so that its contours are tangent to the320

vector field of the flow. For poloidal flows in cylindrical coordinates, the Stokes Stream function, ψ,321

is equal to the distance from the axis multiplied by the toroidal component of the vector potential,322

ψ = rΨ. (23)

Substituting (23) into (22) we find323

®u =
1
r

[
−
∂ψ

∂z
r̂ +

∂ψ

∂r
k̂
]
, (24)

the velocity field is everywhere tangent to contours of ψ, but proportional in magnitude to |∇ψ |r .324
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The Coriolis force is computed using the vector potential Ψ from equation (21) or (22) and the325

rotation vector from equation (10),326

−2 ®Ω× ®u = −2Ω0
[
cos(φ) ĵ + sin(φ)k̂

]
×

[
−
∂Ψ

∂z
r̂ +

1
r
∂ (rΨ)
∂r

k̂
]

= −2Ω0
[
cos(φ)sin(θ)r̂ + cos(φ)cos(θ)θ̂ + sin(φ)k̂

]
×

[
−
∂Ψ

∂z
r̂ +

1
r
∂ (rΨ)
∂r

k̂
]

= −2Ω0

{
cos(φ)

[
−

sin(θ)
r

∂ (rΨ)
∂r

θ̂ + cos(θ)
∂Ψ

∂z
k̂ +

cos(θ)
r

∂ (rΨ)
∂r

r̂
]

−sin(φ)
∂Ψ

∂z
θ̂

}
.

(25)

The k̂ component of this force is needed to determine the boundary condition on the Coriolis327

pressure. Using equation (25) in (16) we find328

∂pC

∂z
= −2Ω0 cos(φ)cos(θ)

∂Ψ

∂z
on z = 0. (26)

The vorticity of an axisymmetric poloidal flow is purely in the toroidal direction,329

®ω =

[
∂ur

∂z
−
∂uz

∂r

]
θ̂ (27)

which, when expressed in terms of the vector potential, Ψ, becomes330

®ω = −

[
∂

∂r

(
1
r
∂ (rΨ)
∂r

)
+
∂2Ψ

∂z2

]
θ̂

= −

[
∂

∂r

(
∂Ψ

∂r
+
Ψ

r

)
+
∂2Ψ

∂z2

]
θ̂

= −

[
∂2Ψ

∂r2 +
1
r
∂Ψ

∂r
−
Ψ

r2 +
∂2Ψ

∂z2

]
θ̂ .

(28)

The reader may note that ®ω = −∇2 ®Ψ, the vector Laplacian of the vector potential; we could use this331

identity to solve for the Coriolis pressure, but we take the more brute force approach for the sake332

of clarity.333

Taking the dot product of the toroidal vorticity equation (28), with the equation for the rotation334

vector (10), yields a simple expression for the right hand side of Poisson’s equation (17) for the335
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Coriolis pressure in terms of the vector potential,336

∇2pC = 2 ®Ω · ®ω

=⇒∇2pC = −2Ω0 cos(φ) cos(θ)
[
∂2Ψ

∂r2 +
1
r
∂Ψ

∂r
−
Ψ

r2 +
∂2Ψ

∂z2

]
.

(29)

d. Solving for the Coriolis pressure337

We are left to solve equation (29) with the z = 0 boundary condition given in equation (26). In338

cylindrical coordinates, the Laplacian of the Coriolis pressure is expressed as339

∇2pC =
∂2pC

∂r2 +
1
r
∂pC

∂r
+

1
r2
∂2pC

∂θ2 +
∂2pC

∂z2 . (30)

The absolutely elegant fact is that the solution of (29) is extremely simple. To solve for pC , we340

introduce the function P(r,z) and substitute341

pC(r,θ,z) = P(r,z) cos(θ) (31)

into equation (29) using the identity from equation (30) to arrive at342 [
∂2P
∂r2 +

1
r
∂P
∂r
−

P
r2 +

∂2P
∂z2

]
cos(θ) = −2Ω0 cos(φ) cos(θ)

[
∂2Ψ

∂r2 +
1
r
∂Ψ

∂r
−
Ψ

r2 +
∂2Ψ

∂z2

]
. (32)

In general, we would have to invert the linear operator on the left hand side of this expression to343

solve for P - but the simplicity of this equation allows us to read off the solution without any more344

work. Notice that the dependence on θ and the differential operator is the same on the right and345

left hand sides of equation (32). Therefore P is proportional to Ψ plus an, as of yet undetermined346

function, R. So we have found P(r,z) = −2Ω0 cos(φ) [Ψ(r,z)+R(r,z)], where R is a homogeneous347

solution of the differential operator in equation (32). The resulting Coriolis pressure is expressed348

explicitly in terms of Ψ and R as349

pC(r,z,θ) = −2Ω0 cos(φ) [Ψ(r,z)+R(r,z)] cos(θ). (33)
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Upon taking the z-derivative of pC in equation (33) and substituting the derivative into the350

boundary condition (26) we arrive at the boundary condition for R351

∂R
∂z
= 0 on z = 0. (34)

We conclude that, since R is a solution to a homogeneous elliptic partial differential equation with352

homogeneous boundary conditions, therefore R(r,z) = 0 everywhere. Thus the Coriolis pressure,353

pC , is given by the expression in (33) with R = 0.354

e. Solving for the net Coriolis force355

The negative gradient of the Coriolis pressure (33) is356

−®∇pc = 2Ω0 cos(φ)
[
∂Ψ

∂r
cos(θ)r̂ −

Ψ sin(θ)
r

θ̂ +
∂Ψ

∂z
cos(θ) k̂

]
. (35)

To this expression we add the Coriolis force in (25) to arrive at the net Coriolis force from equation357

(14) expressed in terms of the vector potential, Ψ,358

®Fnet = 2Ω0

{
−cos(φ)

[
Ψ

r
cos(θ)r̂ −

∂Ψ

∂r
sin(θ) θ̂

]
+ sin(φ)

[
∂Ψ

∂z
θ̂

]}
. (36)

Notice that vertical component of the net force vanishes everywhere in r,θ for z > 0, not just at359

the lower boundary. This result was not obvious before we embarked upon the calculation, since360

the Coriolis force does have a vertical component throughout the fluid (notice the k̂ component361

of the force in equation 25). Nonetheless, we have shown that the component of the Coriolis362

force associated with the eastward component of the velocity balances the vertical gradient of the363

Coriolis pressure (refer to equation (3)), at least away from the poles where cos(φ) = 0.364
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The remarkably straightforward result in equation (36) can actually be further simplified. Using365

the polar coordinate representation of the curl, we can write the first term in parenthesis as366

−

[
Ψ

r
cos(θ)r̂ −

∂Ψ

∂r
sin(θ) θ̂

]
= ®∇×

(
−Ψ(r,z)sin(θ) k̂

)
= ®∇×

(
−G(x,y,z) k̂

)
= −

∂G
∂y

î+
∂G
∂x

ĵ

≡ ∇⊥G

(37)

where367

G = Ψ sin(θ) (38)

and ∇⊥ is the perpendicular gradient, which is equivalent to the tangential derivative; ∇⊥G is a368

vector field directed clockwise around maxima of G.369

Substituting this result into the expression for the net force (36) we arrive at the main result of370

our analysis371

®Fnet = 2Ω0

{
cos(φ)∇⊥ [Ψ sin(θ)]+ sin(φ)

∂Ψ

∂z
θ̂

}
, (39)

whose interpretation follows.372

1) Interpretation of the sin(φ) term; Coriolis Rotation373

The second term in equation (39) is proportional to the sine of latitude, so that it vanishes at the374

equator, is antisymmetric about the equator, and is maximal at the poles. This term is due to the375

traditional Coriolis force and acts solely in the toroidal direction.376

Since the force is proportional to377

®Fnet,2 ∝
∂Ψ

∂z
∝ −ur, (40)

we note that it is proportional to the negative of the radial velocity. This expression tells us that378

at elevations of maximal radial inflow, there is a maximal force in the cyclonic direction, whereas379
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at elevations of maximal radial outflow, there is a maximal anti-cyclonic force. This force would380

tend to spin a convective cell cyclonically near the base of the troposphere and anti-cyclonically381

near the tropopause.382

We name this the Coriolis Rotation term. It will likely feel familiar to readers.383

2) Interpretation of the cos(φ) term; Coriolis Shear384

The first term in parenthesis in equation (39) is more subtle, more interesting, and in our opinion,385

not adequately discussed in the literature. It is symmetric about the equator, so there is no386

hemispheric difference in its effects. It is also maximum at the equator and vanishes at the poles.387

Since it depends on the (x,y) perpendicular gradient of the function G = Ψ sin(θ), contours of388

G are related to the divergence-free, net Coriolis force in the same way that a stream function in389

two dimensions is related to an incompressible velocity field. That is to say the force is tangent390

to contours of constant G, and where G changes sharply, the force is strongest. We reiterate391

that, from the definition of the perpendicular gradient in (37), it is clear that the force vectors swirl392

counterclockwise around low values of G. Importantly, this sense of circulation of the force vectors393

is independent of latitude, unlike the Coriolis rotation term whose sign changes across the equator.394

We name this component of the force, the Coriolis Shear term and G, from equation (38), we395

name the Shear Potential.396

5. The net Coriolis force associated with the “DoNUT” Model of convective circulation397

An elucidating model for a poloidal circulation is what we have called the “DoNUT” Model (the398

“Dynamics of Non-rotating Updraft Torii”). This is a model we will introduce here and describe399

more completely in future work. For now, the simplest DoNUT is described by a vector potential400

which is separable in r and z (in z ≥ 0), and independent of θ. An example of such a flow contains401
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two length scales, L,H, and a strength, w∗,402

Ψ(r,z) =
w∗

2
rz
H

e1− z
H −

2r
L . (41)

To understand the physical meaning of these parameters, we compute the vertical velocity403

uz =
1
r
∂ (rΨ)
∂r

= w∗
z
H

[
1−

r
L

]
e1− z

H −
2r
L ,

(42)

and radial velocity404

ur = −
∂Ψ

∂z

= −
w∗

2
r
H

[
1−

z
H

]
e1− z

H −
2r
L .

(43)

Therefore the flow described by (41) consists of a radially inward velocity below z = H, and a405

radially outward velocity above z = H. The maximum magnitude of the radial velocity occurs at406

z = 0 in the DoNUT, and the magnitude decreases as r→∞.407

The vertical velocity is positive for r < L and negative for r > L. The vertical velocity is408

maximum on the axis of symmetry, increases from the ground (z = 0), reaches a maximum of409

uz,max = w∗ at height z = H, and decreases to zero as z→∞.410

In figure 5, we plot the DoNUT’s Stokes Stream Function, ψ = rΨ in coordinates (r/L,z/H). By411

scaling (L,H,w∗) a whole family of different flows can be described by (41).412

Of the two net forces we have described, Coriolis Rotation and Coriolis Shear, the second is413

the less intuitive and is the one that needs more description. Computing the Shear Potential (38)414

associated with the DoNUT (41) we find415

G(x,y,z) =
w∗

2
yz
H

e1− z
H −

2
√
x2+y2
L . (44)

We have expressed G in Cartesian coordinates since the tangential gradient, ∇⊥, is most easily416

described in Cartesian variables. The Coriolis Shear force is purely in the (x,y) plane and is derived417
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from the (x,y) derivatives of the Shear Potential. Therefore, the z-dependent terms in the Shear418

Potential act together as a scale factor for the strength of the force at each height. The vertical419

velocity on the axis of symmetry (r = 0) is also the maximum velocity at each height,420

w(z) ≡ w∗
z
H

e1− z
H , (45)

which, itself, attains the maximum w∗ at z = H. This identification allows us to write (44) as421

G = w(z)
y

2
e−

2
√
x2+y2
L . (46)

From this expression, we learn that the maximum Coriolis Shear occurs at the height of the422

maximum vertical velocity. In a separable stream function, the strength of the Coriolis Shear at423

any height is proportional to the strength of the vertical velocity along the axis of symmetry at that424

height - this is the updraft velocity.425

Along the axis of symmetry, the net Coriolis Shear force, which is the term proportional to cos(φ)426

in equation (39), is427

®FCS(0,z) = −2Ω0 cos(φ)
∂G
∂y

î = −Ω0 cos(φ) w(z) î (47)

If the central vertical velocity is upward, then this Coriolis Shear force along the axis is westward428

and proportional in strength to the vertical velocity along the axis. Therefore the Coriolis Shear429

force imparts a westward tilt to the convective towers and is most pronounced near the equator.430

Figure 6 shows contours of G and vectors of the Coriolis Shear for the DoNUT circulation.431

Motion is upward at the origin. The westward force at the convective core and along the latitude of432

the convective core is clearly visible. The lines of force also circulate as a dipole centered along the433

axis of symmetry. This circulating force can impart spreading throughout the convective column434

but is most strongly felt at the height of maximum vertical velocity.435
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a. Simulating the DoNUT436

Having gone through this development with due rigor, we are left wondering whether we can437

recreate these results with more RAMS simulations. The DoNUT model is steady-state. To reflect438

this, we run a set of RAMS simulations with a surface enthalpy flux that varies in space but439

is constant in time. The flux occurs over a double-Gaussian patch in the center of the domain440

with a full half width of 5km. The maximum flux is 500W m−2. Microphysics is turned off for441

simplicity. The two simulations are DONUTo f f and DONUTon. They are run for 3 hours. An442

ascending plume sets up over the enthalpy flux patch while the rest of the domain is characterized443

by far-field descent. The flow characteristics of the convective circulation in DONUTon can be444

seen in Fig. 7a/c. The flows shown have been averaged horizontally (in Fig. 7a/b) over the middle445

5km and vertically (in Fig. 7c/d) between 5km and 7km height and over the final 30 minutes of the446

simulations.447

Figure 7d shows the difference in the horizontal flow (DONUTon minus DONUTo f f ) after 3448

hours. While we cannot calculate the force from the model in a way that would be identical to the449

DoNUT model, we can instead show the resulting flow which proves to be remarkably consistent450

with that implied by the force in Fig. 6. RAMS simulates westward acceleration (as it does in451

NCTon and RCEon) and the meridional confluence and difluence pattern predicted by the DoNUT452

model.453

6. Summary454

Above, we asked what, in some senses, is a question with an obvious answer: might equatorial455

deep convective clouds feel an impact from the Non-traditional Coriolis Terms (NCT)? Intuition456

may suggest that the answer is “no” given the relative slowness of the rotation of the Earth and the457
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relative fastness of convection. Perhaps surprisingly, then, we have shown that the answer is more458

likely “yes”. Taken as a whole, why do we suggest this?459

1. Vertical wind speeds are weak and the tropical troposphere is (relatively) deep. A simple460

scaling argument which depends on the relatively weak 10m/s updrafts in tropical convection461

and relatively deep convective layer of 18km results in a 2.4km zonal displacement of an462

isolated ascending parcel. This suggests that convective plumes should tilt systematically to463

the west at 7.5◦ relative to the vertical. Westward tilts occur at or on either side of the equator.464

2. Our use of a poloidal model of convection (introduced as the “DoNUT”model) to characterize465

the entire convective circulation links fast convective processes which may be marginally466

impacted by the Coriolis force on a slowly rotating planet with slow compensating decent467

which occurs on a much longer timescale. The latter intuitively are more deflected by the468

Coriolis force.469

3. The NCT affects circulations potentially weakly, but always systematically, due in part to470

the rigid surface which introduces symmetry breaking. We also suspect, although do not471

make any attempt to show, that the impact of turbulent dissipation which will be much472

larger in convecting centers than in subsiding environments also introduces another source of473

asymmetric impacts from the NCT.474

In order to illustrate the impact of these simple mathematical arguments, we added the NCT475

to RAMS and ran three groups of simulations. The first was a small ensemble of congestus476

simulations. The impact of the NCT was to preferentially lift air with positive zonal momentum.477

The second was a set of restarted RCE simulations. There, we showed that convective velocities478

are weakened (in a statistical sense) and that the morphology of surface precipitation is charac-479

teristically altered by the NCT. The third was of steady-state convection occurring due to a patch480
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of enhanced surface enthalpy flux. The NCT resulted in a different overturning structure in the481

vertical plane and the confluence-difluence couplet suggested by our poloidal “DoNUT model” in482

the horizontal plane.483

As a practical suggestion, we think it is reasonable to include the NCT in cloud resolving models;484

we see no reason to exclude it given the low computational burden of including it. That is not to say485

it should be used in all simulations just as the traditional terms are often excluded intentionally in486

simulations. We would also suggest that systematic tilts to convective storms, of the sort suggested487

above, could be observable in vertically-resolved cloud data if suitably shear-free conditions can be488

found. Unfortunately, current satellite instruments are locked in predominantly-north-south orbits489

which would largely preclude their providing useful observation.490

Data availability statement. Data used in figures are available (for reviewer preview) at:491

https://datadryad.org/stash/share/NWrmFVpJBZtm3D8rB2xin1-DU9n8eXGPftbSaDqttak .492
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Fig. 1. Illustration of the evolution of a pair of arbitrary neutral air parcels under the influence of the Non-

traditional Coriolis Terms. Marked locations indicate the evolution in space. Colors represent the evolution in

time (colors darken as time increases). Circles show a parcel with U0 = 1ms−1. Diamonds show a parcel with

U0 = −1ms−1.
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Fig. 2. Vertical cross-sections of velocity (in NCTon) and velocity differences (as NCTon minus NCTof f ). a)

Zonal velocity through the the convergence center in NCTon. b) Vertical velocity in NCTon. c) Zonal velocity

enhancement in NCTon. d) Vertical velocity enhancement in NCTon
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Fig. 3. Profiles of mean convective (i.e. > 1ms−1) vertical velocity in RCEon and RCEoff . Filled circles

indicate model levels where the statistical distributions of convective vertical velocities are distiguishable from

one another by a two sided t-test at the 99 % level.
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Fig. 4. a) Composite precipitation anomaly in RCEon with units of mm/hr. The most intense instantaneous

precipitation is used as the center point for all storms that contribute to the composite. b) The axisymmetrized

composite of precipitation intensity (blue) and the axial accumulated precipitation (red).
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Fig. 5. Contours of the Stokes Stream function versus (r/L,z/H) for the DoNUT Model of equation (41).
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Fig. 6. The shear potential and force vectors as a function of (x,y) evaluated at elevation z = H for the Shear

Potential, G, from equation (46)
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Fig. 7. Vectors indicate the magnitude of the respective two-dimensional flow. The top row shows zonal-

vertical cross-sections along the axis of convergence averaged over 3km into and out of the page. The bottom

row shows horizontal cross-sections at Red vectors illustrate a magnitude of 9ms−1 which is approximately the

largest magnitude vector in each panel
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