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Insights into Computational Drug Repurposing for 
Neurodegenerative Disease

Manish Paranjpe1,*, Ali Taubes2, Marina Sirota1,2,*

1.Bakar Computational Health Sciences Institute, University of California, San Francisco, 
California, 94158 USA

2.Gladstone Institutes, San Francisco CA, 94158 USA

Abstract

Computational drug repurposing has the ability to remarkably reduce drug development time and 

cost in an era where these factors are prohibitively high. Several examples of successful 

repurposed drugs exist in fields such as oncology, diabetes, leprosy, inflammatory bowel disease, 

among others, however computational drug repurposing in neurodegenerative disease has 

presented several unique challenges stemming from the lack of validation methods and difficulty 

in studying heterogenous diseases of aging. Here, we examine existing approaches to 

computational drug repurposing, including molecular, clinical, and biophysical methods, and 

propose data sources and methods to advance computational drug repurposing in 

neurodegenerative disease using Alzheimer’s as an example.
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Computational drug repurposing can be a fast and cheap tool for drug 

development

Neurodegenerative disease has posed significant and unique challenges to effective drug 

discovery over the past century. More than five million Americans are living with 

Alzheimer’s Disease (AD), and more than 500,000 have been diagnosed with Parkinson’s 

Disease (PD), the two most common neurodegenerative disorders[1], [2]. Millions more are 

suffering from rarer conditions such as Frontotemporal Dementia (FTD), Huntington’s 

disease, Amyotrophic Lateral Sclerosis (ALS), Multiple Sclerosis (MS), and Spinal 

Muscular Atrophy (SMA), among others [3]–[6]. AD and other dementias account for over 
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$200 billion in healthcare costs, a number that is projected to rise by 2050 if these diseases 

remain untreatable. Since 2000, nine immunomodulatory compounds have reached Food and 

Drug Administration (FDA) approval for MS, some of which work to slow disease 

progression[5], however there is no cure. This sits in stark contrast to only four non-disease 

modifying compounds approved for AD during that time period, even while the population 

of AD patients is projected to almost double in the next ten years[7]–[10]. The unmet need 

for the timely development of effective therapies for AD and other neurodegenerative has 

been steadily climbing, with the burden on our healthcare system reaching a critical level[2].

Computational drug repurposing, or the in silico screening of FDA-approved compounds for 

use against new indications, promises to get new and effective neurodegenerative disease 

therapies to the clinic faster [11], [12]. Traditional drug development entails discovery and 

pre-clinical research, safety review, clinical studies, FDA review, and FDA post-market 

safety monitoring, and can take 15 years and over one billion dollars to bring a drug to 

market[13],[14]. Many repurposed drugs on the other hand, have already been FDA 

approved and therefore face a cheaper and quicker journey to the clinic[13], [15]. 

Developments in high throughput screening technologies, along with the growing repository 

of ‘omics-based data across disease indications, has catapulted computational drug 

repurposing methods to the forefront of attractive drug discovery techniques for 

neurodegenerative disease[13], [16], [17]. While computational drug repurposing has the 

potential to greatly reduce drug development time and cost, experimental and economic 

obstacles must be overcome.

Existing computational approaches to drug repurposing

Previously, successful repurposed drugs came from serendipitous events in the lab and 

clinic. One relevant example of this is the use of zonisamide for the treatment of PD[18], 

[19]. Upon using zonisamide to treat a Japanese epilepsy patient with PD, Murata 

discovered that zonisamide improved the patient’s PD symptoms too. Based on this 

serendipitous finding, zonisamide was approved as an anti-PD therapy in 2009 in Japan. 

Recently, the emergence of high throughput molecular, clinical and structural biology 

technologies combined with the advent of economically feasible large-scale computational 

capacity has created a novel opportunity to rationally repurpose existing drugs using 

computational frameworks instead of chance findings. Existing computational approaches to 

drug repurposing can be divided into molecular, clinical, and structure-based (biophysical) 

methods (Table 1). Here, we highlight the advantages and current limitations of each 

strategy, highlight key innovations and propose future solutions in the context of 

neurodegenerative disease.

Molecular methods of drug repurposing

Our group has pioneered the development of transcriptome-based approaches to 

computational drug discovery[20] which aim to compare drug gene expression signatures 

pre-and post-drug treatment to disease gene expression signatures in order to predict drugs 

that may reverse disease gene signatures[21]. The early iteration of this hypothesis takes the 

form of the Connectivity Map (CMap) i, a resource created at the Broad Institute which 
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consists of a database of microarray gene expression signatures that have been constructed 

pre and postapplication of >1200 small molecule compounds to cell lines [22] [22]. Recent 

examples of success from this method include preclinical identification of drugs such as 

parbendazole for osteoporosis [23], cimetidine for lung adenocarcinoma [20], citalopram for 

metastatic colon cancer[24], and topiramate for inflammatory bowel disease [25] (Table 1). 

More recently developed methods combine genetic and gene expression data and employ 

network-based approaches to advance drug discovery[26]. Such methods enable high-

throughput screening of existing compounds, and do not require a priori identification of 

target molecule. However, transcriptomic methods are limited by the availability of subtype-

specific disease expression signatures (Table 1). This is particularly relevant in the case of 

heterogeneous neurodegenerative diseases such as AD and PD[27]. Recent work has shown 

differences in AD disease pathology, biomarker profiles and disease risk due to presence of 

several genetic, demographic and lifestyle-related risk factors, including sex[28]–[31], the 

apolipoprotein E (ApoE) ε4 allele [32]–[3 7], and vascular risk factors such as diabetes and 

hypertension[38]–[40]. The 2018 National Institute of Aging (NIH) and Alzheimer’s 

Association framework, which moves from classifying AD as a clinical syndrome with or 

without evidence of neuropathologic change towards a biomarker-based classification, is a 

promising step forward towards developing biologically-defined disease subtypes for 

AD[41]. By framing AD as a biological disease marked by distinct biomarker changes, 

transcriptomic methods can focus on creating drug predictions in biologically-defined 

subtypes. While the NIH-Accelerating Medicines Partnership – AD (NIH AMP-AD) portal 
ii has paved the way for aggregating large scale neurodegenerative disease-associated 

datasets for easy research access, more resources, including single cell RNA-seq datasets for 

the targeted development of drug predictions in disease-relevant brain cell types and, larger 

datasets with available genetic information are sorely needed.

Commonly used transcriptomic methods leveraging public databases such as CMap[22] or 

the scaled up NIH Library of Integrated Network-Based Cellular Signatures (LINCS) 

program[42]iii primarily use cancer cell lines as in-vitro models to construct drug expression 

signatures by systematically applying a drug or vehicle to the cell line and using high 

throughput transcriptomic assays such as RNA-sequencing to profile gene expression. 

However, several studies have demonstrated significant gene expression differences between 

culture models and freshly prepared biopsy data, especially in central nervous system (CNS) 

tissues[43]–[46]. Therefore, while resources such as CMap and LINCS may be well suited 

for cancer drug discovery, they are currently limited in the case of neurodegenerative 

disease. Ultimately, there is a large need for the creation of transcriptomic drug perturbation 

databases in CNS tissues such that drug response can be measured in relevant tissue and cell 

types for neurodegenerative disease (Table 1; Figure 1).

Recent and promising advances in molecular-based drug repurposing techniques also 

include multi-omics techniques that integrate several types of molecular data such as 

genetic, transcriptomic, proteomic, and metabolomic data to develop computational drug 

i)https://www.broadinstitute.org/connectivity-map-cmap
ii)https://www.nia.nih.gov/research/amp-ad
iii)http://www.lincsproject.org/
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predictions [47], [48] One such example in the case of neurodegenerative disease is the work 

by Zhang et al [47] where the National Human Genome Research Institute-European 

Bioinformatics Institute Genome Wide Association Study (NHGRI-EBI GWAS) 

catalogiv[49], PubMed, and the Human Metabolome Database [50] were systematically 

mined to create a collection of proteomic, metabolomic and genetic signatures of AD. By 

integrating this multi omics data with the Therapeutic Target Database[51] and 

DrugBank[52] drug-target databases, the study authors were able to generate a list of 75 

drug predictions in AD. Methods incorporating several types of omics data are particularly 

promising in the case of CNS diseases, such as AD and PD, that have unclear genetic and 

epigenetic etiology.

Clinical methods of drug repurposing in neurodegeneration and beyond

Clinical methods of drug discovery leverage large-scale health data such as Electronic 

Medical Record (EMR), insurance claims data, clinical trial data, health registries and health 

surveys, personal genome testing companies. Prominent examples of EMR databases are the 

Mt. Sinai BioMe [16] cohort and the eMERGE network [53]. Analysis of large health 

repositories such as EMR and claims data are particularly well suited for precision medicine 

as, with a sufficiently large discovery data set, researchers can identify drugs that work in 

distinct patient populations (Table 1). By taking advantage of patient medication histories, 

drugs can be identified that are effective for indications other than the primary drug use. For 

example, recent reanalysis of clinical trials and Medicare pharmacy claim data has suggested 

that statin users experience a lower incidence of AD than their non-user counterparts[54], 

[55] (Table 1). Similarly, researchers took a correlation-based approach using EMR 

laboratory testing data from Ajou University to develop “clinical-signatures” or laboratory 

test values before and after a patient is administered a drug. By comparing these clinical 

signatures, the group found terbutaline sulfate and ursodeoxycholic acid, a treatment for 

Kawasaki syndrome, to elicit similar changes in laboratory values. Comparing disease pairs 

revealed a high degree of clinical signature similarity between Kawaskai syndrome and 

ALS, suggesting that terbutaline sulfate may also be efficacious in ALS. Subsequent in-vivo 
validation showed that administration of terbutaline sulfate rescued axonal growth and 

neuromuscular junction deficits in a zebrafish model of ALS [56](Table 1).

One of the major limitations of clinical-data based drug repurposing methods lies in the 

publicly inaccessibility of most large-scale EMR databases, including eMerge and the Mt. 

Sinai BioMe initiative. Moreover, clinical data from disparate sources such as insurance 

claims and EMR data are often unstructured, contain different terminologies and coding 

formats for clinical indications and medications as well as different data formats, and also 

suffer from issues with sparse or incomplete data (Table 1). Researchers must therefore 

invest time and resources into creating structured databases that integrate disparate sources 

of data to support computational pipelines. Semi-structured and unstructured EMR text must 

be converted into a computer-readable format using natural language processing techniques 

before knowledge discovery.

iv)https://www.ebi.ac.uk/gwas/
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Indeed much progress has been made in automatic knowledge retrieval from unstructured 

EMR data [57]–[59]. Recently, the Observation Health Data Sciences and Informatics 

program has created the OMOP (see Glossary) Common Data Model to transform claim 

data and EMR record data into a standardized data format with common data representations 

(ie. terminologies, coding schemes, etc)[60] (Table 1). This allows subsequent statistical 

analyses to be conducted with minimal information loss due to variable data coding and 

formatting. Other linkage techniques include probabilistic matching strategies and “fuzzy” 

matching techniques that use multiple field values to match records even when no single 

field is an exact match[61], [62]. In addition to challenges related to variable data coding, 

EMR data is often noisy with missing variables or miscoded diagnoses, medication orders 

and laboratory orders [60]. These variables must be either imputed from related variables or 

removed from subsequent analyses[63]–[66]. Recently, the use of a deeply-learned 
autoencoder to impute missing EMR data from the ALS Pooled Resource Open-access 

Clinical Trial database v outperformed popular existing imputation methods such as 

mean[67], median[67], singular value decomposition[68], SoftImpute[69], and k-nearest 
neighbors[70] in both imputation accuracy and ALS disease progression predictive 

ability[63]. Lastly, the development of better data anonymization methods is fundamental to 

the release of these invaluable datasets, and better methods need to be developed in the near 

future.

Neurodegenerative diseases such as PD and AD often display disease pathology years or 

even decades before the onset of neurogenerative processes. For example, patients with PD 

display non-motor symptoms such as hyposmia, depression, olfactory dysfunction years 

before the onset of motor symptoms[71]–[75]. Similarly, AD patients exhibit signs of brain 

pathology such as increased cerebral blood flow, glucose hypometabolism, hippocampal 

volume loss, β-amyloid deposition and tau neurofibrillary tangles sometimes decades before 

cognitive decline[76]–[82]. As such, patient cohorts must be studied longitudinally over time 

to accurately measure disease progression and assess the efficacy of drugs in preclinical 

stages of disease. Observational health data would need to include patient observation 

spanning several years (Table 1). Longitudinal profiling and recording end of life health 

outcomes is made even more challenging because patients often switch health care systems 

or may transfer to hospice care facilities for palliative care. One example of an exemplary 

comprehensive database is Norwegian Prescription Database (NorPD)vi that exists for 

residents of Norway. In 2017, Brakedal et al., successfully mined the NorPD database of 

Norwegian diagnosis codes to identify an association of patients on glitazone with decreased 

incidence of PD [84] proving that these retrospective studies are possible with access to 

detailed longitudinal data (Table 1). While a phase II clinical trial failed to show any disease-

modifying effect of glitazone in early PD, this trial included a follow-up period of only 44 

weeks and did not assess the effect of glitazone on incidence of PD [85]. Ideally, glitazone 

should be followed up in longer clinical trials to assess long-term neuroprotective effects.

A further limitation that must be overcome in order to enhance the usability of clinical data 

is the addition of supporting genetic data. In the case of highly heterogenous 

v)https://nctu.partners.org/proact
vi)http://www.norpd.no/
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neurodegenerative disorders such as AD or PD, drug efficacy may vary by the presence of 

genetic risk factors[27], and subtypes (Table 1; Figure 1). For example, the effect of statins 

on cognitive decline in AD has been previously shown to be more effective in ApoE ε4 

carriers compared to non-carrier[87]. Large scale integration of supporting genetic data will 

also enable researchers to engage in precision-medicine-based analysis techniques for drug 

development.

Lastly, as all analysis of clinical data is inherently retrospective, drug repurposing results of 

clinical data must be followed by prospective clinical trials. This is exemplified by the fact 

that a newly-minted retrospective association that was found between increased statin use 

and reduced incidence of ADhas failed to be replicated in randomized controlled trials [88]–

[90], demonstrating the inability of retrospective analyses to prove causation. However, 

given the recent progress reviewed here, we are hopeful that in the near future the size and 

number of genetically-linked EMR databases, in which patient undergo both clinical 

documentation through EMRs and genetic profiling using whole exome sequencing or 

microarray technologies, will continue to grow. This combined with the creation of better 

data cleaning and de-identification methods (in which personally identifiable information 

such as patient name, are removed from EMRs), will facilitate the discovery of new 

therapies for neurodegenerative disease.

Biophysical methods of drug repurposing in neurodegenerative disease

Biophysical methods of drug repurposing include structural, ligand-based and molecular 

docking methods and may be particularly useful in neurodegenerative diseases with known 

targets such as Huntington’s disease [4], [91] (Table 1). These computationally-efficient 

methods leverage the biochemical properties of drugs such as binding affinity and 

biophysical properties such as 3D conformation to achieve drug-target predictions[92]–[94]. 

Structural methods, such as those that use local site similarity metrics to compare protein 

binding sites [95] or those that identify chemiosmotic protein environments (two protein 

environments that can bind the same ligand) [96], [97], leverage protein conformational 

information to identify structurally similar drugs that might harbor similar targets[92]. If two 

diseases are hypothesized to share similar target proteins, then a drug or structurally similar 

molecule may be effective in both diseases[98]. For example, patients with AD and 

Huntington’s disease both have increased extrasynaptic NR2B- subunit containing N-

methyl-D-aspartate receptors (NMDARs) and increased phosphorylation of NMDARs [99]–

[101]. Identifying drugs that inhibit extrasynaptic NMDAR activity through acting at 

structurally similar ligands or binding sites represents a potential drug repurposing target for 

both of these conditions[102].

Ligand-based methods use chemical and biological information such as binding affinity, 

cellular activity and absorption, distribution, metabolism and excretion (ADME) data to 

identify novel targets for existing drugs[92], [103]. Ligand-based screening assumes that if 

two molecules share a similar bioactivity profile, then they may share similar targets. In 

contrast to structure-based methods, ligand-based methods do not require Nuclear Magnetic 

Resonance (NMR) or X-ray crystal structures and instead rely on public bioactivity 

databases such as PubChem, ChEMBL, and DrugBank[52], [104], [105]. These databases 
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contain far more bioactivity profiles than crystal structures in Protein Data Bank (PDB)

[105]. However, ligand-based screening suffers from the “activity cliff problem” in which 

two compounds with similar bioactivity profiles often exhibit remarkably different activities 

[106]. As the accuracy and chemical breadth of these datasets expands, the usefulness of 

ligand-based screening will continue to improve. Docking based methods perform molecular 

docking simulations to predict either novel targets for existing drugs or potential drugs for a 

given target[107]. One such example of docking based repurposing is the use of high 

throughput ligand-protein inverse docking to identify as a droperidol as a putative drug in 

AD due to its high binding affinity to seven AD target proteins [108] (Table 1). By 

performing a large virtual screen of 1553 FDA-approved drugs, the study authors could use 

docking simulations to determine the free energy of binding of each of the drugs to seven 

AD target proteins. A major limitation to docking-based methods, similar to structure-based 

methods, is the need for X-ray crystal structures or NMR of the drug and target.

Overall, while biophysical methods are efficient at identifying potential drug-target 

interactions, they all suffer from the need of an a priori identification of a target molecule 

(Table 1). Better insights into the true mechanisms of neurodegenerative diseases is required 

for biophysical methods of drug repurposing to achieve success. This need is highlighted by 

the consistent devastating failures of all clinical trials that have targeted canonical AD 

targets such as amyloid-beta[109]–[113]. It is clear from these failures that the literature 

surrounding causative pathological pathways in AD may require review.

Incorporating artificial intelligence approaches: old data with new methods

Artificial intelligence (AI) and machine learning (ML) methods are particularly adept at 

combining disparate types of data. In recent years, there has been a burgeoning interest in 

developing ML techniques to effectively mine transcriptomic[114], [115], structural[116]–

[118] and clinical data[119]–[121]. Indeed, recently several companies have developed AI 

and ML-based frameworks for drug discovery. For example, IBM used AI-based text-mining 

strategies to create a semantic model of ALS-associated RNA-binding proteins that may 

represent drug targets. By applying this model to a new set of RNA-binding proteins, IBM 

could uncover potential ALS-associated RNA-binding[122]. An especially attractive 

application of ML in the context of computational drug repurposing is in the integration of 

molecular and biophysical data. One such recent method of integrating biophysical and 

molecular data used drug-induced gene expression signatures, molecular target information 

and structural information as features to train a multi-class support vector machine (a type of 

ML model) to predict the therapeutic class (ie. calcium-channel blocker, diuretic, etc) of a 

given drug[123]. Potential drug repurposing instances arise when the predicted therapeutic 

class for a drug is different than its original therapeutic class. The framework showed a 

classification accuracy of 78%, demonstrating its potential usefulness in the future for 

neurodegenerative disease as drug-induced gene expression signature and structural 

databases relevant to neurodegenerative disease continue to grow. While AI and ML models 

have shown much promise in areas such as disease prediction for PD[124], [125], MS [126], 

[127], AD [128]–[130],their full utility in computational drug repurposing for 

neurogenerative disease would be realized as the molecular, structural and clinical data 

resources for neurodegenerative disease increase.
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Lack of validation strategies and economic incentives limits the utility 

computational drug repurposing for neurodegenerative disease

A major obstacle to computational drug repurposing for neurodegenerative disease is the 

lack of clear validation strategies. While all in silico strategies for computational drug 

repurposing require invitro and in vivo experimental validation methods, this problem is 

more acute in the case of drug repurposing for complex and heterogeneous 

neurodegenerative disease. Unlike cancer in which much progress has been made in 

modeling disease using highly-specific molecular-subtype-related cell lines or patient-

derived mouse xenograft models, neurodegenerative diseases suffers from a lack of validated 

animal and cell models (Figure 1) [131]. Mouse models of neurodegenerative diseases such 

as AD, PD, FTD and ALS often accurately model early-stage proteinopathies but poorly 

recapitulate the entire pathophysiological course of disease[132], [133]. The inability of 

neurodegenerative disease animal models to completely phenocopy human disease may 

underlie the discrepancy between successful preclinical results and failed clinical trials. For 

example, the widely used mouse models of AD rely on introducing several exceedingly rare 

autosomal dominant mutations in the amyloid processing pathway which have never 

naturally occurred in tandem in humans, causing a precocious amyloid phenotype leading to 

early cognitive impairments and amyloid pathology in the mouse brain that may not 

accurately represent human disease[133]. Most of the failed clinical trials over the last 

decade, have tested anti-amyloid compounds that while effective in these amyloid-distressed 

mice, are ineffective if not detrimental in humans[134]. The inability and reluctance of large 

pharma to move away from these biologically questionable mouse models has resulted in all 

AD therapies being stymied in clinical trials. As genome editing techniques continue to 

advance and models are validated with increasing sophistication using multi omics profiling 

and in vivo imaging, models that better phenocopy human pathologies will arise. In the 

meantime, investigators are urged to carefully consider the limitations in using animal 

models for validation of computational hits.

In contrast to animal models, in vitro cell culture models are a high-throughput and cost-

effective way to validate computational predictions. Unfortunately, while protocols for 

establishing neural and glial primary culture and cell lines are well established, these models 

lack complex neural circuitry and neuroinflammatory processes[132]. For this reason, cell 

culture models and induced pluripotent stem cell (iPSC)-derived culture models are limited 

in their ability to validate drug efficacy in neurodegenerative diseases with complex circuit 

deficits and inflammation such as AD. Recently, several groups have produced 3-D cell 

culture from iPSC-derived neurons. While 3-D culture models better replicate human neural 

network dynamics[135], [136] including neuron-glial interaction, challenges remain in 

incorporating nonneuronal cell types such as microglia to accurately model 

neuroinflammatory phenotypes. In spite of these limitations, iPSC and 3-D culture 

technology have given us a remarkable tool to study drug response for neurodegenerative 

disease.

A further pitfall to computational drug repurposing is limited patent exclusivity and 

protection of intellectual property (Figure 1). Currently, a repurposed drug can be filed 
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through the 505(b)(2) section of the 1984 Drug Price Competition and Patent Term 

Restoration Actvii. The 505(b)(2) pathway allows the applicant to patent an already 

approved drug for a new indication, dosage, route of administration, strength or formulation. 

The ability to use safety and efficacy data on the active ingredient from studies not 

conducted by the applicant makes 505(b)(2) an ideal path for repurposed drugs. However, 

New Drug Applications (NDA) with an existing active patent have an average of only 9.2 

years of patent life left [137]. This limited window makes it difficult for applicants to 

generate sufficient data to patent a secondary indication for the drug. Even if a repurposed 

drug is approved, payers and providers may be reluctant to reimburse for the repurposed 

drug if an off-label or especially generic drug is already available [138]. Further, unlike 

NDA for new drugs that are granted 5 years of exclusivity, 505(2)(b) repurposed drugs are 

only given 3 years of exclusivity [110]. This further limits the return on investment for 

repurposed drugs. In the context of neurodegenerative disease, repurposed drugs require 

expensive and lengthy clinical trials to prove efficacy in cases of diseases with long disease 

courses such as AD. Repurposed drugs may also be required to demonstrate blood-brain 

barrier penetrance for use in diseases of the CNS. Moreover, elderly patient cohorts with 

neurodegenerative diseases may be already prescribed several additional medications that 

interact with the drug of interest. This will require the repurposed drug to undergo additional 

tolerance experiments[138], further increasing drug development time and diminishing 

return on investment.

Conclusions and future perspectives

Computational drug repurposing strategies have the potential to dramatically reduce the time 

and cost of developing therapies for neurodegenerative disease. The advent of large-scale 

computing capacity combined with the creation of public transcriptomic databases such as 

CMap, large de-identified EMR databases, and large-scale structural data represent a unique 

opportunity to apply computational methods to discover novel drugs for neurodegenerative 

indications. In spite of these resources, several economic and scientific obstacles must still 

be overcome (see Outstanding Questions). We see three principal problems in the field: (1), 

lack of subtype and tissue-specific discovery data, (2) lack of validation methods and (3) 

lack of pharmaceutical investment in low-return-on-investment drug repurposing ventures 

(Figure 1). To address the first issue, we propose the creation of database similar to the 

CMap and LINCS programs using CNS-derived tissue. Further we believe that it is the 

requirement of the hour to invest time and resources in creating more neurodegenerative 

disease-relevant animal models, as this has been a significant obstacle to success in finding 

new therapeutic compounds. Most recently, the MODEL-AD consortium, a collaborative 

effort between Indiana University, Jackson Laboratory, Sage Bionetworks, and University of 

California Irvine, has made remarkable progress in modeling sporadic, late-onset AD in 

rodents [139]. For example, the consortium has already created transgenic mice models 

expressing mutant forms of ApoE[140], Trem2[141]. Rodent models of AD have been 

criticized for their inability to fully recapitulate human phenotypes and drug response. In 

response, the IMPRiND consortium is developing a macaque model of Alzheimer’s disease 

vii)https://www.govinfo.gov/content/pkg/STATUTE-98/pdf/STATUTE-98-Pg1585.pdf
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while researchers at the RIKEN institute are developing a PSEN-mutation-based marmoset 

model of AD [142].

Thirdly, we urge the field to increase access and availability of genetically-linked EMR 

databases. In addition to EMR data, failed clinical trial data represents a rich dataset for 

computational drug discovery applications. While much progress has been in releasing 

patient-level data from clinical trials, most journals still do not require the sharing of patient-

level de-identified data as a precondition to publication [143]. Further, consent for sharing 

patient-level clinical trial data is not routinely obtained from clinical trial participants. 

Journal policies surrounding disclosure of patient-level data and study consent protocols 

must be made unified and standardized (Figure 1). Lastly, funding for drug repurposing 

efforts, especially from non-profit organizations, is of utmost importance, and will ensure 

that better drugs for neurodegenerative diseases can reach the clinic faster (Figure 1). 

Several noteworthy nonprofits, such as the Michael J. Fox Foundation for Parkinson’s 

Researchviii, the Alzheimer’s Drug Discovery Foundationix, Multiple Myeloma Research 

Foundationx Cures Within Reachxi and the NIH have created funding opportunities to 

support the development of tools and animal models for computational drug repurposing 

[138]. As of June 2019, the National Center for Advancing Translational Science (NCATS) 

has three funding opportunities available (PAR-19-909xii, PAR-18-910xiii and 

PAR-14-213xiv) for research in repurposing drugs. While these two pilot grants are credible 

first attempts, other NIH departments such as National Institute on Aging should create 

separate funding opportunities for neurodegenerative disease.

While AI and ML technologies have already led to outstanding advances in areas such as 

using imaging to predict disease progression in diseases such as AD, their utility in drug 

repurposing requires the creation of the above resources. AI and ML models are particularly 

useful for their ability to integrate diverse sources of data and identify complex patterns. 

However, these approaches are only as good as the datasets they are using and fall prey to 

the same pitfalls as more traditional transcriptomic, biophysical and clinical approaches. As 

better and more accurate computing methods continue to be developed, the need for better 

and more accessible databases across data modalities becomes ever more acute. Ultimately, 

following the creation of resources and initiatives specific to neurodegenerative diseases and 

the application of effective computational methods, computational drug repurposing has the 

potential to become a viable strategy for bringing to market cost-effective and timely 

therapies for these devastating conditions.
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GLOSSARY

Artificial intelligence:
A field of computer science that develops computer systems which mimic human ability to 

problem solve and learn. Examples of artificial intelligence relevant to computational drug 

repurposing include machine learning.

Deeply-learned autoencoder:
A type of artificial intelligence model that seeks to determine efficient data encodings to 

represent data in a lower dimension and then reconstruct the original data. Denoising 

autoencoders introduce noise by randomly setting some of the input values to be missing and 

learn to reconstruct an uncorrupted version of the data. A denoising autoencoder can be 

trained to reconstruct EMR data with from data with missing values

Hyposmia:
reduced ability to smell

Imputation:
replacing missing data with estimated values

k-nearest neighbors imputation:
An imputation technique that replaces missing data values with values predicted using the k-

nearest neighbors algorithm

Machine learning:
A subfield of artificial intelligence that seeks to create a mathematical model based on input 

features (ie. gene expression, lab values, etc) and outcome states (disease vs control) in 

training data. The mathematical model can be used to predict outcomes or classify samples 

in new data.

OMOP:
A universal scheme to transform claim data and EMR record data into a standardized data 

format with common data representations (ie. terminologies, coding schemes, etc)

Mean imputation:
an imputation technique in which missing data for a given variable is replaced with mean of 

all values for that variable

Median imputation:
an imputation technique in which missing data for a given variable is replaced with median 

of all values for that variable

Singular value decomposition imputation:
an imputation technique that first performs mean value imputation on an input matrix. Then, 

singular value decomposition is performed to develop a set of mutually orthogonal vectors 

(termed eigengene) whose linear combination approximates the input dataset (review of 

singular value decomposition is beyond the scope of this article.) Data that was originally 

missing from the given variable is predicted by regressing that variable against the top 
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eigengenes and then using the coefficients of the regression to predict the missing data 

value.

SoftImpute:
an imputation technique that iteratively replaces the missing values in a matrix with values 

obtained by performing soft-thresholded SVD. The algorithm minimizes a nuclear-norm 

regularized loss function. A complete discussion of SoftImpute is beyond the scope of this 

article.
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Outstanding Questions

• How can we create animal and cell models that better phenocopy human 

neurodegenerative disease to aid in validation of drug repurposing hits?

• How can we use available molecular and clinical data to better model 

neurodegenerative diseases with long disease courses that require years or 

decades of follow-up?

• How can we develop and apply more sophisticated AI and ML algorithms to 

generate computational drug predictions by integrating disparate data 

modalities?

• How can we increase non-profit investment in drug repurposing?
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Highlights

• Computational drug repurposing has the potential to drastically reduce the 

cost and development time for therapies for neurodegenerative disease.

• Advent of artificial intelligence (AI) and machine learning (ML) algorithms 

will facilitate the integration of several modalities of data to advance 

computational drug repurposing for neurodegenerative disease.

• The creation of large scale transcriptomic and EMR databases provides a 

novel opportunity for computational drug repurposing.

• Computational drug repurposing for neurodegenerative disease is uniquely 

challenging due to the lack of efficacious validation methods and long and 

heterogeneous disease course.

Paranjpe et al. Page 19

Trends Pharmacol Sci. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
Major limitations and future solutions to computational drug repurposing in 

neurodegenerative disease. The current major limitations to computational drug repurposing 

in neurodegenerative disease are listed on the left panel. To address these limitations, we 

propose several solutions that are presented in the right panel.
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Table 1:

Current Strategies for Computational Drug Repurposing

Description Advantages Disadvantages Examples of
Preclinical
Successes

Molecular Compare drug 
gene 
expression 
signatures pre- 
and post-drug 
treatment to 
disease gene 
expression 
signatures in 
order to 
predict drugs 
that may 
reverse disease 
gene 
signatures.

• Does not require a 
priori identification 
of target molecule.

• Can integrate 
genetic, epigenetic 
and transcriptomic 
data

• Limited by the 
availability of drug 
and disease 
molecular profiling 
data.

• Requires creation of 
CNS-derived 
transcriptomic 
perturbation dataset.

• Parbendazole for 
osteoporosis [23]

• Cimetidine for 
lung 
adenocarcinoma 
[20]

• Citalopram for 
metastatic colon 
cancer[24]

• Topiramate for 
inflammatory 
bowel disease 
[25]

Clinical Leverage 
large-scale 
health data 
such as 
electronic 
medical 
records and 
patient 
medication 
histories to 
identify drugs 
effective for 
indications 
other than the 
primary use.

• Large amounts of 
health data can be 
obtained from 
Electronic Medical 
Record (EMR), 
insurance claims 
data, clinical trial 
data, health 
registries, health 
surveys, personal 
genome testing 
companies

• With sufficient 
sample size, 
precision medicine 
approaches can be 
utilized.

• Disparate data 
sources such as 
EMR and claims 
data can be 
standardized using 
the OMOP 
formalism.

• Clinical data must 
be converted into a 
structured database 
before analysis.

• EMR data is often 
messy and 
incomplete

• Patients must be 
longitudinally 
profiled in case of 
neurodegenerative 
disease.

• Health outcomes are 
difficult to track for 
neurodegenerative 
courses with long 
disease courses.

• Clinical data should 
be paired with 
genetic data to 
enable genetic-
subtype specific 
drug repurposing.

• Statin therapy for 
AD [54], [55]

• Terbutaline 
sulfate for ALS 
[56]

• Glitazone for PD 
[84]

Biophysical Leverage the 
biochemical 
properties of 
drugs such as 
binding 
affinity or 
biophysical 
properties such 
as 3D 
conformation 
to achieve 
drug-target 
predictions.

• Useful in 
neurodegenerative 
diseases with known 
targets.

• Computationally 
efficient mechanism 
to screen thousands 
of drug molecules 
with high-
throughput 
techniques.

• Biophysical 
methods require 
crystallographic 
data of target and 
drug molecules.

• Require a priori. 
identification of 
target molecules.

• Droperidol for 
AD [108]
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