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immunotherapy for glioblastoma multiforme
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MHC, major histocompatibility complex; BBB, blood brain barrier; LPS, lipopolysaccharide; D, day; Ab, antibody; TGF-b, trans-
forming growth factor beta; IL-10, Interleukin-10; PGE2, prostaglandin E2; Treg cells, regulatory T cells; TH2 cells, T helper type 2
cells; CD4, cluster of differentiation 4; CD25, cluster of differentiation 25; IL-2, Interleukin-2; GAGE, G antigen gene family; Ras,
rat sarcoma genes; Grb2, Growth factor receptor-bound protein 2; KLH, keyhole limpet hemocyanin; CTL, Cytotoxic T lympho-
cytes; HLA, human leukocyte antigen; DTH, delayed-type hypersensitivity; ACTIVATE, A Complementary Trial of an Immuno-
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Glioblastoma Multiforme (GBM) is the most common type
of brain tumor and it is uniformly fatal. The community
standard of treatment for this disease is gross or subtotal
resection of the tumor, followed by radiation and
temozolomide. At recurrence bevacizumab can be added for
increased progression free survival. Many challenges are
encountered while trying to devise new drugs to treat GBM,
such as the presence of the blood brain barrier which is
impermeable to most drugs. Therefore in the past few years
attention was turned to immunological means for the
treatment of this devastating disease. EGFRvIII targeting has
proven a good way to attack glioblastoma cells by using the
immune system. Although in still in development, this
approach holds the promise as a great first step toward
immune-tailored drugs for the treatment of brain cancers.

Introduction

Glioblastoma multiforme (GBM) is a uniformly fatal primary
brain tumor that is classified by the World Health Organization
as the most malignant astrocytoma (WHO Grade IV). In the
United States, the rate of GBM occurrence is approximately 3.2
in 100,000 per year, making glioblastoma the most common pri-
mary brain tumor in adults.1 With maximal surgical and medical

treatment, the survival at 1 y of diagnosis is approximately 43%2

and median survival is currently 15 months from the time of
diagnosis.3 Analysis of survival data from the SEER database
between 2000–2007 demonstrates that the 5 y survival for Glio-
blastoma is approximately 20% for patients of ages up to 39 yrs,
while that for patients aged 40–65 is approximately 5%.1,4

Despite strong efforts through research to find effective treat-
ments for glioblastoma, these 5 y survival rates are only slightly
improved compared to those from 1980–1989.1

The current paradigm for GBM treatment was established in
2005, when a trial conducted by the European Organization for
Research and Treatment of Cancer Brain Tumor and the
National Cancer Institute of Canada Clinical Trials Group
showed that treating patients with temozolomide, an oral alkylat-
ing agent, in addition to standard radiotherapy after surgical
resection produced a 37% relative reduction in the risk of death.4

Prior to this trial, the standard treatment for patients with glio-
blastoma consisted of surgical resection followed by targeted
radiotherapy, with the median survival of approximately 12
months. Addition of temozolomide to the treatment protocol
conferred a 2.5 month prolonged survival. Analysis of the SEER
database reflects this result as the median survival of patients
diagnosed in 2005–2006 increased to 15 months from 12
months for those diagnosed in 2000–2001.3

Subsequent trials evaluated the use of bevacizumab, a mono-
clonal antibody targeted against VEGF in relapsed GBM patients
who have failed temozolomide and radiotherapy. The first studies
in recurrent patients combined bevacizumab with irinotecan.5

Irinotecan, a topoisomerase inhibitor, was implemented on
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account of its action through a mechanism separate from that of
temozolomide. Bevacizumab was chosen as a potential therapeu-
tic agent as it had been found to augment chemotherapy for
lung, breast and colorectal cancers,.6-8 The use of bevacizumab
alone or in combination with CPT-11 (irinotecan, Camptosar)
yielded similar overall survival (OS) times of 9 months.9 In 2 dif-
ferent studies, the use of bevacizumab has been associated with
improved clinical performance and a superior 6-month progres-
sion-free survival (PFS-6) of 42–50%.5,9 The significant objective
response and favorable PFS seen in this phase II study resulted in
US. Food and Drug Administration accelerated approval of beva-
cizumab for the treatment of recurrent GBM patients in 2009. As
a next step, bevacizumab was tried in new-diagnosed GBM
patients. Lai et al. used bevacizumab with temozolomide during
and after radiation therapy for newly diagnosed GBM, and this
group found the overall survival (OS) to be 19.6 months with
this regimen, which is longer compared to the result of the
EORTC-NCIC study (15 months).10 Interestingly, this OS was
shorter in comparison to that of a cohort of patients treated at
the same institution with temozolomide and radiation only (21.1
months).10 Vrendenburgh et al studied standard therapy fol-
lowed by bevacizumab, temozolomide and irinotecan for newly
diagnosed GBM.11 This study found the OS survival with this
regimen to be 21.2 months, however 23% of participants termi-
nated the study prematurely due to toxicity.11 Thought the role
of bevacizumab as first-line therapy remains controversial, recent
analysis of the SEER database has revealed an increase in the 1-
year survival from 41% to 43% and a significant decrease in the
odds of death with the adoption of bevacizumab.2

Immunotherapy for Glioblastoma

Although the therapeutic advances mentioned above represent
significant steps toward control of glioblastoma, in the past
20 years, the median survival has been lengthened by a mere few
months. For this reason, many researchers have looked to other
potential means besides radiation and chemotherapy for fighting
this disease process. One of the major challenges in this process
has been the selective targeting cancer cells without harming sur-
rounding neurons, which are fully differentiated and incapable of
regeneration. Immunotherapy has thus become vigorously pur-
sued as a therapeutic modality that could potentially accomplish
this goal.12 Unfortunately, there are a number of obstacles that
must be overcome to implement immunotherapy in the central
nervous system (CNS), which is an immunologically privileged
site in the body.12 The CNS has a relative lack of lymphatic
drainage and endogenous antigen-presenting cells (APCs) com-
pared to the rest of the body.12 Dendritic cells are virtually absent
in the CNS, and expression of MHC class II molecules is limited
to microglia, which are not as effective as antigen presenting
cells.12 Additionally, the CNS is isolated by blood brain barrier
(BBB), which limits the movement of inflammatory cells and
mediators.12 The immunologic privilege that these features instill
has been demonstrated in experiments that describe a delayed
rejection of xenogenic tumor implants introduced into CNS

parenchyma and slow clearance of virus inoculated into brain
parenchyma.13 Nevertheless, immune responses are able to occur
in the CNS, albeit within the confines of its unique anatomy.

Immune surveillance of the CNS takes place under normal
physiologic conditions and is predominantly carried out by
memory T lymphocytes.14 Immunohistochemical and immuno-
fluorescent studies in mice models have demonstrated that fluo-
rescent-labeled lymphocytes injected into the blood stream can
be found in the choroid plexus stroma and meninges a couple
hours following the injection.15 Leukocytes may enter the CNS
through the choroid plexus, through postcapillary venules and
Virchow-Robin spaces into the subarachnoid space, and in the
case of activated T cells, directly cross the blood brain barrier.14

Inflammatory responses are able to occur in the CNS, but they
occur more slowly than in other tissues. Injection of 20 ng of
lipopolysaccharide (LPS) into a mouse’s ear has been shown to
produce a robust immune response within hours, while injection
of 2 mg of LPS into the mouse hippocampus will draw a few
polymorphonuclear cells into the brain parenchyma, followed by
dramatic increase in the number of monocytes and microglia at
3 d.16 Although the blood BBB significantly limits the passage of
Abs and cells into the CNS, humoral immunity can also play a
role in some CNS immune responses.17 Inflammatory states,
such as viral and autoimmune encephalitis, in which the BBB
becomes “leaky,” may allow for the passage of Ab and Ab-secret-
ing cells into the CNS. Viral infection of the CNS has been
shown to elicit the migration of Ab-secreting cells from lymphoid
tissues into the CNS,18 and intrathecal Ab secretion plays an
important role in controlling viral replication following the ini-
tial infection.19

Adding to the immunologically privileged status of the CNS is
the relatively immunosuppressed state that is induced in the pres-
ence of glioblastoma. For decades, a reduction of T cell activity
has been observed and recognized in patients with primary brain
tumors, and this feature poses an additional challenge for enact-
ing immunotherapy for glioblastoma. Decreased cell-mediated
immunity,20 impaired delayed-type hypersensitivity reactions,21

decreased proliferative potential of T lymphocytes,22 and release
of substances that inhibit inflammatory mediators23 have all been
described in patients with primary brain tumors, including glio-
blastoma (see Fig. 1).

Mechanisms of immune suppression in glioblastoma may
include secretion of immunosuppressive chemokines, such as
transforming growth factor b (TGF-B), IL-10, and PGE223,24 as
well as recruitment of regulatory T cells (Treg cells) into tumor
tissue. An increased proportion of Treg cells has been found
in the tumors of glioblastoma patients, and they have been shown
to impair T cell proliferation and reduce TH2 cytokines.25,26

This increased Treg cell activity is believed to contribute greatly
to the immune suppression observed in glioblastoma. Treg cells
suppress CD4 function by inhibiting the production of IL-2,
which is a co-stimulator required for CD4 T cell activation.27

Fecci et al. demonstrated that in a mouse model of glioblastoma,
inoculation with an anti CD25 monoclonal Ab directed at Treg
cells is capable of allowing for tumor rejection in 50% of mice,
and in 100% of mice when administered along with an
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anti-tumor dendritic cell vaccine.25 This suggests that the inhibi-
tion of Treg cells could effectively restore cell-mediated immu-
nity in patients with glioblastoma.25 Tumor cells may induce
immune suppression by promoting the recruitment and prolifer-
ation of Treg cells.25,28 This is suggested by in vitro studies in
which glioblastoma stem cells isolated from human tumors were
found to induce Treg cells, inhibit T cell proliferation and activa-
tion, and induce T cell apoptosis.28

EGFR as a Potential Target

Considering the effects of glioblastoma on the immune sys-
tem, one would anticipate that immunotherapy would be most
successful in young patients with healthy immune systems and in
those who received gross total resection of their tumors. Addi-
tionally, a target for a vaccine therapy would need to be an anti-
gen that could elicit a sufficiently strong immune response. To
best accomplish this, the target should be an antigen that is
expressed by the tumor and not by normal cells so that it would
be perceived by the immune system as “foreign.” Tumor antigens
may arise from normal gene products that are over-expressed by
tumor cells or mutated gene products that are not expressed in
normal cells, and such antigens may serve as targets for immune-
based therapies. For example, melanoma tumor cells express
unique gene products, such as the GAGE gene family, which are
not found in normal cells.29 In a murine model of melanoma,
these tumor-specific antigens were able to be recognized as for-
eign by cytotoxic T lymphocytes and elicit an immune
response.30 Similarly, a mutant, constitutively active epidermal
growth factor receptor (EGFR) has been identified in some glio-
blastoma tumors, and has been extensively investigated as a
tumor-specific antigen. Amplified EGFR occurs in approximately
50% of cases of GBM and mutated EGFR is found in about 30%
of cases.31 Mutated EGFR is expressed in multiple human

tumors, including breast, ovarian and glial tumors, and plays an
important role in tumorigenicity.32

EGFR is a 170-kDa transmembrane glycoprotein receptor,
which when stimulated by epidermal growth factor (EGF) acts as
a tyrosine kinase, initiating a cascade of events resulting in gene
transcription.33 Multiple tumor types, including GBM, express a
mutated form of the EGFR, which is constitutively active and
enhances tumorigenicity by activating the Ras-Shc-Grb2 path-
way.34 The most common mutant form of EGFR in GBM is the
EGFR class III variant (EGFRvIII), which has a truncated extra-
cellular domain due to an 801 base pair in-frame deletion of the
wild-type receptor.35 This deletion results in the fusion of the 2
ends of the peptide and creation of an antigenic site which con-
tains a novel glycine residue not included in the wild-type pep-
tide.36 Therefore the EGFRvIII serves as an ideal tumor-specific
antigen for GBM. EGFRvIII is expressed in approximately 30%
of GBMs,31 and is found to be expressed on 37–86% of cells in a
given tissue sample.37 There is evidence that EGFRvIII may be
“shared” among neighboring tumor cells by means of transfer via
membrane-derived microvesicles, which may lead to the activa-
tion of oncogenic signaling pathways in recipient cells.38 GBMs
that express EGFRvIII are usually primary GBMs in which
amplification or mutation of EGRF plays a central role in the
pathway of tumor development.39 Expression of EGRFvIII has
been found to augment proliferation and inhibit apoptosis,40-42

promote tumor cell motility,43 and confer resistance to radiation
and chemotherapy.44-46 Interestingly, clinical and biochemical
characteristics associated with poor prognosis in EGFRvIII-nega-
tive GBMs do not predict outcome in EGFRvIII-positive
GBM.47 Among GBM patients who have undergone gross total
resection of their tumors and survived beyond 1 y of diagnosis,
expression of EGFRvIII has been found to be an independent
negative prognostic indicator.31

Preclinical Results of EGFRvIII Immunologic
Targeting

Rindopepimut, or CDX-110, is a 14 amino acid peptide that
has been implemented in raising an immune response against
EGFRvIII. This synthetic peptide, also known as PEPvIII, corre-
sponds to the fusion junction of EGFRvIII, which includes resi-
dues 1–5, the novel glycine residue, and residues 274–280 with a
terminal cysteine.48 To enhance its immunogenicity, the peptide
is conjugated to the carrier protein keyhole limpet hemocyanin
(KLH). PEPvIII has been shown to be capable of eliciting
immune responses in in vivo models, and antibodies produced
from vaccination with PEPvIII, have been shown to bind tumor
cells expressing EGFRvIII.48 In early in vivo studies, PEPvIII was
shown to induce antibody (Ab) production in mice, rabbits, goats
and Macaques.48 In these experiments, the antisera produced
from vaccination of the rabbits and one goat with PEPvIII alone
was shown to exhibit specific binding to EGFRvIII on the surface
of human glioma cells. In mice, immunization with PEPvIII
needed to be combined with immunization with EGFRvIII to
produce an efficient response.48 Subsequently, high affinity

Figure 1. Immunosuppressive Effects of Glioblastoma. The presence of
malignant glioma cells causes the activation of multiple immunosup-
pressive pathways, such as decreased cell-mediated immunity, impaired
delayed-type hypersensitivity reactions, decreased proliferative potential
of T lymphocytes, and release of substances that inhibit inflammatory
mediators.
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mouse monoclonal Abs (mAbs) were able to be created using
long term immunization protocols involving PEPvIII, and these
mAbs were shown to be selectively reactive with EGFRvIII on
the surface of breast cancer, non-small cell lung cancer, and gli-
oma cells.37 One of these antibodies, Y10, which is of the IgG2a
class, was shown to inhibit DNA synthesis, impair cellular prolif-
eration and induce antibody-dependent cell-mediated toxicity in
vitro.49 Mice that were pretreated with injections of Y10 and
then inoculated with melanoma tumor cells never developed pal-
pable tumors unlike their control counterparts. In mice with
established intracranial melanoma tumors, systemic injections
with Y10 failed to increase survival, however, a single intra-
tumoral injection of Y10 was found to increase median survival
by 286% on average.49 These data provided compelling support
that immunotherapies such as vaccination and tumor-directed
Abs could effectively treat malignancies of the central nervous
system.

Another mAb directed against EGFRvIII, mAb 806, was pro-
duced by immunizing mice with mouse fibroblasts expressing
EGFRvIII. MAb 806 was shown to inhibit the growth of devel-
oping and established EGFRvIII-positive human glioma xeno-
grafts in mice in a dose-dependent manner.50 Interestingly, mAb
806 was also shown to inhibit the growth of xenografts which
overexpressed wild-type EGFR50–52 and to reduce phosphoryla-
tion of EGFR and increase apoptosis of these tumor cells.51 mAb
806 did not bind cells that expressed normal levels of EGFR, and
was found to recognize about 10% of the total number of recep-
tors present on cells overexpressing EGFR.53 These findings sug-
gested that certain EGFR- directed antibodies may be used to
target EGFRvIII-expressing and EGFR-overexpressing tumor
cells without binding to other tissues that naturally express
EGFR, such as liver and skin.

Vaccination against EGFR-vIII was also proven to be effica-
cious in murine models of intracerebral tumors. PEPvIII conju-
gated to keyhole limpet hemocyanin (PEPvIII-KLH) was
effectively used to vaccinate mice against EGFR-vIII, rendering
them capable of developing immune responses against developed
EGFR-vIII-positive melanoma tumors.54 Heimberger et al
showed that 70% mice vaccinated with PEPvIII-KLH failed to
develop subcutaneous EGFR-vIII- positive melanoma tumors
when challenged with subcutaneous injection of tumor cells, and
those that did develop tumors had significantly smaller tumors
compared to controls.54 The response that the mice developed as
a result of vaccination was found to be humoral in nature and to
be dependent on CD8C Cytotoxic T lymphocytes (CTLs) and
natural killer cells.54 In a mouse strain in which peptides span-
ning the splicing site of EGFRvIII were predicted to bind
strongly to MHC class I, vaccination with PEPvIII-KLH prior to
an intracerebral tumor challenge was found to increase median
survival > 173% compared to controls.54 Furthermore, a one-
time vaccination of mice having established intracerebral tumors
was shown to increase the median survival by 26% with 40% of
the mice having long-term survival.54 Subcutaneous tumors that
recurred were tested with immunohistochemistry, and interest-
ingly, 80% of relapsing tumors were found to have lost EGFR
expression.54

To boost the cell-mediated immune response against EGFR-
vIII-expressing tumors, dendritic cells were later implemented in
the vaccination paradigm.55 Dendritic cells are potent antigen-
presenting cells that express high levels of MHC class II mole-
cules for effectively presenting antigens to and activating naive T
cells.55 Vaccination with dendritic cells pulsed with glioma pepti-
des had previously shown to prolong survival of rats having intra-
cranial gliomas.56 In experiments conducted by Heimberger
et al., mice that received a vaccine of dendritic cells mixed with
PEPvIII-KLH and then administered a lethal intracerebral injec-
tion of EGFRvIII -expressing melanoma cells exhibited a 600%
increase in median survival with 5 of 8 mice surviving long-
term.57 Those mice that survived the lethal tumor challenge were
then re-challenged with an intracerebral injection of tumor cells
into the contralateral hemisphere, and all immunized mice sur-
vived.57 This experiment demonstrated that vaccination with
dendritic cells mixed with PEPvIII-KLH could induce lasting
immunity.57

As vaccination with PEPvIII-KLH had previously been shown
to be weakly effective in a mice of the C57BL/6J background,54

which was believed to be due to poor binding to MHC class I
molecules, experiments with the dendritic cell vaccine were
designed to identify an epitope in the EGFRvIII peptide that
would most strongly bind HLA-A0201 on U87 glioma cells.58

Peptides were created based on analyses of software that could
predict the binding affinities of certain peptide sequences span-
ning the splice site of the EGFRvIII protein to a specific HLA
class I molecule on U87 glioma cells.58 Three peptides were cre-
ated and 3 dendritic cell vaccines were produced with these pepti-
des and used to stimulate CTLs, with one peptide eliciting a
significantly higher response than the other 2. CTLs that were
stimulated with this peptide were shown to effectively lyse tumor
cells, while the CTLs stimulated by the other 2 peptides did
not.58 These findings demonstrate that that the HLA haplotype
expressed by glioma cells may affect CTL responses to dendritic
cell tumor vaccines.58

The findings of these experiments support that both humoral
responses, such as Ab production, and cytotoxic immune
responses, such as the generation of tumor-specific cytotoxic T
cells, may be useful for glioblastoma immunotherapy (Fig. 2).
However, the presence of the BBB may create an additional bar-
rier for Ab-based immunotherapies, and methods of enabling
CNS penetration may be needed for such therapies to
be effective. Immunotherapies which lead to the generation of
tumor-directed cytotoxic T cells may be particularly useful for
glioblastoma because activated T cells can cross the BBB and lyse
tumor cells. Furthermore, these experiments demonstrate the
importance of HLA haplotype to the efficacy of EGRFvIII vacci-
nation. The affinity with which MHC class I proteins bind to
PEPvIII determines the strength of the immune response that is
produced. Heimberger et al. demonstrated that vaccination of
mice with a background having an MHC class I haplotype with
poor binding affinity to PEPvIII yielded a median survival only 2
d longer compared to that of the control group, while vaccination
of mice with a background having an MCH class I haplotype
with strong binding affinity yielded a median survival of almost
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3 times that of the control group.54 Based on the frequencies of
human haplotypes that are predicted to bind strongly to PEPvIII,
this group calculated that the chance that a glioma patient would
be able to elicit a strong response to PEPvIII vaccination is about
64%.54

Clinical Results of EGFRvIII Vaccination

The first clinical trial investigating the use of PEPvIII-KLH
for vaccination of human subjects with glioblastoma imple-
mented the dendritic cell mediated approach, in which mature
dendritic cells were pulsed with Pep3-KLH. The VICTORI trial
was a phase I trial conducted at Duke University Medical Center,
which enrolled 15 newly diagnosed GBM patients who had gross
total resection of their tumors and underwent standard external
beam radiation therapy.59 Given that this study was designed pri-
marily to assess toxicity, patients were not pre-screened for
EGFRvIII-expression.59 The 12 patients out of 15 who did not
have progression during radiation therapy received 3 vaccinations
of an autologous dendritic cell vaccine with each vaccination
spaced 2 weeks apart.59 Toxicity from the vaccine was minimal,
and patients did not develop any symptoms of autoimmunity.
To assess the cellular immune response to vaccination, patients
underwent delayed-type hypersensitivity (DTH) testing with
Pep3 and KLH before and after vaccination.59 None of the
patients had a response to KLH or PEPvIII before vaccination,
but 9 of 9 who were tested showed a positive response to KLH
after vaccination and 5 of 9 showed a positive response to Pep3.
The median time to progression after vaccination was found to
be 6.8 months, and the proportion of patients without disease
progression at 6 months was 0.67 and at 12 months was 0.33.59

The median survival after diagnosis was 22.8 months and 18.7
months after vaccination.59 Curran’s recursive partition analysis
was used to determine if the patients had better outcomes than

would be expected by chance, and while 9 out of 12 patients had
better than expected outcomes, this result did not reach statistical
significance.59

The ACTIVATE (A Complementary Trial of an Immuno-
therapy Vaccine against Tumor Specific EGRFvIII) trial was the
first phase II study to evaluate the efficacy and safety of PEP-
vIII-KLH as a vaccine therapy for GBM.60 Due to the variabil-
ity and high cost associated with the autologous dendritic cell
vaccine, patients enrolled in the ACTIVATE and subsequent
trials were vaccinated with PEPvIII-KLH and GM-CSF alone.60

Eighteen patients with newly diagnosed GBM who were
screened for EGFRvIII expression were enrolled at MD Ander-
son Cancer Center and Duke University Medical Center.60

Each patient received gross total resection of their tumor, under-
went external beam radiation therapy and concurrent temozolo-
mide (TMZ) with no radiographic progression, and had a
Karnofsky performance status (KPS) of > or D to 80. Patients
were vaccinated 3 times at 2 week intervals and then every
month until progression occurred.60 The outcome of the treat-
ment group compared favorably with a control group that
received the standard surgical resection with radiation therapy
and TMZ with a median time to progression (TTP) of 14.2
months and a median overall survival (OS) of 26.0 months
(hazard ratio: 5.1; 95% CI: 1.9–13.9, P D 0.001).60 Six of the
14 patients who had their serum tested were found to have anti-
bodies specific for PEPvIII, and the median OS of these patients
was found to be significantly higher compared to the OS of
those who did not develop a humoral response (47.7 months
vs. 22.8 months, P D 0.025). Patients who developed a cellular
immune response to PEPvIII (3 out of 17 patients) also demon-
strated significantly longer PFS and OS (P D 0.03) with median
OS from time of histologic diagnosis being unreached after 50
months of follow up compared to 23.1 months for those that
did not develop cellular immune responses.60 In cases of recur-
rent GBM, most tumors were found to have lost EGFRvIII
expression.60

Another phase II trial, entitled ACT II, was constructed to
determine if TMZ-induced lymphopenia would enhance
immune responses to the PEPvIII-KLH vaccine.61 This hypothe-
sis was based on results from experiments in animals and humans
that suggested that lymphopenia may support anti-tumor immu-
nity by eliminating the effect of Treg cells and homeostatic
mechanisms inducing T cell tolerance.62, 63 This study enrolled
22 patients with newly diagnosed EGFRvIII-positive GBM.61

All patients underwent gross total resection of their tumors fol-
lowed by standard radiation therapy with TMZ and were subse-
quently screened for progression.60 Twelve patients were then
assigned to receive TMZ at a targeted dose of 200 mg/m2 for
the first 5 d of a 28-day cycle (standard dose) and the
remaining 10 patients were assigned to receive a targeted
dose of 100 mg/m2 for the first 21 d of a 28 day cycle
(intensified dose).61 Vaccinations with PEPvIII-KLH with
GM-CSF were initiated within 6 weeks of completing radia-
tion therapy.57 The first 3 vaccinations were given at 2 week
intervals and subsequent vaccinations were administered
monthly until progression.61

Figure 2. Immune Responses to Rindopepimut. Administration of Rindo-
pepimut generates a host of immune responses – both cellular (T cell
mediated) and humoral (B cell mediated) responses are elicited.
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Four patients in the group receiving the dose-intensified regi-
men of TMZ experienced possible allergic drug reactions, and
one was removed for toxicity-related reasons while 2 others were
removed for tumor progression.61 The grade of lymphopenia was
greater and sustained in the dose-intensified group compared to
the standard dose TMZ group, however, the proportion of Treg
cells was actually found to be higher in the dose-intensified
group. All patients in the study developed antibody titers to PEP-
vIII, however those patients in the dose intensified group demon-
strated increasing antibody titers over time such that their titers
became higher than those of the standard dose group.61 In addi-
tion, more patients in the dose intensified group developed DTH
reactions to PEPvIII compared to the standard dose group. In
the standard dose group, 9 out of 12 patients were progression
free 6 months after vaccination, and 10 of 12 patients were alive
at 12 months.61 In the dose-intensified group, 9 of 10 patients
were progression free 6 months after vaccination, and 9 of 10
patients were alive at 12 months. The median PFS from the time
of histologic diagnosis for all patients was 15.2 months (95% CI:
11.0–18.5), and the OS for all patients was 23.6 months (95%
CI: 18.5–33.1). This compared favorably with the PFS and OS
of the historic control group (6.3 months [95% CI: 4.1–9.0] and
15.0 months [95% CI: 11.4–19.7], respectively.61 After adjust-
ing for KPS and age, there was no difference in OS between the
2 TMZ cohorts, although the study had not been powered to
detect such a difference.61

The ACT III trial was the third phase II trial to investigate the
efficacy and safety of the Rindopepimut vaccine.64 This study
included 65 patients at 31 different centers with newly diagnosed
primary, EGFRvIII-positive GBM who underwent gross total
resection and did not show evidence of progression after radia-
tion and TMZ therapy.64 The treatment regimen consisted of 3
vaccinations with PAPvIII-KLH/GM-CSF at 2 week intervals
and then vaccinations monthly until progression.64 This vaccina-
tion regimen was accompanied by 150–200 mg/m2 doses of
TMZ administered for the first 5 d of a 28 day cycle, which was
repeated until progression.64 Almost all patients developed injec-
tion site reactions and 2 patients had to discontinue treatment
because of toxicity.64 85% of patients developed anti EGFRvIII
antibody titers, which were observed to increase over the duration
of the study.64 The PFS and OS after histological diagnosis was
found to be 12.3 months and 24.6 months, respectively, and the
PSF at 8.5 months from diagnosis was 66%.64 These survival
lengths compare favorably to that of an EGFRvIII-positive con-
trol group who received the standard treatment of gross total
resection and radiation therapy with concurrent TMZ (P D
0.00088 for PFS and P= < 0.0001 for OS)64. Additionally,
patient outcomes were analyzed based on methylation status of
MGMT, and those with methylated MGMT were found to have
a significantly longer PFS (17.5 months vs 11.2 months, P D
0.0057) and OS (32.3 months vs 20.9 months, P D 0.0067).64

These results support that the rindopepimut vaccine may be
advantageous for augmenting standard therapy for GBM.64 The
rindopepimut vaccine has been shown to be generally well-toler-
ated and to lengthen PSF and OS in patients with both methyl-
ated MGMT, and unmethylated MGMT.64

Due to the promising results of the previous phase II trials,
multiple further studies of rindopepimut for GBM have been ini-
tiated. Current ongoing studies include a phase III trial investi-
gating the efficacy of rindopepimut for newly diagnosed GBM
(ACTIV). This study is planned to include 374 patients with
newly diagnosed EGFR-positive GBM, and will be conducted
internationally at over 150 different centers. ACT IV is a ran-
domized, double-blind trial of rindopepimut vaccination com-
pared to vaccination with KLH alone. The primary outcomes
will be PFS, OS and quality of life. Patients with incomplete
resection will be included so that the efficacy of rindopepimut on
residual tumor burden may be assessed. The reACT trial is
another phase II trial that evaluates the efficacy of the rindopepi-
mut vaccine with concurrent bevacizumab in patients with
EGFR-positive recurrent GBM. In this study, one subset of
patients is randomized to receive vaccination with either rindope-
pimut or KLH, both in conjunction with bevacizumab therapy.
The other subset, which will consist of patients who are refractory
to bevacizumab, will receive vaccination with rindopepimut in
conjunction with bevacizumab. Ninety-five patients are planned
to be enrolled in this study, and the effect of residual tumor bur-
den will be evaluated. As the previous ACT trials adhered to strict
selection criteria favoring healthier patients with less disease bur-
den, the results of the ReACT trial will more clearly demonstrate
the efficacy of the vaccine in a study group which is more repre-
sentative of the majority of patients living with glioblastoma.
The ACT III and ReAct trials were expected to be completed in
November 2016 and March 2014, respectively.

Road Blocks to EGFRvIII Targeting

EGFRvIII targeting is a very attractive strategy for developing
immunotherapies for GBM as EGFRvIII is one of the few anti-
gens that can be found exclusively on tumor cells and not on nor-
mal tissues. The rindopepimut vaccine has been successful in
stimulating immune responses to EGFRvIII in GBM patients as
it incorporates a unique epitope including a novel glycine not
present in the wild-type peptide, which contributes to its immu-
nogenicity.49,59–61,64 Although rindopepimut has been shown to
prolong survival of patients with glioblastoma, limitations of this
modality have been encountered in clinical trials.59–61,64 First,
EGFRvIII targeting is useful in only a subset of GBM patients,
which comprises about 20–40% of the total number of cases.
Therefore, patients must be screened for EGFRvIII before they
can be considered for vaccination. Additionally, in all 3 com-
pleted clinical trials (ACTIVATE, ACT II, and ACT III), recur-
rent GBMs were found to have lost EGFR expression, indicating
that the tumor is able to escape through the selection and prolif-
eration of cells that are EGFR negative.59–61,64 Therefore,
the rindopepimut vaccine may lose its value in treatment once
the GBM recurs. Other alternative therapies would then need to
be implemented for continued control of tumor growth.59–61,64

One strategy that attempts to overcome this obstacle is vacci-
nation against multiple tumor antigens simultaneously. The aim
of this approach is to decrease the ability of the tumor to escape
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as each cell should be positive for at least one of the antigens
included in the vaccine.59–61 As these antigens may not be very
antigenic themselves, dendritic cells could be also potentially
used to present the antigens to T cells to stimulate an immune
response. Several groups have used whole tumor lysates to vacci-
nate patients with GBM.65 Prim et al. vaccinated a mixed group
of newly diagnosed and recurrent GBM patients (n D 23) with a
vaccine consisting of autologous dendritic cells pulsed with autol-
ogous tumor lysate obtained from tumor samples from surgical
resection.65 Although this Phase I study was not powered to eval-
uate clinical efficacy, the median PFS was found to be 15.9
months and the median OS was 31.4 months. Interestingly, 3
patients in this group survived over 6 y In this study, no serious
adverse events or autoimmune reactions were observed.65 Simi-
larly, Wheeler et al. conducted a phase II clinical trial using an
autologous dendritic cell vaccine to vaccinate 23 recurrent and
11 newly diagnosed GBM patients.66 Seventeen patients exhib-
ited a positive immune response after vaccination, as measured
by levels of INF-g, while 14 showed no response, and the
remaining 3 were not able to be tested.66 Mean PSF was 308
C/¡ 55 d in responders and 167 C/¡ 22 d in non-responders
while mean OS was 642 C/¡ 61 d in responders and 430 C/¡
50 in non-responders. As expected, responders to the vaccine
tended to be newly diagnosed patients.66 These patients, similar
to those in the rindopepimut trials, eventually experienced pro-
gression, and so it is obvious that escape from immunity must
have occurred with this vaccine as well.66 Attempting to vaccinate
against multiple tumor antigens may not always provide com-
plete protection as many tumor antigens may also be expressed
on normal tissues and may not be immunogenic.66

One of the benefits of using tumor lysates in vaccination is
that patients do not require screening for a particular antigen and
any tumor, regardless of molecular markers, may receive vaccine
therapy. The disadvantage with this approach is that autologous
dendritic cell vaccines are very costly to manufacture and they
can only be manufactured on an individual basis. The inherent
lack of efficiency with autologous dendritic cell vaccine produc-
tion inevitably causes this therapy to appear less attractive to cor-
porate sponsors, and lack of sponsorship impedes the production
of expensive phase III trials required for FDA approval.67 Efforts
to maximize the efficacy of dendritic cell vaccines through pro-
moting a robust cytotoxic T cell response have been initiated
with the development of a-type 1 polarized dendritic cells.68 The
maturation process of dendritic cells in culture has been found to
lead to decreased ability to produce IL-12, which is critical to
inducing a cytotoxic-supporting Th 1 response.69 When den-
dritic cells are matured in the presence of INF-gamma and tumor
necrosis factor they have been demonstrated to produce signifi-
cantly higher levels of IL-12,68 and this maturation process has
been associated with prolonged progression free survival in some
patients with recurrent glioblastoma.70,71 Further studies would
be needed to determine if the efficacy of Th 1 polarized dendritic
cell vaccines could offset the inefficiency of dendritic cell vaccine
production. Peptide vaccines may be mass-produced and are rela-
tively inexpensive, and large, multi-center phase III clinical trials
are more manageable.67 Therefore, while PEPvIII-KLH

vaccination may not be indicated for all GBM patients, this vac-
cine may be easily implemented as an efficacious adjuvant to
standard therapy in a relatively large subset of patients.59,67

Peptide vaccines which aim to immunize GBM patients
against multiple tumor peptides have been developed as well.
Similar to rindopepimut, such vaccines consist simply of tumor-
derived peptides mixed with an immune adjuvant. For example,
Ishikawa et al. treated 24 newly diagnosed GBM patients with a
formalin-fixed vaccine made from autologous tumor lysates.72

The median OS and PFS were 22.2 months and 8.2 months,
respectively.72 Of note, this group found that positive DTH
responses of equal or greater than 10 mm of induration corre-
lated with longer PFS durations, however this correlation did not
reach statistical significance.72 Terasaki et al. developed a vaccine
for GBM patients comprised of a personalized combination of
several synthetic tumor peptides.73 The peptides were identified
from a group of over 100 genes encoding proteins that are
expressed at high levels in cancer cells and that play a role in cell
proliferation.73 Fourteen peptides were selected based on their
ability to elicit peptide-specific immune responses in HLA-A24-
positive patients with GBM or other cancers.73 For the individual
vaccines designed for each of the 12 patients with recurrent GBM
included in a phase I trial, up to 4 peptides out of the 14 were
selected based on those which elicited the strongest immune
responses in each patient.73 Although the trial was designed spe-
cifically to determine the safety and highest tolerated dose of vac-
cine, the PFS at 6 months was noted to be 16.7% and the OS
survival was 10.6 months.73 Compared to PEPvIII, the peptides
included in these vaccines may not be as immunogenic because
many of them may be expressed at low levels in normal cells.
Nevertheless, with the aid of immune adjuvants, tumor-derived
peptides may be capable of eliciting anti-tumor immune
responses in certain patients.

As some peptide vaccines include a variety of tumor-specific
antigens, PEPvIII might be combined with other tumor peptides
to induce a cytotoxic response targeting multiple tumor antigens.
This might help prevent the antigenic escape of tumor cells as
observed with immunization against EGFRvIII alone. Another
option may be to combine EGFRvIII vaccination with other
adjuvant immunotherapies. One example is anti-programmed
cell death-1 antibodies, which have shown some promising
results in patients with widespread malignancies, including mela-
noma, colon cancer, and prostate cancer.74 Programmed cell
death-1 is an inhibitory co-stimulator located on the surface of
activated T and B cells, and its expression may contribute to the
immune resistance of tumors.75 Inhibition of this co-stimulator
has been shown to have anti-tumor effects in murine models of
carcinomas,75,76 and if able to be effectively implemented for
glioblastoma, this therapy could theoretically boost the cytotoxic
response initiated by vaccination against EGFRvIII. Of course,
use of antibody-based therapies for GBM may require direct
inoculation into the CNS, as transfer across the blood-brain-bar-
rier is highly inefficient.

In summary, rindopepimut is a peptide vaccine that has been
shown to potentially prolong survival in EGFRvIII-positive
GBM patients – pending the final confirmation in a large,
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ongoing phase III clinical trial (ACTIV). This vaccine targets the
EGFRvIII surface antigen, a mutated form of the EGFR receptor
that is present only on tumor cells and not in normal healthy tis-
sues. Due to the foreign nature of this peptide, vaccination is
capable of eliciting significant anti-tumor immune responses.
This immunotherapy has the potential to contribute to extended
survival when used in conjunction with standard therapies,
including surgical resection, radiation therapy and TMZ chemo-
therapy. In the future, tumor-directed vaccination may be incor-
porated into the standard therapeutic regimen for GBM,
however, the timing of vaccination to best induce a clinically rele-
vant anti-tumor immune response may require further investiga-
tion. Although GBMs may eventually escape EGFRvIII targeting
through loss of expression of EGFRvIII, the rindopepimut

vaccine may be efficacious as an initial therapy to augment radia-
tion and chemotherapy in newly diagnosed EFGRvIII-positive
GBM patients. As more discoveries are made regarding the path-
ophysiology of GBM and more targets for immunotherapies are
discovered, future treatment of GBM will likely consist of com-
bined modalities that are customized for unique genetic makeup
of an individual’s tumor.
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