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Highlights

•

Three state-based peridynamic laws and multiple influence functions are tested 

on static problems.

•

The dilation state based models do not converge for every constant-strain 

problem.

•

The deformation gradient model converges linearly but is unstable.

•

A cubic influence function provides convergence for the most cases.

•

All three models can achieve within 5% accuracy to the thin crack problem 

analytical solution.

Abstract

Peridynamics is widely used as the theoretical basis for numerical studies of fracture 

evolution, propagation, and behavior. While the theory has been shown to converge to 

continuum mechanics in the theoretical limit, its behavior as a discrete numerical 

approximation with respect to classic problems has not been shown. In this study, we 

use standard analytical solutions to thoroughly test the numerical accuracy and rate of 

convergence of the spatial discretization obtained by peridynamics. We analyze the 

accuracy and rate of convergence of three different peridynamic constitutive responses: 

of these, two involve a state-based dilation, and the third is based on the estimation of 

the deformation gradient. Additionally, we study the choice of the peridynamic influence 
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function in each of the constitutive responses. The peridynamic materials are solved in 

the linear elastic regime by solving a linear system of equations obtained by 

symbolically differentiating the force states. We test the methods against standard 

constant-strain solutions for uniaxial compression, isotropic compression, and simple 

shear. We also apply the methods to a finite material with a pressurized thin crack, 

using the Westergaard’s solution method to obtain an analytical displacement field for 

comparison. The two dilation-based peridynamic constitutive responses are found to 

only converge to one of the constant strain solutions, while the deformation gradient-

based law converges in all cases with an appropriate choice of the influence functions. 

We show that a cubic influence function is the best choice of those considered in all 

methods. Only the deformation gradient-based model converges for all three linear 

deformation problems, but is less accurate than the dilation-based models for the thin 

crack problem because of instabilities. We demonstrate an ad hoc smoothing technique 

based on the influence function that is able to alleviate these instabilities and improve 

the accuracy of the deformation gradient-based model.
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1. Introduction

Peridynamics is an alternative formulation of mechanics based upon satisfying an 

integro-differential equation so as to avoid taking spatial derivatives [1]. Numerical 

models based on peridynamics are thus well-suited to problems involving 

discontinuities, such as plasticity, fracture propagation, and high-speed impacts. The 

criteria governing fracture growth in peridynamics are usually based upon the 

displacement field solution in the form of the bond stretches [2], [3]. This work closely 

examines the accuracy of the displacements obtained by three forms for the 

peridynamics force–density response in static linear elastic problems with known 

analytical solutions. We combine the three responses with different selections of the 

peridynamic influence function and determine the order of convergence of the models 

when independently refining the grid point discretization and the relative size of the 

peridynamic horizon.

1.1. Background
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In the theoretical framework of peridynamics, each point in the material has a response 

based on the integral of force densities from neighboring material points, without taking 

any derivatives of the mechanical fields [1]. In practical implementation, the material is 

discretized as a finite set of points (or particles), and the summation of force density 

laws from in-range material points is used to solve the equations of motion of the 

particle. As illustrated in Fig. 1, the material points are connected to a finite number of 

other particles using an influence function wr with a compact support of radius δ which 

covers the region known as the peridynamic horizon, Hx. Discontinuities are naturally 

incorporated by assigning a damage field to the bonds between the finite material points

that weights the interaction force densities.
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Fig. 1. The horizon H(x) at a particle x and the peridynamic influence function w(r) as a 
function of the magnitude of the distance vector ξ between particles x and x′. A cubic-
spline influence function centered on the particle x is illustrated. Shaded particles are 
inside of the horizon.

Unlike traditional methods, such as the finite element method, this underlying theoretical

framework is different from continuum mechanics. This difference requires further 

investigation to assert that the numerical models developed with peridynamics are 

consistent with traditional results in mechanics. The peridynamic balance of linear 

momentum has been shown to converge to the continuum mechanic partial differential 

equation as the horizon size collapses to a point [4], [5]. On the other end, peridynamics

https://www.sciencedirect.com/science/article/pii/S0045782516311598?via%3Dihub#b5
https://www.sciencedirect.com/science/article/pii/S0045782516311598?via%3Dihub#b4
https://ars.els-cdn.com/content/image/1-s2.0-S0045782516311598-gr1.jpg
https://ars.els-cdn.com/content/image/1-s2.0-S0045782516311598-gr1_lrg.jpg
https://www.sciencedirect.com/science/article/pii/S0045782516311598?via%3Dihub#fig1
https://www.sciencedirect.com/science/article/pii/S0045782516311598?via%3Dihub#b1


has been interpreted as a coarsening of molecular dynamics to be applied to those 

smaller length scales [6]. While the nonlocal nature of peridynamics may be useful in 

capturing microscale behavior, we are interested in the applicability of computationally 

practical discretizations and horizon sizes to macroscopic problems.

1.2. Literature review

Peridynamics has been used extensively to simulate problems focusing fracture 

mechanics. A common test problem for peridynamic models is a projectile impacting 

and shattering a brittle disk [7], [8], [9]. Lai, 2014 used a peridynamic model based on a 

traditional continuum mechanics constitutive law to simulate the fracturing of 

geomaterials under high-speed impact loads [10]. The original formulation modeled a 

brittle linear elastic solid [1], but the theory has been extended to more complex 

materials. Peridynamic responses have been developed to predict failure in materials 

with complex microstructures, such as anisotropic materials [11] and 

laminates [12], [13]. Viscoplastic constitutive responses were incorporated into the 

peridynamic framework in Foster, 2010 to model the plastic deformation of a metal 

cylinder under impact [14]. Turner, 2012 developed a peridynamic constitutive response 

for porous materials that are be applied to geotechnical subsidence problems [15].

Peridynamics theory has also been applied to physics beyond mechanics. Thermal 

diffusion has been cast into the nonlocal interaction framework of peridynamics to solve 

coupled thermo-mechanical problems [2], [16]. Katiyar, 2013 developed a peridynamic 

model for porous flow that corresponds to the continuum Darcian flow partial differential 

equation in the peridynamic vanishing horizon limit [17]. The hydraulic fracture process 

has been simulated in an entirely peridynamics framework with fully coupled flow and 

mechanics in Ouchi, 2015 [18].

1.3. Approach in this study

The core of the theoretical model is the force density constitutive response that governs 

the interaction between material points. The original bond-based peridynamic model 

uses a force density expression that only depends on two points, and consequently 

suffered from the restriction of a fixed Poisson ratio [19]. A number of schemes to 

remove this restriction have been proposed. Liu, 2012 included a lateral force to bonds 

on boundary particles to represent the Poisson effect [20]. Gerstle, 2007 added a 

rotational degree of freedom to the bond-based force densities, resulting in a truss-like 

formulation [21]. Further work has involved extending peridynamic force density 

calculations to depend on the deformation of the entire horizon, enabling an even 
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greater range of constitutive behavior to be captured [19]. This yields state-based 

peridynamic models, which are the focus of this paper. Numerous formulations for 

different state based constitutive responses appear in the literature. We identify three 

formulations of the force density applicable to linear elastic materials:

1.

The dilation state-based model proposed in Silling, 2007 [19] with the plane-

strain modification found in Le, 2014 [22] and Ouchi, 2015 [18].

2.

The deformation gradient-based model proposed in Silling, 2007 [19].

3.

The dilation state-based model proposed in Oterkus, 2012 [23].

In this study, we investigate and compare each of these three methods.

In addition to the choice of force density law, an important issue is the selection in the 

peridynamic influence function, w(r). This function is used to weight the calculations of 

the force densities and states by the distance between two material points. The 

selection is arbitrary with respect to the physical theory, but the impact of this selection 

not yet been studied in the literature in the context of discretization refinement. A 

number of different expressions have appeared in the literature. A common choice is a 

piecewise constant influence function that is finite inside the horizon and vanishes 

outside [19] (this can be considered the default case when a force density law makes no

mention of the influence function). Oterkus, 2012 used an inverse radial law that was 

truncated at the horizon limit to parameterize the given force density law [23]. Bobaru, 

2008 compared constant, decreasing-with-distance linear, and increasing-with-distance 

linear influence functions for a 1D elastic bar, determining that all would give correct 

results, but the increasing-with-distance was numerically ill-conditioned [24]. Bobaru, 

2011 compared the constant function with a linear-cone function in 2D analysis with the 

bond-based force density, concluding that the conical function produces smaller 

boundary effects [25]. The effect of the influence function’s support size on crack 

propagation was studied in Bobaru, 2012, which concluded that the effect on crack 

behavior was due to wave dispersion properties and that the horizon size has no effect 

when stress–wave interaction does not play a roll in the problem setup [26]. Seleson, 

2011 varied the exponent influence functions of the form 1∕rp to characterize the effect 

on dispersion in elastic wave propagation for a fixed grid size in 1D and 3D bond-based 

models, concluding that the accuracy of the model increases as the 

exponent p increases [9]. Because Seleson, 2011 only examines one discretization and 
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support radius size, the refinement of increasing p is equivalent to showing that 

peridynamics converges as the horizon shrinks by assigning very small weights to 

farther particles, and does not draw any conclusions about the influence function itself.

In our analysis, we focus on evaluating and comparing the accuracy of the 

aforementioned peridynamic force density laws using different forms of the influence 

function. To accomplish this, we extend the model of Oterkus [23] to handle arbitrary 

influence functions. We use the analytical solutions for four simple test problems from 

linear static mechanics to evaluate the accuracy of the numerical solutions. We focus on

studying the spatial discretization produced by the peridynamic representation. We do 

not consider dynamic behavior or damage evolution, but these will depend on the 

spatial discretization themselves. We determine the convergence rate for the different 

models by separately varying the grid point discretization and the relative horizon size. It

is a standard criterion that a numerical code should be able to reproduce the correct 

results for these simple problems with a well defined convergence trend during 

refinement. Otherwise, no verification or benchmarking of the code is possible, 

rendering it unsuitable for practical engineering analysis.

Section 2 describes the peridynamics theoretical framework and the three different 

peridynamic models used. Section 3 describes the numerical discretization of the 

peridynamics equations and procedure for performing the local integration. 

Section 4 describes the code implementation and lists the supporting libraries used. 

Four model problems with known analytical solutions are used as test cases. The first 

three problems represent independent linear deformation modes and are discussed in 

Section 5, in which the application is every combination of force density law and 

influence functions. In Section 6, a crack filled with a pressurized fluid embedded in an 

infinite elastic domain is solved using a subset of the best-performing methods. 

Section 7 summarizes the conclusions from the studies and proposes future direction 

for development of the peridynamics theory. The process of determining and generating 

the tangent matrix for arbitrary peridynamic constitutive responses is discussed in 

the Appendix.

2. Peridynamics

2.1. Overview

In the peridynamics theory, each material point in the body, at x, is dependent via an 

integral relation on the other material points within a compact horizon, Hx. The reference

position of the material point is x, and its current deformed position is y. In the horizon 

integrals, x′ and y′ denote the reference and current positions of another point in the 
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horizon of x. The connection between points x and x′ is referred to as the bond between 

the points, denoted by ξ. With peridynamic fields and states, the notation ax denotes 

that a is a function of a material point x, and the notation bxξ denotes that bis a function 

of the bond ξ at point x. The arguments will often be dropped in the following equations 

without ambiguity for conciseness. The distance vector between reference positions is 

denoted by ξ=x′−x, and the distance vector between deformed locations is denoted 

by Yxξ=y′−y. The deformation states are illustrated in Fig. 2.
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Fig. 2. Deformation of a set of peridynamic material points.

The dynamic balance of linear momentum for peridynamics follows the second order 

ordinary differential equation

(1)ρÿ=∫Hxtxξ−tx′ξd3x′+ρbx∀x∈Ω

where ρ is the material density, t is the peridynamic force density, and b is a body 

force [1], [19], [27]. For the static or quasistatic approximation, the above equation is 

solved as an implicit equation with ẏ=ÿ=0. The integral for the state-based force density 

contains contributions from “both sides” of the bond, using the states at x to 

compute tx using the points in the horizon Hx, and the states at x′ to compute tx′ using 

the points in the horizon Hx′, as illustrated in Fig. 3.

The quantity txξ is the peridynamic force density, and its specification is the peridynamic

constitutive response for the material. There are various ways to express the material 
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responses. The parameters of a given force density law are typically determined by 

comparing a test deformation to the known solution from mechanics [19], [23]. The 

traditional bond-based peridynamics model calculates force densities using two 

particles at a time, which is very simple to implement but has the limitation of only 

capturing isotropic materials with a Poisson ratio equal to 14 in 3D or 13 in 2D [23]. In 

state-based models, the deformation states of all particles within the horizon (see Fig. 1)

are used to calculate txξ. The theoretical requirements on the expressions to satisfy 

balance of linear momentum, balance of angular momentum, etc., are thoroughly 

discussed in Silling, 2007 [19]. In the following sections, we describe three different 

choices of the material response t that are each based on different state calculations.

A key component in each of these laws is the choice of the peridynamic influence 

function, wr. Possible expressions for this function are studied in detail in Section 5; for 

the discussion in this section it is left as a free selection. A special peridynamic quantity 

is the bond damage, αxξ, that represents material strength and damage at a 

point x relative to the point x′. The effect of damage is often wrapped into the influence 

function. In order to clarify experimentations with weighting expressions, the combined 

result is split into two functions for our discussions, i.e. wˆ=wα, where w is only the 

radius-dependent weight function, and α is only the material damage. The damage field 

weights the force density and state calculations to incorporate the change in 

connectivity within the material caused by internal failures and cracks. We use the 

scaling choice wherein α=1 is an undamaged bond and α=0 is a broken bond. Evolution 

laws for α are used to model fracture and plasticity behavior, but are outside of the 

scope of this work. For brevity in the following equations, the arguments of w and α are 

omitted, such that wα is written to imply the product of influence function and bond 

damage state evaluated at a bond, w|ξ|αxξ.
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Fig. 3. Two pairs of force densities acting on two material points. Each pair of force 
densities is evaluated based on the state at one of the points and applied with an equal-
and-opposite force density on the other.

2.2. Silling’s dilation-based method

The linear elastic isotropic model in Silling, 2007 is based upon estimating the dilation at

a material point [19]. Firstly, the peridynamics weight scalar m at a point is independent 

of the material deformation and properties, but depends on the discretization, material 

connectivity, and choice of influence function, and is calculated by

(2)m=∫Hwα|ξ|2d3x′.

This weight scalar is used to properly weight the force density calculations to account 

for the scale of the influence function and the size of the horizon. The dilation state θ at 

a point is calculated by performing the integral

(3)θ=3m∫Hwα|ξ||Y|−|ξ|d3x′

over the horizon and is a measure of the volumetric strain, related to the continuum 

linear strain ε by θ=3trε. After calculating the dilation θ at a point, the force density law is 

then calculated by

(4)txξ=wαm3Kθ|ξ|+15G|Y|−|ξ|Y|Y|

where K is the bulk modulus and G is the shear modulus.

For plane-strain, the parameterization of constitutive response must be changed. Ouchi 

proposed the following modifications [18] :

(5)m=∫H2Dwα|ξ|2d2x′.

(6)θ=2m∫H2Dwα|ξ||Y|−|ξ|d2x′

(7)txξ=wαm2Kθ|ξ|+8G|Y|−|ξ|Y|Y|.

Le, 2014 derived the same parameterization for plane strain, albeit written slightly 

differently [22].1

2.3. Oterkus’s dilation-based method

Oterkus, 2012 presented a different constitutive response that is also based on 

estimating the local dilation [23]. The material parameters for this law are a, b, and d. 

The dilation is instead calculated by the expression

(8)θ=d∫Hwα|Y|−|ξ|Y|Y|⋅ξ|ξ|dnx′

and the force density at each bond is determined by

(9)txξ=2wαadY|Y|⋅ξ|ξ|θ+b|Y|−|ξ|Y|Y|.

The strain energy for the above force density law is

(10)W=aθ2+b∫Hwα|Y|−|ξ|2dnx′.
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In Oterkus, 2012, these parameters are determined by selecting w=δ|ξ| and matching 

local strain energies in isotropic deformation and simple shear deformation with the 

continuum mechanics strain energies. Here, we generalize the process for any choice 

of influence function that also includes the surface correction factors for the plane strain 

case.

Let s denote the scalar parameter of an arbitrary test strain. For the isotropic 

deformation, the deformation field is Y=1+sξ for a given s. We require in plane strain 

that θ=2s and W=2Ks2 for this deformation to match continuum mechanics for all values 

of s. Substituting this requirement into Eq. (8),

(11)2s=d∫Hwα1+s|ξ|−|ξ|1+sξ1+s|ξ|⋅ξ|ξ|d2x′

must hold for all s, so we determine

(12)d=2∫Hwα|ξ|d2x′.

The strain energy provides the following relation for a and b:

(13)2K=4a+b∫Hw|ξ|2d2x′.

For simple shear, the trial deformation state field is represented by

(14)Y=1s0010001ξ=I+sAξ

where A is the matrix characterizing the shear component with A12=1, Aij=0 otherwise. 

The dilation is zero because the motion is isochoric. Let n=ξ|ξ|. Analyzing the strain 

energy density, we require

(15)G2s2=b∫Hwα|Y|−|ξ|2d2x′=b∫HwαsnTAn|ξ|2d2x′∀s

which, after substitution of the value from A in Eq. (14), is reduced to the requirement

(16)b=G2∫Hwαξ1ξ2d2x′.

Combining this result for b with the strain–energy law, the requirement on a is

(17)a=12K−2G∫Hwα|ξ|2d2x′∫Hwαξ1ξ2d2x′.

This is similar to the result of Oterkus, a=12K−2G. The integrals ∫Hwα|ξ|2d2x

′ and ∫Hwαξ1ξ2d2x′ are calculated discretely at every point when the force densities are 

calculated.

2.4. Silling’s deformation gradient-based method

The final constitutive law we considered is also due to Silling, 2007 and is the closest to 

traditional continuum mechanics [19]. The deformation gradient is reconstructed from 

the peridynamics deformation and the stress tensor is related to the peridynamic force 

densities, allowing classical continuum constitutive responses to be applied. This 

treatment can be shown to be equivalent to a limiting case of the reproducing kernel 

particle method [28]. The shape tensor K for the reference configuration at a point is 

determined by integrating around the horizon,
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(18)K=∫Hwαξ⊗ξdnx′.

The deformed shape tensor N is integrated similarly using the deformed bond vector on 

the left side,

(19)N=∫HwαY⊗ξdnx′.

The deformation gradient F at the point x with a given horizon is calculated from these 

two matrices by

(20)F=NK−1.

Consequently, the deformation gradient depends on all of the points in the horizon. 

Using F, the stress can be computed by any constitutive law, e.g. σ=σˆF,p,… for the 

linear stress. The representation is valid for any nonlinear material response, but we use

the linear elastic constitutive law,

σ=K−23Gtrε+2Gε

with ε=12F+FT as the linear strain. From this, the corresponding peridynamic force state 

centered at the point in the direction of a bond is computed by

(21)txξ=wασK−1ξ.

2.5. Application of boundary conditions

Dirichlet boundary conditions are effected through modification of the linear system of 

equations, discussed in the next section. Traction boundary conditions are applied by 

converting the traction, TT, into a force density to apply to boundary nodes, i.e. 

(22)ρbxB=TTApBVpB

where ApB is the area of particle B (or linear-length in 2D) along the face and VpB is the 

total volume (or area in 2D) of the particle B. The particle side area is calculated for a 

2D system with a load on the top by ApB=WNpx, where W is the width of the domain 

and Npx is the number of particles spaced evenly along the side.

2.6. Fracture pressure on broken bonds

Internal discontinuities are handled by the damage field, αξ that exists on the 

peridynamic bonds. To produce a crack, the damage field is set to 0 on bonds that cross

the crack, as illustrated in Fig. 4. The above expressions for tξ will not depend on a 

broken bond and will not produce a force for a broken bond, when αξ=0. The impetus for

this study and our interest in this work is to develop a model for the initiation and 

evolution of hydraulic fracture in the subsurface. The following law is used, which 

depends on the fracture pressure at the bond:

(23)txξ=pf2dV|Y|Y|Y|ifαξ=0.

https://www.sciencedirect.com/science/article/pii/S0045782516311598?via%3Dihub#fig4


The fracture pressure is only applied to bonds between adjacent particles, so that it 

effectively becomes an internal boundary condition. The factor of 12arises from the fact 

that at each bond for each particle the total force density is txξ+tx′−ξ′, and 

the 1dV cancels out the volume of integration in Eq. (1) during the discrete summation 

process.
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Fig. 4. Treatment of bonds near cracks.

3. Discretization of equations

The standard methodology in peridynamics is to perform the calculations in a molecular-

dynamics-esque explicit time stepping scheme [2], [8]. Indeed, the widely used code 

EMU is implemented directly in the LAMMPS molecular dynamics code [8], [29]. For 

dynamic problems, this is a sufficient approach. Artificial dampening methods are used 

to solve static problems, such as the adaptive dynamic relaxation method [10].

This work alternatively solves the system of equations arising from the static force 

balance by solving a tangent stiffness matrix. This approach is not common but is not 

unique to this work: Bobaru, 2008 obtained solutions to the peridynamic balance of 

momentum by solving a matrix for a 1D problem [24], and the open-source code 

Peridigm uses both explicit and implicit time stepping using numerical differentiation to 

compute the tangent stiffnesses [30], [31]. In our implementation, a custom written 

package for automated symbolic differentiation is used to generate the code for the load
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vector and consistent tangent matrix calculations for arbitrary peridynamic force density 

expressions.

Let ∑A∈H denote the summation of all points indexed by A within the horizon of the 

current material point being evaluated. The peridynamic horizon integrals are evaluated 

with center point integration by summing over all of the discrete points in the horizon 

and multiplying by the particle volumes VA (or areas in 2D). The discrete equations for 

the intermediate values needed by Silling’s dilation-based response, Eqs. (5), (6), are, 

respectively,

(24)m=∑A∈Hwα|ξA|2VA

(25)θ=3m∑A∈Hw|ξA||YA|−|ξA|VA.

The summation needed for the integral in the numerator of d in Oterkus’s method, 

Eq. (12), is identical to the summation for m. The additional summation needed for 

Oterkus’s method to calculate the denominator shared by b and a in Eqs. (16), (17) is

(26)∫Hwαξ1ξ2dnx′=∑A∈Hwαξ1,Aξ2,AVA.

The deformation gradient-based force density requires two summations for the 

tensors K and N, Eqs. (18), (19), which are

(27)K=∑A∈HwαξA⊗ξAVA

(28)N=∑A∈HwαYA⊗ξAVA

in which each loop computes a contribution to each component of a 2-by-2 matrix.

The peridynamic force density integral is also performed by using a center-point 

integration summation. The discrete equations of motion for a given material point B are 

obtained by adding the body force density (or converted boundary traction) at the 

material point to the sum of the force densities with each point in the horizon:

(29)ρÿB=ρbxB︸Body force/BC+∑A∈HtxBxB−xAVA︸Force from this state−txAxA−xBVB︸Force f

rom neighbor’s state.

At each point xB, two force densities are summed for each pair, one due to the state 

at xB and the other due to the state at xA. The discrete integration of Eq. (23) cancels 

out the volume of integration, so that

(30)txBξVA=pfxBξ2|yB−yA|yB−yA|yB−yA|ifαξ=0

resulting in the point-wise application of a boundary traction.

The displacements of every peridynamic particle are solved by assembling a linear 

system from the discretized of balance of momentum equations,

(31)Ku=R

where R is a vector stacking the total force densities at each material point, uis a stack 

of displacements at each material point, and K is the global tangent (or stiffness) matrix 
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satisfying K=∂R∂u. Using the assembly notation in finite element literature, the procedure

for assembling the global right-hand-side vector is

(32)R=∑A∈HBtxBxB−xAVA−txBxB−xA1VA1⋮−txBxB−xALVAL

where N is the total number of particles, A∈HB denotes looping over all particles within 

the horizon of B, excluding B, and Ai indexes the horizon particles from A1 to AL, 

with L as the number of particles in the horizon. In the same notation, the global matrix 

is assembled by

(33)K=∑A∈HBkA

where kA is local stiffness matrix contribution obtained by differentiating the local 

material response. The form of kA is described in the Appendix. The Dirichlet boundary 

conditions are applied by the standard method of clearing a row and setting the 

diagonal entry to 1 in the matrix and setting the corresponding row in R to the 

prescribed value.

The pseudocode in Algorithm 1 describes the calculation of interaction force densities. 

The main loop is transposed from the apparent implementation suggested by Eq. (29). 

In this scheme, all of the force densities and state calculations corresponding to a single

horizon are performed together and symmetry is exploited to apply the force densities at

neighbors. This order of calculations removes unnecessary repeated calculations and 
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storage and improves memory locality for cache performance.
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The other two force density laws follow similar procedures, with steps a, b, and c 

replaced with the appropriate expressions. The deformation gradient-based model is 

further complicated by the tensor-quality of the states K and N, particularly by the 

computation of the tangent. The calculation of the tangent matrix for the force densities 

in steps e and f is discussed in the Appendix.

4. Implementation

The routines for calculating the peridynamic force laws are made using a code 

generation and symbolic differentiation system implemented using Sympy [32]. The 

system allows for the specification of peridynamic laws in Python and auto-generates 

the necessary C code for evaluation of the forces, tangents, and other evaluations. 

These C routines are compiled and are linked at runtime with hand-written C routines 

for assembling the global stiffness matrix and load vectors. The main program logic is 

implemented in Python and is linked to the C library routines using SWIG. The main 

program executes in serial and is written in Python, with calls to the C library to 

assemble the finite element and peridynamic integrals. Numpy [33], Scipy [34], and Lis: 

a Library of Iterative Solvers for Linear Systems [35] are used to perform the linear 

algebra operations required. The linear systems are solved using Scipy’s direct solver 

for small matrices below 80,000 unknowns and using Lis’s Generalized Minimum 

Residual method (GMRES) solver for larger matrices. Post processing is performed in 

Python, and plots are produced using Matplotlib [36].

5. Linear compression tests

5.1. Problem description

The peridynamic models are first tested on a set of the simplest problems in static 

analysis: (1) uniaxial compression, (2) isotropic compression (or, rather, biaxial 

compression because to the plane strain condition), and (3) simple shear.

The traction T is translated into a force density to be applied to the peridynamic particles

along the top edge by

(34)ρb2,B=TWNedgeVpB

where W is the width of the domain, Nedge is the number of particles along the edge, 

and Vp is the 2D particle area.
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The three test problems are illustrated in Fig. 5. In the uniaxial compression problem, 

the bottom edge is clamped, both sides have vertical roller boundary conditions, and the

top edge is subjected to an applied traction T oriented in the vertical direction. In the 

isotropic/biaxial problem, the bottom and left edges have roller boundary conditions, and

the top and right edges are subjected to applied tractions T in the normal direction. In 

the simple shear problem, the bottom edge is clamped, the left and right sides are 

attached to horizontal rollers (allowing motion to the left and right, but not up or down), 

and the top edge has an applied tangential traction of T. The analytical solution for 

these problems are:

Table 1. Problem parameters for linear compression tests.

Parameter Value

Domain dimensions, H and W 10.0 mm

Young’s Modulus, E 1000 GPa

Poisson ratio, ν 0

Load, T 10−3GPa
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Fig. 5. Boundary condition schematics of the three linear test problems.
Test Solution

Uniaxial uy,anal=TH2ν2+ν−1E(ν−1)

Isotropic uy,anal=TH1−ν−2ν2E

Shear ux,anal=2TH1+νE

The values of the parameters used in for the three simulations are listed in Table 1.
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The value of the x- or y- displacement along the top edge of the domain is used to judge

to numerical solutions. The displacement fields are probed by averaging the x- or y-

displacement of the set of particles near the middle of the edge in the region defined 

by y=H and 0.4H≤x≤0.6H, with the averaging equation

(35)uy,num=uy(x)0.4H≤x≤0.6Handy=H.

The same averaging calculation with appropriate exchanges between x- and y- 

components is used to probe the solutions for the x-displacement along the right edge 

for the biaxial deformation, and the x-displacement along the top edge for the shear 

deformation. The error between the analytical solution and the numerical solutions is 

calculated by

(36)enum=|uanal−unumuanal|.

The order of convergence O(hm) can be calculated from a series of 

errors enum(h) computed from the solutions unum at different grid spacings h by 

performing the logarithmically scaled linear regression,

(37)logenum=mlogh+b,

where m corresponds to the rate of convergence. The regression package in Scipy is 

used to determine m.

5.2. Results

We tested all three methods in the solution of the three test problems, using the five 

influence functions shown in Table 2. All the influence functions vanish outside of the 

horizon (w(r)=0 for r>δ). The support radius and the number of material points in the 

discretization are varied to test the methods’ convergence properties.

The spacing between particles, which decreases as more particles are added, is 

denoted by h. It is often discussed that δ is held constant as h→0 is a convergence 

criterion. However, performing this type of refinement, the number of particles within 

each particle’s horizon increases quadratically, increasing baseline memory and 

computation requirements cubically. Such a refinement strategy is thus impractical. 

Instead, we opt for a refinement approach in which the ratio of the peridynamic horizon 

to the particle size is held constant as the particle size decreases, i.e. 

(38)RF=δh.

This process is consistent with refinement approaches used in studying other numerical 

methods. This refinement procedure is illustrated in Fig. 6. Note how the number of 

particles covered by the support of the influence function remains constant as the grid is

refined so that baseline memory and computation costs are linear with the number of 

points in the discretization.
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Table 2. Influence functions and their labels.

Name w(r) in H(x)

Const 1

Inv δ∕r

Linear 1−rδ

Quadr 1−rδ2

Cubic 1−rδ3
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Fig. 6. Refinement of the influence function support radius to remain proportional to the 
grid spacing.

The analytical results along the center vertical axis of the block are shown in Fig. 7. (F is

used as shorthand for displacement gradient in the plot labels.) The plots are scaled by 

the maximum displacement in the analytical solution such that the true solution is a line 

from the origin to 1.0 at the position of 10 mm. The results are obtained by using 200-

by-200 material points in the discretization using a cubic influence function with a 

relative support radius of 3.5 for the dilation-based models, and both 3.5 and 1.5 for the 

deformation gradient-based. The plots are zoomed in to the top of the block where the 

maximum displacement is achieved. The dilation based models are only close to the 

analytical solutions in one case each. Silling’s dilation based model is correct when 

applied the isotropic deformation problem, and Oterkus’s dilation-based model is correct

when applied to the shear deformation problem. While the deformation gradient based 
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model gives the correct result, there is a significant instability with RF=3.5, and a very 

slight instability with RF=1.5. However, the deformation gradient based model also 

exhibits an incorrect result in the y displacement on the shear problem where there 

should be no deformation. The large support radius RF=3.5 has spurious oscillations at 

a maximum of 4% the magnitude of the x-displacement solution, and the compact 

support radius has a nonphysical displacement of approximately 0.5%. Both dilation-

based models give the correct 0 y-displacement for the shear problem. While the 

dilation-based models are not accurate in most cases, they do at least give smooth, 

linear displacement solutions with no spurious features.

The results are grouped by the force density laws in Fig. 8, Fig. 9, Fig. 10. In each 

figure, the columns denote the problems, and the rows indicate the influence functions. 

Each subplot shows the logarithmic error with respect to the analytical solutions for five 

different relative support radii (i.e. varying the relative size of the horizon) as the particle 

radius decreases.
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Fig. 7. Displacement field solutions along the vertical center axis for the methods using 
200-by-200 points, the cubic influence function, and the listed relative horizon size. 
Displacements are normalized by the analytical solution at the top of the block, where 
the y-displacement of the shear problem is normalized by the x-displacement solution. 
Plot markers are only applied to a subset of the data points to improve legibility.

First, let us consider the results associated with the deformation gradient-based force 

density with results plotted in Fig. 8. The method performs similarly on all three test 

deformations. The relative support radius δ∕R=1.5, which corresponds to the eight 

nearest points, converges for every choice of influence function. The order of 

convergence calculated for each influence function (listed in Table 3) indicates that the 

method achieves O(h) linear convergence in each problem. For large support radii, only 

the cubic weight function guarantees convergence. Calculating the order of 

convergence for this function with the different support radii (listed in Table 4), we again 

observe O(h) convergence for all of the support radii.
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Fig. 8. Logarithmic error plots for the deformation gradient based model. Columns show 
test problem, rows show influence function, and legend key shows relative support 
radius.
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Fig. 9. Logarithmic error plots for Silling’s dilation state-based model. Columns show 
test problem, rows show influence function, and legend key shows relative support 
radius.
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Fig. 10. Logarithmic error plots for Oterkus’s dilation state-based model. Columns show 
test problem, rows show influence function, and legend key shows relative support 
radius.

The dilation-based force densities exhibit interesting behavior. The model of Silling only 

converges in an h→0 sense for the isotropic compression problem, and the model of 

Oterkus only converges for the simple shear deformation problem. Only the linear, 

quadratic, and cubic influence functions guarantee smooth convergence in the two 

dilation-based methods. The order of convergences for these two methods on the 

respective isotropic and shear problems is shown in Table 5. In these tests, the two 

methods achieve linear convergence for all support radii. However, comparison to the 

other tests leads to the conclusion that these two force density formulations cannot 

correctly represent every possible constant-strain deformation. That is, the dilation-

based methods do not fully span the space of possible independent linear deformations.

Table 3. Order of convergence for the deformation gradient based model with RF=1.5using each influence 

function.

w(r) Uniaxial Shear Isotropic

Const 0.9860 0.9704 1.0005

Inv 0.9939 0.9247 0.9999

Linear 0.9991 1.0370 0.9996

Quadr 0.9999 1.0192 0.9999

Cubic 0.9999 1.0166 0.9999

Table 4. Order of convergence of the cubic weighted deformation gradient based model as the support 

radius is varied for each problem.

RF Uniaxial Shear Isotropic

1.5 0.9999 1.0166 0.9999

2.0 0.9988 1.0423 0.9996

2.5 0.9930 1.0423 0.9960

3.0 0.9760 1.0222 0.9875

3.5 0.9922 1.0080 1.0027

Table 5. Order of convergence for the dilation based force density models with the cubic influence 

function for their respective convergent test problems.

RF Silling, isotropic Oterkus, shear

1.5 1.0227 0.9255
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RF Silling, isotropic Oterkus, shear

2.0 1.0037 0.9966

2.5 0.9992 1.0075

3.0 0.9976 1.0099

3.5 0.9980 1.0150

6. Linear fracture mechanics results

6.1. Problem set up

Consider an infinite domain with a horizontal crack of length L located at the origin, with 

a finite equivalent illustrated in Fig. 11. The crack has an internal pressure P acting on 

the two horizontal faces due to the presence of a pressurized fluid. The idealized 

domain is infinite with zero displacement towards infinity in all directions,

(39)ux=uy=0asx2+y2→∞.

Likewise, the stress vanishes towards infinity in all directions,

(40)σxx=σyy=σxy=0asx2+y2→∞.

On the surface of the crack, the stress field has the boundary condition on the normal 

and shear planes

(41)σyy=P,σxy=0ony=0+andy=0−withinx∈−a,a.
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Fig. 11. A finite material with a crack with an interfacial pressure. The sides of the finite 
domain are set to have the displacement field solution matching the infinite domain 
analytical solution.

Using Westergaard’s solution method [37], the complex valued potential function Zˆ with

the form

(42)Zˆz=Pz2−L2−z

with argument z=x+yi satisfies the boundary conditions [38]. This problem has the same 

solution as if the crack had no internal pressure and instead the material had a far-field 

tension stress equal to P along the σyy direction. The stress field solution and near-tip 

displacement solution appear in Sneddon, 1946 [38]. Where Z=ddzZˆ and Z′=ddzZ, the 

stress field solutions are obtained from the potential function by

(43)σxx=ReZ−yImZ′

(44)σyy=ReZ+yImZ′

(45)σxy=−ReZ′

and the displacement field solutions are obtained by

(46)ux=12G2−4ν2ImZˆ−yReZ

(47)uy=12G4−4ν2ReZˆ−yImZ.

The analytical solution around the crack is plotted in Fig. 12.

The infinite domain is approximated by a large computational domain 

satisfying W≫L and H≫L. To compensate for the finite domain and enable comparison 

with the analytical solution, Dirichlet boundary conditions are enforced on 

the x and y displacements matching the analytical solution at the finite distance, as 

illustrated in Fig. 11. The simulation parameters are listed in Table 6.
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Fig. 12. The analytical solution for the displacement in the immediate vicinity around the
crack. The crack is draw as a solid line. The displacement vectors are drawn at a 75x 
scale to the axes.

The crack is included into the peridynamic model by breaking the bonds that intersect 

the crack, as illustrated in Fig. 4. The damage factor is set to zero at the broken 

bonds, α=0. The bond-pressure is set to the fracture pressure for only bonds that are 

immediately adjacent. Only an even-number of particles is used to ensure that the crack

is always between particles and never exactly on top of a particle.

Table 6. Parameters for fracture simulation.

Parameter Value

Size H and W 160.0×103 mm

Young’s Modulus E 60 GPa

Poisson’s ratio ν 0

Fracture pressure P 0.1 GPa

Fracture length L 700 mm

The integral of the square of the displacement error over the entire domain is used as 

the error metric, normalized by the magnitude of the integral of the displacement. 
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Approximating this metric as a summation over the discrete material points, the formula 

is

(48)e=∑A|uanalxA−unumxA|2∑A|uanalxA|2

where A is the index of the discrete material points, uanal is the analytical 

solution, xA are the positions of the material points, and unum is the numerical solution. 

The volume of the particles cancels out in the above equation because only uniform 

grids are used.

6.2. Results
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Fig. 13. Displacement fields for the deformation gradient based solution as the support 
radius increases near the crack. The scale on the displacement vectors is 75x the scale 
on the axes.
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Fig. 14. Displacement fields for the deformation gradient based solution after a 
smoothing operation. The scale on the displacement vectors is 75x the scale on the 
axes.

6.2.1. Instability of deformation gradient model

The deformation gradient force density was solved using the cubic spline influence 

function. Fig. 13 shows the solved displacement field using this model with 200 by 200 

material points in the vicinity of the crack for the various support radius sizes. The 

displacement vectors oscillate in both the x and ycomponents for each of the radius 

sizes. As the radius increases, the method becomes increasingly unstable. Without any 

post processing of the solution, the error increases greatly with increasing support 

radius, as seen in Table 7. As an ad hoc fix, we experiment by smoothing the solution 

using the peridynamic influence functions described by the following equation:

(49)usx=∫Hxwx−x′ux′d2x′∫Hxwx−x′d2x′.

Table 7 indicates that the linear influence function gives the smallest error. The 

displacement fields after smoothing by the linear influence function are plotted in Fig. 

14, which confirms qualitatively that the instability is alleviated.

Table 7. Error for different support radii for NP = 200 for the deformation gradient based model for the 

original solved field and after applying different smoothing operations.

RF Unsmoothed Const Linear Cubic

1.5 0.2105 0.0836 0.0708 0.1810

2.0 0.3022 0.0868 0.0429 0.1697

2.5 0.5409 0.1080 0.0670 0.1628

3.0 1.0375 0.1604 0.1004 0.1965

3.5 2.6741 0.2684 0.1452 0.3302

6.2.2. Convergence as particle size decreases

The two dilation state based models were solved with RF = 3.5 and using the cubic 

spline influence function. The corresponding displacement fields in the vicinity of the 

crack for N=200 are plotted in Fig. 15 for both cases. The dilation state based methods 

do not exhibit the instability problem and qualitatively match the analytical solution.

We examined the following four solutions: the unsmoothed and smoothed deformation 

gradient based model using a support radius of RF=1.5 and the two dilation state based 

models using a support radius of RF=3.5. We compared the four sets of solutions to the 
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analytical solution using the error metric we discussed earlier, and we monitored the 

error the discretization is refined using the same procedure followed in the previous 

problems. The refinement is capped at 400-by-400 particles. We note that the dilation 

state-based models required significantly more computational effort to solve than the 

deformation gradient-based model with many particles because the support radius 

RF = 3.5 corresponded to approximately 60 nonzeros per row in the matrix, resulting in 

a much wider matrix bandwidth. As a result, the 400-by-400 data point is missing for the

dilation-based models since the linear system did not converge.
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2. Download full-size image

Fig. 15. Displacement fields for the two dilation state based models. The scale on the 
displacement vectors is 75x the scale on the axes.

The errors for all four solutions are plotted in Fig. 16. (F is used as shorthand for 

deformation gradient in Table 8 and Fig. 16.) The jagged trend in the error is due to the 

geometric discretization of the crack mismatching the “true” crack geometry. The 

discrete material points are placed in a regular grid irrespective of the location of the 

crack endpoints. As the grid is refined, additional material points cross the crack tip. The

error changes sharply when an additional set of material points pass the crack tip, 

causing a jump in the geometric error of the crack representation. This could be avoided

by placing material points in a way to exactly match the endpoints of the crack. 
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However, this cannot be applied in crack growth problems where the position of the 

crack is unknown, so this trend should be included in the consideration of the error. 

Even though the errors are not observed to be decreasing smoothly, the convergence 

orders are estimated in Table 8 using the same regression procedure described in the 

previous section. Due to the non-smooth error trend, only the data after the regular 

jagged trend begins are used in the calculation, shown with markers on the line plots 

in Fig. 16. The obtained convergence orders are roughly linear for the deformation 

gradient-based model, but the data is not smooth enough to make any conclusion about

the order of accuracy of the methods. It is, however, shown to be feasible to obtain an 

error that is less than 5% using the broken-bond representation of the thin pressurized 

crack.
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Fig. 16. Error in the linear fracture mechanics problem as the particle size decreases for
each of the models, including after smoothing the deformation gradient based solution.

Table 8. Rough order of convergence estimation in the linear fracture mechanics problem as the particle 

size decreases for each of the models, including after smoothing the deformation gradient based solution.

Method Order Min. error

Silling 1.8022 2.2%

Oterkus 0.4622 5.7%

F, unsmoothed 1.0200 11.7%
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Method Order Min. error

F, smoothed 1.0836 4.1%

7. Conclusion

We rigorously examined the accuracy and convergence properties of the spatial 

discretization of three different peridynamic state-based force density laws with various 

forms of the influence function. We determined that a cubic influence function was 

consistently the best choice to guarantee convergence for each of the laws with varying 

horizon support radii. The deformation gradient model proposed by Silling, 2007 [19] is 

able to converge to the three constant-strain deformations at a linear rate. The two 

dilation-state based models are found to be unable to capture arbitrary constant strain 

modes: the method of Silling, 2007 [19] is only able to achieve linear convergence for 

the isotropic deformation mode, and the method of Oterkus, 2012 [23] is only able to 

achieve linear convergence for the simple shear mode.

However, the deformation gradient method suffers from instabilities in the displacement 

field solution. In the linear fracture mechanics problem, the instability is so great the 

artificial strains between points affect the critical bond-strain criteria for the fracture 

grown — indeed, this is the behavior that motivated this analysis. We demonstrated that

a smoothing technique can adequately alleviate the instability issue, but the smoothed 

solution is still less accurate than the dilation state based models for the linear fracture 

mechanics problem. The error associated with the discretization of the crack prevents 

smooth decline of the solution errors, preventing conclusion on the rate of convergence.

Even with these limitations on analysis, the peridynamic models are able to obtain less 

than 5% error in the domain integral of the displacement field.

Future work is merited on improving the accuracy and stability of the deformation 

gradient-based model. Bessa, 2014 [28] noted the coincidence of the deformation 

gradient based peridynamics model with a certain case of the strong-form Reproducing 

Kernel Particle Method (RKPM). Noting that the peridynamic formulation was improved 

with a smoothing operation, the underlying problem could be a matter of interpretation 

of the results. In RKPM, the solved degrees of freedom are the coefficients to an 

interpolating basis set without the delta function property. Using an underlying 

interpolation, unstable coefficients may produce a smooth solution after applied to the 

basis functions, although the instability may still be undesirable. Additionally, the 

interpolation function requires a different method of imposing Dirichlet boundary 

conditions than the coefficient-setting method used in this paper. As noted in Bessa, 
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2014, incorrect treatment of boundary conditions in many methods can initiate 

instabilities as well as introduce additional errors that reduce the order of convergence. 

In RKPM, Lagrange multipliers are typically used to enforce for Dirichlet boundary 

conditions and higher-order, stable approaches for Neumann boundary conditions are 

available. Thus, we hypothesize that there may be an underlying interpolation implied by

the deformation-gradient based peridynamics formulation that could correctly interpret 

the oscillatory coefficients and provide insight into better ways of handling the boundary 

conditions.
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Appendix. Differentiation

Tangent matrices to the peridynamics equations are required to solve the implicit 

equation efficiently. This is performed using a custom built code generation system built 

upon Sympy in Python. Two aspects to the peridynamics calculations make this type of 

code generation tricky: (1) a variable number of particles interacts with a particle, and 

(2) derivatives of quantities derived in for loops are needed for some calculations. The 

trick of unrolling the loops is not practical when each calculation can contain between 3 

and about 30 particles, depending on the size of the horizon of the particle, which would

require about 27 different implementations. This loop unrolling method could be used to 

produce a table of routines, but may end up required just-in-time compilation if another 

number of particles is needed. Instead, a single force and tangent routine is produced 

that propagates symbolic derivatives using chain rule through for loops, and is 

described as follows.

The dilation θ is the result of a summation over all the particle positions, so every force 

calculated depends on all of the particle positions. Now consider the case of generating 

the matrix and load vector for the interactions centered at one particle, indexed locally 

by 0, with L particles within its horizon, Hx0, each indexed by 1 to L locally. Care must be

taken with respect to the derivatives of summations. If the differentiation argument 

contains the index of the summation, then a Kronecker delta-like process extracts a 

single term out of the summation. Otherwise, the resulting derivative is still a sum over 

its index. For the case of the dilation, where, with S standing in for the expression in 

Section 2.2,
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(A.1)θ=∑k=1LSy0,yk

the derivative through the summation depends on the index of particle,

(A.2)∂θ∂yi=∂∂yi∑k=1LSy0,yk=∂S∂yky0,yik>1∑k=1L∂S∂y0y0,ykk=0.

For state-based peridynamics, the expressions are calculated at once for each point. 

Then, the derivative for a state-based peridynamics force is calculated in three parts 

using the chain rule, with

(A.3)dtidy0=∂ti∂y0+∂ti∂θ∑k=1L∂Sk∂y0

for the center-particle,

(A.4)dtidyi=∂t∂yi+∂ti∂θ∂Si∂yi

for the on-diagonal particle (that which is partaking in pair force), and

dtidyk=∂ti∂θ∂Sk∂yk

for the off-diagonal particles (those not partaking in the pair force, but still affecting the 

interaction through the state variables).

For the F-based peridynamic force, a matrix summation of N=∑k=1LSk is used. The 

procedure is the same as above, but a sum over each component of N is needed, so 

that the above three equations are, respectively,

(A.5)dtidy0=∂ti∂y0+∑a=12∑b=12∂ti∂Nab∑k=1L∂Sk,ab∂y0

for the center-particle,

(A.6)dtidyi=∂t∂yi+∑a=12∑b=12∂ti∂Nab∂Si,ab∂yi

for the on-diagonal particle, and

(A.7)dtidyk=∑a=12∑b=12∂ti∂Nab∂Sk,ab∂yk

for the off-diagonal particles. The above expressions are written as a sum over 

components rather than a double-index matrix contraction to express easily in Sympy.

Each pair force thus yields a contribution two full block-rows in the local stiffness matrix 

of opposite signs:

(A.8)ki=dtidy0dtidyk=1...dtidyi...dtidyk=L0000⋮⋮⋮⋮0000−dtidy0−dtidyk=1...−dtidyi...

−dtidyk=L0000⋮⋮⋮⋮.

Each entry in the above matrix represents a 2-by-2 block (or 3-by-3 in 3D). The first line 

of blocks corresponds to rows 0 and 1, and the second line to rows 2iand 2i+1. Each of 

these contributions is not symmetric, and each sub-block is not necessarily symmetric, 

due to the ∂θ∂y terms. Since this represents one pair force, all of the contributions for 

each pair have to be added together,

(A.9)klocal=∑i=1Lki.

After all of the stiffness matrix contributions of every particle within the horizon are 

added together, the resulting local matrix is symmetric, ensuring symmetry of the global 

stiffness matrix.
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