
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Transferring A Testing Technique Among Autonomous Driving Systems

Permalink
https://escholarship.org/uc/item/9gg7v6nh

Author
Li, Shilong

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9gg7v6nh
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Transferring A Testing Technique Among Autonomous Driving Systems

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Software Engineering

by

Shilong Li

Thesis Committee:
Assistant Professor Joshua Garcia, Chair

Associate Professor James Jones
Assistant Professor Alfred Chen

2024

© 2024 Shilong Li

TABLE OF CONTENTS

Page

LIST OF FIGURES iv

LIST OF TABLES v

ACKNOWLEDGMENTS vi

ABSTRACT OF THE THESIS vii

1 Introduction 1

2 Background 4
2.1 Overview of Autonomous Driving Software 4

2.1.1 Automation Levels . 4
2.1.2 ADS Components . 5

2.2 Autoware . 6
2.2.1 Overview . 6
2.2.2 In Comparison with Apollo . 6

2.3 scenoRITA . 7

3 SCENORITA Transfer Challenges 9
3.1 Domain-specific Constraints . 9

3.1.1 Map Formats . 10
3.1.2 Simulators . 11

3.2 Scenario Generator . 11
3.3 Generated Scenarios Player . 12
3.4 Planning Output Recorder . 12
3.5 Grading Metrics Checker . 13

3.5.1 Portability . 14
3.5.2 Simulation Record Reader . 15
3.5.3 Scenario Evaluation . 15

3.6 Duplicate Violations Detector . 15

4 Empirical Studies 17
4.1 Experiment Settings . 17
4.2 RQ1: Effectiveness of scenoRITA for Autoware 19

ii

4.3 RQ2: Runtime Cost of scenoRITA for Autoware 21
4.4 RQ3: Diversity of the Generated Scenarios 22

5 Discussion 26
5.1 Threats to Validity . 26
5.2 Rule-based ADS . 27

6 Related Work 28

7 Conclusion 30

Bibliography 31

iii

LIST OF FIGURES

Page

2.1 An Overview of scenoRITA [26] . 8

3.1 Genetic Representation of Tests in scenoRITA for Autoware 12
3.2 Source Code L203-L210 of openscenario interpreter.cpp (Reformatted) 13
3.3 Modified Version of openscenario interpreter.cpp 13

4.1 A Collision at an Intersection . 20
4.2 Map Coverage Visualization for Four Experiments. The blue markings indi-

cate the total ego car’s trajectory in each experiment, while the red markings
represent the distribution of the obstacles’ trajectories. 24

4.3 A Section of the Hsinchu Map: Lane 1720 and Lane 1721 follow Lane 1718,
but only Lane 1721 is accessible from Lane 1718. 25

iv

LIST OF TABLES

Page

2.1 Automation Levels . 5
2.2 Comparison between Autoware and Apollo 6

3.1 Domain-specific Constraints . 10

4.1 Information about Selected Maps . 18
4.2 Bug-revealing Violations Found by scenoRITA on Autoware 19
4.3 Runtime Cost (in seconds) of scenoRITA for Autoware 22
4.4 Diversity of the Executable Scenarios for Four Experiments 23

v

ACKNOWLEDGMENTS

I am deeply grateful to Professor Joshua Garcia, Professor James Jones, Professor Alfred
Chen, and all the professors and friends who provided support during my master’s studies.
Your guidance and encouragement have been invaluable throughout this journey.

I also extend special thanks to my colleagues at UC Irvine for their collaboration and in-
sightful feedback, which were essential in refining the concepts and methodologies presented
in this work.

In addition, I appreciate the developers of Autoware for their prompt and helpful responses
to our inquiries.

vi

ABSTRACT OF THE THESIS

Transferring A Testing Technique Among Autonomous Driving Systems

By

Shilong Li

Master of Science in Software Engineering

University of California, Irvine, 2024

Assistant Professor Joshua Garcia, Chair

Autonomous vehicles (AVs) are increasingly prevalent in our daily routines, with examples

such as robotaxis and robot deliveries becoming more commonplace. This trend emphasizes

the importance of thorough testing procedures to guarantee their safety and dependability.

Autonomous driving software (ADS) enables AVs to navigate using complex algorithms

and machine learning techniques. While field operational tests are regularly employed to

assess ADS functionality, they are hindered by cost and geographic limitations. Virtual

testing emerges as a safer and more controlled alternative. Past studies have primarily

focused on validating their approaches on Baidu Apollo, with limited exploration of another

open-source ADS, Autoware. This raises questions about the generalizability of existing

methodologies across different autonomous driving systems. To address this gap, this study

aims to transfer scenoRITA to generate safety-critical and motion sickness-inducing test

scenarios for Autoware. Our empirical results reveal that scenoRITA identifies 63 unique

safety and comfort violations in Autoware.

vii

Chapter 1

Introduction

Autonomous vehicles (AVs), commonly referred to as self-driving cars, are increasingly be-

coming a fundamental and recognizable part of our everyday lives. More than 50 companies,

ranging from industry giants like Alphabet [12] and Tesla [10] to innovative startups such as

WeRide [21] and Nuro [15], are actively developing AV technology. Many of these companies

have already introduced their autonomous technologies to the market, including Waymo’s

robotaxi services [12], Tesla’s Autopilot system [10], and Starship’s robot delivery services

[20].

These AVs are powered by autonomous driving software (ADS) that processes extensive data

(e.g., road, weather, and obstacles) from their surroundings. This software employs various

algorithms and machine learning techniques to perform tasks such as object recognition and

navigation. Apollo [1] and Autoware [6] are among the most popular, production-grade or

near production-grade, and open-source ADS, achieving a high level of autonomy (Level 4).

However, like any technology, ADS can malfunction due to hardware issues or software bugs.

These malfunctions can cause the AV to become immobile or even lose control, posing serious

risks to public safety. Historical incidents highlight these dangers: In 2018, an Uber-operated

1

AV killed a pedestrian in Arizona [19]. In 2023, a GM Cruise robotaxi in San Francisco hit

and dragged a woman around 20 feet after she was initially struck by a human-driven vehicle

[11].

To ensure the safety and reliability of AVs, it is a common practice to conduct field opera-

tional tests. These tests evaluate the ADS by allowing the vehicle to operate autonomously

under real-world conditions. However, real-world tests have significant limitations: they

are costly and limited to specific geographical areas, potentially missing critical scenarios

that could lead to accidents. In contrast, virtual testing, a valuable complement when field

operational tests are unavailable, provides a controlled and safe environment by digitally

simulating various driving scenarios. Modern high-fidelity simulators can also replicate con-

ditions such as road and weather, thereby reducing the risks associated with real-world

vehicular accidents.

Prior studies related to ADS testing techniques have predominantly conducted experiments

only on Baidu Apollo [23] [25] [26] [27] [29] [30] [34] [35] [36] [37] [38] [41], with few on

Autoware [28] or both [22] [24] [33] [39] [40]. This recurring choice is often attributed to

the availability of tools developed specifically for Apollo, which inadvertently discourages the

adaptation of these methods for other ADS like Autoware due to significant time constraints.

Moreover, the architectural variations and evolutionary changes across different ADS plat-

forms pose a challenge for the replicability and reusability of existing testing techniques. This

situation underscores a crucial question: Are these techniques generalizable across various

ADSes, or are they too dependent on the unique characteristics of a particular ADS?

Our research group has developed three ADS testing frameworks: scenoRITA [26], Dop-

pelTest [27], and ConfVE [22]. Notably, we have already successfully adapted ConfVE

[22] to Autoware, demonstrating the potential for broader applicability of our tools. This

thesis specifically aims to expand on this success by adapting scenoRITA for use with

Autoware. This endeavor explores the challenges of this migration, tests the generalizability

2

of scenoRITA, and provides development support for testing Autoware.

More precisely, we transferred scenoRITA to Autoware, which can successfully generate

and mutate driving scenarios that expose an ego car to safety and comfort scenarios for

Autoware. During this migration, we identified the challenges of the re-implementation

and developed some useful tools for testing Autoware. Our empirical experiments show that

scenoRITA can generate test scenarios that trigger 63 unique safety and comfort violations

in Autoware.

The organization of this thesis is summarized as follows: Chapter 2 introduces autonomous

driving software and the testing framework scenoRITA. Chapter 3 identifies the challenges

encountered during the re-implementation of scenoRITA for Autoware. Chapter 4 dis-

cusses the empirical evaluations and results obtained from these studies. Chapter 5 offers an

in-depth discussion of the findings. Chapter 6 reviews the related work in the field. Finally,

Chapter 7 concludes the thesis.

3

Chapter 2

Background

2.1 Overview of Autonomous Driving Software

2.1.1 Automation Levels

The Society of Automotive Engineers (SAE) categorizes driving automation into six levels,

ranging from Level 0 (no automation) to Level 5 (complete automation) [17]. Table 2.1

outlines the degree of autonomy associated with each level. Levels 0 to 2 provide driving

assistance support functionalities, while Levels 3 to 5 encompass fully automated driving

capabilities. Apollo [1] and Autoware [6] are classified as Level 4 because they can operate

without human intervention under certain conditions. In contrast, Tesla’s Full Self-Driving

(FSD) system [10], despite allowing drivers to disengage their hands from the steering wheel

and feet from the pedals, remains classified as Level 2 since it still requires driver attentive-

ness.

4

Table 2.1: Automation Levels

Level Level Definition Example Features Driver Control

0 (No Automation) Warnings and momentary assistance
Emergency braking Yes
Lane departure warning

1 (Driver Assistance) Steering or braking/acceleration assistance
Lane centering Yes
or Adaptive cruise control

2 (Additional Assistance) Steering and braking/acceleration assistance
Lane centering Yes
and Adaptive cruise control

3 (Conditional Assistance) Drive somewhere in limited conditions Traffic jam support When requested

4 (High Automation) Drive somewhere in limited conditions Robotaxi in limited conditions Not necessary

5 (Full Automation) Drive everywhere in all conditions Robotaxi in all conditions No

2.1.2 ADS Components

An ADS is a complex cyber-physical software system composed of multiple interconnected

modules, each designed to handle specific functions essential for the operation of autonomous

vehicles. The ADS includes six core modules: Routing, Localization, Perception, Prediction,

Planning, and Control [29].

Routing develops high-level navigation strategies based on routing requests. Localiza-

tion provides accurate information about the AV’s kinematic features, such as position,

orientation, speed, and acceleration. Perception utilizes data from sensors such as cam-

eras, LiDAR, and radars to identify and classify stationary and moving objects within the

traffic environment. Prediction leverages this data to analyze and anticipate the future

paths of these objects. Planning utilizes the previously mentioned data to devise driving

strategies and maneuvers, ensuring the AV navigates its environment safely and efficiently.

Finally, Control takes these strategic plans and converts them into executable commands

that operate the vehicle’s functions, such as signaling turns and modulating speed.

5

2.2 Autoware

2.2.1 Overview

Autoware is a leading open-source software stack for AVs, built on the Robot Operating Sys-

tem (ROS). It provides essential functionalities for autonomous driving, such as localization,

object detection, route planning, and vehicle control. Supported by a vibrant community

and the Autoware Foundation, it benefits from contributions by various companies and re-

searchers who provide development tools, application software, computing hardware, and

sensors [6].

2.2.2 In Comparison with Apollo

To better understand the challenges of the transfer process, Table 2.2 offers a comparative

analysis of Autoware and Apollo across four aspects relevant to the transfer process.

Table 2.2: Comparison between Autoware and Apollo

Autoware Apollo

Middleware Framework ROS2 Cyber RT Framework

Map Format
Autoware Vector Map Apollo HD Map
Autoware Point Cloud Map

Simulator

CARLA CARLA
LGSVL LGSVL
Scenario Simulator v2 Sim-control
AWSIM

Simulation Record ROS bag Cyber Record

(1) Middleware Framework. The latest release of Autoware, Autoware Universe [6],

is built on ROS2, leveraging its communication infrastructure and package management

6

capabilities. In contrast, Apollo [1] has transitioned to its proprietary framework, Cyber

RT, which is designed for enhanced robustness and performance.

(2) Map Format. Map representation varies significantly between Autoware and Apollo.

Autoware uses two types of maps: the vector map, storing road semantic information in

the Lanelet2 [32] format with additional modifications, and the point cloud map, providing

geometric data in the Point Cloud Data (PCD) format. In contrast, Apollo uses the Apollo

HD Map, a modified version of the ASAM OpenDRIVE format [3].

(3) Simulator. Several simulators are available for autonomous driving. CARLA [8],

LGSVL [14], and AWSIM [7] offer game engine-based simulation environments, with AWSIM

specifically supporting Autoware. The third-party simulators CARLA and LGSVL support

both Autoware and Apollo. Additionally, Scenario Simulator v2 [18] and Sim-control [1]

provide basic simulation features and native support for Autoware and Apollo, respectively.

(4) Record Format. Autoware records all messages produced during the simulation in the

standard ROS bag format, while Apollo uses the Cyber Record format.

2.3 scenoRITA

scenoRITA [26] is a search-based scenario generation testing framework for ADS. It effec-

tively creates valid test scenarios to uncover safety and comfort issues in ADS. scenoRITA

employs five safety and comfort test oracles: collision, unsafe lane change (USLC), speeding,

fast acceleration, and hard braking. The framework consists of five components: Scenario

Generator, Generated Scenario Player, Planning Output Recorder, Grading Metrics Checker,

and Duplicate Violations Detector.

Figure 2.1 illustrates the workflow of scenoRITA. Before launching scenoRITA, a set of

7

domain-specific constraints is required to guide the Scenario Generator in producing valid

driving scenarios. scenoRITA begins by generating several driving scenarios with randomly

generated but valid obstacles under these constraints. The Generated Scenario Player con-

verts these scenarios into inputs for the ADS to execute. During the simulation, the Planning

Output Recorder captures and stores relevant messages. The Grading Metrics Checker eval-

uates each scenario against the five test oracles to identify any violations. The Scenario

Generator calculates the fitness value for each scenario and evolves them using a genetic al-

gorithm. This cycle of generation, execution, recording, evaluation, and evolution continues

until the end of the process. Finally, the Duplicate Violations Detector reviews and removes

duplicate violations, ensuring a unique set of safety and comfort violation scenarios.

Figure 2.1: An Overview of scenoRITA [26]

8

Chapter 3

SCENORITA Transfer Challenges

This chapter examines the challenges of adapting scenoRITA for use with Autoware, focus-

ing on domain-specific constraints, the Scenario Generator, the Generated Scenario Player,

the Planning Output Recorder, the Grading Metrics Checker, and the Duplicate Violations

Detector.

3.1 Domain-specific Constraints

Transferring domain-specific constraints is time-consuming, requiring careful consideration

of various factors, including the ADS itself and simulators. Table 3.1 lists the requirements

that the Scenario Generator must follow to ensure valid driving scenarios. In scenoRITA,

we primarily consider two types of actors in a scenario: ego car and obstacle. The ego

car actor has two attributes: initial position and final position. The obstacle actor has

seven attributes: identifier, type, initial position, final position, speed, size, and motion.

The primary challenges in transferring these constraints are related to map formats and

simulators.

9

Table 3.1: Domain-specific Constraints

Actor Attribute Constraints

Ego Car
Initial Position (Pi) Pi ∈ Lane(vehicle)
Final Position (Pf) Pf ∈ Lane(vehicle) ∧ reachable(Pi, Pf ,vehicle)

Obstacle

ID (idobs) ∀o1, o2 ∈ obstacles(scenario), o1 ̸= o2 =⇒ ido1 ̸= ido2
Type (Tobs) Tobs ∈ {vehicle, bicycle, pedestrian}
Initial Position (Pi) Pi ∈ Lane(Tobs)
Final Position (Pf) Pf ∈ Lane(Tobs) ∧ reachable(Pi, Pf , Tobs)

Speed (vobs)
vvehicle ∈ [8, 110] km/h
vbicycle ∈ [6, 30] km/h
vpedestrian ∈ [4.5, 10.5] km/h

Size
(Zobs = (length, width, height))

Zcar = (4.0, 1.8, 2.5) m
Zbus = (12.0, 2.5, 2.5) m
Ztruck = (8.4, 2.5, 2.5) m
Zmotorcycle = (2.2, 0.8, 2.5) m
Zbicycle = (2.0, 0.8, 2.5) m
Zpedestrian = (0.8, 0.8, 2.0) m

Motion (Mobs) Mobs ∈ {static, mobile}

3.1.1 Map Formats

Autoware vector map uses a modified version of the Lanelet2 map. In this vector map,

each lane has a subtype tag specifying the lane type (e.g., road, highway, crosswalk). This

tag determines which traffic participants (e.g., pedestrians, vehicles, bicycles) can use the

lane. For instance, vehicles can use road lanes and highway lanes, while pedestrians can use

crosswalk lanes. imposes additional constraints on the initial and final position attributes:

(1) the initial and final positions of an actor must be within lanes permitted for its use, and

(2) the final position must be reachable from the initial position based on the actor type.

For example, a vehicle cannot have a valid routing path from a road lane to a crosswalk lane.

In scenoRITA for Apollo, vehicles, bicycles, and pedestrians are treated the same and can

be placed on any lane on the map.

10

3.1.2 Simulators

In this thesis, we used Scenario Simulator v2 for scenario execution. In an experiment, we

created a scenario where an obstacle, classified as a car and measuring 13 meters in length,

was placed directly in front of the ego car in the same lane. During the simulation, the ego

car collided with the obstacle from behind, and there was no information about the obstacle

in the perception messages. Upon further investigation, we discovered that Scenario Simu-

lator v2 includes several built-in obstacle types that correspond to the participant types in

the Lanelet2 framework (e.g., bus. truck, and motorcycle). When we changed the obstacle’s

type to truck or bus, the collision did not occur, and we were able to extract the obstacle in-

formation from the perception messages. This finding highlights the importance of matching

obstacle size to the appropriate vehicle types in Scenario Simulator v2. Therefore, instead

of generating a random size for each obstacle, we generate an obstacle with a random type

and then assign its size attribute with a predefined value based on its type. A vehicle can

be either a motorcycle, car, truck, or bus.

3.2 Scenario Generator

The Scenario Generator uses a genetic algorithm to create and evolve driving scenarios that

identify safety and comfort violations. The genetic algorithm consists of three elements:

genetic representation, fitness evaluation, and search operators. Transferring these elements

is straightforward if all domain-specific constraints are identified and strictly followed. For

example, Figure 3.1 illustrates the genetic representation of a driving scenario. Compared

to the original paper, only the number of genes changes. We have kept the algorithms of

this component unchanged, as it is the core of scenoRITA.

11

Figure 3.1: Genetic Representation of Tests in scenoRITA for Autoware

3.3 Generated Scenarios Player

The Generated Scenarios Player is tasked with transforming the genetic representation of

scenarios from the Scenario Generator into inputs that are compatible with the ADS simula-

tor and executing these scenarios. The primary challenges are (1) identifying the appropriate

inputs for the simulator, and (2) accurately converting the genetic representation into these

inputs.

In this work, the compatible input format for Scenario Simulator v2 is TIER IV Scenario

Format v2 [18], a YAML-based format derived from ASAM OpenSCENARIO v1.2.0 [4].

To ensure precise conversion, we dedicated time to learning OpenSCENARIO [4] and ana-

lyzing existing scenario files from Autoware Evaluator [5] for any predefined configuration

parameters.

3.4 Planning Output Recorder

The Planning Output Recorder is designed to capture messages generated during scenario

execution. By setting the record parameter to true when launching the Generated Scenarios

Player, the data produced during the simulation is stored in real-time in an SQLite database.

Autoware, by default, records nearly all topic messages during simulations, as shown in lines

12

2, 4, 5, and 6 of Figure 3.2. Our preliminary analysis revealed that an 80-second simulation

with 10 actors could consume up to 3 GB of storage. Given our storage limitations, retaining

records for thousands of scenarios is impractical. To address this challenge, we identified

five essential ROS topics for analysis and modified the openscenario interpreter.cpp file to

record only this necessary data. This optimization, shown in Figure 3.3, selectively records

the kinematic data of the ego car (lines 2 and 3), obstacle perception data (lines 4 and 5),

and routing request data (line 6). As a result, we have reduced most simulation record files

to under 50 MB, substantially increasing storage efficiency and reducing unnecessary I/O

expenses.

1 record::start(

2 "-a",

3 "-o", boost::filesystem::path(osc_path).replace_extension("").string(),

4 "-x",

5 "/planning/scenario_planning/lane_driving/behavior_planning"

6 "/behavior_velocity_planner/debug/intersection"

7);

Figure 3.2: Source Code L203-L210 of openscenario interpreter.cpp (Reformatted)

1 record::start(

2 "/localization/acceleration",

3 "/localization/kinematic_state",

4 "/perception/object_recognition/objects",

5 "/perception/object_recognition/ground_truth/objects",

6 "/planning/mission_planning/route",

7 "-o", boost::filesystem::path(osc_path).replace_extension("").string()

8);

Figure 3.3: Modified Version of openscenario interpreter.cpp

3.5 Grading Metrics Checker

Upon completion or termination of the simulation, the Grading Metrics Checker assesses the

current scenario for any comfort or safety violations. The primary challenges in transferring

13

this component involve ensuring portability, analyzing simulation records, and evaluating

scenarios against five test oracles.

3.5.1 Portability

Autoware is a large and complex software system with around 400 ROS packages. Building

the entire latest Autoware project on a workstation with a 20-core CPU can take over two

hours, making it impractical for low-performance laptops. However, for scenoRITA, com-

piling the entire project is only necessary for scenario simulation. Scenario generation and

post-simulation analysis do not require a full build. For scenario generation, the only nec-

essary packages are lanelet2 extension and lanelet2 extension python to extract information

from maps. For record analysis, the required packages are all ROS packages containing ROS

messages or services used for communication between ROS nodes when running Autoware.

These messages or services are essential for deserializing data from ROS bag files.

To facilitate the development and debugging of the Scenario Generator and the Grading

Metrics Checker, we have identified a minimal set of ROS packages in Autoware. This

minimal set includes the necessary packages for scenario generation and post-simulation

analysis, which can be built in about 20 minutes on a Linux laptop with a 4-core CPU.

Documentation for this reduced installation of Autoware is available on GitHub [16].

With this setup, scenoRITA for Autoware can be installed on any compatible Linux ma-

chine, enabling distributed scenario generation and output evaluation. This allows servers

or workstations to focus solely on scenario execution, improving overall efficiency and per-

formance.

14

3.5.2 Simulation Record Reader

An Apollo contributor developed the Python package cyber record [9] for reading and ex-

tracting data from Cyber Record files used in previous ADS testing frameworks. To facilitate

the transfer of ConfVE [22] and scenoRITA [26] to Autoware, we created a Python pack-

age for reading ROS bag files with APIs similar to cyber record, minimizing the need for

code refactoring.

3.5.3 Scenario Evaluation

Evaluating a scenario primarily involves identifying the relevant message topics that contain

the data needed for analysis against the five test oracles. This challenge is mitigated when

transferring the Planning Output Recorder. Another issue arises from perception noise. We

discovered noise in the data from “/perception/object recognition/objects” when retrieving

obstacle information from perception messages. For example, an obstacle with a size of

Zobs = (8.4, 2.5, 2.5) might contain both accurate information (ground truth) and noise,

resulting in a reported size such as Zobs = (8.407060, 2.50004, 2.5). This noise can hinder

the accurate evaluation of the distance between the ego car and surrounding obstacles. To

address this, we modified the source code to publish the ground truth perception data and

used that for record analysis.

3.6 Duplicate Violations Detector

The Duplicate Violations Detector is essential for identifying and eliminating duplicate sce-

narios, thereby minimizing the final set of violation scenarios. This component can be

seamlessly integrated into Autoware by extracting the same features from the output of each

15

scenario with violations, as is done with Apollo. This approach ensures that the process of

identifying duplicates remains consistent and efficient across different ADSes.

16

Chapter 4

Empirical Studies

In order to empirically evaluate the technique implemented for Autoware, and to under-

stand how differences affect scenarios and violations, we investigate the following research

questions:

• RQ1: How effective are scenoRITA’s generated driving scenarios at exposing Auto-

ware to safety and comfort violations?

• RQ2: What is the runtime cost of scenoRITA for Autoware?

• RQ3: How diverse are scenarios generated by scenoRITA for Autoware?

4.1 Experiment Settings

The evaluation involved running 5,410 scenarios in a total of 46 hours on Autoware Universe

v1.0 [6] using Scenario Simulator v2 [18]. We chose Scenario Simulator v2 because it (1) is

developed by the Autoware team, (2) offers native support for Autoware, and (3) provides

a basic UI without a game-like experience. This relationship between Scenario Simulator v2

17

and Autoware is similar to the one between Sim-control and Apollo. The experiments were

performed on one machine running Ubuntu 22.04 equipped with a 20-core Intel(R) Core

i7-12700KF, 32 GB RAM, and NVIDIA GeForce RTX 3090 Ti.

Table 4.1 presents details of the maps selected for our experiments. These four maps are

sourced from Autoware Evaluator [5], an official component of the Autoware CI/CD pipeline.

The Autoware developers use this tool for weekly regression testing as Autoware evolves. We

selected maps of varying sizes for our experiments: Shalun (263 total lanes with 150 junction

lanes), Hsinchu (788 total lanes with 83 junction lanes), AWF Virtual Map (764 total lanes

with 288 junction lanes), and Nishi-Shinjuku (979 total lanes with 387 junction lanes).

Table 4.1: Information about Selected Maps

Map # Lanes # Junction Lanes Map File Size

Shalun 263 150 844.5 KB

Hsinchu 788 83 1.6 MB

AWF Virtual Map (AVM) 764 288 7.7 MB

Nishi-Shinjuku (NS) 979 387 10.6 MB

For the configuration settings of search operators in the genetic algorithm, we followed the

parameters specified in the original paper. Specifically, we used a crossover operator with a

probability of 0.8 and applied mutations to individual scenarios with a probability of 0.2. The

mutation process involved either adding a new obstacle from another scenario or removing

an existing obstacle, each with a probability of 0.1.

We conducted seven experiments in total. For Experiment 1, 2, 3, 4, and 6, each generation

consisted of 20 scenarios, while for Experiment 5 and 7, each generation had 30 scenarios.

We chose to run five experiments with 20 scenarios per generation to ensure a manageable

workload. The two experiments with 30 scenarios per generation were designed to test

whether scenoRITA for Autoware could find more types of violations.

18

Scenario generation was stopped after 6 hours for Experiment 1, 2, 3, 4, and 6 to balance

the need for extensive data collection with practical time constraints. For Experiment 5 and

7, we extended the generation time to 8 hours to observe the effects of prolonged scenario

generation on the algorithm’s effectiveness. Each scenario included 5 to 15 obstacles, and

the maximum execution time was set to 60 seconds.

4.2 RQ1: Effectiveness of scenoRITA for Autoware

The effectiveness of scenoRITA for Autoware is demonstrated by its ability to produce

safety and comfort violations. As shown in Table 4.2, scenoRITA detected 138 bug-

revealing violations (before removing the duplicates) in Autoware. The patterns of these

violations in Autoware are similar to those in Apollo, with the majority classified as unsafe

lane change and hard braking, and fewer related to fast acceleration, speeding, and collision.

After applying the Duplicate Violations Detector, 63 unique violations were identified.

Table 4.2: Bug-revealing Violations Found by scenoRITA on Autoware

Exp. Map Speeding USLC Hard Braking Fast Acceleration Collision

1 Shalun 0 12 3 0 0

2 Hsinchu 0 0 10 0 0

3 NS 0 10 0 0 0

4 NS 1 3 2 0 0

5 NS 0 14 8 0 0

6 AVM 0 9 0 0 0

7 AVM 0 34 28 0 4

Notably, there are four collision violations in Experiment 7. Figure 4.1 illustrates a collision

at an intersection, showing two vehicles represented as rectangles: the obstacle vehicle in red

19

Figure 4.1: A Collision at an Intersection

and the ego car in green. The gray lines indicate the lane boundaries, and the arrow lines

within the lane boundaries show the direction of traffic. The ego car is attempting to cross

the intersection and make a right turn, while the obstacle vehicle is traveling straight along

the road that conflicts with the ego car’s lane at a speed of 3.65 m/s. The collision at the

intersection highlights a critical failure in collision avoidance.

Upon further examination of the collision, we found that while the Prediction module func-

tioned correctly, predicting three possible future paths based on the obstacle’s current lo-

cation, the Planning module failed to respond appropriately when these predicted paths

intersected with the ego car’s planned trajectory. In our scenario, we did not configure the

traffic lights, leading both the ego car and the obstacle to assume they had a green light to

proceed through the intersection. According to the documentation of the Planning module

[13], the obstacle was in a yield lane outside the ego car’s attention area. Consequently, the

ego car did not react to the obstacle, even though their paths intersected. It appears that

Autoware was unable to handle this emergency situation. In contrast, Apollo is likely to

handle such situations if a vehicle runs a red light [2].

20

4.3 RQ2: Runtime Cost of scenoRITA for Autoware

Table 4.3 provides a detailed breakdown of runtime metrics across seven experimental setups

of scenoRITA for Autoware. We calculate the average time cost both per scenario and per

generation, with end-to-end generation times highlighting the overall efficiency of sceno-

RITA for each experiment. For instance, in Experiment 1, it took an average of 0.21

seconds to generate a scenario, 66.77 seconds to execute a scenario, 62.43 seconds to analyze

a simulation record, and 129.41 seconds for the entire end-to-end process for a scenario.

For each generation, it took an average of 1.46 seconds to apply the crossover/mutation

operators (Cx/Mut), 545.28 seconds to evaluate all scenarios, and 0.00 seconds to select

scenarios for the next generation. Additionally, we observed that scenario generation and

crossover/mutation operations are significantly shorter compared to scenario execution and

generation evaluation times, respectively.

We found that the scenario generation time did not correlate with map complexity and

remained consistent across different maps. This consistency could be due to the limited

search space for generating pedestrians and bicycles, as they were restricted to designated

lanes. In contrast, Apollo allows pedestrians, bicycles, and vehicles to use all lanes.

We also discovered that some scenarios failed to execute due to performance issues, as simul-

taneous scenario execution and analysis consumed a significant amount of CPU resources.

This detailed breakdown is crucial for identifying performance bottlenecks and optimizing

the scenoRITA framework for better efficiency when integrated with Autoware.

This issue can be mitigated by separating the execution and analysis processes onto dif-

ferent machines. As mentioned in Chapter 3.5.1, we provided reduced installation support

for Autoware. This enhancement allows us to distribute the analysis processes across mul-

tiple servers, thereby avoiding resource contention and improving overall system efficiency.

By decoupling these tasks, we can ensure that execution processes run smoothly without

21

being hindered by the resource demands of analysis, leading to more reliable and faster

performance.

Table 4.3: Runtime Cost (in seconds) of scenoRITA for Autoware

Exp.
Stats per Scenario Stats per Generation

Generate Play Analyze E2E Mut/Cx Evaluate Select E2E

1 0.21 66.77 62.43 129.41 1.46 545.28 0.00 546.74

2 0.27 58.17 99.42 157.85 7.66 649.81 0.00 657.47

3 0.31 64.82 27.51 92.64 1.02 488.52 0.02 489.57

4 0.13 55.26 99.31 154.70 3.58 634.18 0.00 637.76

5 0.29 67.52 142.01 209.81 6.13 776.73 0.00 782.82

6 0.24 55.09 82.95 138.28 9.25 788.92 0.00 798.17

7 0.23 68.40 145.21 213.84 6.96 1,047.83 0.00 1,054.75

4.4 RQ3: Diversity of the Generated Scenarios

Due to performance issues with our workstation, some scenarios could not be executed.

Instead, we shifted our focus to evaluating the diversity of the executable scenarios. Since

there is no well-established method to evaluate the diversity of generated scenarios, we carried

out both qualitative and quantitative analyses of the scenarios.

We first visualized the map coverage for Experiment 1, 2, 3, and 6, as they had the identical

experimental setups. Figure 4.2 displays the map coverage results for each experiment.

The blue markings indicate the total ego car trajectories in each experiment, while the red

markings represent the distribution of the obstacles’ trajectories. We observed that within a

6-hour experiment, scenoRITA for Autoware was able to produce diverse scenarios, with

ego cars and obstacles traveling through different sections of the map. Although we tried to

22

determine the exact proportion of the map covered by the ego car’s total trajectories, the

calculations required were too complex to complete.

Second, we approximated scenario diversity using the diversity of the ego car’s trajectories,

excluding the trajectories of obstacles for simplicity. Two scenarios are considered the same

if, at any timestamp t (with t0 = 0 marking the start of the ego car’s movement), the Eu-

clidean distance between the locations of the two ego cars does not exceed the threshold

θ = 1 m. This threshold is based on the default value used by Autoware Evaluator [5]. Ta-

ble 4.4 illustrates the diversity of executable scenarios across four experiments. The diversity

percentages are as follows: 60.38% for Experiment 1, 59.97% for Experiment 2, 86.59% for

Experiment 3, and 86.53% for Experiment 6. The higher diversity in Experiments 3 and 6 is

primarily due to the increased complexity of the NS and AVM maps, leading to more failed

scenarios compared to the Shalun and Hsinchu maps.

Table 4.4: Diversity of the Executable Scenarios for Four Experiments

Exp. Map Unique Total Diversity

1 Shalun 413 684 60.38%

2 Hsinchu 367 612 59.97%

3 NS 142 164 86.59%

6 AVM 257 297 86.53%

In the process of examining map coverage, we identified that certain lanes were disconnected

from the rest of the map. For instance, Figure 4.3 depicts a segment of the Hsinchu map.

Based on the map’s layout, Lanes 1720 and 1721, which are successors to Lane 1718, should

be reachable from it. However, in a specific test scenario where the initial position of an

ego car was set on Lane 1718 and the final position on Lane 1720, the scenario could not be

executed successfully. A detailed inspection of the map data exposed significant misalign-

ments in the lane boundaries: the left boundary of the start of Lane 1720 does not align

with the end of the left boundary of Lane 1718, and a similar misalignment is present in

23

the right boundaries of these lanes. These differences prevent the ego car from moving from

Lane 1718 to Lane 1720, causing the scenario to fail.

After pinpointing these misalignments, minor adjustments were made to rectify the boundary

alignments: the end point of the left boundary of Lane 1718 was added to the left boundary

of Lane 1720 as its starting point, with a similar correction applied to the right boundary.

Following these adjustments, the ego car could successfully travel from Lane 1718 to Lane

1720.

(a) Exp. 1: Shalun (b) Exp. 2: Hsinchu

(c) Exp. 3: Nishi-Shinjuku (d) Exp. 6: AWF Virtual Map

Figure 4.2: Map Coverage Visualization for Four Experiments. The blue markings indicate
the total ego car’s trajectory in each experiment, while the red markings represent the
distribution of the obstacles’ trajectories.

24

Figure 4.3: A Section of the Hsinchu Map: Lane 1720 and Lane 1721 follow Lane 1718, but
only Lane 1721 is accessible from Lane 1718.

25

Chapter 5

Discussion

5.1 Threats to Validity

Internal Threats. One potential internal threat is the selection of scenario preparation

and execution times. As pioneers in conducting experiments on Autoware Universe v1.0,

we had limited references for these selections. Therefore, we adhered to the configuration

settings outlined in our recently accepted ConfVE [22] paper.

Another internal threat is setting the dimensions of one type of obstacle to a fixed value,

which could reduce the variety of obstacles. This issue can be mitigated by using four distinct

vehicle instances: car, bus, truck, and motorcycle, each with different lengths and widths.

These vehicle types can effectively represent most obstacles encountered in daily life.

Additionally, the reliability of the simulator is a potential internal threat. We chose to use

Scenario Simulator v2 to execute scenarios instead of alternatives like CARLA or AWSIM.

Autoware developers conduct weekly regression testing using Scenario Simulator v2, which

we believe helps mitigate this threat.

26

External Threats. One external threat is that we applied scenoRITA to a specific version

of Autoware. To mitigate this threat, we chose a publicly stable release version, v1.0, instead

of using the main branch or monthly updated versions.

5.2 Rule-based ADS

As for now, Apollo and Autoware are rule-based autonomous driving software. However,

it is not the permanent solution for autonomous vehicles since it relies too heavily on HD

maps. Instead, deep learning-based approaches are emerging as the preferred solution due

to their ability to learn and improve autonomously. However, this transition presents a

significant challenge in testing autonomous driving software. Deep learning systems, being

adaptive and data-driven, complicate the task of ensuring safety and reliability. Traditional

testing methods may be inadequate, necessitating the development of new testing frameworks

that can handle the dynamic and evolving nature of deep learning models. This includes

advancements in scenario-based testing, simulation environments, and real-world validation

techniques to ensure these autonomous systems perform safely and effectively across diverse

and unpredictable conditions.

27

Chapter 6

Related Work

Numerous studies on ADS testing have demonstrated the effectiveness of their tools, pre-

dominantly utilizing Apollo as the primary testing platform. AV-FUZZER [29] is a fuzzing

ADS testing framework, which employs collision metrics to guide the generation and selec-

tion of scenarios. scenoRITA [26] is the core reference of this study. MOSAT [37] aims to

efficiently generate adversarial and diverse safety-critical scenarios using a multi-objective

genetic algorithm to expose various safety violations in ADSes. CRISCO [38] is a technique

to efficiently generate safety-critical test scenarios for ADS by mining influential behavior

patterns from real traffic trajectories. DeepCollision [30] employs a reinforcement learning

approach to enhance scenario generation. DoppelTest [27] is a novel framework that operates

each vehicle via ADS to efficiently detect system bugs. AutoFuzz [41] integrates a neural net-

work into its fuzzing engine to refine the generation of test scenarios that focus on collisions

and lane deviations. BehAVExplor [23] is a diversity and violation-guided fuzzing frame-

work to generate critical scenarios with diverse behaviors of ADS. STRaP [25] focuses on

reducing test suites by slicing and segmenting scenario records. SPECTRE [31] concentrates

on selecting and prioritizing test suites to accommodate the evolution of ADS. LawBreaker

[35] is an ADS testing framework that uses a driver-oriented specification language and a

28

fuzzing engine to test ADS against real-world traffic laws. REDriver [36] is a modular run-

time enforcement framework for ADS that uses Signal Temporal Logic to enforce safety by

monitoring and minimally adjusting planned trajectories according to national traffic laws.

ACAV [34] is a framework that automates the causality analysis of AV accident recordings

to identify critical safety-related events.

Other research includes experiments on Autoware or both platforms. DriveFuzz [28]

utilizes four types of mutators along with a driving quality feedback engine to guide test

mutation and selection. PlanFuzz [40] is a novel dynamic testing tool for discovering semantic

DoS vulnerability in AD behavioral planning. Acero [33] is a framework for discovering

adversarial driving maneuvers that cause AV to violate safety rules while appearing benign

and maintaining low liability for the attacker. SCTrans [24] transforms realistic driving

records into virtual test scenarios. ConfVE [22] explores emergent failures in ADS by

fuzzing configuration options. Additionally, Underwood et al. [39] propose a metamorphic

testing framework aimed at evaluating the non-deterministic behaviors of test outcomes and

generating more complex driving scenarios.

29

Chapter 7

Conclusion

In conclusion, this study has demonstrated the feasibility and challenges of transferring our

ADS testing technique, scenoRITA, to a different autonomous driving system, Autoware.

The success of re-implementation also confirms the generalizability of scenoRITA.

Through the successful migration of the framework, we have shown that it is possible to

overcome the challenges posed by the different architecture and implementations inherent in

different ADSes. The identified challenges of the research pave the way for more universal

and effective approaches in the field of autonomous driving.

Our empirical experiments show that scenoRITA for Autoware can identify 63 unique

violations across four types of safety and comfort oracles. We also uncovered potential bugs

in the Planning module and one map from Autoware Evaluator. We offer several technical

supports for testing and debugging of Autoware, including a reduced installation of Autoware

and a simulation record reader.

30

Bibliography

[1] Apollo: An open autonomous driving platform. https://bit.ly/3UQ7sPI, 2024.

[2] Apollo Issue #8559: why need traffic light unprotected left(right) turn scenario.
https://bit.ly/3X14dYe, 2024.

[3] ASAM OpenDRIVE. https://bit.ly/4bS35dF, 2024.

[4] ASAM OpenSCENARIO: User Guide. https://bit.ly/3yyBgcg, 2024.

[5] Autoware Evaluator. https://evaluation.tier4.jp/, 2024.

[6] Autoware: the world’s leading open-source software project for autonomous driving.
https://bit.ly/3xPVmuH, 2024.

[7] AWSIM. https://github.com/tier4/AWSIM, 2024.

[8] CARLA Simulator. https://carla.org/, 2024.

[9] cyber record: cyber record offline parse tool. https://bit.ly/44YJXsl, 2024.

[10] Full Self-Driving (Beta). https://bit.ly/4b34RZk, 2024.

[11] GM’s Cruise Loses Its Self-Driving License in San Francisco After a Robotaxi Dragged
a Person. https://bit.ly/3yEf0xq, 2024.

[12] Google’s Self-Driving Car Caused Its First Accident. https://bit.ly/3acQwgO, 2024.

[13] Intersection - Autoware Universe Documentation. https://bit.ly/3WOSQ5Q, 2024.

[14] LGSVL. https://github.com/lgsvl/simulator, 2024.

[15] Nuro. https://www.nuro.ai, 2024.

[16] Reduced Installation of Autoware for SCENORITA. https://bit.ly/3VcJAau, 2024.

[17] SAE Levels of Driving Automation Refined for Clarity and International Audience.
https://bit.ly/3VdpAUU, 2024.

[18] Scenario Testing Framework for Autoware. https://bit.ly/3RkEBCn, 2024.

31

https://bit.ly/3UQ7sPI
https://bit.ly/3X14dYe
https://bit.ly/4bS35dF
https://bit.ly/3yyBgcg
https://evaluation.tier4.jp/
https://bit.ly/3xPVmuH
https://github.com/tier4/AWSIM
https://carla.org/
https://bit.ly/44YJXsl
https://bit.ly/4b34RZk
https://bit.ly/3yEf0xq
https://bit.ly/3acQwgO
https://bit.ly/3WOSQ5Q
https://github.com/lgsvl/simulator
https://www.nuro.ai
https://bit.ly/3VcJAau
https://bit.ly/3VdpAUU
https://bit.ly/3RkEBCn

[19] Self-Driving Uber Car Kills Pedestrian in Arizona, Where Robots Roam. https://

nyti.ms/40IHWxd, 2024.

[20] Starship Technologies: Autonomous robot delivery. https://www.starship.xyz/,
2024.

[21] WeRide. https://www.weride.ai, 2024.

[22] Y. Chen, Y. Huai, S. Li, C. Hong, and J. Garcia. Misconfiguration Software Testing for
Failure Emergence in Autonomous Driving Systems. In Proceedings of the 32nd ACM
Joint European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2024, 2024. To appear.

[23] M. Cheng, Y. Zhou, and X. Xie. BehAVExplor: Behavior Diversity Guided Testing for
Autonomous Driving Systems. In Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2023, page 488–500, New York,
NY, USA, 2023. Association for Computing Machinery.

[24] J. Dai, B. Gao, M. Luo, Z. Huang, Z. Li, Y. Zhang, and M. Yang. SCTrans: Construct-
ing a Large Public Scenario Dataset for Simulation Testing of Autonomous Driving
Systems. In Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering, ICSE ’24, New York, NY, USA, 2024. Association for Computing Machin-
ery.

[25] Y. Deng, X. Zheng, M. Zhang, G. Lou, and T. Zhang. Scenario-Based Test Reduction
and Prioritization for Multi-Module Autonomous Driving Systems. In Proceedings of
the 30th ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2022, page 82–93, New York, NY,
USA, 2022. Association for Computing Machinery.

[26] Y. Huai, S. Almanee, Y. Chen, X. Wu, Q. A. Chen, and J. Garcia. scenoRITA:
Generating Diverse, Fully Mutable, Test Scenarios for Autonomous Vehicle Planning.
IEEE Transactions on Software Engineering, 49(10):4656–4676, 2023.

[27] Y. Huai, Y. Chen, S. Almanee, T. Ngo, X. Liao, Z. Wan, Q. A. Chen, and J. Garcia.
Doppelgänger Test Generation for Revealing Bugs in Autonomous Driving Software.
In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE),
pages 2591–2603, 2023.

[28] S. Kim, M. Liu, J. J. Rhee, Y. Jeon, Y. Kwon, and C. H. Kim. DriveFuzz: Discovering
Autonomous Driving Bugs through Driving Quality-Guided Fuzzing. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security, CCS
’22, page 1753–1767, New York, NY, USA, 2022. Association for Computing Machinery.

[29] G. Li, Y. Li, S. Jha, T. Tsai, M. Sullivan, S. K. S. Hari, Z. Kalbarczyk, and R. Iyer. AV-
FUZZER: Finding Safety Violations in Autonomous Driving Systems. In 2020 IEEE
31st International Symposium on Software Reliability Engineering (ISSRE), pages 25–
36, 2020.

32

https://nyti.ms/40IHWxd
https://nyti.ms/40IHWxd
https://www.starship.xyz/
https://www.weride.ai

[30] C. Lu, Y. Shi, H. Zhang, M. Zhang, T. Wang, T. Yue, and S. Ali. Learning Configura-
tions of Operating Environment of Autonomous Vehicles to Maximize their Collisions.
IEEE Transactions on Software Engineering, 49(1):384–402, 2023.

[31] C. Lu, H. Zhang, T. Yue, and S. Ali. Search-Based Selection and Prioritization of Test
Scenarios for Autonomous Driving Systems. In U.-M. O’Reilly and X. Devroey, editors,
Search-Based Software Engineering, pages 41–55, Cham, 2021. Springer International
Publishing.

[32] F. Poggenhans, J.-H. Pauls, J. Janosovits, S. Orf, M. Naumann, F. Kuhnt, and M. Mayr.
Lanelet2: A high-definition map framework for the future of automated driving. In
2018 21st International Conference on Intelligent Transportation Systems (ITSC), pages
1672–1679, 2018.

[33] R. Song, M. O. Ozmen, H. Kim, R. Muller, Z. B. Celik, and A. Bianchi. Discovering
Adversarial Driving Maneuvers against Autonomous Vehicles. In 32nd USENIX Se-
curity Symposium (USENIX Security 23), pages 2957–2974, Anaheim, CA, Aug. 2023.
USENIX Association.

[34] H. Sun, C. M. Poskitt, Y. Sun, J. Sun, and Y. Chen. ACAV: A Framework for Automatic
Causality Analysis in Autonomous Vehicle Accident Recordings. In Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering, ICSE ’24, New
York, NY, USA, 2024. Association for Computing Machinery.

[35] Y. Sun, C. M. Poskitt, J. Sun, Y. Chen, and Z. Yang. LawBreaker: An Approach for
Specifying Traffic Laws and Fuzzing Autonomous Vehicles. In Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineering, ASE ’22,
New York, NY, USA, 2023. Association for Computing Machinery.

[36] Y. Sun, C. M. Poskitt, X. Zhang, and J. Sun. REDriver: Runtime Enforcement for Au-
tonomous Vehicles. In Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering, ICSE ’24, New York, NY, USA, 2024. Association for Computing
Machinery.

[37] H. Tian, Y. Jiang, G. Wu, J. Yan, J. Wei, W. Chen, S. Li, and D. Ye. MOSAT: Find-
ing Safety Violations of Autonomous Driving Systems using Multi-objective Genetic
Algorithm. In Proceedings of the 30th ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2022,
page 94–106, New York, NY, USA, 2022. Association for Computing Machinery.

[38] H. Tian, G. Wu, J. Yan, Y. Jiang, J. Wei, W. Chen, S. Li, and D. Ye. Generating
Critical Test Scenarios for Autonomous Driving Systems via Influential Behavior Pat-
terns. In Proceedings of the 37th IEEE/ACM International Conference on Automated
Software Engineering, ASE ’22, New York, NY, USA, 2023. Association for Computing
Machinery.

33

[39] R. Underwood, Q.-H. Luu, and H. Liu. A Metamorphic Testing Framework and Toolkit
for Modular Automated Driving Systems. In 2023 IEEE/ACM 8th International Work-
shop on Metamorphic Testing (MET), pages 17–24, 2023.

[40] Z. Wan, J. Shen, J. Chuang, X. Xia, J. Garcia, J. Ma, and Q. A. Chen. Too Afraid
to Drive: Systematic Discovery of Semantic DoS Vulnerability in Autonomous Driving
Planning under Physical-World Attacks. The Internet Society, 2022.

[41] Z. Zhong, G. Kaiser, and B. Ray. Neural Network Guided Evolutionary Fuzzing
for Finding Traffic Violations of Autonomous Vehicles. IEEE Trans. Softw. Eng.,
49(4):1860–1875, Apr 2023.

34

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	ABSTRACT OF THE Thesis
	Introduction
	Background
	Overview of Autonomous Driving Software
	Automation Levels
	ADS Components

	Autoware
	Overview
	In Comparison with Apollo

	scenoRITA

	SCENORITA Transfer Challenges
	Domain-specific Constraints
	Map Formats
	Simulators

	Scenario Generator
	Generated Scenarios Player
	Planning Output Recorder
	Grading Metrics Checker
	Portability
	Simulation Record Reader
	Scenario Evaluation

	Duplicate Violations Detector

	Empirical Studies
	Experiment Settings
	RQ1: Effectiveness of scenoRITA for Autoware
	RQ2: Runtime Cost of scenoRITA for Autoware
	RQ3: Diversity of the Generated Scenarios

	Discussion
	Threats to Validity
	Rule-based ADS

	Related Work
	Conclusion
	Bibliography

