Title
Termination 1 timing in radiocarbon-dated regional benthic $\delta^{18}O$ stacks

Permalink
https://escholarship.org/uc/item/9gg9r5f9

Authors
Stern, JV
Lisiecki, LE

Publication Date
2015

DOI
10.1002/2014PA002700

Peer reviewed
Termination 1 timing in radiocarbon-dated regional benthic $\delta^{18}O$ stacks

Joseph V. Stern1 and Lorraine E. Lisiecki1

1Department of Earth Science, University of California, Santa Barbara, California, USA

Abstract

Benthic $\delta^{18}O$ changes are often assumed to be globally synchronous, but studies comparing 2–9 radiocarbon-dated records over the most recent deglaciation (Termination 1) have proposed differences in the timing of benthic $\delta^{18}O$ change between the Atlantic and Pacific, intermediate and deep, and North and South Atlantic. Because of the relatively small number of records used in these previous studies, it has remained unclear whether these differences are local or regional in scale. Here we present seven regional benthic $\delta^{18}O$ stacks for 0–40 kyr B.P. that include 252 records with independent regional age models constrained by 852 planktonic foraminiferal ^{14}C dates from 61 of these cores. We find a 4000 year difference between the earliest termination onset in the intermediate South Atlantic at 18.5 (95% confidence interval: 17.9–19.0) kyr B.P. and the latest in the deep Indian at 14.5 (14.1–15.0) kyr B.P. The termination onset occurs at 17.5 kyr B.P. in the intermediate and deep North Atlantic, deep South Atlantic, and deep Pacific. However, throughout the termination deep North Atlantic benthic $\delta^{18}O$ leads the deep Pacific by an average of 1000 year and a maximum of 1700 year. Additionally, the intermediate Pacific termination onset at 16.5 (16.1–16.9) kyr B.P. demonstrates that intermediate-depth benthic $\delta^{18}O$ change was not globally synchronous. These regional stacks provide better age models than a global stack across Termination 1 and potentially important constraints on deglacial ocean circulation changes.

1. Introduction

The $\delta^{18}O$ of benthic foraminiferal calcite reflects the combined effects of continental ice volume (sea level), deep water temperature, and the $\delta^{18}O$ of seawater at the location of deep water formation, as influenced by evaporation, precipitation, and glacial meltwater. Because benthic $\delta^{18}O$ records are similar globally, they are often used to correlate ages between ocean sediment cores on local to global scales. Global $\delta^{18}O$ stacks (averages) of aligned $\delta^{18}O$ records also provide orbital-scale chronostratigraphic tools with better signal-to-noise ratios than individual records. However, mounting evidence suggests that benthic $\delta^{18}O$ is not globally synchronous and, thus, is unsuitable for global-scale correlations during glacial terminations.

High-resolution planktonic ^{14}C age models from two cores indicate that during the middle of the last termination deep Pacific benthic $\delta^{18}O$ lagged the deep North Atlantic by 3900 years [Skinner and Shackleton, 2005]. Analysis of sedimentation rates from 33 sites suggests an average Pacific lag of 1600 year during the last five terminations [Lisiecki and Raymo, 2009]. Skinner and Shackleton [2005] proposed that the Pacific lag was due to a delayed temperature response, while several subsequent modeling studies have investigated the role of $\delta^{18}O$ transit time [Wunsch and Heimbach, 2008; Ganopolski and Roche, 2009; Primeau and Deleersnijder, 2009; Wunsch and Wunsch, 2011; Friedrich and Timmermann, 2012; Gebbie, 2012].

Other studies have focused on identifying the age at which Termination 1 begins in different regions. Labeyrie et al. [2005] found that the termination onset occurred first at intermediate depths in the North Atlantic and Indian Oceans at 17.0 kyr B.P. and then 1000–1500 years later in the deep North Atlantic and Pacific. Waelbroeck et al. [2011] identified the benthic $\delta^{18}O$ termination onset at 17.5 kyr B.P. in the intermediate North and South Atlantic, 17.0 kyr B.P. in the deep North Atlantic, and 16.0 kyr B.P. in the deep South Atlantic. Vast regions of the ocean are represented by single-core locations in these studies, raising the question of whether the observed age differences in benthic $\delta^{18}O$ are truly regional in scale.

In this paper, we fill the void between global stacks and comparisons of individual records by generating seven regional benthic $\delta^{18}O$ stacks with independent radiocarbon age models. Compared to previous longer regional benthic $\delta^{18}O$ stacks, our new high-resolution stacks are based on many more records, provide improved geographic coverage, and have significantly improved age models [Labeyrie et al., 1987; Bassinot et al., 1994;
These regional stacks provide useful tools for developing stratigraphically aligned age models for cores without high-resolution 14C age models, data for comparison with modeling efforts, and insights into glacial and deglacial climate processes. For example, compilation studies that rely on global-scale δ^{18}O chronostratigraphies can only produce coarse age models appropriate for orbital-scale, but not millennial-scale, applications [e.g., Oliver et al., 2010]. Our regional stacks can be used to test whether the most recent maximum in benthic δ^{18}O was globally synchronous and corresponds to the Last Glacial Maximum (LGM), as commonly assumed for mapping LGM sea surface temperatures [CLIMAP Project Members, 1981; MARGO Project Members, 2009] and deep water mass boundaries [Raymo et al., 1990; Curry and Oppo, 2005]. Regional stacks can also help assess the uncertainty associated with global stacks, which assume globally synchronous δ^{18}O changes [Imbrie et al., 1984; Pisias et al., 1984; Martinson et al., 1987; Lisiecki and Raymo, 2005]. Finally, proxy compilation studies that limited themselves to radiocarbon-dated marine records [e.g., Shakun et al., 2012] might include more records if regional benthic δ^{18}O chronologies were available to generate reliable age estimates for cores without 14C dates.

2. Methods

2.1. Overview

Seven different regional stacks are generated using 252 previously published benthic δ^{18}O records and 852 planktonic radiocarbon dates from 61 of those cores (Figure 1 and Table S1 in the supporting information). Each of the seven stacks has an age model based on combining planktonic 14C measurements from multiple cores within that region by assuming that benthic δ^{18}O is synchronous within each region (but not necessarily between regions). This produces seven regionally averaged age models based on
completely independent sets of 14C dates (Figure 2). We also aligned benthic δ^{18}O from cores without 14C dates to include in the regional stacks, but these records do not contribute to the age models. Before δ^{18}O values are averaged to create the regional stacks, each benthic δ^{18}O record is placed on its regional radiocarbon age model by converting from aligned target depth to 14C-based calendar years using its regional 14C compilation. Because each region has a different mapping (colored lines in Figure 2) from alignment target (x axis) to 14C age (y axis) using only 14C dates from that region, the same target depth is matched to a different 14C age depending on a core’s region. Thus, benthic δ^{18}O data from each region are assigned a different independent 14C age model.

Our seven regions are the intermediate North Atlantic, deep North Atlantic, intermediate South Atlantic, deep South Atlantic, intermediate Pacific, deep Pacific, and deep Indian (Figure 1). We separated the North and South Atlantic at the equator. An upper boundary of 1000 m was used for the all intermediate stacks (following Labeyrie et al. [2005] and Waelbroeck et al. [2011]) because shallower benthic δ^{18}O values display a strong gradient with depth due to the influence of the thermocline [Curry and Oppo, 2005]. The intermediate and deep stacks are separated at 2000 m based on the previously identified LGM boundary between deep, poorly ventilated southern-sourced waters and better ventilated intermediate waters in all three ocean basins [Kallel et al., 1988; Matsumoto et al., 2002; Curry and Oppo, 2005]. Although previous benthic δ^{18}O comparisons defined depths of 1000–2200 m as intermediate and >3000 m as deep [Labeyrie et al., 2005; Waelbroeck et al., 2011], we find that our results are not greatly affected by small shifts in the boundary between our intermediate and deep regions.

2.2. Regional 14C Age Models

An initial radiocarbon age model was generated for each of the 61 dated cores using that core’s radiocarbon dates, the Bayesian age modeling software Bacon [Blaauw and Christen, 2011], the Marine13 calibration [Reimer et al., 2013], and constant 405 14C yr reservoir ages. Bacon was used to estimate the ages of specified depths throughout each radiocarbon-dated core, including robust Monte Carlo uncertainty estimates that increase with distance from 14C dates.

In order to transfer age estimates between cores within each region, we next aligned all the Atlantic benthic δ^{18}O records to MD95-2042 [Shackleton et al., 2000] and all the Indian and Pacific records to MD97-2120.
from the cores in each region (e.g., MD95-204214C ages are only included in the deep North Atlantic age effectively providing a set of aligned depths that are more evenly spaced in time for creating the various age model only represents an intermediate step in the construction of our regional Atlantic age models, their alignment to MD95-2042 on the GICC05 age model. We emphasize here that the MD95-2042/GICC05 MD97-2120 depth scale, we averaged age estimates across all available cores every 500 years on based on the alignment target (Figures 2d
Greenland Ice Core Chronology 2005 (GICC05) age model [Lisiecki and Raymo, 2009]; MD97-2120 are not included in the deep Indian or deep Paci
Age model development for the deep Indian and deep Pacific is not discussed in section 4.3.

Finally, the intermediate Pacific age model was constructed as the regional average of Bacon-generated age estimates every 10 cm on the aligned-to-MD97-2120 depth scale (Figure 2a). Thus, the average age at these 10 cm target intervals is estimated by averaging the Bacon 14C age estimates from all intermediate Pacific cores that span a particular portion of the record. Not all cores have benthic δ18O and planktonic 14C dates over the entire range of the age models. For example, the intermediate Pacific age model is based on averaging age estimates from seven cores at 1.0 m (based on alignment to MD97-2120 depth) and from twelve cores at 3.0 m (MD97-2120 depth). We only calculate a regional age model for aligned depths that are spanned by at least two cores with radiocarbon age estimates, and we fix all the age models at 0 kyr B.P. Our choice of 10 cm depth spacing in MD97-2120 corresponds to an average of about 600 years on the intermediate Pacific age model.

Age model development for the deep Indian and deep Pacific followed the same methodology as described for the intermediate Pacific, except that only ages from cores located within these regions were used. Radiocarbon measurements from the alignment target (MD97-2120) are included in the intermediate Pacific age model and are equally weighted with dates from other cores in the region. Age estimates from MD97-2120 to the corresponding unevenly spaced depths in each core. Fourth, we used Bacon to generate age estimates from each of the 13 individual core's radiocarbon age models at these depths.

The four regional Atlantic age models were similarly developed, except that we used MD95-2042 on the Greenland Ice Core Chronology 2005 (GICC05) age model [Svensson et al., 2008; Stern and Lisiecki, 2013] as the alignment target (Figures 2d–2g). Instead of averaging the available age estimates every 10 cm on the MD97-2120 depth scale, we averaged age estimates across all available cores every 500 years on based on their alignment to MD95-2042 on the GICC05 age model. We emphasize here that the MD95-2042/GICC05 age model only represents an intermediate step in the construction of our regional Atlantic age models, effectively providing a set of aligned depths that are more evenly spaced in time for creating the various Atlantic age models. Final regional age models are based only on the average of radiocarbon age estimates from the cores in each region (e.g., MD95-2042 14C ages are only included in the deep North Atlantic age model) and the GICC05 age estimates are not included in our radiocarbon age models. Monte Carlo samples (n = 10,000) of age estimates for each core were generated by Bacon and propagated through our entire regional age model generation procedure to provide robust 95% confidence intervals for our age models (Table S2 in the supporting information) assuming constant reservoir ages. These uncertainty estimates implicitly include the effects of any errors in benthic δ18O alignment because alignment errors would increase scatter in the radiocarbon compilations (by aligning portions of cores with different ages) and, thus, increase our age uncertainty estimates. Because our uncertainty estimates do not include possible reservoir age changes, we do not use dates from Atlantic cores located north of 40°N where large-scale reservoir age changes are likely [Stern and Lisiecki, 2013]. The evidence for and possible effects of reservoir age changes in other regions are discussed in section 4.3.

2.3. Benthic δ18O Stacking

Benthic δ18O data were stacked (averaged) after a three-step alignment and age conversion process. First, Match was used to align each δ18O record to a target. Indian and Pacific records were aligned to MD97-2120...

$\delta^{18}O$ versus depth; Atlantic records were aligned to MD95-2042 $\delta^{18}O$ on the GICC05 age model. To ensure well-constrained alignments, nearly all of our $\delta^{18}O$ records (95%) have an average resolution better than 3000 years. Second, we used the regional radiocarbon age models (Figure 2) to convert each individual record from target depth (or GICC05 age) to its final regional radiocarbon age. Third, we created the stacks by averaging $\delta^{18}O$ data placed on the radiocarbon age models. Although normalized versions of the benthic $\delta^{18}O$ records were used for Match alignments, species-corrected benthic $\delta^{18}O$ values were used to generate the stacks. The stacks include $\delta^{18}O$ data from 17 different genera of benthic foraminifera, but over 90% of the records are from *Cibicidoides* and/or *Uvigerina* species (Table S1 in the supporting information). We used species-correction factors from the original publication of the records where available or applied widely accepted values (Table S3). We follow the conventional assumption that *Uvigerina* spp. $\delta^{18}O$ calcify in equilibrium with surrounding seawater [Shackleton, 1974; Fontanier et al., 2006], but a few studies suggest that *Cibicidoides* species may record equilibrium conditions at some Pacific sites [Ohkushi et al., 2003; Nürnberg et al., 2004; Herguera et al., 2010]. Although a few benthic foraminiferal species may have time-dependent $\delta^{18}O$ offsets [Hoogakker et al., 2010], we do not include data from these species in our stacks. We stacked the $\delta^{18}O$ records by averaging all available benthic $\delta^{18}O$ values within evenly spaced time intervals on the regional ^{14}C age models. Because we average individual measurements within each interval (instead of using interpolated values), high-resolution records have a greater influence on the

<table>
<thead>
<tr>
<th>Region</th>
<th>Number of Cores</th>
<th>Number of Dated Cores</th>
<th>Number of Dates</th>
<th>Resolution (kyr)</th>
<th>Mean Number of $\delta^{18}O$ Data per Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>INA</td>
<td>20</td>
<td>4</td>
<td>42</td>
<td>0.5, sm</td>
<td>47</td>
</tr>
<tr>
<td>DNA</td>
<td>94</td>
<td>14</td>
<td>223</td>
<td>0.5</td>
<td>73</td>
</tr>
<tr>
<td>ISA</td>
<td>8</td>
<td>4</td>
<td>41</td>
<td>0.5, sm</td>
<td>9</td>
</tr>
<tr>
<td>DSA</td>
<td>35</td>
<td>6</td>
<td>123</td>
<td>0.5, sm</td>
<td>38</td>
</tr>
<tr>
<td>IP</td>
<td>20</td>
<td>14</td>
<td>160</td>
<td>0.5, sm</td>
<td>31</td>
</tr>
<tr>
<td>DP</td>
<td>64</td>
<td>15</td>
<td>194</td>
<td>0.5</td>
<td>34</td>
</tr>
<tr>
<td>DI</td>
<td>11</td>
<td>4</td>
<td>69</td>
<td>0.5, sm</td>
<td>21</td>
</tr>
</tbody>
</table>

Table 1. Regional Benthic $\delta^{18}O$ Stacks Summarya

aINA = intermediate North Atlantic, DNA = deep North Atlantic, ISA = intermediate South Atlantic, DSA = deep South Atlantic, IP = intermediate Pacific, DP = deep Pacific, DI = deep Indian, and sm = smoothed using a 1 kyr window (see text).

Figure 3. Statistics related to regional stacks of the Intermediate North Atlantic (orange), deep North Atlantic (red), intermediate South Atlantic (light blue), and deep South Atlantic (purple). (a) Regional benthic $\delta^{18}O$ stacks, (b) numbers of points per stacked interval (note logarithmic scale), (c) stacked $\delta^{18}O$ standard errors, and (d) the length of the 95% age confidence interval. Dashed horizontal lines mark 1 and 2 kyr age error for reference. Age uncertainties are asymmetric—see Table S2 for upper and lower 95% limits. Stacked benthic $\delta^{18}O$ values and their standard errors are available in Table S4. All data are plotted relative to our regional radiocarbon age models. Vertical gray bars mark the Younger Dryas (YD) and Heinrich stadials (HS) 1–4.
stacks than low-resolution records. In the deep North Atlantic and deep Pacific regions, stack δ18O values are calculated every 500 years by averaging all available benthic δ18O values within ±250 years on the regional 14C age model. In the other regions with fewer available cores, stack δ18O values are calculated every 500 year by averaging all available benthic δ18O values within ±500 years. These overlapping bins smooth the stacks while still allowing for convenient comparison with higher-resolution records. Table 1 summarizes the number of cores, 14C dates, and δ18O observations included in each stack. Regional 14C age model uncertainties and standard errors for stacked δ18O values are reported in Figures 3 and 4 and Tables S2 and S4 in the supporting information.

3. Results
3.1. Overview

The seven regional stacks are generally similar over the last 40 kyr, except that the timing of the last deglacial decrease in benthic δ18O varies by up to 4000 years and the intermediate stacks are shifted to lighter δ18O values than the deep stacks. All the stacks exhibit long-term increases from about 40 to 20 kyr B.P. with superimposed millennial-scale variability during the glacial period; prominent millennial-scale decreases occur during Heinrich stadials and at ~36.5 and ~27.5 kyr B.P. (Figures 3 and 4). However, we refrain from interpreting these millennial-scale features because age model uncertainties are larger during the glacial period (95% confidence interval (CI) generally around ±1000–2000 years) and these small magnitude events are not reproducible for different sets of alignments (section 4.1).

The Last Glacial Maximum (LGM), which is defined as 19–26 kyr B.P. based on sea level and ice volume reconstructions [Clark et al., 2009], begins significantly before maximum benthic δ18O. Maximum δ18O values in most of the regional stacks occur at the end of the LGM, between 18.5 and 19.5 kyr B.P. (Table 2). Deglacial benthic δ18O decrease in these regions begins 500–2500 years after the start of sea level rise at 19 kyr B.P. However, a significantly later response is observed in the deep Indian stack, which does not reach its δ18O maximum until 15.5 (15.0–16.1) kyr B.P.

![Figure 4](image-url)

Table 2. Termination Onset Ages (in kiloyears B.P.)

<table>
<thead>
<tr>
<th>Region</th>
<th>Age of Maximum δ18O</th>
<th>Termination Onset Age</th>
<th>Termination Onset Age Lower 95% Limit</th>
<th>Termination Onset Age Upper 95% Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>INA</td>
<td>18.5</td>
<td>17.5</td>
<td>16.8</td>
<td>18.2</td>
</tr>
<tr>
<td>DNA</td>
<td>19.0</td>
<td>17.5</td>
<td>17.3</td>
<td>17.7</td>
</tr>
<tr>
<td>ISA</td>
<td>19.5</td>
<td>18.5</td>
<td>17.9</td>
<td>19.0</td>
</tr>
<tr>
<td>DSA</td>
<td>19.5</td>
<td>17.5</td>
<td>16.9</td>
<td>18.1</td>
</tr>
<tr>
<td>IP</td>
<td>19.0</td>
<td>16.5</td>
<td>16.1</td>
<td>16.9</td>
</tr>
<tr>
<td>DP</td>
<td>19.5</td>
<td>17.5</td>
<td>17.2</td>
<td>17.8</td>
</tr>
<tr>
<td>DI</td>
<td>15.5</td>
<td>14.5</td>
<td>14.1</td>
<td>15.0</td>
</tr>
</tbody>
</table>

*Abbreviations as in Table 2.
Glacial-interglacial $\delta^{18}O$ changes in the stacks (maximum-minimum values) range from 1.65 to 1.96‰ (for the Intermediate Pacific and Intermediate North Atlantic, respectively). Although regional differences in the magnitude of glacial-interglacial change are not statistically significant, we do observe a systematic pattern. The two North Atlantic stacks have the largest glacial-interglacial changes, the South Atlantic and Indian stacks have intermediate changes, and the two Pacific stacks have the smallest changes.

We choose not to analyze regional $\delta^{18}O$ gradients because of several uncertainties. First, temporal changes in the gradient between two stacks could be caused either by changing the dominant water mass properties in one or both regions or by shifting water mass boundaries. Second, the stacked $\delta^{18}O$ values could be biased by the depth distribution of cores within each region, with shallower cores generally contributing lighter $\delta^{18}O$. Third, different species of benthic foraminifera dominate different regions of the deep ocean. Atlantic stacks contain proportionately more data from *Cibicidoides* species than *Uvigerina* species compared to the Pacific stacks (Table S1 in the supporting information), although species offset corrections should compensate for this (section 2.3). Fourth, interlaboratory calibration differences can cause offsets up to ~0.3‰ in measured $\delta^{18}O$ [Ostermann and Curry, 2000]; however, the effect on our stacks should be minor due to the large number of cores used.

3.2. Termination 1 Timing

By defining the termination onset as the first stacked $\delta^{18}O$ point that is at least 0.1‰ lighter than the maximum $\delta^{18}O$ value (Table 2), we identify a 4000 year difference between the earliest termination onset at 18.5 (95% CI: 17.9–19.0) kyr B.P. in the intermediate South Atlantic and the latest termination onset at 14.5 (14.1–15.0) kyr B.P. in the deep Indian (Figure 5a). The deep Indian termination onset occurred across the transition into the Bolling-Allerød and is corroborated by all four dated records that constrain the deep Indian age model (see discussion in section 4.6). The termination onset occurs at 17.5 kyr B.P. in the deep North...
Atlantic (17.3–17.7 kyr B.P.), deep South Atlantic (16.9–18.1 kyr B.P.), deep Pacific (17.2–17.8 kyr B.P.), and intermediate North Atlantic (16.8–18.2 kyr B.P.). The intermediate Pacific termination onset occurs at 16.5 (16.1–16.9) kyr B.P., significantly later than both the intermediate South Atlantic (18.5 kyr B.P.) and deep Pacific (17.5 kyr B.P.) (Figure 5d).

Although the deep Atlantic and deep Pacific stack both have termination onsets at 17.5 kyr B.P., a deep Pacific lag compared to the deep North Atlantic is evident in the middle of the termination (Figure 5b). We estimated the average deep Pacific lag relative to the deep North Atlantic during the termination using two techniques. First, we compared the sum of squared differences over the termination (17.5 to 7.5 kyr B.P.) between the two stacks using their original age models and then shifting the deep Pacific stack older by 0–4000 years in increments of 500 years. The minimum sum of squared differences (i.e., the best agreement between the stacks) occurred when the deep Pacific stack was shifted 1000 years older. This result is not sensitive to small changes in the age window used to define the termination. Next, we calculated the age difference between the stacks at even 0.1‰ increments by interpolating along the two age models. The deep North Atlantic and deep Pacific stacks have similar δ18O values of 4.90 ± 0.03‰ at 17.5 kyr B.P. and 3.34 ± 0.02‰ at 7.5 kyr B.P., so this technique gives us fifteen age differences for δ18O values between 4.8 and 3.4‰. Where two age differences were possible for a single δ18O value because of a δ18O reversal in one of the stacks, we used the smaller age difference in our calculation of the average. The average of these age differences is 800 years, with a maximum age difference of 1700 years occurring at 4.2‰, in the middle of the termination. We conclude that deep Pacific benthic δ18O lagged deep North Atlantic benthic δ18O by an average of ~1000 years during the termination, with a maximum lag of 1700 years during the middle of the termination.

4. Discussion
4.1. Sensitivity to Alignment Target

We test the robustness of our stacks and age models by making different versions of the intermediate North and South Atlantic stacks using different alignment targets (particularly selecting cores from within each region to use as targets). Our primary set of alignments use MD95-2042 (from 3146 m on the Iberian Margin) as the Atlantic target core and MD97-2120 (from 1210 m near New Zealand) as the Indian and Pacific target core. We made two additional intermediate North Atlantic stacks with different alignment targets, Ocean Drilling Program (ODP)983 [Channell et al., 1997; Raymo et al., 2004] and M35003-4 [Rühlemann et al., 2004] on their own depth scales. Similarly, we made an additional intermediate South Atlantic stack using GeoB1711 [Little et al., 1997; Vidal et al., 1999] as the target. In all stacks for a given region, the timing of early deglacial features, including termination onsets, is consistent regardless of alignment target (Figure S2 in the supporting information). Therefore, we conclude that termination onset ages are not biased by choice of alignment target, including the use of targets from outside that region (e.g., intermediate North Atlantic records aligned to MD95-2042, a deep North Atlantic target).

Glacial millennial-scale features, however, do appear to be sensitive to the choice of target core. All versions of the intermediate North and South Atlantic stacks exhibit some millennial-scale variability during the glacial period, but most of these features are not reproducible (Figure S2 in the supporting information). Some of the differences are likely due to the influence of the target core itself, with each stack tending to reproduce the millennial-scale features present in its alignment target. Because two different targets from within the same region (ODP983 and M35003-4) produce different millennial-scale features, we could not confidently interpret these features even if each regional stack used an alignment target from within that region. Instead, using one Atlantic and one Indo-Pacific target allows future studies to redefine region boundaries without having to realign cores to different regional targets. Lastly, we caution that millennial-scale features are not well-defined in many cores; thus, their alignment is somewhat subjective and may differ between researchers even if the same alignment target were used. In contrast, alignment of the glacial termination is less subjective and more easily reproducible.

4.2. Benthic δ18O Synchrony Within Regions

To construct our regional age models, we assumed that benthic δ18O changes are synchronous within each of the seven regions. Several modeling studies suggest that this assumption is usually valid to within a few hundred years [Wunsch and Heimbach, 2008; Ganopolski and Roche, 2009; Primeau and Deleersnijder, 2009;
4.3. Marine 14C Reservoir Ages

A reservoir age is the difference between the radiocarbon age of the surface ocean and the contemporaneous atmosphere and is required for calibrating marine radiocarbon ages to calendar ages. Careful consideration of reservoir ages is critical to our study because past reservoir ages may have varied by >1000 14C yr at particular locations (see below) and reservoir ages are spatially correlated. The modern (prebomb) global mean reservoir age is 405 14C yr [Reimer et al., 2013], and modern reservoir ages at the sites used in our compilation range from about 300 to 900 14C yr. We use constant 405 14C yr reservoir ages throughout this study.

4.3.1. Atlantic Reservoir Ages

Because regionally averaged high-latitude North Atlantic reservoir ages increased to >1000 14C yr from 18.5 to 16.5 kyr B.P. and 900–1000 14C yr during the Younger Dryas [Stern and Lisiecki, 2013], the North Atlantic age models presented in this study are based only on dates from cores located south of 40°N. Low-latitude North Atlantic reservoir ages probably remained within a couple hundred years of the modern average, and the same is likely true of the low-latitude South Atlantic (see discussion in Stern and Lisiecki [2013]). Our intermediate South Atlantic age model is constrained by dates from four cores located between 20 and 30°S, but the deep South Atlantic age model includes cores from as far south as 44°S.

In the high-latitude South Atlantic, Skinner et al. [2010] reported increased surface reservoir ages from 23 to 16.5 kyr B.P. and around 13.2 kyr B.P. for MD07-3076 (44°S), with peak reservoir ages >2000 14C yr during the early deglaciation. We use a constant 405 14C yr reservoir age for this site in our deep South Atlantic age model, but excluding dates from this core or using Skinner et al.’s [2010] increased reservoir ages only shifts the deep South Atlantic stack by a maximum of 100–200 years younger during the termination (and has no effect on the termination onset timing). The effect of excluding or shifting the age model of this single core is small on our regionally averaged age model because our deep South Atlantic age model represents the average of age estimates from 5 to 6 dated cores over the termination.

Skinner et al. [2010] argue for constant reservoir ages at 41°S in the South Atlantic, suggesting that the reservoir age increases recorded in MD07-3076 may be a local phenomenon (or, at least, limited to $\geq44°$S). Previous studies use constant reservoir ages between 400 and 800 14C yr for the cores from 41 to 43°S that are included in our deep South Atlantic age model [Becquey and Gersonde, 2003; Piotrowski et al., 2004; Molyneux et al., 2007]. Molyneux et al. [2007] allow for the possibility that reservoir ages may have been up to 1800 14C yr at MD02-2589 based on aligning benthic δ^{18}O to intermediate Pacific site MD97-2120 [Panhke et al., 2003]. However, our stacks indicate that diachronous benthic δ^{18}O responses between the deep South Atlantic and intermediate Pacific offer an alternative explanation to the proposed South Atlantic reservoir age changes, and we note that past reservoir ages near New Zealand are also the subject of debate.
4.3.2. Pacific Reservoir Ages

Reservoir age estimates near New Zealand have been estimated by comparing terrestrial and planktonic foraminiferal 14C dates from near six tephra layers [Sikes et al., 2000]. Reservoir ages were estimated to be 400–500 14C yr for most of the interval from 0 to 17.5 kyr B.P., 800 14C yr in the middle of the Belling-Allerød, and ~2000 14C yr during the Kawakawa Ash (27.1 kyr B.P. ± 1 kyr) [Lowe et al., 2008]. Pahnke et al. [2003] originally assumed constant reservoir ages for core MD97-2120, also from near New Zealand, but later updated their age model for this core using the Sikes et al. [2000] reservoir ages [Pahnke and Zahn, 2005]. However, Carter et al. [2008] found no evidence for an exceptionally large reservoir age at the time of the Kawakawa Ash in another nearby New Zealand core, showing that the magnitude and extent of this possible ~27 kyr B.P. reservoir age increase is still very uncertain.

Using Bacon and constant 405 14C yr reservoir ages, we calculate an age of 23.1 (20.3–28.2) kyr B.P. for the Kawakawa Ash in MD97-2120 using only that core’s dates, or 25.5 (23.9–27.0) kyr B.P. using our intermediate Pacific age model. The age of the ash in the CHAT1K core (which does not have radiocarbon dates) on the deep Pacific age model is 26.4 (25.3–27.4) kyr B.P. Thus, there is reasonable agreement between the age of the Kawakawa Ash in MD97-2120 and CHAT1K on our age models and the estimate of 27.1 kyr B.P. ± 1 kyr [Lowe et al., 2008]. Allowing for a ~2000 14C yr reservoir age at MD97-2120 would make our ash age estimates even younger and significantly worsen this agreement, suggesting that this reservoir age increase is unlikely.

Data from Sikes et al. [2000] and Carter et al. [2008] support reservoir ages of 600–800 14C yr near New Zealand from the middle of the Belling-Allerød (BA) into the Younger Dryas (YD). Our ages for MD97-2120 and Deep Sea Drilling Project 540 (both from the Chatham Rise) are indeed older than the average intermediate Pacific age model during this interval, while our ages from H214 (Bay of Plenty) are slightly younger than the average deep Pacific age model at this time. Thus, our results are consistent with a small reservoir age increase during the BA/YD near New Zealand but suggest that this increase was probably restricted to southern sites. However, this small change in BA/YD reservoir ages near southern New Zealand is within the uncertainty of our age models and not significant given the resolution of our stacks.

Reservoir ages between 1000 and 1700 14C yr have been observed during the first half of the deglaciation in MD01-2416 and MD02-2489 from the high-latitude (>50°N) North Pacific [Sarnthein et al., 2007; Gebhardt et al., 2008]. Additionally, in the northern South China Sea, Sarnthein et al. [2007] reconstructed reservoir ages up to ~2000 14C yr during the LGM and early deglaciation in core GIK17940. However, these three Pacific cores do not show any significant deviations from our mean age models in the intervals where increased reservoir ages have been proposed. Thus, excluding dates from these sites would have a negligible effect on our age model. These results could be consistent with either (1) relatively small reservoir age changes at these sites, (2) diachronous δ18O change that is disguised by reservoir age change, or (3) pervasive reservoir age changes throughout the Pacific.

4.3.3. Summary

In summary, possible past reservoir age variability is probably least problematic for our intermediate North Atlantic, deep North Atlantic, and intermediate South Atlantic age models, where all the dated records are from <40° latitude and reservoir ages likely remained within a couple hundred years of modern. The deep South Atlantic age model is less certain because it contains ages from higher latitude sites. Even a ~2000 14C yr reservoir age increase at MD07-3076 would have only a minor effect on our deep South Atlantic age model, but similarly large reservoir ages throughout the high-latitude (e.g., >40°S) South Atlantic would shift the stack up to ~1000 years younger. The effect of increasing reservoir ages in the Pacific or Indian would be to shift those age models younger, increasing the Pacific lag relative to the Atlantic or making the deep Indian termination onset even later.

4.4. Intermediate Atlantic Termination Responses

The termination onset in our intermediate North Atlantic stack is 17.5 (16.8–18.3) kyr B.P. and has a relatively wide 95% confidence interval that overlaps with the intermediate South Atlantic at 18.5 (17.9–19.0) kyr B.P. However, our estimated age of 17.5 kyr B.P. for the intermediate North Atlantic termination onset is in good agreement with previous compilations [Sarnthein et al., 1994; Waelbroeck et al., 2011], and several lines of evidence suggest that the intermediate North Atlantic onset occurred no earlier than 17.5 kyr B.P. The well-dated intermediate North Atlantic core M35003-4 (12°N), which is included in our age model calculation,
shows a clear termination onset at 17.5 kyr B.P. [Rühlemann et al., 1999, Rühlemann et al., 2004; Hüls and Zahn, 2000]. Two radiocarbon dates near the termination onset in another core from the stack (PO200-10-6-2, 38°N) also corroborate this timing [Baas et al., 1997].

The age of the intermediate North Atlantic termination onset can also be constrained by comparing the phase of benthic δ18O relative to ice-rafted debris (IRD) in individual cores. The stratigraphy and timing of North Atlantic IRD deposits during the beginning of the last deglaciation are well known, with so-called precursor IRD beginning around 18 kyr B.P., an initial IRD peak at 17 kyr B.P. (termed Heinrich Event 1), and a later, larger IRD peak at 16 kyr B.P. [e.g., Stern and Lisiecki, 2013]. In intermediate North Atlantic cores with both benthic δ18O and IRD, the termination onset consistently occurs near the same depth as an IRD peak [Venz et al., 1999; Van Kreveld et al., 2000; Thornalley et al., 2010], thus suggesting termination onsets between around 16.0 and 17.5 kyr B.P. However, because these sites are all from high latitudes (55–65°N), they are not included in the intermediate North Atlantic age model due to likely reservoir ages changes. For example, Thornalley et al., [2010] place the intermediate North Atlantic termination onset around 16.5 kyr B.P. in three cores taken just south of Iceland from 1200 to 2300 m depth, using age models with ~2000 14C yr reservoir ages. Similar reservoir ages at SO82-5-2 (59°N) would yield a termination onset age of ~17 kyr B.P. using that core’s planktonic 14C dates [Van Kreveld et al., 2000]. A somewhat smaller reservoir age closer to 1000 14C yr, as suggested by Stern and Lisiecki [2013], would shift the termination onset at SO82-5-2 into excellent agreement with our stack’s low-latitude age model. Thus, additional constraints from high-latitude radiocarbon ages as well as the relative phase between benthic δ18O and IRD make it unlikely that the intermediate North Atlantic termination onset occurred any earlier than 17.5 kyr B.P.

Waelbroeck et al. [2011] proposed synchronous intermediate North and South Atlantic benthic δ18O termination onsets at 17.5 kyr B.P. associated with Atlantic Meridional Overturning Circulation (AMOC) changes triggered by Heinrich Event 1 melting. However, we find that the intermediate South Atlantic termination onset at 18.5 (17.9–19.0) kyr B.P. significantly preceded peak Heinrich Event 1 ice-rafted debris at 17.0 (16.7–17.3) kyr B.P. [Stern and Lisiecki, 2013]. Thus, the initial deglacial benthic δ18O decrease in the intermediate South Atlantic is more likely related to 19 kyr B.P. melting and AMOC change [e.g., Stern and Lisiecki, 2013] (Figure 6).

We consider three possible explanations for an early intermediate South Atlantic termination onset: increased low-latitude South Atlantic reservoir ages, the arrival of light δ18O from meltwater, and subsurface warming. As discussed in the previous section, available evidence suggests that reservoir ages around 20–30°S
in the Atlantic probably remained within a few hundred years of modern. To shift the intermediate South Atlantic stack into agreement with the intermediate North Atlantic termination onset age would require reservoir ages of ~1500 14C yr, which are quite unlikely in the subtropical Atlantic.

Sea level rise at 19 kyr B.P. was 5–10 m and came mostly from Northern Hemisphere ice sheets [Carlson and Clark, 2012]. Therefore, if light δ^{18}O from meltwater caused the intermediate South Atlantic termination onset, the termination onset should occur first in the North or simultaneously with the South to within uncertainty. Although our reported uncertainties allow for synchronous termination onsets in the intermediate North and South Atlantic, additional stratigraphic constraints provided by IRD and high-latitude 14C dates suggest that the intermediate North Atlantic termination onset likely occurred later. Also, the total amount of meltwater at 19 kyr B.P. would cause seawater δ^{18}O to decrease by less than 0.1‰ globally, and the minor amount of Southern Hemisphere ice sheet melting at this time would probably not register a detectable benthic δ^{18}O decrease. In summary, light δ^{18}O from meltwater was unlikely to be more than a minor contribution to the early intermediate South Atlantic termination onset because Northern Hemisphere melting was not recorded in the intermediate North Atlantic at 19 kyr B.P. and Southern Hemisphere melting was minor.

However, Northern Hemisphere meltwater at 19 kyr B.P. was sufficient to weaken the AMOC and initiate a bipolar seesaw response that caused widespread Southern Hemisphere surface warming beginning at 19 kyr B.P. [Shakun et al., 2012]. Therefore, warming was most likely the dominant contributor to the early intermediate South Atlantic termination onset (Figure 6). Southern surface warming might have been transferred to the intermediate South Atlantic through the formation of Antarctic Intermediate Water (AAIW); however, it is currently a matter of debate whether AAIW expanded [Pahneke et al., 2008] or contracted [Xie et al., 2012] during this interval.

AMOC weakening at 19 kyr B.P. [e.g., Shakun et al., 2012; Stern and Lisiecki, 2013] may also have caused a bipolar seesaw response in intermediate-depth temperatures. In our stacks an intermediate North Atlantic δ^{18}O increase (cooling) is coeval with the intermediate South Atlantic δ^{18}O decrease (warming) at 18.5–19 kyr B.P. (Figure 5c). However, the magnitude and timing of the 19 kyr B.P. increase in intermediate North Atlantic δ^{18}O is somewhat inconsistent between stacks produced using different alignment targets (Figure S2 in the supporting information). Some model results show a bipolar seesaw temperature response at intermediate depths with reduced AMOC [Stocker and Johnsen, 2003], but this is not a consistent feature across all models [Stocker et al., 1992, 2007; Mignot et al., 2007; Liu et al., 2009].

From 18 to 15 kyr B.P. benthic δ^{18}O decreased by 1.09‰ in the intermediate North Atlantic while sea level rose by a maximum of 30 m [Carlson and Clark, 2012]. Scaling the glacial-interglacial 130 m sea level rise [Carlson and Clark, 2012] to the average seawater δ^{18}O decrease of 1.05‰ [Adkins et al., 2002; Duplessy et al., 2002] suggests that only about a 0.25‰ global average benthic δ^{18}O decrease over HS1 can be explained by ice volume change. Explanations for the remaining intermediate North Atlantic HS1 benthic δ^{18}O decrease have formed two camps: one emphasizing warming [e.g., Rühlemann et al., 2004; Marcott et al., 2011] and the other focusing on brine formation [e.g., Dokken and Jansen, 1999; Waelbroeck et al., 2011]. Distinguishing between these two hypotheses requires independent constraints on water mass properties and/or temperatures. Our intermediate North Atlantic stack could be consistent with warming, brine formation, or a combination of both but provides the constraint that these mechanisms must account for the magnitude of the observed δ^{18}O decrease throughout the intermediate North Atlantic during HS1.

4.5. Pacific Termination Lag

Because the intermediate Pacific termination onset at 16.5 kyr B.P. is significantly later than the intermediate South Atlantic onset at 18.5 kyr B.P., the timing of the initial deglacial benthic δ^{18}O decrease was not globally synchronous at intermediate depths, in contradiction with the hypothesis of Waelbroeck et al. [2006, 2011]. Pahneke et al. [2008] proposed an early 19 kyr B.P. expansion of Antarctic Intermediate Water in the Atlantic and a later 17 kyr B.P. expansion in the Pacific. This provides one possible explanation for the termination onset occurring much earlier in the intermediate South Atlantic compared to the intermediate Pacific. Model results [Friedrich and Timmermann, 2012] suggest another possible explanation. With modern circulation, these authors show that light δ^{18}O entering the surface North Atlantic would propagate into the Pacific at depth and then mix vertically, consistent with our observation of the deglacial δ^{18}O decrease occurring in the deep Pacific before the intermediate Pacific. However, with reduced AMOC, light δ^{18}O entered the intermediate Pacific
before the deep Pacific, partly due to the development of a Pacific meridional overturning circulation. So, while Friedrich and Timmermann [2012] suggest top-down propagation of light $\delta^{18}O$ in the Pacific during HS1, our regional stacks seem to suggest bottom-up transport.

Skinner and Shackleton [2005] found a 3900 year age difference in the midpoint of deglacial benthic $\delta^{18}O$ change between MD99-2334 (deep North Atlantic) and TR163-31 (deep eastern equatorial Pacific), which they attributed to delayed Pacific warming. However, we find a 1000 year average and 1700 year maximum termination lag of mean deep Pacific benthic $\delta^{18}O$ behind mean deep Atlantic benthic $\delta^{18}O$. This smaller but still significant lag agrees well with the sedimentation rate analysis of Lisiecki and Raymo [2009]. The larger lag estimated by Skinner and Shackleton [2005] appears to result from local signals in the cores analyzed. The feature that defines the termination midpoint in Skinner and Shackleton’s [2005] deep North Atlantic record occurs at 15 kyr B.P. on their age model but at 16 kyr B.P. in our deep North Atlantic stack. Additionally, the benthic $\delta^{18}O$ decrease during HS1 in Skinner and Shackleton’s [2005] deep Pacific core is only about half the amplitude of the deep Pacific stack.

4.6. Deep Indian Termination Timing

The latest termination onset occurs in the deep Indian stack at 14.5 kyr B.P. This late onset cannot be an artifact of surface reservoir age change because increasing Indian reservoir ages would shift the age model even younger while decreasing reservoir ages could shift the stack older by at most ~400 years. Such a late deep Indian termination onset was not predicted by modeling studies that addressed the timing of deglacial benthic $\delta^{18}O$ changes [Wunsch and Heimbach, 2008; Ganopolski and Roche, 2009; Primeau and Deleersnijder, 2009; Siberlin and Wunsch, 2011; Friedrich and Timmermann, 2012; Gebbie, 2012], which suggests that something important is missing from our understanding of HS1 ocean circulation changes and water mass properties.

The late deep Indian benthic $\delta^{18}O$ response could result from slow transport of the deglacial $\delta^{18}O$ signal to the deep Indian Ocean in general or to a specific region within it, as data coverage is sparse. The four dated records from the deep Indian Ocean in our compilation come from a narrow depth range (3200–3300 m), with three cores from between 40 and 50°S and one from the Arabian Sea (Figure 1 and Table S1 in the supporting information). However, a similarly late termination onset was also observed in a slightly deeper core (3420 m) from 40 to 50°S [Smart et al., 2010] and at 3800 m near the southern tip of India [Piotrowski et al., 2009]. In contrast, a ^{14}C-dated Indian Ocean record from 2100 m shows a much earlier termination onset [Waelbroeck et al., 2006]. So, while the spatial extent of the late Indian Ocean termination onset remains uncertain, intermediate depths probably did not experience this extreme delay.

The heavy HS1 $\delta^{18}O$ values in the deep Indian could be caused by regional water mass properties. Glacioeustatic effects are only expected to cause up to a 0.25% decrease in global average benthic $\delta^{18}O$ over HS1, so most of the large HS1 decreases in the other regional stacks are due to nonglacioeustatic effects. A 1°C cooling or small salinity increase could mask the glacioeustatic $\delta^{18}O$ decrease in the deep Indian. Very saline waters have been observed during the LGM in the Red Sea [Siddall et al., 2003] and deep Southern Ocean [Adkins et al., 2002], and Gebbie [2012] proposed that the $\delta^{18}O$ of deep water from the Southern Ocean may have increased during HS1. Thus, the influence of a water mass with heavy $\delta^{18}O$ could explain deep Indian benthic $\delta^{18}O$ during HS1.

One interesting possibility is that a relatively late termination onset may occur at 3000–4000 m throughout the Southern Hemisphere. Ferrari et al. [2014] propose that most of the deep ocean was isolated from mixing with intermediate-depth water during the LGM and that maximum South Atlantic ventilation ages (2000–3750 years) occurred at middepths [e.g., Skinner et al., 2010], sandwiched between younger waters above [Burke and Robinson, 2012] and below [Barker et al., 2010]. Potentially, middepth southern water remained isolated from mixing with $\delta^{18}O$-depleted meltwater throughout most of HS1 and, therefore, experienced a delayed Termination 1 onset. This hypothesis is currently difficult to test because very few cores with radiocarbon data are available from 3000 to 4000 m in the middle- to high-latitude South Pacific and South Atlantic, and those sites that are available [e.g., MD07-3076, PS2489-2, and RS147-07] may be affected by surface reservoir age changes [e.g., Skinner et al., 2010] that would mask the identification of a late termination onset in our study. Therefore, the late deep Indian termination onset may only appear to be unique due to the availability of deep, southerly sites unaffected by surface reservoir change. Extra caution should be used when applying our deep South Atlantic and Pacific regional age models to sites from 3000 to 4000 m.
Alternatively, 3000–4000 m in the Indian Ocean may truly be the last place to mix with deglacial meltwater if the deep South Atlantic and deep Pacific were ventilated more rapidly due to moderate mixing with northern intermediate water and possibly some deep water from the North Atlantic and North Pacific [e.g., Rae et al., 2014]. Better mapping the geographic extent of this late termination onset will require well-dated benthic $\delta^{18}O$ records from the Indian Ocean, South Pacific, and South Atlantic. Radiocarbon age models for sites north of 40°S would be particularly helpful to reduce the chance of reservoir age changes.

5. Conclusions

Regional $\delta^{18}O$ stacks with independent radiocarbon age models allow for more precise age control than correlation to a global stack and could be used by data compilation studies to allow for inclusion of cores which lack radiocarbon dating. Regional stacks also provide valuable targets for modeling efforts to understand deep water temperature changes and $\delta^{18}O$ transport during the last deglaciation.

In our radiocarbon-dated regional benthic $\delta^{18}O$ stacks, most regions experience $\delta^{18}O$ maxima at the end of the LGM between 18.5 and 19.5 kyr B.P. while ages for the onset of Termination 1 vary by up to 4000 year (Table 2). The earliest termination onset occurs in the intermediate South Atlantic at 18.5 kyr B.P., shortly after initial deglacial ice sheet melting at 19 kyr B.P. We find synchronous termination onsets in the deep North Atlantic, deep South Atlantic, and deep Pacific at 17.5 kyr B.P. However, the deep Pacific lags the deep North Atlantic by an average of ~1000 years during the termination, with a maximum lag of 1700 year in the middle of the termination. The intermediate Pacific termination onset occurs at 16.5 kyr B.P., significantly later than both the intermediate South Atlantic and deep Pacific. Most surprisingly, we find that the deep Indian stack has an extremely late $\delta^{18}O$ maximum (15.5 kyr B.P.), and its termination onset at 14.5 kyr B.P. is coincident with the transition into the Bølling-Allerød. The possibility exists that this late termination onset may also occur at 3000–4000 m in the South Atlantic and South Pacific.

Acknowledgments

We thank everyone who generated and made available the data used in this study. Funding for this research was provided by NSF grants CMG-1025444 and MGG-0926735. We also thank J. Rae, A. Burke, J. Adkins, and L. Skinner for useful discussions. Regional stack data are available in the supporting information.

References

Adkins, J. F., K. McIntyre, and D. P. Schrag (2002), The salinity, temperature, and $\delta^{18}O$ of the glacial deep ocean, Science, 298, 1769–1773.

Curry, W. B., and D. W. Oppo (2005), Glacial water mass geometry and the distribution of $\delta^{13}C\text{CO}_2$ in the western Atlantic Ocean, Paleoceanography, 20, PA1017, doi:10.1029/2004PA001021.

Friedrich, T., and A. Timmermann (2012), Millennial-scale glacial meltwater pulses and their effect on the spatiotemporal benthic δ18O variability, Paleoceanography, 27, PA3215, doi:10.1029/2012PA002330.

Shakun, J. D., P. U. Clark, F. He, S. A. Marcott, A. C. Mix, Z. Liu, B. Otto-Biesnner, A. Schmittner, and E. Bard (2012), Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation, Nature, 484, 49–54, doi:10.1038/nature10915.

