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Abstract

Geometric analogy problems remain an intriguing part of in-
telligence scales, which is closely correlated to many cognitive
studies, such as perception, conception, memory, abstract and
inductive reasoning. The problems not only target the most
fundamental element — analogy-making — in human cogni-
tion, but also require integration of multiple components and
stages: looking at the test booklet, thinking for a minute or two,
and deciding the answer. Great efforts and achievements have
been made to explain different individual aspects of this pro-
cess. In this paper, we take a more holistic approach from the
perspective of problem-solving, by modeling the entire pro-
cess, from the moment the visual stimuli are received to the
moment an answer is decided. Therefore, we explore how the
final solution can be built upon visual inputs and necessary
components that lie between the perceptual input and concep-
tual output. Particularly, we designed a novel similarity metric
and a correspondence-finding method based on mapping and
optimization. With these two basic blocks, we implemented a
computational model, and report our initial results on a classi-
cal problem set.
Keywords: Analogy; Visual Imagery; Similarity

Introduction
If various cognitive gifts are the jewels in the crown of human
intelligence, the analogy-making ability, as the core of cog-
nition (Hofstadter, 2001), is undoubtedly one of the brightest
ones. Analogy problems have always been an irreplaceable
chapter in intelligence tests since they were first invented.
The geometrically-flavored analogy problems are especially
popular because they can be easily administered to people of
different language, social, and cultural background. Figure 1
gives a simple example of geometric analogy problems. To
solve this problem, a subject needs to select an answer from
the five options so that the analogy — A is to B as C is to the
answer — makes sense.

Imagine that a human subject solved the problem in the fig-
ure. She would probably describe it this way: in the first two
images, the large circle surrounding the small circle moves
down to surround the small square; thus, in the last two im-
ages, the large triangle surrounding the small square should
move down to surround the small circle, which gives us Op-
tion 3 as the answer. This simple description perfectly ex-
plains what happens in the analogy, and most people would
accept it as a reasonable answer. However, excessively rely-
ing on verbal protocols is inappropriate because the verbal de-
scription after the subject already solved the item tends to dis-
guise the complexity of geometric analogy problems as a cog-

Figure 1: A simple example of geometric analogy problems
(Lovett et al., 2009).

nitive task. In the first place, the verbal description is more
of a consequence of the solving process rather than the solv-
ing process per se. Second, the solving process might involve
cognitive components that are not consciously accessible to
the subject and thus barely reflected in the verbal description.
Last but not least, the verbal description uses high-level con-
cepts and ignores the potential difficulty of how these con-
cepts are formed or chosen given the visual stimuli. This part
is probably far more complicated and influential in geometric
analogy tasks than one would expect (Barsalou, 1999; Hofs-
tadter, 1979).

For these reasons, we take a more holistic end-to-end ap-
proach. An imagery-based model was designed and imple-
mented to model the solving process of geometric analogy
problems. We adopt one computational formulation of “vi-
sual imagery” as relying purely on pixel-level images, and
operations over these images. While there are many other
formulations of visual imagery that are possible, including
those that incorporate higher-level features of various kinds,
our work in this paper seeks to explore the extent to which
pixel-based representations — i.e. those that contain infor-
mation primarily about the raw spatial distribution of “ink”
or brightness patterns in a visual image — might be sufficient
for solving complex geometric analogy problems. In other
words, what we propose here is one particular imagery-based
strategy among many possible imagery-based strategies —
and imagery-based strategies represent one particular class
of representational strategies among many possible classes of
strategies. Main contributions of this paper are:
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Figure 2: Correspondences between geometric objects.

• A new pixel-level similarity metric of geometric objects
is designed to better serve the imagery-based reasoning
process.

• An end-to-end imagery-based modeling of solving geo-
metric analogy problems is implemented and evaluated
against a classical problem set (Evans, 1968).

Intuitions Behind the Proposed Approach
Before we go into the technical details, it is a better idea to
sketch the intuition behind the approach. Again, taking the
item in Figure 1 as an example, recall that the verbal de-
scription of it entails high-level concepts such as “circle”,
“square”, “triangle”, “surrounding” and “moving down”, and
why and how these high-level concepts end up in the verbal
description is not so self-evident, yet very crucial to the com-
plete solving process.

Imagine that you see only one image, say the first image,
of the item in Figure 1, without any contextual information.
How would you describe it? Perhaps still using the same set
of concepts. But, more probably, different people might de-
scribe it differently. For example, it looks like a symbol of lol-
lipop. This leads us to consider the context-dependent nature
of concept individuation. In our case of geometric analogy
problems, the contextual information is the correspondence
among geometric objects in the four images. Moreover, the
concept individuation and the correspondence finding in solv-
ing process are better to be regarded as two viewpoints toward
the same thing. For example, correspondences in our exam-
ple problem can be depicted as in Figure 2, in which the hor-
izontal ones are based on similarity and the vertical ones are
based on spatial relation. One could say that the conceptual
role of each object gives the correspondences, or, the other
way around, that the correspondences determine the concep-
tual role of each object.

From a problem-solving perspective, when embedded into
the incomplete analogy, a correct option would induce a
self-consistent set of correspondences, or, equivalently, a
self-consistent set of conceptual roles. This type of self-
consistency can be formally verified by a process of consis-

tency check: given the correspondences, two pathways exist
between two diagonal images; for each starting object in each
image, whichever pathway is followed, it should lead to the
same ending object in the diagonal image. For example, in
Figure 2, on one hand, the large circle in A corresponds with
the large circle in B, which corresponds with the large triangle
in D; on the other, the large circle in A corresponds with the
large triangle in C, which corresponds with the large trian-
gle in D. The choice of using diagonal images in consistency
check is because each pathway contains the correspondences
in both directions.

There are two general analogy-making theories. The first
theory assumes a base domain and a target domain and, by
comparing the relational structures in these two domains,
mappings between them are inferred (Gentner, 1983). When
the relational structures or domains are not clearly defined,
analogy-making is usually performed through the second the-
ory where a dynamic process is employed, in which struc-
tures and correspondences between structures adapt to each
other and settle on an equilibrium (Barsalou, 1999; Hofs-
tadter, 1979; Mitchell, 1993). For the purpose of end-to-end
modeling of the solving geometric analogy problems, the sec-
ond theory is preferable. In particular, the domains are not
clearly defined and the desirable equilibrium is realized as a
self-consistent set of correspondences. Note that given the
proportional format of geometric analogy, the base and tar-
get domains are not clearly defined (i.e., central permutation
property (Prade & Richard, 2009, 2010, 2013)); so are re-
lational structures and mappings between structures. In the
rest of this paper, we will discuss the technical details of the
end-to-end modeling of solving geometric analogy problems,
which bear resemblance to the second theory of analogy-
making.

Similarity Metric
Imagery-based models are sensitive to the choice of similar-
ity metrics. A basic formulation of similarity metric is the
Jaccard index (Equation (1)), which measures the similarity
between two finite sets (Kunda, McGreggor, & Goel, 2013).
In our works, these two sets consist of black pixels repre-
senting two geometric objects. Another useful variant of the
Jaccard index is the asymmetric Jaccard index (Equation (2))
that measures the extent to which one set is a subset/inside of
the other set.

J(A,B)=
|A∩B|
|A∪B|

=
|A∩B|

|A∩B|+|A\B|+|B\A|
(1)

J
#»
(A,B)=

|A∩B|
|A|

=
|A∩B|

|A∩B|+|A\B|
(2)

The Jaccard index works well for geometric objects that are
ideally drawn, such as those generated through vector graph-
ics. But it is not as effective for geometric objects that human
subjects would see in real psychological tests and in daily life.
These visual stimuli are subject to distortion and noise, which
pose a problem for imagery models using the Jaccard index.
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Table 1: Similarities between geometric objects in Figure 3.
The Jaccard index is calculated using Equation (1). The soft
Jaccard index is calculated using Equation (17) with α=0.03,
d of one-norm and p=3.

vs vs vs vs

Jaccard 0.4318 > 0.3333 0.3913 > 0.2307
Soft Jaccard 0.2076 < 0.9564 0.6461 < 0.9449

For example, applying Equation (1) on the scanning image
of Figure 1, which contains distortion and noise that are im-
perceptible to human vision, the Jaccard index between the
two large circles in A and B is only 0.25185; the Jaccard in-
dex between the small square in A and the small circle in B is
0.48649 — these measurements violate the correspondences
implied by the verbal description.

Ab=argmin
x∈A

d(x,b) for each b∈B (3)

Ba=argmin
x∈B

d(a,x) for each a∈A (4)

M0={(a,b)∈A×B|a∈Ab∧b∈Ba} (5)
A0={a∈A|∃b∈B s.t. (a,b)∈M0} (6)
B0={b∈B|∃a∈A s.t. (a,b)∈M0} (7)
Ta={(b,a′)∈B×A|b∈Ba∧a′∈Ab} for each a∈A\A0 (8)
Tb={(a,b′)∈A×B|a∈Ab∧b′∈Ba} for each b∈B\B0 (9)
M1={(a,b,a′)∈(A\A0)×B×A|(b,a′)∈argmin

(b,a′)∈Ta

d(a,a′)} (10)

M2={(b,a,b′)∈(B\B0)×A×B|(a,b′)∈argmin
(a,b′)∈Tb

d(b,b′)} (11)

d0=
1

|M0| ∑
(a,b)∈M0

|d(a,b)|p (12)

d1=
1

|M1| ∑
(a,b,a′)∈M1

|d(a,a′)|p (13)

d2=
1

|M2| ∑
(b,a,b′)∈M2

|d(b,b′)|p (14)

D(A,B)=d0+d1+d2 (15)

D#»(A,B)=d0+d1 (16)

S(A,B)=e−αD(A,B) (17)

S
#»
(A,B)=e−α D#»(A,B) (18)

Figure 3 and Table 1 give a clearer example of this issue.
The first row of the table is the Jaccard indices of the objects
in Figure 3. According to these values, the square on the left
is more similar to the triangle than to another square on the
right, and, similarly, the circle on the left is more similar to
the semicircle than to another circle on the right. Note that
the sides of the two squares differ by only 1 pixel, and so do
the radii of the two circles.

We designed another similarity metric, which inherits the
general idea of the Jaccard index and is more robust to distor-

Figure 3: Geometric objects. Each cell in a grid denotes a
pixel.

tion and noise. The new metric does not require strict recur-
rences of elements in the two sets; instead, two elements can
be considered “recurring” to some extent depending on the
distance between them. Therefore, we name it soft Jaccard
index.

Given two sets A={a1,a2,···,am} and B={b1,b2,···,bn}
from a metric space with a metric d, the soft Jaccard index
of A and B is defined by Equation 3 through 18. Note that
the argmin gives a set of values that equally minimize the ob-
jective function. Equation 17 and 18 are the symmetric and
asymmetric versions. Like the Jaccard index, the soft Jaccard
index also consists of three terms — corresponding to |A∩B|,
|A\B| and |B\A| in the Jaccard index — subscripted by 0, 1
and 2 in the equations. The difference is that every term’s
contribution is calculated from the metric d instead of set car-
dinality. To compare with the Jaccard index, the soft Jaccard
indices for the objects in Figure 3 are in the second row of
Table 1. The soft Jaccard indices are more consistent with
human perception than the Jaccard ones.

Correspondence Finding
The example analogy in Figure 1 can be characterized by
a consistent set of correspondences in two analogical direc-
tions. In this section, we discuss how these correspondences
can be found and used to interpret an analogy in a broader
sense. We formulate conceptual correspondences in analo-
gies as mathematical mappings. Thus, treatments of mathe-
matical mappings could help understand analogy-making and
modeling. We first consider two independent dimensions of
mappings:

Qualitative vs Quantitative. A mapping can be derived
from either qualitative relations or quantitative relations. A
qualitative mapping depends on whether there is a good
match between two qualitative relational structures. Thus, the
validity of a qualitative mapping is considered binary. In con-
trast, a quantitative mapping is associated with a continuous
score, say between 0 and 1, to indicate the extent of its va-
lidity. To let them work together, we give every qualitative
mapping a score of 1 if it is valid or 0 if not.

Simple vs Complex. A mapping can also be derived either
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directly from geometric attributes of objects or from other
mappings. Let us call them simple and complex mappings,
respectively. In a sense, a complex mapping represents an
isomorphism between two structures defined by two groups
of mappings.

General Quantitative Mapping. Qualitative mappings
are relatively easy to determine through structure matching,
whereas quantitative mappings require additional considera-
tions to coordinate multiple factors: (a) strong relations are
preferable to weak ones; (b) the derived mapping should be
unambiguous (i.e., injective) in that any two mapped objects
should mutually be each other’s best match; (c) the size of the
mapping should be as large as possible to capture the largest
isomorphism. Thus, we designed a template method to de-
rive quantitative mappings as shown in Equation (19), where,
given two sets U={u1,u2,···,um} and V={v1,v2,···,vn} of ob-
jects, whether ui and v j are mapped to each other is denoted
by xi j=1 or 0, and si j∈R denotes a measurement of the re-
lation between ui and v j, for example, similarity. The above
factors are thus integrated into the optimization in Equation
(19), where xi j and t are variables. Note that, in this formu-
lation, we assume larger values of si j indicate stronger rela-
tions. If smaller values of si j indicate stronger relations, the
equations need to be accordingly negated.

max∑
i, j

xi j

s.t. 1≥∑
j

xi j for all i

1≥∑
i

xi j for all j

xi j=x ji for all i, j

(xi j−0.5)(si j−t)>0 for all i, j

xi j∈{0,1} for all i, j ,and t∈R

(19)

Given the two dimensions of mappings and general quan-
titative mapping, we introduce the specific mappings:

Simple Quantitative: Shape Mapping. When the soft
Jaccard index is used as the strength of relation in Equation
(19), we obtain a mapping reflecting shape similarity. Since
the soft Jaccard index gives values between 0 and 1, we use
the minimum strength of the selected relations as the score of
the mapping.

Simple Quantitative: Location Mapping. When Eu-
clidean distance between objects is used as the strength of
relation in Equation (19), we obtain a mapping based on the
locations of objects. The score of this mapping is calculated
as the normalized maximum strength of the selected relations.

Complex Quantitative Mappings. Let M1:A→B and M2:
C→D be two injective mappings. A delta shape mappings
is a complex quantitative mapping constructed from M1 and
M2, representing the idea that the same shape change happens
from A to B and from C to D. Similarly, a delta location
mappings based on M1 and M2 represent the idea that the
same location change happens from A to B and from C to D.
These two complex quantitative mappings are thus between

A and C and between B and D, orthogonal to the directions of
M1 and M2.

Complex Quantitative: Delta Shape Mapping. When
the difference between the soft Jaccard index of each M1
pair and the soft Jaccard index of each M2 pair is used as
the strength of relation in Equation (19), we obtain the delta
shape mapping. The score of this mapping is calculated from
the maximum strength of the selected relations.

Complex Quantitative: Delta Location Mapping. When
the difference between the distance of each M1 pair and the
distance of each M2 pair is used as the strength of relation
in Equation (19), we obtain the delta location mapping. The
score of this mapping is calculated from the normalized max-
imum strength of the selected relations.

Simple Qualitative: Inside/Outside Mapping. Relations
such as regional connection calculus were supposed to be
used here. But for rapid prototyping, we use only the in-
side/outside relation. An inside/outside mapping exists if the
relational structures of one set can strictly match the relational
structure of the other set, and thus has a binary score of 0 or
1.

Complex Qualitative: Edge-Labeled Isomorphism Be-
tween Bipartite Multigraphs. Let f1, f2,···, fn be injective
mappings between sets A and B, and f ′1, f

′
2,···, f ′n be injective

mappings between sets C and D. These two groups of map-
pings form two edge-labeled bipartite multigraphs with labels
in {1,2,···,n}. We can derive two new mappings between A
and C and between B and D from any label-preserving iso-
morphism between these two multigraphs. The score of the
mapping is 1 if such isomorphism exists; otherwise 0.

There are cases when mappings are theoretically workable,
but cumbersome. For example, when a geometric object is
rotated or mirrored, we can certainly map every point of the
object to where they are moved to. But a more efficient so-
lution is to consider the transformation of the whole object.
Therefore, we also include common affine transformations in
our toolbox, and, using the soft Jaccard index, we score the
validity of these transformations, as we did for mappings.

Experimental Studies
Besides the soft Jaccard index and the aforementioned map-
pings, we construct another conceptual layer in our model-
ing — interpretation — by assigning mappings or transfor-
mations to the two analogical directions, i.e., each interpreta-
tion is a combination of specific mappings or transformations.
To solve a geometric analogy problem, each interpretation is
scored for the geometric analogy obtained by inserting each
option into the incomplete analogy, by aggregating the scores
of its mappings or transformations. The interpretation and
option of the highest score are selected as the answer to the
problem. Following this outline, we implemented a computa-
tional model and ran it on a classical set of 20 geometric anal-
ogy problems (details found in (Lovett et al., 2009)), which
was published in the 1942 edition of the Psychological Test
for College Freshmen of the American Council on Education.
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Table 2: Experimental Results. The second and third columns are two analogical directions. The last column shows the
problems that were solved by that interpretation.

Interpretation A:B::C:? A:C::B:? Mapping/Transformation Consistency Check Solved Problems

1 shape inside/outside Mapping yes 3, 5, 7, 9, 11,17
2 shape delta location Mapping no 1, 4
3 inside/outside delta shape Mapping no 8
4 shape & location isomorphism Mapping no 10, 20
5 shape = location shape Mapping yes 15
6 density change shape change Transformation no 13
7 duplicate N/A Transformation no 16
8 affine N/A Transformation no 2, 6, 12, 14, 18, 19

Figure 4: The typical problems solved by each interpretation.

The experimental results are summarized in Table 2. All
the 20 geometric analogy problems were solved by 8 differ-
ent interpretations. Table 2 lists each interpretation’s map-
pings or transformations in the two analogical directions, and
the solved problems. The first five interpretations are map-
ping interpretations, among which Interpretation 1 and 5 re-
quire a successful consistency check because their mappings
in the two analogical directions are independently derived; in
contrast, in Interpretation 2, 3 and 4, the complex mappings
in one direction are built upon the simple mappings in the
other direction with the consistency assumed to be true. Al-
though the consistency holds in both cases, the corresponding
analogies and how these analogies are processed are different.
Interpretation 6, 7 and 8 are transformation interpretations,
which apply to a large portion of the problems. This implies
that, in addition to consistent mappings, visual imagery and
mental transformation are another important facet of analogy-
making.

It is worth pointing out that Problem 19 can be solved

by two affine transformations — rotation and reflection —
leading to different options. The rotation option won out
marginally in our experiment, but the reflection option is
more human-preferred.

To give a straightforward description of how the model
works, we select for each interpretation a problem to describe
the details. These problems and interpretations are visualized
in Figure 4.

Interpretation 1: Problem 5 shows an analogy of topo-
logical variation between the two rows. Horizontally, two
shape mappings A→B and C→D are constructed. Vertically,
two inside/outside mappings A→C and B→D are constructed.
These four mappings are consistent and characterize the rep-
etition of the same topological change in the two rows.

Interpretation 2: Problem 1 shows an analogy of loca-
tion change between the two rows. Horizontally, two shape
mappings A→B and C→D are constructed. Vertically, two
delta location mappings A→C and B→D are constructed on
the basis of the horizontal shape mappings. The repetition of
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the same location change in the two rows is characterized by
these four mappings.

Interpretation 3: Problem 8 shows an analogy of shape
change between the two rows. This illustration is parallel to
Interpretation 2’s except that it describes shape change in-
stead of location change, using inside/outside mapping in-
stead of shape mapping in the horizontal direction.

Interpretation 4: Problem 20 shows an analogy of lo-
cation exchange between the two rows. Note that location
exchange is different from location change in that an object
can only move to a previously-occupied place, and thus the
movement is relative, whereas location change is the absolute
movement in the global coordinate system. Horizontally, two
types of mappings are constructed, where the dashed line in-
dicates location mappings and the solid line indicates shape
mappings. Vertically, an edge-labeled isomorphism is con-
structed on the basis of the horizontal mappings, where dif-
ferent mapping types serve as edge labels. The repetition of
the same location exchange in the two rows is characterized
by these mappings.

Interpretation 5: Problem 15 shows an analogy of adding
or removing objects between the two rows. Horizontally,
like Interpretation 4, shape mappings and location mappings
are constructed but these two types of mappings are required
to agree with each other. Vertically, shape mapping is con-
structed. Therefore, the same change of adding or removing
objects in the two rows is described by these mappings. A
consistency check is needed.

Interpretation 6: Problem 13 shows an analogy of texture
change and shape change between the two rows. Horizon-
tally, the texture change was supposed to be measured, but
due to the lack of a general computational representation for
texture, the density change of black pixel is used to approxi-
mate texture change. Vertically, shape change is represented
by the change in soft Jaccard Index. The changes are sup-
posed to be equal in rows and columns.

Interpretation 7: Problem 16 shows an analogy of dupli-
cation between the two rows. Horizontally, objects are dupli-
cated in the same way (same location arrangement) from A to
B and from C to D. The location arrangement is determined
by repeatedly calculating the asymmetric soft Jaccard index
at different relative locations. Vertically, a general quantita-
tive mapping between the two sets of locations is computed
using Euclidean distance as the strength of relations.

Interpretation 8: Problem 2 shows an analogy of affine
transformation, a 45-degree rotation in this case, between the
two rows. The soft Jaccard index is used to determine which
affine transformation best matches the variation.

Related Work
Most previous models of solving geometric analogy problems
employ predefined symbolic representation of visual stimuli
and reply on certain kinds of matching mechanisms to find
the structural similarity between the base and target domains
(Evans, 1968; Carpenter, Just, & Shell, 1990; Lovett et al.,

2009). This line of research focuses on high-level cognitive
functions such as search strategy, selective attention and goal
management. Another important type of models (Kunda et
al., 2013; Yang, McGreggor, & Kunda, 2020) is based on vi-
sual imagery and mental transformation (Shepard & Metzler,
1971). These two types of models can be characterized by
the “analytic” and “Gestalt” algorithms by Hunt. Our work
in this paper resembles and differs from both of them in an
obvious way, by combining their characteristics.

Another dichotomy of models of solving analogy problems
involves the strategy from a perspective of problem-solving.
In particular, two general strategies — constructive match-
ing and response elimination — are commonly observed in
human experiments (Snow, 1981; Bethell-Fox, Lohman, &
Snow, 1984). Thus, models have been proposed to imple-
ment both strategies and to explain why specific strategies
are used (Sternberg, 1977; Mulholland, Pellegrino, & Glaser,
1980) in certain circumstances. Our model falls into the class
of response elimination.

Besides the problem set used in this work, there are other
similar problem sets such the Raven’s Progressive Matrices
(Raven, Raven, & Court, 1998), in which the visual ob-
jects are more diverse (not just common nameable geometric
shape) and thus requires more consideration on the modeling
of perceptual processing. The research interest has also ex-
tended to the field of machine learning, especially computer
vision, where two large-scale datasets have been proposed
(Santoro, Hill, Barrett, Morcos, & Lillicrap, 2018; Zhang,
Gao, Jia, Zhu, & Zhu, 2019), which consist of homogeneous
computer-generated items of limited variation patterns. Be-
cause settings in psychometrics and machine learning are rad-
ically different, the implication of these works to the cogni-
tive studies of analogy-making is still unclear.

Conclusion and Future Work
In this paper, we proposed a model of solving geometric
analogy problems in an end-to-end manner, from perceptual
input to conceptual output. For each problem, the model
selects an option and an interpretation, which is based on
the mappings or transformations in the two analogical direc-
tions. As a basic perceptual component of the model, we de-
signed the soft Jaccard index that is robust to distortion and
noise. As a basic conceptual component, we designed a for-
mal correspondence-find method that integrates multiple fac-
tors.

Given the initial feasibility of the proposed model in the
experimental studies, future research includes how the model
relates to analogy-making theories and human behaviors. An-
other theoretical desideratum is to compare the soft Jaccard
index to the Jaccard index and other similarity metrics, for ex-
ample, according to our initial investigation, the soft Jaccard
index shows an approximate triangle inequality, whereas the
Jaccard index strictly follows the triangle inequality (Gilbert,
1972); the causes and implications of the difference would be
interesting both mathematically and cognitively.
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