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Predicting Inpatient Medication Orders From 
Electronic Health Record Data
Kathryn Rough1,*,†, Andrew M. Dai1, Kun Zhang1, Yuan Xue1, Laura M. Vardoulakis1, Claire Cui1,  
Atul J. Butte2, Michael D. Howell1 and Alvin Rajkomar1,3

In a general inpatient population, we predicted patient-specific medication orders based on structured information 
in the electronic health record (EHR). Data on over three million medication orders from an academic medical 
center were used to train two machine-learning models: A deep learning sequence model and a logistic regression 
model. Both were compared with a baseline that ranked the most frequently ordered medications based on a 
patient’s discharge hospital service and amount of time since admission. Models were trained to predict from 990 
possible medications at the time of order entry. Fifty-five percent of medications ordered by physicians were ranked 
in the sequence model’s top-10 predictions (logistic model: 49%) and 75% ranked in the top-25 (logistic model: 
69%). Ninety-three percent of the sequence model’s top-10 prediction sets contained at least one medication that 
physicians ordered within the next day. These findings demonstrate that medication orders can be predicted from 
information present in the EHR.

The utility of medical predictive models is demonstrated by their 
ongoing use in clinical care. Routinely used examples include the 
Pooled Cohort Equation to estimate cardiovascular risk1 and 
CHA2DS2-VASc to predict thromboembolism.2 These models 
produce risk scores for a single outcome that assist clinicians in de-
cision making for a specific question: Is this patient at high enough 
risk of cardiovascular events to require a statin? Does this patient 
with atrial fibrillation have sufficiently elevated thromboembo-
lism risk to benefit from anticoagulation? Most well-known clin-
ical predictions come from carefully designed statistical models 
that use a small set of patient observations and predictor variables; 
they fall on the simpler end of the “machine-learning spectrum.”3

Yet, clinical care is not confined to isolated binary decisions; 
physicians generally choose among many treatment options, and 
those decisions may change as a patient’s condition evolves. For 
instance, a physician admitting a patient with signs of severe infec-
tion may initially order intravenous fluids, an analgesic, and sev-
eral broad-spectrum antibiotics. Throughout the hospitalization, 
additional medications will be ordered as adjunctives or to address 
pre-existing conditions. Eventually, a more targeted antibiotic 
might be ordered based on blood culture results. Developing pre-
dictive models to reliably anticipate these types of heterogeneous 
therapeutic actions over the course of a hospitalization could lead 
to increasingly useful clinical decision-support tools.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE 
TOPIC?
 Previous medication prediction research has generally been 
performed within a narrow population, with infrequent timing 
of predictions (i.e., at the encounter or day level), or by aggregat-
ing medications into broad categories.
WHAT QUESTION DID THIS STUDY ADDRESS?
 This study examines the ability of machine-learning mod-
els to provide patient-specific and time-specific predictions of 
medication orders based on information in the electronic health 
record.

WHAT DOES THIS STUDY ADD TO OUR KNOW-  
LEDGE?
 This study builds on the clinical applicability of previous 
work by predicting medication orders in a general inpatient 
population, whenever orders are placed due to patient needs 
and clinical workflow, and without aggregating medications 
into classes.
HOW MIGHT THIS CHANGE CLINICAL PHARMA-
COLOGY OR TRANSLATIONAL SCIENCE?
 Similar models could eventually facilitate patient-specific 
decision support to reduce the time spent placing orders or as-
sist in the detection of abnormal orders to prevent medication 
errors. This work represents a first step, and further research in 
these domains is needed.
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Medication-related prediction and machine-learning research 
has generally focused on selected patient populations and thera-
peutic areas. Examples include prediction of prescribing dynamics 
for sleep medications,4 onset of vasopressor use in intensive care 
units,5 progression through diabetic medications,6 pharmaceuti-
cal treatments in pregnant women,7 and discharge antihyperten-
sive medications.8 Numerous methods have also been applied to 
improving clinical order sets.9–16 A more general approach was 
taken by Choi et al.17; using electronic health record (EHR) data, 
a recurrent neural network predicted the medication classes likely 
to be prescribed during the next outpatient encounter.

The clinical applicability of previous work on medication pre-
diction has been limited by narrow patient populations, infre-
quent timing of predictions (i.e., at the encounter or day level), or 
by aggregating medications into broad categories. In this paper, 
we build on previous work by training models to predict which 
specific medication compounds physicians will order across a gen-
eral inpatient population throughout their hospitalization, with-
out restricting to particular patient cohorts or therapeutic areas. 
We evaluate the models’ capacity to produce predictions when-
ever orders are placed due to patient needs and clinical workflow.

METHODS 
Study cohort
For all experiments, we used de-identified EHR data from an academic 
medical center, the University of California San Francisco (UCSF), 
between 2012 and 2016. We included all adult patients (≥ 18 years of 
age) who were hospitalized for at least 24 hours. Hospitalizations with 
no medication orders were excluded. No patients were excluded due 
to missing or null values. The EHR data contained information from 
inpatient and outpatient encounters on demographics, diagnoses, 
procedures, laboratory values, vital signs, f lowsheets, and medication 
orders. Data were de-identified by UCSF before sharing with Google 
and initiation of analyses.

We partitioned patients into model training (80%), validation (10%), 
and test sets (10%). Patients in the test set were different from patients 
in the training set; this means that no medication orders from patients 
appearing in the training set were included in the test set. To prevent over-
fitting, the test set remained hidden until the final model evaluation.

De-identification included removal of name, address, phone num-
bers, email addresses, record and encounter numbers, payer infor-
mation, physician names, free-text notes, and more, and all dates 
underwent date-shifting with each patient’s dates shifted by a different 
random number of days up to 1  year (intervals between events were 
kept consistent within patient records). The EHR data were not joined 
or combined with any other data. Storage of data was encrypted and 
access-controlled. Analyses were logged and are auditable. An insti-
tutional review board at UCSF issued a research exemption for the 
de-identified data used in this study.

Data representation
EHR data were structured using an open-source, standardized format for 
clinical data, the Fast Healthcare Interoperability Resources standard.18 
A detailed description of our data representation and processing approach 
has been previously published,19 and the Fast Healthcare Interoperability 
Resources data representation has been open sourced.20 For these anal-
yses, events occurring in the EHR were chronologically ordered into a 
timeline starting from the beginning of a patient’s record to the most re-
cent encounter (Figure 1). Clinical event time-stamps corresponded to 
the time of data entry in the EHR. Individual events may be comprised 

of multiple attributes; for instance, a procedure order could contain a text 
descriptor of the procedure, the institution-specific procedure code, as 
well as the equivalent Current Procedural Terminology21 and Healthcare 
Common Procedure Coding System22 codes used for billing.

The data in each event attribute were represented according to their 
underlying type. Categorical variables (e.g., procedure codes) and text 
variables (e.g., descriptors of diagnosis codes) were represented as one-hot 
or multi-hot vectors. Numeric variables (e.g., vital signs) were discretized 
into deciles, and the deciles were represented as vectors. Embeddings for 
the vectorized predictors were randomly initialized and jointly trained 
with the model. Additional data representation details are presented in 
Supplementary Note S1 and Figure S1.

Description of prediction task
Physicians use computerized order entry systems to write medication 
orders for inpatients as clinical need arises. As illustrated in Figure 1, a 
prediction was made every time a medication order event occurred in the 
patient’s timeline. A prediction for a medication was considered correct 
if an order for it was placed within the following 10 minutes. Because 
multiple medications can be ordered in this timeframe, we consider this 
prediction task to be multilabel, meaning there can be multiple “cor-
rect” medications per time point.23 Because many medication orders 
are placed throughout a hospitalization, multiple irregularly spaced 
predictions were rendered within a single encounter. Predictions were 
based on the patient’s clinical history prior to the order, but no future 
information.

Medications are often coded according to a hospital-specific formulary 
that distinguishes between specific brands, manufacturers, and inactive in-
gredients. Because therapeutically equivalent medications may be coded 
differently for these administrative purposes, we mapped institution-spe-
cific medication codes to RxNorm, a normalized classification system 
produced by the National Library of Medicine,24 at the semantic clini-
cal dose form group level. The semantic clinical dose form group unifies 
medications with the same active ingredients and route of administration 
(e.g., “morphine injectable product”). This process resulted in 990 distinct 
medications being used in our analyses.

We compared the performance of a sequence model, a regularized, 
time-bucketed logistic regression model, and a simple “frequency compara-
tor.” The frequency comparator ranked the most frequently ordered medica-
tions based on a patient’s discharge hospital service and the amount of time 
since admission. All three methods are described in further detail below.

Sequence model description
For this prediction task, we trained a long short-term memory (LSTM) se-
quence model,25 a type of recurrent neural network. Predictors were encoded as 
vectors and were read by the sequence model in temporal order. An LSTM has 
an internal state that “remembers” a representation of selected pieces of infor-
mation it has seen. When predictor information is encountered at a given time 
step, the LSTM sequence model processes it to determine how to modify its 
internal state representation (or “memory”): What new information to retain, 
what old information to forget, and what information to pass along before mov-
ing to the next time step. This process is repeated as the LSTM reads through 
the sequence in temporal order. At the final time step, the LSTM sequence 
model’s internal representation is passed to the network’s output layer, and 
probability estimates are generated for each of the 990 candidate medications.

Embeddings for the predictor vectors were learned during training. 
Because sequences can be hundreds of thousands of attributes long per pa-
tient, predictors were summarized within 12-hour time steps. When multiple 
observations of the same predictive feature occurred within a time step (e.g., 
four recorded heart rate measurements), their embeddings were averaged 
using weights learned during model training.19 If there were no recorded 
observations for a predictor in the time step, it was represented as a vector 
of zeros. Embeddings for all predictors were concatenated, along with an 
embedding that captured elapsed time between the given time step and the 
prediction time.
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All models were trained with TensorFlow in Python.26,27 LSTM se-
quence models took ~  12  days of training time on a single Tesla P100 
GPU to converge. The learning rate was manually fine-tuned for this task, 
but model architecture and other hyperparameter values were adopted 
from a previous multilabel task (discharge diagnosis prediction) on the 
same dataset.19 Supplementary Note S2 contains a description of LSTM 
sequence model training and implementation details.

Description of logistic model and frequency comparator
Our implementation of the logistic model is equivalent to training a 
separate logistic regression classifier for each of the 990 unique med-
ications. Each logistic classifier predicts a single medication, ignoring 
all other medications.28 The logistic model was trained on the same 
set of features as the LSTM model, with one important exception; fea-
tures were averaged within two buckets: The previous 12  hours and 
the remainder of the patient history. Although the sequence model can 

accommodate variable sequence lengths, logistic models require a fixed 
number of inputs, motivating the averaging procedure within two time 
periods to retain temporal information. Parameters were not shared 
between individual classifiers, resulting in a model with over 200 
million trainable parameters. For variable selection and prevention of 
overfitting, L1 regularization was used. The logistic model trained to 
convergence in 3 weeks on 10 Tesla P100 GPUs. The learning rate and 
L1 regularization parameter were manually tuned for this task.

The frequency comparator predicts the most frequently ordered medi-
cations based on the patient’s discharge hospital service and the time since 
admission when the medication order was placed. More specifically, the 
frequency comparator ranks the top-k medications stratified by both the 
time of order placement (< 1 day, 1–3 days, 3–5 days, and > 5 days) and 
hospital discharge service (27 total services; see Table 1). Experiments 
showed slightly improved performance using a combination of time since 
admission and hospital discharge service, compared with either of these 

Figure 1 Schematic of study design and prediction task: Illustration of patient timeline, training data, model input, and model predictions 
for a hypothetical patient. Historical data from a patient’s electronic health record is aggregated into a single timeline. In this example, prior 
outpatient encounters are represented as ovals; inpatient encounters are represented as rectangles. One training example is generated for 
each inpatient medication order placed (marked by gray squares). Input to the model includes data from the patient’s timeline up to the time 
of the order, but no future information. At the time of each medication order, the model outputs the probability that each of the 990 candidate 
medications will be ordered within the next 10 minutes. The two drugs ordered by a clinician at this time point (i.e., ground truth) appear in 
bold type.
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categorizations alone. Table S1 displays the top medications according to 
the frequency comparator for several discharge services.

Evaluation of model performance
We computed several metrics of model performance in the held-out test 
set: Top-k recall, micro-weighted area under the precision recall curve, 
and micro-weighted area under the receiver operating curve. Top-k re-
call captures the proportion of medications ordered by physicians that 
appeared in the model’s top-5, top-10, top-15, and top-25 most probable 

predictions (recall is synonymous with sensitivity). Top-10 recall was ad-
ditionally reported stratified by hospital discharge service. Alternative 
calculations of the top-k recall metrics (where true medication labels do 
not count towards k) are presented in Table S2.

The area under the precision recall curve (AU-PRC) contrasts the 
tradeoffs between recall and precision over a range of thresholds (precision 
is synonymous with positive predictive value). The AU-PRC is generally 
considered a more informative alternative to the area under the receiver op-
erating curve (AU-ROC) when the distribution of outcome labels is highly 

Table 1 Descriptive characteristics in training, validation, and test sets for inpatient medication order prediction task

Patient-level characteristics

Training set Validation set Test set

(N = 63,601) (N = 6,504) (N = 6,383)

Sex, n %

Female 35,957 (56.5) 3,607 (55.5) 3,680 (57.7)

Male 27,638 (43.5) 2,895 (44.5) 2,702 (42.3)

Unknown 6 (< 0.1) 2 (< 0.1) 1 (< 0.1)

Race, n %

White 35,791 (56.3) 3,598 (55.3) 3,658 (57.3)

Black/African American 4,913 (7.7) 500 (7.7) 485 (7.6)

Asian/Pacific Islander 9,786 (15.4) 1,024 (15.7) 962 (15.1)

Other (including multiple races) 10,456 (16.4) 1,118 (17.2) 1,055 (16.5)

Unknown 2,655 (4.2) 264 (4.1) 223 (3.5)

Encounter-level characteristics (N = 98,479) (N = 9,907) (N = 9,978)

Age, n %

18–34 years 19,326 (19.6) 2,093 (20.6) 2,033 (20.4)

35–64 years 49,029 (49.8) 4,940 (49.9) 4,960 (49.7)

65–85 years 25,618 (26.0) 2,482 (25.1) 2,561 (25.7)

>85 years 4,506 (4.6) 446 (4.5) 424 (4.2)

Hospital discharge service, n (%)

General medicine 21,803 (21.1) 2,129 (21.5) 2,168 (21.7)

Neurosurgery 10,465 (10.6) 1,068 (10.8) 1,047 (10.5)

Obstetrics 10,325 (10.5) 1,071 (10.8) 1,064 (10.7)

Orthopedics 7,741 (7.9) 762 (7.7) 839 (8.4)

Transplant 7,393 (7.5) 753 (7.6) 707 (7.1)

General surgery 6,616 (6.7) 628 (6.3) 712 (7.1)

Cardiology 5,770 (5.9) 551 (5.6) 606 (6.1)

Oncology 5,260 (5.3) 575 (5.8) 515 (5.2)

Urology 3,745 (3.8) 384 (3.9) 353 (3.5)

All other servicesa 19,361 (19.7) 1,986 (20.0) 1,967 (19.7)

Previous hospitalizations, n (%)

None 63,284 (64.2) 6,478 (65.4) 6,346 (63.6)

One 16,709 (17.0) 1,702 (17.2) 1,686 (16.9)

Two or more 18,522 (18.8) 1,727 (17.4) 1,946 (19.5)

Medication order event 
characteristics

(N = 2,433,397) (N = 300,176) (N = 297,615)

Number of medications per 
order event, median (25th 
percentile, 75th percentile)

3 (2, 5) 2 (2, 4) 2 (2, 4)

Medications ordered (N = 5,521,361) (N = 681,896) (N = 685,638)
aOther services: Cardiac surgery, colorectal surgery, critical care medicine, emergency medicine, gynecological oncology, gynecology, hepatobiliary medicine, 
medical speciality, neurology, oral/maxillofacial surgery, other surgery, otorhinolaryngology, pediatric (≥ 18 years of age), plastic surgery, pulmonary medicine, 
thoracic surgery, vascular surgery, and other/unknown.
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skewed.29 The micro-weighted AU-ROC measures model discrimination—
the trade-off between recall and false-positive rate—over a range of cutoff 
thresholds. Both the AU-PRC and AU-ROC require micro-weighting30 
to generalize metrics developed for binary predictions to the multilabel set-
ting (metrics are aggregated over medication-specific contingency tables). 
We used 1,000 bootstrapped samples to calculate 95% confidence intervals 
around all metrics.

To evaluate whether the model’s output anticipated orders placed 
within a short timeframe, we calculated two forms of a top-k precision 
metric. The first is the proportion of the top model-generated predictions 
that were ordered by a physician within a time window. The second is the 
proportion of top-k model-generated prediction sets where at least one 
medication was ordered within a time window. Both precision metrics 
were calculated at 30-minute intervals from the time of the prediction to 
24 hours after the prediction; patients discharged during the time window 
were not censored (i.e., they were retained in the denominator). This cal-
culation relies on the assumption that patients do not receive orders for 
additional medications during a short period immediately postdischarge; 
violations of this assumption would result in underestimated metrics.

All model evaluation was performed using Python.

RESULTS
Characterizing the patient population
There were 76,488 unique patients with 118,364 eligible hospi-
talizations, resulting in 6,888,895 individual medications from 
3,031,188 distinct order events. The training set contained 2.4 
million medication order events from 98,479 encounters and 
63,601 unique patients (Table 1). There were more patients iden-
tifying as women than men (57% vs. 44%). Fifty-six percent of pa-
tients identified as white, 15% as Asian/Pacific Islander, and 8% as 
black/African American. Half of the encounters were for patients 
35–64 years old, and 64% were the first-recorded hospitalizations 
for patients. Patients were discharged from a range of hospital ser-
vices—general medicine (21%), neurosurgery (11%), and obstet-
rics (11%) were most common. Descriptive characteristics seemed 
to be similar across the training, validation, and test sets (Table 1).

Medication prediction task: Overall results
Admissions had a median of 19 distinct medication order events 
(25th percentile: 12 and 75th percentile: 33); a prediction was 
made each time an order was placed (Figure 1).

The held-out test set contained 298,000 order events. In it, the 
sequence model had a top-10 recall of 55%, meaning over half of all 
medications ordered by physicians were ranked in the top-10 (out 
of nearly 1,000 possibilities; Table 2). To ensure the model’s perfor-
mance was not explained by memorizing and predicting previous 
medications ordered for the patient, we trained a sequence model 
that provided no information on previous medication-related pre-
dictors. This resulted in modest reductions in recall (top-10: 52%). 
The frequency comparator had substantially lower recall for all 
cutoffs (top-10 recall: 32%), and the logistic model’s performance 
fell between that of the sequence and the frequency comparator 
(top-10 recall: 49%). The median predicted rank of medications 
actually ordered by physicians was 9 for the sequence model (25th 
percentile: 3 and 75th percentile: 26), 11 for the logistic model 
(25th percentile: 4 and 75th percentile: 36), and 23 for the fre-
quency comparator (25th percentile: 7 and 75th percentile: 67).

One limitation of the recall metric is that correct predictions 
can be “crowded out” of the top-k when multiple medications are 
ordered simultaneously or in quick succession. An alternative cal-
culation, where correctly predicted medications are not counted 
toward the top-k, increases the top-10 recall to 62% for the se-
quence model and 52% for the logistic model (Table S2).

The micro-weighted AU-PRC was 0.299 (95% confidence 
interval 0.297–0.300) for the sequence model and 0.193 for the 
logistic model (95% confidence interval 0.191–0.195). The five 
individual medications with the highest AU-PRCs were injectable 
carboprost, injectable methylergonovine, injectable oxytocin, oral 
vardenafil, and injectable terbutaline. The five individual medica-
tions with the lowest AU-PRCs were oral liquid pyridostigmine, 
oral liquid entecavir, oral cevimeline, oral cefuroxime, and ophthal-
mic levobunolol.

Illustrative prediction example
Figure 2 illustrates medication predictions generated by the se-
quence model at three time points during a patient’s week-long hos-
pitalization. The patient had a history of kidney transplantation and 
chronic hypertension and presented to care with shortness of breath 
and symptoms consistent with a respiratory infection. The top-10 

Table 2 Model performance for inpatient medication prediction task, with 95% confidence intervalsa (measured in the held-
out test set)

 
LSTM sequence model: All 

variables
LSTM sequence model: No 

medication variablesb
Logistic regression 

model Frequency comparatorc

Top-5 recalld 0.390 (0.389, 0.391) 0.360 (0.359, 0.390) 0.340 (0.339, 0.342) 0.209 (0.207, 0.212)

Top-10 recalld 0.552 (0.550, 0.553) 0.520 (0.519, 0.552) 0.489 (0.487, 0.490) 0.324 (0.320, 0.327)

Top-15 recalld 0.645 (0.644, 0.646) 0.615 (0.614, 0.644) 0.579 (0.577, 0.581) 0.408 (0.404, 0.413)

Top-25 recalld 0.750 (0.749, 0.751) 0.723 (0.722, 0.745) 0.686 (0.684, 0.687) 0.527 (0.523, 0.530)

Micro-weighted AU-PRC 0.299 (0.297, 0.300) 0.258 (0.257, 0.299) 0.193 (0.191, 0.195) —

Micro-weighted AU-ROC 0.977 (0.977, 0.977) 0.974 (0.974, 0.977) 0.956 (0.955, 0.956) —

Many medications can be ordered simultaneously in inpatient settings: 20% of order events have ≥ 5 medications actually ordered, 7% have ≥ 10 medications 
ordered, 4% have ≥ 15 medications ordered, 1% have ≥ 25 medications ordered. This places a bound on the highest attainable top-k recall metrics (i.e., a perfect 
model would achieve only 80% top-5 recall). For alternative calculation of recall metrics, please see Table S1.
AU-PRC, area under the precision-recall curve; AU-ROC, area under the receiver operating curve; LSTM, long short-term memory.
a95% Confidence intervals were calculated from 1,000 bootstrapped samples. bLSTM sequence model trained with no information on previous medications. 
cThe frequency comparator ranked the top-k most frequently ordered medications based on the time between hospital admission and the placement of the 
order (< 1 day, 1–3 days, 3–5 days, and > 5 days) and the patient’s discharge hospital service. dTop-k recall is the proportion of medications actually ordered by 
physicians that appear in the model’s top-k most probable medication predictions.
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predictions made at the first time point (order A) included medi-
cations commonly ordered for patients at the time of admission: 
Broad-spectrum antibiotics, treatments used for rehydration, pain 
relievers, and antinausea medications. Three of four medications or-
dered for the patient appear in the model’s top-15 predictions.

Order B was placed later that evening. The model’s top-10 
predictions included medications more specific to the patient’s 
needs, including immunosuppressants and antihypertensives. Of 
the 8 medications ordered, 6 appeared in the top-15; however, 
the model assigned a low probability to the transdermal cloni-
dine and oral alprazolam ordered by physicians (ranked 81 and 
256).

Two days later, the patient’s blood pressure rose acutely, de-
spite oral antihypertensive use throughout the hospitalization. 

An order was placed for injectable hydralazine, an antihyperten-
sive used for short-term blood pressure control. The medication 
was correctly ranked in the top-10, as were two additional an-
tihypertensives. Predictions generated by the logistic model ap-
pear in Figure S2.

Model performance results stratified by hospital discharge 
service
Stratification by hospital discharge service reveals heterogeneity 
in model performance (Figure 3). Some services treat patients 
with relatively homogenous needs, leading to a narrower set of 
medications typically ordered; the models tended to have better 
performance in these settings compared with services that care 
for patients with more homogeneous conditions that require 

Figure 2 Illustrative example of LSTM sequence model-generated medication predictions for a single patient. Predictions produced by the 
LSTM sequence model at three time points during a patient’s hospitalization are shown. Medications that were actually placed by clinicians 
(i.e., ground truth) are underlined. We display a small subset of vital signs and laboratory results collected during the hospitalization, 
represented as empty circles. Black circles denote antibiotic medications, gray squares denote antihypertensive medications, and white 
diamonds denote immunosuppressant medications. Near admission, the model predicts multiple antibiotics and pain relievers (order 
A). Soon after, for order B, the model assigns high probability for multiple immunosuppressive medications typically administered to 
transplant patients. Several days into the hospitalization, the patient’s blood pressure rises; the LSTM sequence model predicts a variety of 
antihypertensives, including an intravenous formulation of hydralazine (order C). BP, blood pressure (measured in millimeters of mercury); HR, 
heart rate (measured in beats per minute); LSTM, long short-term memory; Temp, temperature (measured in degrees Fahrenheit); WBC, white 
blood cell (measured in thousands of cells per microliter). *“Clonidine, oral” was ranked 36 by the LSTM sequence model at this time point. 
Note: Corresponding predictions for the logistic model can be found in Figure S2.
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a wider set of medications. For instance, the sequence model’s 
recall is highest for patients discharged from obstetrics (top-
10 recall: 77%), where 80% of medication orders are covered 
by 27 medications. Sequence model recall is lower for patients 
discharged from cardiology (top-10 recall: 50%) and general 
medicine (top-10 recall: 50%), where 89 and 109 unique med-
ications, respectively, cover 80% of medication orders. Similar 
performance patterns were observed for the logistic model and 
frequency comparator.

Precision of predictions over time
Figure 4a provides insight into whether the sequence model’s out-
put anticipates subsequent orders placed by physicians in the near 
future. Within 12  hours, 51% of the model’s top-1 predictions, 
36% of the model’s top-5 predictions, and 29% of the model’s top-
10 predictions were ordered (Figure 4a). Within 24 hours, the 
proportions increased to 60% for top-1 predictions, 44% for top-5 
predictions, and 35% for top-10 predictions. (Figure S3 displays 
results for the logistic model.)

Figure 4b illustrates complementary information; the pro-
portion of top-k sequence model-predicted sets where at least 
one medication was ordered within a 24-hour timeframe. 
Within 12 hours, 78% of the model’s top-5 sets had at least 
one medication ordered and 87% of the model’s top-10 sets 
had at least one medication ordered. Within 24 hours, these 
numbers increased to 87% for top-5 prediction sets and 93% 
for top-10 prediction sets. (Figure S4 displays results for the 
logistic model.)

Additional analyses
Several additional analyses were performed to better understand 
the sequence model’s false positive and false negative predictions 
using a previously published taxonomy of medication classes based 
on therapeutic area31 (Supplementary Note S3; Tables S4 and 
S5). Experiments involving predictive feature ablation are also 
presented in the Supplementary Materials (Supplementary 
Note S4; Figures S5and S6).

DISCUSSION
Using EHR data, machine-learning models can be trained to 
provide patient-specific and time-specific predictions of medi-
cation orders for hospitalized patients. From 990 possible med-
ications, 55% of medications ordered by physicians appeared 
in the sequence model’s top-10 predictions at the time of order 
placement. Nearly all (93%) top-10 prediction sets contained at 
least one medication that would be ordered by clinicians within 
the next day. This performance was not explained by the model 
simply predicting previously ordered medications or by repeat-
edly predicting medications commonly ordered for patients in 
the same hospital service. The sequence model’s performance 
exceeded that of a regularized, time-bucketed logistic regression 
model. We also found that the medication prediction task was 
not uniformly difficult across all types of patients; all models per-
formed better in groups with narrower use of medications com-
pared with those with more heterogeneous therapeutic needs.

Our findings indicate that it is feasible to use machine learning 
to predict patterns of physician medication ordering despite the 

Figure 3 Top-10 recall for the inpatient medication prediction task by hospital discharge service (measured in the held-out test set). Top-10 
recall is the proportion of medications actually ordered by physicians that appear in the model’s top-10 most probable medication predictions. 
LSTM, long short-term memory.
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multiple nuanced factors in the prediction. Predicting physician 
medication orders for inpatients includes a broad set of potential 
medications, any number of which can be ordered in close proxim-
ity. The precise temporal sequencing of orders is somewhat arbitrary, 
and many aspects of the clinical workflow that influence timing of 
orders will not be captured in EHR data. There is also substantial 
variability in physician prescribing,32–34 to the extent that individual 
physician prescribing preferences have been used as an instrumental 
variable in studies of medication safety and effectiveness.35–37

Model predictions should not be interpreted as optimal treat-
ment; using observational data to estimate the comparative safety 
or effectiveness of medications requires a causal inference frame-
work.38,39 Instead, models were trained to reproduce physician be-
havior as it appears in historical data, which may not be consistent 

with current clinical guidelines. However, previous work has shown 
that training recommender system algorithms based on historical 
hospital ordering data resulted in order sets more aligned with prac-
tice guidelines than manually authored hospital order sets.40

Despite being outcome-agnostic, inpatient medication predic-
tions may have useful clinical decision support applications. Inpatient 
medication errors cause substantial morbidity and mortality, oc-
curring in an estimated 3.8 million hospitalizations each year.41–44 
There is some evidence that prediction of typical clinician decision 
making may allow for patient-specific anomaly detection.45,46 In fu-
ture work, we intend to investigate whether our model could facili-
tate improved real-time detection and alerting for medication errors.

This study has several important limitations. First, this work 
used data from a single site, limiting generalizability. Due to 

Figure 4 Physician ordering of top LSTM sequence model-predicted medications within a specified postprediction time window (measured 
in the held-out test set). (a) The percentage of top-1, top-5, and top-10 LSTM sequence model-predicted medications ordered by physicians 
within the specified postprediction time window. (b) The percentage of top-1, top-5, and top-10 LSTM sequence model-predicted sets where at 
least one medication is ordered by physicians within the specified postprediction time window. LSTM, long short-term memory.

Panel (a)

Panel (b)
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differences in patient populations, prescribing practices, and stor-
age of health information in EHRs, the model would likely need 
to be retrained for use in different settings. However, our approach 
is general; we use a data representation, predictive features, and 
model architecture that are not hospital-specific or task-specific.19 
Second, only retrospective data were used to evaluate the model. 
Due to temporal changes in prescribing practices, including the 
addition of new medications to formularies, it is likely that mod-
els would need to be regularly retrained with new data to prevent 
degradation of model performance. Third, our study focused on 
the prediction of medication compounds, specifically excluding 
dosages. Fourth, there is evidence of racial and gendered inequi-
ties in prescribing for some conditions, particularly pain manage-
ment47–49; the data used to train these models may also contain 
these prescribing biases. However, multiple approaches may help 
to address some of these biases.50 Fifth, the current models were 
trained and evaluated conditional on a medication order being 
placed; a separate mechanism would be necessary to know when to 
run the model in a prospective deployment. One reasonable pos-
sibility would be generating a prediction whenever clinicians navi-
gate to the EHR’s order-entry screen. Finally, sequence models are 
often viewed as difficult to interpret. However, our previous work 
has demonstrated that attribution methods can provide useful in-
sight into which data elements influence a specific prediction.19

Our study also has several strengths. We demonstrate that ma-
chine-learning models can be used to predict the inpatient medi-
cation orders placed by clinicians. Our approach was flexible and 
general; we included all adult inpatients, without restricting to 
disease-related subgroups or relying on hand-curated predictors. 
The model was capable of predicting individual medication com-
pounds, not only medication classes. Predictions can be generated 
at a clinically relevant time point, based on all available informa-
tion at the time of entry into the medication ordering system.

These findings represent an incremental step forward in this do-
main; we anticipate and encourage future research that will improve 
upon this initial approach to increase predictive performance, inter-
pretability, fairness, or generalizability of the model across clinical 
institutions. It remains to be seen whether medication order predic-
tion will facilitate better clinical decision support systems.

SUPPORTING INFORMATION
Supplementary information accompanies this paper on the Clinical 
Pharmacology & Therapeutics website (www.cpt-journal.com).
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