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Abstract

Benchmarking, Performance Analysis, and Domain-Specific Architectures for Graph

Processing Applications

by

Abanti Basak

Both static and streaming graph processing are central in data analytics scenarios

such as recommendation systems, financial fraud detection, and social network analysis.

The rich space of graph applications poses several challenges for the computer archi-

tecture community. First, standard static graph algorithm performance is sub-optimal

on today’s general-purpose architectures such as CPUs due to inefficiencies in the mem-

ory subsystem. It is currently increasingly difficult to rely on relative compute/memory

technology scaling for continued performance improvement for a given optimized static

graph algorithm on a general-purpose CPU. Second, while a large body of research in the

computer architecture community focuses on static graph workloads, streaming graphs

remain completely unexplored. The primary practical barriers for computer architecture

researchers toward studying streaming graphs are immature software, a lack of system-

atic software analysis, and an absence of open-source benchmarks. This dissertation

seeks to solve these challenges for both static and streaming graph workloads through

benchmarking, performance analysis, and CPU-centric domain-specific architectures us-

ing software/hardware co-design.

For static graph workloads, this thesis highlights novel performance bottleneck in-

sights such as 1) the factors limiting memory-level parallelism, 2) the heterogeneous

reuse distances of different application data types, and 3) the difference in the perfor-

mance sensitivities of the different levels of the cache hierarchy. Guided by the workload
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characterization, a domain-specific prefetcher called DROPLET is proposed to solve the

memory access bottleneck. DROPLET is a physically decoupled but functionally coop-

erative prefetcher co-located at the L2 cache and at the memory controller. Moreover,

DROPLET is data-aware because it prefetches different graph data types differently ac-

cording to their intrinsic reuse distances. DROPLET achieves 19%-102% performance

improvement over a no-prefetch baseline and 14%-74% performance improvement over a

Variable Length Delta Prefetcher (VLDP). DROPLET also performs 4%-12.5% better

than a monolithic L1 prefetcher similar to the state-of-the-art prefetcher for graphs.

For streaming graph workloads, this thesis develops a performance analysis frame-

work called SAGA-Bench and performs workload characterization at both the software

and the architecture levels. The findings include 1) the performance limitation of the

graph update phase, 2) the input-dependent software performance trade-offs in graph

updates, and 3) the difference in architecture resource utilization (core counts, mem-

ory bandwidth, and cache hierarchy) between the graph update and the graph compute

phases. In addition, the thesis proposes the SPRING approach to demonstrate that input

knowledge-driven software and hardware co-design is critical to optimize the performance

of streaming graph processing. Evaluated across 260 workloads, our input-aware tech-

niques provide on average 4.55× and 2.6× improvement in graph update performance

for different input types. The graph compute performance is improved by 1.26× (up to

2.7×).
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Chapter 1

Introduction

1.1 Motivation and Contributions

Due to the explosion of data in today’s world, both static and streaming graph pro-

cessing are widely used to solve big data problems in multiple domains such as social

networks, web searches, recommender systems, fraud detection, financial money flows,

and transportation. Static graph processing consists of performing analytics on stat-

ically known whole input graphs, whereas streaming graph processing handles time-

evolving graphs. The high potential of graph processing is due to its rich, expressive,

and widely applicable data representation consisting of a set of entities (vertices) con-

nected to each other by relational links (edges). Numerous vendors such as Oracle [1],

Amazon (AWS) [2], and Microsoft [3] provide graph processing engines for enterprises.

Moreover, companies such as Google [4], Facebook [5], and Twitter [6, 7] have built cus-

tomized graph processing frameworks to drive their products. Graph technology is also

predicted to be the driver for many emerging data-driven markets, such as an expected

$7 trillion worth market of self-driving cars by 2050 [8].

However, the rich space of big-data graph applications poses multiple challenges for
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Introduction Chapter 1

the computer architecture community. First, standard static graph algorithm perfor-

mance is sub-optimal on today’s general-purpose architectures such as CPUs because

of critical mismatches between the trends in the application and the computer archi-

tecture landscapes. As input graphs become larger and exceed the on-chip cache sizes,

static graph algorithms become memory-bound. In contrast, memory technology does

not scale as fast as compute technology. Consequently, the performance of single-machine

in-memory static graph analytics is bounded by the inefficiencies in the memory subsys-

tem, making the cores stall as they wait for data to be fetched from the DRAM. As

shown in Fig. 1.1 for one of the benchmarks used in our evaluation, 45% of the cycles are

DRAM-bound stall cycles, whereas the core is fully utilized without stalling in only 15%

of the cycles. It is currently increasingly difficult to rely on relative compute/memory

technology scaling for continued performance improvement for a given optimized static

graph algorithm on a general-purpose CPU. Therefore, it is an opportune time to specif-

ically study these application characteristics to find the performance bottlenecks and

address them using domain-specific computer architecture. As a result, recent work in

computer architecture has focused on performance analysis [9–13] and CPU-integrated

domain specialization [14, 15] for static graph workloads. However, prior performance

analysis [9–13] is not explicitly aware of the application data types. In addition, prior

workload characterization is real hardware based and therefore misses the opportunity to

conduct a detailed sensitivity analysis of different architectural parameters such as the

instruction window size and the cache parameters. With the insights from these miss-

ing studies, it is possible to substantially improve the performance of domain-specific

solutions for static graphs.

Second, while a large body of research in the computer architecture community focuses

on static graph workloads, streaming graphs remain completely unexplored. Domain

knowledge, contributed by some influential workload characterization and benchmark-

2



Introduction Chapter 1

Figure 1.1: Cycle stack of PageRank on static orkut dataset [16]

ing efforts [9, 11, 17], has been key to driving research on domain-specific architectures

for static graph processing. However, the domain knowledge is insufficient in its exist-

ing state because it ignores the time-evolving nature of graphs. Instead, the focus is

restricted to static graphs which never change while algorithms are run. In reality, how-

ever, most graphs are fast-changing in today’s big data era where data evolves rapidly.

This realistic scenario is captured by streaming graph processing, i.e., performing batched

updates and analytics on time-evolving graphs. Streaming graphs are critical in graph

convolutional networks [18], social network analysis [19], real-time financial fraud detec-

tion [20], anomaly detection [21], and recommendation systems [22]. By neglecting the

dynamic nature of graphs, the research community is missing the opportunity to leverage

a broader domain knowledge to design more adequate architecture solutions for practical

and realistic graph processing. We recognize two reasons for this negligence:

• Immature software and lack of systematic software performance analysis : The data

structures and compute models underpinning streaming graph systems are still actively

being researched and have not been studied systematically. A lack of systematicness

arises from the heterogeneity of the proposed systems. In addition to the core soft-

ware components (data structures and compute models), each system is accompanied

with additional optimization features (e.g., data compression, specially designed APIs,

specialized memory allocation schemes). Moreover, measurement methods often vary

3
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across these systems. Hence, it is difficult to perform a fair and systematic comparison

of the basic data structures and compute models across these systems since the ob-

served performance differences may arise from a variety of features. Consequently, it

is challenging for computer architects to rely on a standard set of underlying software

components. This is in significant contrast to static graph processing where the core

data structures and computation models are better standardized.

• Absence of open-source benchmarks : The lack of an open-source benchmark makes

it challenging to study streaming graph workloads at the architecture level. Exist-

ing open-source implementations are holistic systems, each with a specialized complex

package of system-specific optimizations. A more useful resource for architecture ex-

ploration is an open-source benchmark with the essential software techniques (data

structures and compute models) to understand the core characteristics of the work-

loads without system-specific optimizations. However, such a benchmark for stream-

ing graphs is currently missing in the architecture community. This is in significant

contrast to static graph processing where workload characterization and performance

analysis are facilitated by system-independent reference implementations targeted at

architecture research [11,17].

This thesis seeks to solve the above challenges for both static and streaming graph

workloads. For each category of graph workloads, the contributions of the dissertation

span two areas: 1) benchmarking and performance analysis, and 2) CPU-coupled domain-

specific architectures. The contributions are described below and summarized in Table

1.1.

Contributions in benchmarking and performance analysis (Chapters 3 and 5):

For static graph workloads, this thesis performs a data-aware performance analysis of

the GAP benchmark suite [17], focusing on the memory-level parallelism and the cache

4
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hierarchy. We extend or fill the gaps in prior characterization work [9–13] in two aspects.

First, we perform a data-aware profiling which provides clearer guidelines on the man-

agement of specific data types for performance optimization. Second, with the flexibility

of a simulated platform, we vary the instruction window and cache configuration design

parameters to explicitly explore their performance sensitivity. Beyond prior performance

analysis work, our key findings include (Chapter 3):

• Load-load dependency chains that involve specific application data types, rather than

the instruction window size limitation, make up the key bottleneck in achieving a high

memory-level parallelism.

• Different graph data types exhibit heterogeneous reuse distances. The architectural

consequences are (1) the private L2 cache shows negligible impact on improving system

performance, (2) the shared L3 cache shows higher performance sensitivity, and (3) the

graph property data type benefits the most from a larger shared L3 cache.

For streaming graph workloads, this thesis highlights that existing graph-targeted

architectures rely on the restricted domain knowledge of static graphs and ignore the

critical dynamic nature of graphs. We therefore broaden the domain knowledge for the

computer architecture community through the following contributions (Chapter 5):

• An open-source performance analysis platform called SAGA-Bench: SAGA-Bench is

targeted at software and hardware studies of the essential data structures and com-

pute models proposed across various existing streaming graph systems. For software

performance analysis, we enable systematicness by using comparable implementations

of the core software components (without system-specific optimizations) and identi-

cal measurement methodology, thus alleviating the problem of difficult-to-interpret

comparisons across heterogeneous stand-alone systems. For hardware studies, SAGA-

Bench provides a benchmark to study the architecture bottlenecks for these workloads.
5



Introduction Chapter 1

• Software-level workload characterization: We further use SAGA-Bench to systemati-

cally analyze the software performance, which leads to three key findings. First, the

graph update operation is an important performance limiter contributing at least 40%

of the batch processing latency for many workloads. Second, the best (i.e., lowest

batch processing latency) data structure for a streaming graph depends on the degree

distribution of the input batches of the graph. Third, the performance of different

compute models depends on the input graph size. The incremental compute model

offers performance benefits especially for larger graphs.

• Architecture-level workload characterization: We perform a comparative study be-

tween the graph update and the graph compute phases. First, we find that, compared

to the compute phase, the update phase exhibits a lower utilization of hardware re-

sources, such as higher core counts and memory and inter-socket bandwidths. We

further provide insights to explain the resource utilization of the graph update phase

in terms of the underlying structure/topology of the input graph batches. Finally, we

observe that the L2 cache services more memory requests in the update phase than in

the compute phase, whereas the LLC is effective for the compute phase.

Contributions in CPU-coupled domain-specific architectures (Chapters 4 and

6): To optimize the performance of static and streaming graph applications, we design

lightweight domain-specific architectures using software/hardware co-design tightly in-

tegrated with commodity CPUs. These lightweight solutions involve lower design costs

than fully customized accelerator chips. In addition, low-overhead tight integration with

commodity processors makes these solutions more amenable to widespread adoption.

For static graph workloads, we use the guidelines from our characterization to design

DROPLET, a Data-awaRe decOuPLed prEfeTcher for graphs (Chapter 4). DROPLET is

a physically decoupled but functionally cooperative prefetcher co-located at the L2 cache

6
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and at the memory controller. We adopt a decoupled design to overcome the serialization

due to the dependency between different graph data types. Moreover, DROPLET is

data-aware because it prefetches different graph data types differently according to their

intrinsic reuse distances. DROPLET achieves 19%-102% performance improvement over

a no-prefetch baseline, 9%-74% performance improvement over a conventional stream

prefetcher, 14%-74% performance improvement over a Variable Length Delta Prefetcher

(VLDP) [23], and 19%-115% performance improvement over a delta correlation prefetcher

implemented as a global history buffer (GHB) [24]. DROPLET performs 4%-12.5% better

than a monolithic L1 prefetcher similar to the state-of-the-art prefetcher for graphs [15].

For streaming graph workloads, our proposed SPRING approach demonstrates that

input knowledge-driven software and hardware co-design is critical to optimize the perfor-

mance (Chapter 6). To improve graph update efficiency, we first characterize the perfor-

mance trade-offs of an input-oblivious software technique called batch reordering [25,26].

Guided by our findings, we propose input-aware batch reordering to adaptively reorder

input batches based on their degree distributions. To complement adaptive batch reorder-

ing, we propose updating graphs dynamically, based on their input characteristics, either

in software (via update search coalescing) or in hardware (via acceleration support). To

improve graph computation efficiency, we present input-aware work aggregation which

adaptively modulates the computation granularity based on inter-batch locality charac-

teristics. Evaluated across 260 workloads, our input-aware techniques provide on average

4.55× and 2.6× improvement in graph update performance for different input types (on

top of eliminating the performance degradation from input-oblivious batch reordering).

The graph compute performance is improved by 1.26× (up to 2.7×).

Table 1.1 summarizes the contributions of this thesis described in detail in the pre-

vious paragraphs. The rest of the dissertation is organized as follows. In Chapter 2, we

provide 1) the necessary background on our target application areas (static and streaming

7
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Table 1.1: Summary of contributions

Static Graph Workloads Streaming Graph Workloads
Benchmarking and Per-
formance Analysis

Performance analysis of GAP
benchmark suite [17] (Chapter 3)

SAGA-Bench and associated work-
load characterization (Chapter 5)

CPU-coupled domain-
specific architectures

DROPLET (Chapter 4) SPRING (Chapter 6)

graphs) and 2) explain the choice of the CPU platform for graph processing applications.

As shown in Table 1.1, Chapters 3 and 4 analyze and optimize static graph processing.

In Chapter 3, we perform a data-aware performance analysis of the GAP benchmark

suite [17], focusing on the memory-level parallelism and the cache hierarchy. Based on

these profiling observations, we propose, in Chapter 4, our domain-specific prefetcher

called DROPLET to solve the memory access bottleneck. As shown in Table 1.1, the

second part of the dissertation focuses on streaming graph applications, which is a more

general form of graph processing involving the time-evolving nature of graphs. In Chap-

ter 5, we develop a performance analysis framework called SAGA-Bench and perform

workload characterization at both the software and the architecture levels. Guided by

the performance analysis, we propose, in Chapter 6, our SPRING approach, i.e., input-

dependent software/hardware co-design to improve the performance of streaming graph

systems. Finally, we summarize our contributions and future research directions in Chap-

ter 7.

1.2 Future Influence and Impact

The insights and solutions developed by this thesis have significant potential for long-

term impact. In addition to being a high-performance domain-specific prefetching so-

lution for static graphs, DROPLET demonstrates working design principles that could

influence future prefetcher designs. First, DROPLET provides evidence for the benefits

8
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of software-assisted hardware prefetching (i.e., with data type hints from the software, a

hardware prefetcher is capable of achieving high accuracy and performance). DROPLET

design also provides a reference methodology for designing prefetchers for irregular or

sparse applications. Finally, DROPLET demonstrates the benefits of physically decou-

pling a prefetcher across the memory hierarchy according to the application needs.

Our contributions in streaming graph workloads help broaden the conventional and

restrictive domain knowledge of static graphs underpinning today’s proposed domain-

specific architectures. Re-thinking existing designs to support streaming graphs is a

non-trivial task. The performance metric is batch processing latency which is different

from whole-graph computation performance optimized by existing designs. Streaming

graphs involve a different set of underlying data structures and compute models with their

unique hardware implications. The primary practical barriers for computer architecture

researchers are immature software, a lack of systematic software analysis, and an absence

of open-source benchmarks. Consequently, research has naturally inclined to static graphs

where the software is more mature, and open-source benchmarks are readily available

for researchers to get started with. Our work (SAGA-Bench and SPRING) alleviates

the barriers to studying streaming graphs and opens the door to the development of

more practical, general, and realistic domain-specific architectures aware of the dynamic

nature of graphs. Moreover, SAGA-Bench by itself (as a tool) has the potential to

be of significant practical value because, to the best of our knowledge, it is the first

resource for streaming graphs which simultaneously provides 1) a common platform for

performance analysis studies of software techniques and 2) a benchmark for architecture

studies. Equipped with the flexibility to support both future streaming graph codes and

traditional static graph analytics, SAGA-Bench provides a one-stop shop for architecture

researchers to perform systematic studies of a large spectrum of graph workloads. Our

framework improves research productivity during the stage of novel workload discovery

9
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and characterization. A common platform 1) relieves the difficulty of navigating through

heterogeneous stand-alone systems for software performance comparison, and 2) provides

a means to easily implement the core software of the workload to quickly characterize it

on the hardware to understand the architecture bottlenecks.

10



Chapter 2

Background

In this chapter, we first discuss the key characteristics of static and streaming graph

workloads. Next, we provide some background on different hardware platforms for graph

processing applications to understand why CPU is the platform of choice in this disser-

tation.

2.1 Static and Streaming Graph Workloads

Static graph processing constitutes performing analytics on statically known input

graphs, whereas streaming graph processing handles time-evolving graphs. There are

significant differences between the underlying data structures, the execution flow, and

the optimization goal between the two categories of graph workloads.

Data Structures: One of the most widely used graph data structures for static graph

analytics is the Compressed Sparse Row (CSR) representation because of its efficient

memory space usage. As shown in Fig. 2.1, the CSR format consists of three main

components: the offset pointers, the neighbor IDs, and the vertex data. Each entry in

the offset pointer array belongs to a unique vertex V and points to the start of the list

11
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of V’s neighbors in the neighbor ID array. In the case of weighted graphs, each entry

in the neighbor ID array also includes the weight of the corresponding edge. The vertex

data array stores the property of each vertex and is indexed by the vertex ID (the vertex

data size is fixed). In the rest of the dissertation, we use the following terminology: 1)

Structure data (the neighbor ID array), 2) Property data (the vertex data array),

and 3) Intermediate data (any other data). Property data is indirectly indexed using

information from the structure data. Using the example in Fig. 2.1, to find the property

of the neighbors of vertex 6, the structure data is first accessed to obtain the neighbor

IDs (59 and 78), which in turn are used to index the property data.

Figure 2.1: CSR data layout for graphs

While CSR is a standard data structure for static graphs, it is not an appropriate

choice for streaming graphs. This is because the latter involves updating the graph

topology (therefore changing the data structure during the runtime) and compact arrays

like CSR is not efficient for insertion/deletion. Data structures for streaming graphs are

still being actively researched. Chapter 5 describes multiple data structure propositions

for streaming graphs and implements them in our proposed SAGA-Bench performance

analysis framework for a systematic performance analysis.

Execution Flow and Optimization Goal: Fig. 2.2 shows the difference in the

execution flow between static and streaming graph analytics. In the former, an entire

input file is read to build a graph usually in the CSR format. It is then assumed that

the graph topology never changes as different algorithms are run on it. Streaming graph
12



Background Chapter 2

analytics, on the other hand, has to handle dynamism by performing repeated update and

compute operations on continuous batches of incoming edges1. Fig. 2.3 further clarifies

update and compute operations. The input to a streaming graph analytics system is a

stream of incoming edges. Once a batch of edges enters the system, two action phases

described below are executed, which provide newly computed results: 1) Update phase,

i.e., the incoming edges in a given batch are ingested into the graph data structure (the

updates may involve addition/deletion of edges, weight changes, and addition/deletion

of nodes); 2) Compute phase, i.e., an algorithm such as PageRank is performed on the

freshly updated data structure. Following previous work, the batch sizes considered in

this dissertation range from 100 to 500K (Chapters 5 and 6) . In our evaluation (Chapters

5 and 6), the number of input batches is the ratio of the total number of edges in the graph

and the batch size. When an input dataset possesses timestamp information, the input

file specifies the order in which the edges appear in the graph and batches are formed

accordingly. When timestamps are not available, the datasets are randomly shuffled to

break any ordering in the input files (they are often ordered in increasing source vertex

ID, which is not the likely scenario of edge appearance for real-world streaming graphs).

The shuffled input file is then read in batches of the given batch size.

Not studied at microarchitecture level

Build entire graph
(usually in CSR) 

Compute
Update 
Batch 0

Compute
Update 
Batch 1

Compute
Update 
Batch 2

Compute

Previously studied at microarchitecture level
(a) (b)time time

Figure 2.2: Execution flow of (a) static and (b) streaming graphs

1The current version of SAGA-Bench 1) maintains the latest snapshot of an evolving graph similar
to [19, 27, 28] and 2) supports the model where update and compute are interleaved (Fig. 2.2b) similar
to [27,29–38]. A few existing systems maintain multiple over-time snapshots [39–43]. Two very recently
proposed systems [25,26] utilize data structures capable of parallelizing update and compute. The multi-
snapshot model and the novel data structures will be included in the future version of SAGA-Bench.
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Graph Data Structure

1. Update
Ingest incoming 
edges into data 
structure

2. Compute
Perform algorithm 
(e.g. PageRank) on 
updated data structure

Stream of edges

Computed results (e.g., vertex 
values, single scalar value 
such as number of connected 
components in graph)

Streaming Graph Analytics System

Figure 2.3: Overview of streaming graph analytics

Due to the difference in the execution flow, the optimization targets are different

between static and streaming graph processing. In static graphs, the optimization target

is the execution time of the compute phase (Fig. 2.2(a)). The graph building phase is

considered to be a fixed one-time overhead that can be amortized by performing repeated

computations. On the other hand, the primary optimization target in streaming graph

analytics is timely response, i.e., low latency between the input edge batch and the newly

computed results. Batch processing latency (Equation 2.1) is the performance metric for

streaming graphs. Hence, the graph update phase lies on the critical path for streaming

graphs and cannot be considered as a one-time overhead.

batch processing latencybatch i =

update latencybatch i + compute latencybatch i
(2.1)

The critical path characteristic of the graph update phase hinders smooth portability

of static graphs’ software-hardware solutions to streaming graphs. First, it is inefficient to

borrow software solutions from static graph analytics. Borrowing array-based CSR and

pre-processing techniques [44] beneficial for the compute phase would substantially hurt

the update latency. Similarly, borrowing conventional algorithms [11, 17] would lead to
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redundant computations because two successive compute phases may have large overlap

in vertices and edges. Second, it is inefficient to borrow architecture solutions from static

graph analytics. Previous architecture optimizations for static graph analytics ignore the

update or graph building phase. This is inefficient for streaming graphs because update

lies on the critical path and is interleaved with compute. For the compute phase, previous

architecture optimizations in static graphs assume the conventional CSR data layout and

algorithms. Streaming graphs, however, rely on a set of different data structures and

compute models. Without extensive hardware characterization of these novel underlying

software components, it is unclear whether an architecture optimization targeted at the

compute for static graphs would work equally well in the streaming scenario.

2.2 Choice of CPU Platform for Graph Processing Ap-

plications

This dissertation focuses on single-machine large-memory CPU server for performance

analysis and domain specialization of graph processing applications. CPUs are predom-

inant in datacenters [45, 46] and supercomputers [47] because they are easily accessible,

cost-effective, and highly programmable. Hence, CPUs are still the subject of continuous

innovation and improvement. Today, there are numerous efforts to shift towards new

types of server-class CPUs equipped with more application-specific customization [48] or

different ISAs (e.g., shift from x86 to ARM-based server CPUs [47,49–51]) that are better

suited to application needs (e.g., cloud-native applications). This trend in the computer

architecture industry provides evidence that CPUs are powerful and it is worthwile and

valuable to develop high-performance and energy-efficient CPUs with application-specific

customization. Beyond the critical importance of CPUs in the industry, this dissertation
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chooses the CPU platform for graph processing because CPU possesses significant advan-

tages compared to alternative hardware platforms such as distributed systems [4,5,52–54],

out-of-core systems [55–59], customized accelerators [60–64], and GPUs. First, as op-

posed to distributed systems, a scale-up big-memory CPU does not need to consider the

challenging task of graph partitioning among nodes and avoids network communication

overhead. Programming frameworks developed for this kind of single-machine CPU plat-

form in both academia [65–67] and industry [6, 7, 68] have shown excellent performance

while significantly reducing the programming efforts compared to distributed systems.

Single CPU system is also possible because many common case industry and academic

graphs have recently been reported to fit comfortably in the RAM of a single high-end

CPU server [65, 69, 70], given the availability and affordability of high memory density

(for example, a quad-socket Intel Xeon machine with 1.5TB RAM costs about $35K as

of 2017 [71]). Second, both out-of-core systems and customized accelerators require ex-

pensive pre-processing to prepare partitioned data structures to improve locality. Single-

machine in-memory CPU graph analytics can avoid costly pre-processing which has been

shown to often consume more time than the algorithm execution itself [72, 73]. Third,

GPU is a challenging choice for graph applications due to the difficulty of programming

graph algorithms on GPUs and due to the limited memory capacity of GPUs. During

the early years of this dissertation, performance analysis work [74,75] provided evidence

that, for graphs that fit in the limited GPU memory (12GB), CPU-only programming

frameworks perform comparably or better than GPU-only programming frameworks. For

example, [74] shows that, compared to CPU-based Ligra [76], Gunrock’s performance is

comparable for most tested primitives. Moreover, compared to CPU-based Galois [77,78],

Gunrock shows speedup on traversal-based graph primitives (Breadth First Search, Sin-

gle Source Shortest Paths, and Betwenness Centrality) and less performance advantage

on Pagerank and Connected Components. Only recently has GPU programming become
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more competitive than CPU-oriented graph algorithms. SIMD-X [79], a GPU-only pro-

gramming framework developed concurrently with this dissertation, outperforms both

CPU-based Galois and Ligra by 6× and 3×, respectively. However, SIMD-X is only ap-

plicable for graphs that fit in the tested setup containing 16GB GPU memory, whereas

real-world graphs have larger memory capacity requirement. For such large graphs, the

role of CPU is essential in scalable graph processing. Due to the above reasons, single-

machine large-memory CPU server is the platform of choice in this dissertation.
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Chapter 3

Memory-Level Parallelism and Cache

Hierarchy Analysis in Static Graph

Workloads

3.1 Introduction and Contributions Overview

As discussed in Chapter 1, the performance of single-machine in-memory static graph

analytics is bounded by the inefficiencies in the memory subsystem, making the cores stall

as they wait for data to be fetched from the DRAM (Fig. 1.1). We develop an in-depth

understanding of the memory-bound behavior observed in Fig. 1.1 by characterizing

two features on a simulated multi-core architecture: (1) the memory-level parallelism

(MLP) [80] in an out-of-order (OoO) core and (2) the request reuse distance in cache

hierarchy. We extend or fill the gaps in prior characterization work [9–13] in two aspects.

First, we perform a data-aware profiling which provides clearer guidelines on the man-

agement of specific data types for performance optimization. Second, with the flexibility

of a simulated platform, we vary the instruction window and cache configuration design
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parameters to explicitly explore their performance sensitivity. In contrast, prior work

on performance analysis of static graph workloads [9–13] is not explicitly aware of the

application data types. In addition, prior work misses the opportunity to perform a sen-

sitivity analysis due to a real hardware based profiling. Beyond prior profiling work, our

key findings include:

• Load-load dependency chains that involve specific application data types, rather than

the instruction window size limitation, make up the key bottleneck in achieving a high

MLP.

• Different graph data types exhibit heterogeneous reuse distances. The architectural

consequences are (1) the private L2 cache shows negligible impact on improving system

performance, (2) the shared L3 cache shows higher performance sensitivity, and (3) the

graph property data type benefits the most from a larger shared L3 cache.

3.2 Experimental Setup

Profiling Platform: Profiling experiments have been done using SNIPER simulator,

an x86 simulator based on the interval simulation model [81]. We selected SNIPER over

other simulators because it has been validated against Intel Xeon X7460 Dunnington [81]

and, with an enhanced core model, against Intel Xeon X5550 Nehalem [82]. Moreover, a

recent study of x86 simulators simulating the Haswell microarchitecture has shown that

SNIPER has the least error when validated against a real machine [83]. Cache access

timings for different cache capacities were extracted using CACTI [84]. The baseline

architecture is described in Table 6.1. We used fewer cores than typically present in

a server node because previous profiling work has shown that resource utilization for
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parallel and single-core executions are similar [9]. Hence, we do not expect the number

of cores to change our observations. We marked the region of interest (ROI) in the

application code. We ran the graph reading portion in cache warm-up mode and, upon

entering the ROI, collected statistics for 600 million instructions across all the cores.

Table 3.1: Baseline Architecture

core 4 cores, ROB = 128-entry, load queue = 48-entry, store queue
= 32-entry, reservation station entries = 36, dispatch width
= issue width = commit width = 4, frequency = 2.66GHz

caches 3-level hierarchy, inclusive at all levels, writeback, least re-
cently used (LRU) replacement policy, data and tags paral-
lel access, 64B cacheline, separate L1 data and instruction
caches

L1D/I cache private, 32KB, 8-way set-associative, data access time = 4
cycles, tag access time = 1 cycle

L2 cache private, 256KB, 8-way set-associative, data access time = 8
cycles, tag access time = 3 cycles

L3 cache (LLC) shared, 8MB, 16-way set-associative, data access time = 30
cycles, tag access time = 10 cycles

DRAM DDR3, device access latency = 45ns, queue delay modeled

Benchmark and datasets: We use the GAP benchmark [17] which consists of

optimized multi-threaded C++ implementations of some of the most representative al-

gorithms in graph analytics. For our profiling, we select GAP over a software framework

to rule out any framework-related performance overheads and extract the true hardware

bottlenecks1. We use five algorithms from GAP, which are summarized in Table 3.2. A

summary of the datasets is shown in Table 6.2 (size = unweighted/weighted).

3.3 Analysis of the Memory-Level Parallelism

Observation 1: Instruction window size is not the factor impeding MLP. In general,

a larger instruction window improves the hardware capability of utilizing more MLP
1Previous study shows a 2-30X slowdown of software frameworks compared to hand-optimized implementations [85].
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Table 3.2: Algorithms

Algorithm Description
Betweenness Centrality (BC) Measure the centrality of a vertex, i.e., the number of short-

est paths between any two other nodes passing through it
Breadth First Search (BFS) Traverse a graph level by level
PageRank (PR) Rank each vertex on the basis of the ranks of its neighbors
Single Source Shortest Path (SSSP) Find the minimum cost path from a source vertex to all other

vertices
Connected Components (CC) Decompose the graph into a set of connected subgraphs

Table 3.3: Datasets

Dataset vertices edges Size Description
kron [17] 16.8M 260M 2.1GB/2GB* synthetic
urand [17] 8.4M 134M 1.1GB/2.1GB synthetic
orkut [86] 3M 117M 941MB/1.8GB social network
livejournal [86] 4.8M 68.5M 597MB/1.1GB social network
road [17] 23.9M 57.7M 806MB/1.3GB mesh network

* Weighted graph is smaller due to generation from a smaller degree
for a manageable simulation time.

for a memory-intensive application [87]. In addition, previous profiling work on a real

machine concludes that the ROB size is the bottleneck in achieving a high MLP for graph

analytics workloads [9]. However, by changing the design parameters in our simulator-

based profiling, we observe that even a 4X larger instruction window fails to expose

more MLP. As shown in Fig. 3.1a, for a 4X instruction window, the average increase in

memory bandwidth utilization is only 2.7%. Fig. 3.1b shows the corresponding speedups.

The average speedup is only 1.44%, which is very small for the large amount of allotted

instruction window resources.

Observation 2: Load-load dependency chains prevent achieving high MLP. To un-

derstand why a larger ROB does not improve MLP, we track the dependencies of the load

instructions in the ROB and find that the MLP is bounded by an inherent application-

level dependency characteristic. For every load, we track its dependency backward in

the ROB until we reach an older load instruction. We call the older load a producer
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Figure 3.1: (a) Increase in DRAM bandwidth utilization and (b) overall speedup from a
4X larger ROB

load and the younger load a consumer load. We find that short producer-consumer load

dependency chains are inherent in graph processing and can be a serious bottleneck in

achieving a high MLP even for a larger ROB. The two loads cannot be parallelized as

they are constrained by true data dependencies and have to be executed in program

order. Fig. 3.2 shows that, on average, 43.2% of the loads are part of a dependency chain

with an average chain length of only 2.5, where we define chain length as the number of

instructions in the dependency chain.

Figure 3.2: load-load dependency in ROB
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Figure 3.3: Breakdown of producer and consumer loads by application data type

Observation 3: Graph property data is the consumer in a dependency chain. To

identify the position of each application data type in the observed load-load dependency

chains, we show the breakdown of producer and consumer loads by data type in Fig. 3.3.

On average, we find that the graph property data is mostly a consumer (53.6%) rather

than a producer (5.9%). Issuing graph property data loads is delayed and cannot be

parallelized because it has to depend on a producer load for its address calculation.

Fig. 3.3 also shows that, on average, graph structure data is mostly a producer (41.4%)

rather than a consumer (6%).

3.4 Analysis of the Cache Hierarchy

Observation 1: The private L2 cache shows negligible performance sensitivity, whereas

the shared LLC shows higher performance sensitivity. As shown in Fig. 3.4, we vary the

LLC size from 8MB to 64MB and find the optimal point of 17.4% (max 3.25X) perfor-
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Figure 3.4: Sensitivity of i) L3 MPKI and ii) system performance to shared L3 cache size
((X/Y)=access times for (tags/data) in cycles)

Figure 3.5: Sensitivity of (i) L2 cache hit rate and (ii) system performance to private L2
cache configurations (average across all benchmarks))
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Figure 3.6: Effect of larger L3 cache on off-chip accesses of different data types (average
across all benchmarks)

mance improvement for a 4X increase in the LLC capacity. The mean LLC MPKI (misses

per kilo instructions) is reduced from 20 in the baseline to 16 (16MB) to 12 (32MB) to

10 (64MB). The corresponding speedups are 7%, 17.4%, and 7.6%. The optimal point is

a balance between a reduced miss rate and a larger LLC access latency.

Fig. 3.5(i) shows that the L2 hit rate (which is already very low at 10.6% in the

baseline) increases to only 15.3% after a 2X increase in the capacity while a 4X increase

in set associativity has no impact (hit rate rises to only 10.9%). Fig. 3.5(ii) shows that

the system performance exhibits little sensitivity to different L2 cache configurations

(in both capacity and set associativity). The leftmost bar represents an architecture

with no private L2 caches and no slowdown compared to a 256KB cache. Therefore, an

architecture without private L2 caches is just as fine for graph processing.

Observation 2: Property data is the primary beneficiary of LLC capacity. To

understand which data type benefits from a larger LLC, Fig. 3.6 shows, for each data

type, the percentage of memory references that ends up getting data from the DRAM.

We observe that the most reduction in the number of off-chip accesses comes from the

property data. Structure and intermediate data benefit negligibly from a higher L3

25



Memory-Level Parallelism and Cache Hierarchy Analysis in Static Graph Workloads Chapter 3

capacity. Intermediate data is already accessed mostly in on-chip caches since only 1.9%

of the accesses to this data type is DRAM-bound in the baseline. On the other hand,

structure data has a higher percentage of off-chip accesses (7.5%), which remains mostly

irresponsive to a larger LLC capacity.

Observation 3: Graph structure cacheline has the largest reuse distance among all

the data types. Graph property cacheline has a larger reuse distance than that serviced

by the L2 cache. To further understand the different performance sensitivities of the

L2 and L3 caches, we break down the memory hierarchy usage by application data type

as shown in Fig. 3.7. In most benchmarks, accesses to the structure data are serviced

by the L1 cache and the DRAM, which indicates that a cacheline missed in L1 is one

that was referenced in the distant past such that it has been evicted from both the L2

and L3 caches. The fact that the reuse distance is beyond the servicing capability of the

LLC explains why a larger LLC fails to significantly reduce the proportion of off-chip

structure accesses in Fig. 3.6. On the other hand, most of the property data loads missed

in the L1 cache cannot be serviced by the L2 cache but can be serviced by the LLC

and the DRAM. Overall, the LLC is more useful in servicing property accesses rather

than structure accesses. Thus, the property cacheline has a comparatively smaller reuse

distance that is still larger than that captured by the L2 cache. Finally, Fig. 3.7 provides

evidence that the accesses to intermediate data are mostly on-chip cache hits in the L1

cache and the LLC. The reuse distances of the three data types explain why the private

L2 cache fails to service memory requests and shows negligible benefit.

3.5 Conclusion

We perform a data-aware characterization of static graph workloads in the GAP

benchmark suite on a simulated multi-core architecture in order to study the bottlenecks

in the MLP and the cache hierarchy in graph analytics. We show that, load-load de-
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Figure 3.7: Breakdown of memory hierarchy usage by application data type
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pendency chains that involve specific application data types, rather than the instruction

window size limitation, make up the key bottleneck in achieving a high MLP. In addition,

we find that heterogeneous reuse distances of the application data types cause different

performance impacts of the L2 and the L3 cache levels. In the next chapter, we show how

our analysis provides opportunities and guidelines for a prefetching solution to improve

the performance of static graph workloads.
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Chapter 4

DROPLET: a Data-awaRe decOuPLed

prEfeTcher for Static Graphs

4.1 Introduction and Contributions Overview

We use the guidelines from our characterization of static graph workloads in Chap-

ter 3 to design DROPLET, a Data-awaRe decOuPLed prEfeTcher for graphs. From

Chapter 3, we find that the memory-bound stalling behavior in graph analytics arises

due to two issues. First, heterogeneous reuse distances of different data types leads

to intensive DRAM accesses to retrieve structure and property data. Second, MLP is

low due to load-load dependency chains, limiting the possibility of overlapping DRAM

accesses. Our profiling motivates the adoption of prefetching as a latency tolerance tech-

nique for graph analytics. A good prefetcher can fix the first issue by locating data

in on-chip caches ahead of the demand accesses. Prefetching can also bring an addi-

tional benefit by mitigating the effect of low MLP. A dependency chain with a consumer

property data means serialization in the address calculation and a delay in issuing the

property data load. However, once issued, prefetching ensures that the property data

29



DROPLET: a Data-awaRe decOuPLed prEfeTcher for Static Graphs Chapter 4

hits on-chip, mitigating low-MLP induced serially exposed latency. However, due to

heterogeneous reuse distances of the different graph data types, it is challenging to em-

ploy simple hardware prefetchers that can efficiently prefetch all data types. To address

this challenge, we leverage our observations from the profiling to make prefetch decisions

for DROPLET architecture, as summarized in Table 4.1. DROPLET is a physically

decoupled but functionally cooperative prefetcher co-located at the L2 cache and at the

memory controller. We adopt a decoupled design to overcome the serialization due to the

dependency between different graph data types. Moreover, DROPLET is data-aware be-

cause it prefetches different graph data types differently according to their intrinsic reuse

distances. DROPLET achieves 19%-102% performance improvement over a no-prefetch

baseline, 9%-74% performance improvement over a conventional stream prefetcher, 14%-

74% performance improvement over a Variable Length Delta Prefetcher (VLDP) [23], and

19%-115% performance improvement over a delta correlation prefetcher implemented as

a global history buffer (GHB) [24]. DROPLET performs 4%-12.5% better than a mono-

lithic L1 prefetcher similar to the state-of-the-art prefetcher for graphs [15].

4.2 DROPLET architecture

We first provide an overview of our proposed prefetcher. Next, we discuss the detailed

architecture design of the components of DROPLET.

4.2.1 Overview and Design Choice

We propose a physically decoupled but functionally cooperative prefetcher co-located

at the L2 cache level and at the MC. Specifically, DROPLET consists of two data-

aware components: the L2 streamer for prefetching structure data (Fig. 4.1 1) and the

memory controller based property prefetcher (MPP) (Fig. 4.1 2) which is guided by the
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Table 4.1: Prefetch decisions based on profiling observations

Profiling Observation Prefetch Design
Question Answer

Negligible impact of L2.
In which cache level
to put prefetched
data?

L2 cache, because (1) no risk of
cache pollution and (2) technique
to make the under-utilized L2 cache
useful.

Intermediate data are mostly
cached, structure/property
data are not.

What to prefetch? Structure and property data.

• Structure data exhibits a
large reuse distance with a
pattern: a cacheline missed
in the L1 cache is al-
most always serviced by the
DRAM.

• Property data exhibits a
randomly large reuse dis-
tance which is larger than
the L2 stack depth, leading
to heavy LLC and DRAM
accesses.

• In load-load dependency
chains, property data
is mostly the consumer,
whereas structure data is
mostly the producer.

How to prefetch?

• Prefetch structure data from the
DRAM in a streaming fashion.

• Prefetch property data using ex-
plicit address calculation due to
difficult-to-predict large reuse dis-
tance.

• Let the calculation of target prop-
erty prefetch addresses be guided
by structure data.

• Address calculation of target
property prefetches is a serial-
ized process. Decoupling the
prefetcher will help break the se-
rialization.

Load-load dependency chains
are short. When to prefetch?

If property prefetches are guided
by structure demand data, they
could be late since dependency
chains are short. Hence, prop-
erty prefetches should be guided by
structure prefetches.
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structure stream requests from the L2 streamer. Fig. 4.1 shows the entire prefetching

flow. The blue path shows the flow of prefetching the structure data using the data-

aware L2 streamer. The stream prefetcher is triggered only by structure data and the

structure prefetch request is almost always guaranteed to go to the DRAM as observed

in our profiling. On the refill path from the DRAM, the prefetched structure cacheline is

transferred all the way to L2. Also, a copy of the structure data is forwarded to the MPP,

which triggers the property data prefetching. The green path shows the prefetching flow

of the property data. The MPP reacts to the prefetched structure cacheline by scanning

it for the neighbor node IDs, computing the virtual addresses of the target property

prefetches using those neighbor IDs, and performing virtual-physical address translation.

To avoid unnecessary DRAM accesses for property data that may already be on-chip,

the physical prefetch address is used to check the coherence engine. If not on-chip, the

property prefetch address is queued in the MC. Upon being serviced by the DRAM, the

cacheline is sent to the LLC and the private L2 cache. Instead, if the to-be-prefetched

property cacheline is detected to be on-chip, it is further copied from the inclusive LLC

into the private L2 cache.

Our design choices are based on our profiling observations as summarized in Table 4.1.

The L2 cache is the location in which the L2 streamer brings in structure prefetches and

the MPP sends property prefetches. Despite this fact, we design a decoupled property

prefetcher in the MC in order to break the serialization arising from consumer property

data in a dependency chain. A single prefetcher at the L2 cache would have to wait

until the structure prefetch returns to the L2 cache before the property address can be

calculated and issued for prefetching. By decoupling the prefetcher, the property address

can be calculated as soon as the producer structure prefetch arrives on the chip at the

MC. This overlaps the return of the structure prefetch on the refill path through the

caches and the issuing of the subsequent property prefetch, breaking the serialization. A
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previous work, which dynamically offloads and accelerates dependent load chains in the

MC, shows a 20% lower latency when a dependent load is issued from the MC rather

than from the core side [88]. We use this insight in our prefetching scheme to achieve

better timeliness by aggressively issuing property prefetch requests directly from the MC.

4.2.2 L2 Streamer for Structure Data

First, we discuss the difficulties posed by a conventional streamer for graph workloads.

Next, to address these challenges, we propose the design of a data-aware L2 streamer.

Shortcomings of a Conventional Streamer

A conventional L2 streamer, as shown in Fig. 4.2(a), can snoop all cacheblock ad-

dresses missed in the L1 cache and can track multiple streams, each with its own tracker

(tracking address) [89]. Once a tracker has been allocated, the stream requires two ad-

ditional miss addresses to confirm a stream before starting to prefetch [89]. In graph

processing, such a streamer is detrimental to both structure and property data in terms

of prefetch accuracy and coverage. First, due to the streamer’s ability to snoop all L1

miss addresses, many trackers in the streamer get wastefully assigned to track pages cor-

responding to the property and the intermediate data types. These trackers are wasteful

due to one of the two reasons: (1) often, a stream is not successfully detected due to large

reuse distances, which results in small property and intermediate prefetch volumes and

low coverage; (2) due to random accesses, these trackers get the wrong signals, i.e., ran-

dom streams are detected, leading to mostly useless prefetches (low prefetch accuracy).

The direct consequence of property and intermediate data trackers is the reduction in

the effective number of trackers available for structure data (the data type which actu-

ally shows stream behavior) at any given time. This reduces the volume of structure
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Figure 4.2: L2 streamer for prefetching structure data. Extra bits in purple and newly
added cache controller decision-making in blue.

Data-aware Streamer in DROPLET

To address the problems of a conventional streamer, our proposed streamer is data-

aware, i.e., it operates only on structure data to bring in a high volume of accurate

structure prefetches. Fig. 4.2(b) shows how this is achieved. We use a variant of malloc

to allocate graph structure data (see Section 4.2.5), which updates page table entries

with an extra bit (“1”=structure data). Upon address translation at the L1D cache, this

extra bit in the TLB entry (Fig. 4.2(b) 1) is copied to the L1D cache controller. When an

access misses in the L1D cache, the L1D controller buffers this extra bit, together with

the miss address, into the L2 request queue. Hence, the L2 request queue is augmented

with an additional bit (Fig. 4.2(b) 2) to identify whether a request address corresponds

to the structure data. The L2 cache controller in our design preferentially guides into

the streamer only the addresses in the request queue which belong to structure data

(as recognized by the extra bit being “1”). Another input to the streamer is a feedback
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from the L2 cache. When a L2 hit occurs to an address corresponding to structure data,

the address is sent to the streamer. Finally, the L2 streamer buffers its target prefetch

addresses in the L3 request queue and stores the prefetched data in the L2 cache.

In contrast to a conventional streamer, as shown in Fig. 4.2(a), our design contains

two fundamental modifications guided by our observations in Section ??. First, our data-

aware L2 streamer is triggered only by structure data to overcome the shortcomings of a

conventional streamer mentioned in Section 4.2.2. Second, as opposed to a conventional

L2 streamer that buffers the target prefetch addresses in the L2 request queue, we buffer

them in the L3 request queue. This design choice is guided by our observation that new

structure cachelines are serviced by a lower level in the memory hierarchy. Later in Sec-

tion 4.3, we quantitatively analyze the superiority of our data-aware structure streamer

over the conventional design in terms of both performance and bandwidth savings.

4.2.3 Memory Controller (MC)

First, the memory request buffer (MRB) is used to give the MC the knowledge of (1)

whether a cacheline coming from the DRAM corresponds to a structure prefetch and (2)

which core sent the structure prefetch request. Second, we incorporate the MPP unit.

Memory Request Buffer (MRB)

When cachelines are on their refill path from the DRAM, the MC needs to filter

the ones corresponding to structure prefetches to transfer their copies to the MPP for

property prefetching. To enable this, we reinterpret the C -bit (criticality bit) in the

baseline MRB, as shown in Fig. 4.3 (in the lower left corner), which differentiates a

prefetch request from a demand request for priority-based scheduling purposes in modern

MCs [90]. If the C -bit is set, in addition to indicating a prefetch request, it specifically
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indicates a structure prefetch since it comes from the L2 streamer, which only sends

structure prefetch requests. We also add a core ID field to give the MPP the knowledge

of which core sent the structure prefetch request so that it can later send the property

prefetches into that core’s private L2 cache.

MC based Property Prefetcher (MPP)

As shown in Fig. 4.3, the MPP consists of a property address generator (PAG), a

FIFO virtual address buffer (VAB), a near-memory TLB (MTLB), and a FIFO physical

address buffer (PAB). If a cacheline from the DRAM is detected to be a structure prefetch

(see Section 4.2.3), its copy is transferred to the MPP.

The prefetched structure cacheline is propagated to the PAG which is shown in detail

in Fig. 4.3. The PAG scans the cacheline in parallel for neighbor IDs that are indices to

the property data array. To calculate the target virtual address of the property prefetch

from a scanned neighbor ID, we use the following equation:

property address = base+ 4× neighbor ID (4.1)

where base is the base virtual address of the property array and the granularity of the

property data is 4B. The PAG receives two pieces of information from the software (see

Section 4.2.5): (1) the base in Equation 4.1 and (2) the granularity at which the structure

cacheline needs to be scanned (4B for unweighted graphs and 8B for weighted graphs).

One structure cacheline can generate 8 and 16 property addresses per cycle for weighted

and unweighted graphs, respectively.

The virtual addresses generated by the PAG, together with the corresponding core

ID, are buffered in the VAB for translation. The translation happens through a small

MTLB (see Section 4.2.3), upon which the resulting physical address is buffered in the
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PAB. The physical address is then used to check the coherence engine and determine the

subsequent prefetch path of the property data, as described in Section 4.2.1.
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Figure 4.3: MC-based Property Prefetcher (MPP)

Virtual Address Translation in MTLB

The MTLB caches mappings of the property data pages to allow virtual-physical

translation of the property prefetch addresses in the MPP. A MTLB miss is handled

by page-walking, but a property prefetch address encountering a page fault is simply

dropped. Like core-side TLBs, the MTLB should also be involved in the TLB shootdown

process so that the MPP does not continue using stale mappings to prefetch wrong data.

To optimize the coherency maintenance between the core-side TLBs and the MTLB, and

to reduce the number of invalidations to the MTLB, we leverage (1) the extra bit in

the TLBs used to differentiate between structure and non-structure data and (2) the fact

that the MTLB caches only property mappings. Due to these two features, during a TLB

shootdown, MTLB entries are invalidated using only the core-side TLB invalidations for
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entries that have an extra bit with the value “0” (indicating non-structure data).

4.2.4 Hardware Overhead

DROPLET incurs negligible area overhead. The data-aware streamer in DROPLET

requires storing extra information in the page table and the L2 request queue entries.

In the hierarchical paging scheme in x86-64, each paging structure consists of 512 64-bit

entries, leading to a 4KB storage [91]. The addition of an extra bit in each page table

entry to identify structure data results in a 64B (1.56%) storage overhead in the paging

structure. Assuming a 32-entry L2 request queue [92], with each entry containing the

miss address and the status [93], the addition of an extra bit results in a 4B (1.54%) queue

storage overhead. In addition, property prefetching in DROPLET introduces the MPP

and requires additional storage in the MRB. Using McPAT integrated with SNIPER, we

find the area of the baseline chip to be 188 mm2 in a 45nm technology node. The area of

the MPP, with its parameters shown in Table 4.2, is 0.0654 mm2, resulting in a 0.0348%

area overhead with respect to the entire chip. With a 7.7KB storage, the VAB, the PAB,

and the MTLB comprise 95.5% of the total MPP area. For the MRB, the additional

storage required for the core ID field for our quad-core system is only 64B, if assuming a

256-entry MRB.

4.2.5 Design Discussion

System support for address identification: DROPLET is data-aware in two

aspects. First, the L2 streamer is only triggered by structure data. Second, the MPP

prefetches only property data with the knowledge of the base address of the property

array and the scan granularity of the structure cacheline. To obtain this information,

DROPLET needs help from the operating system and the graph data allocation layer
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of graph processing frameworks. Similar to prior work [94, 95], we develop a specialized

malloc function which can label all allocated pages with an extra bit in the page table to

help identify structure data during address translation at the L1D cache (the extra bit

being “1” indicates structure data). The specialized malloc function can also pass in some

information to be written into the hardware registers in the MPP. When allocating the

structure data, the malloc function writes the scan granularity of the structure cacheline

in the MPP. The malloc function for the property data writes the base address of the

property array in the MPP. We add a special store instruction to provide an interface for

the processor to write these two registers in the MPP 1.

User Interface: DROPLET requires the above malloc modification only at the

framework level and is transparent to user source code. This is because, in the system

stack for graph processing frameworks, the layer of graph data allocation and manage-

ment (the layer at which we introduce a specializedmalloc) is separate from user code [95].

Hence, our modification can be handled “behind the scenes” by the data management

layer without modifying the API for users.

Applicability to different programming models and data layouts: In this

work, we assume a CSR data layout and a programming abstraction focused on the

vertex. DROPLET is easily extensible to other abstractions because a common aspect

across most abstractions is that they maintain data in two distinct parts which can be

mapped to our data type terminology (structure and property data). For example, in

edge-centric graph processing [55, 72], structure data would be equivalent to a sorted or

unsorted edge array which is typically streamed in from slower to faster memory [55,72].

DROPLET can prefetch these edge streams and use them to trigger a MPP located near

the slower memory to prefetch property data. Moreover, DROPLET can easily handle
1The configuration registers of the MPP are part of the context and are backed up and restored when switching

between graph analytics processes.
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multi-property graphs by using the information from prefetched structure data to index

one property array (in case the property data layout is an array of vectors) or multiple

property arrays (in the case of separate arrays for each property).

Applicability to larger graphs: DROPLET is based on the observations obtained

from profiling graph processing workloads on a simulated multi-core architecture. As

opposed to a real machine, a simulated platform provides much higher flexibility for

data-aware profiling and for studying the explicit performance sensitivities of the in-

struction window and the cache hierarchy. However, the trade-off is the restriction to

somewhat small datasets to achieve manageable simulation times. However, our profil-

ing conclusions (hence the effectiveness of our proposed DROPLET design) still hold for

larger graphs because of two aspects. First, we use small datasets that are still larger

than that fully captured by the on-chip caches, which stresses the memory subsystem

sufficiently. Second, we explain the observed architecture bottlenecks in terms of inher-

ent data type features such as dependency characteristics and reuse distances, which are

independent of the data size.

Multiple MCs: Our experimental platform consists of a single MC in a quad-core

system. However, platforms with more cores may contain multiple MCs and data may

be interleaved across DRAM channels connected to different MCs. It is possible that a

property prefetch address generated by the MPP of one MC may actually be located in

a DRAM channel connected to another MC. In such a case, we adopt a technique similar

to prior work [88]. The property prefetch request, together with the core ID, is directly

sent to the MRB of the destination MC for prefetching.
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4.3 DROPLET Evaluation

In this section, we discuss the experimental setup and the evaluation results for

DROPLET.

4.3.1 Prefetch Experiment Setup

Beyond Table 6.1, the features of the prefetchers used for evaluation are shown in

Table 4.2. Evaluation is performed for six prefetcher configurations listed below.

GHB [24]: This is a G/DC (Global/Delta Correlation) L2 prefetcher.

VLDP [23]: This is a L2 prefetcher which, unlike GHB, can use longer and variable

delta histories to make more accurate prefetch predictions.

stream : This is the conventional L2 streamer which can snoop all L1 miss addresses.

streamMPP1 : This is a conventional L2 streamer together with a MPP. This configu-

ration shows the benefit of letting property prefetching be guided by structure streaming.

However, since the L2 streamer is not data-aware, relying only on the C -bit in the MRB

to identify structure data does not work. So, we use MPP1 which is equivalent to MPP

equipped with the ability to recognize structure data.

DROPLET : Unlike stream and streamMPP1, the L2 streamer is structure-only. When

compared to streamMPP1, DROPLET shows the additional benefit by restricting the

streamer to work on structure data only.

monoDROPLETL1 : This prefetcher is a data-aware streamer + MPP12 implemented

monolithically at the L1 cache, an arrangement close to the state-of-the-art graph prefetch-

ing proposition of Ainsworth et al. [15]. Although [15] uses a worklist-triggered recursive

prefetcher instead of a data-aware streamer + MPP1, monoDROPLETL1 imitates their

design philosophies of 1) a monolithic prefetcher and 2) bringing all prefetches into the
2The MPP1 in monoDROPLETL1 can reuse the core-side TLB and does not require a MTLB.
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L1 cache. Hence, we select this design point to evaluate if DROPLET provides any

performance benefit over a [15]-like monolithic L1 prefetcher.

Table 4.2: Prefetchers for evaluation

L2 GHB index table size = 512, buffer size = 512
L2 VLDP implemented using code from [92], last 64 pages

tracked by DHB, 64-entry OPT, 3 cascaded 64-
entry DPTs

L2 streamer implemented as described in section 2.1 of [89],
prefetch distance=16, number of streams=64, stops
at page boundary

MPP address generation latency in PAG = 2 cycles, 512-
entry VAB and PAB, 128-entry MTLB, 2 64-bit
registers, coherence engine checking overhead=10
cycles

MPP1 MPP augmented with the ability to identify a
prefetched structure cacheline

4.3.2 Performance Results

Fig. 4.4(a) and 4.4(b) show the performance improvement of the six configurations

normalized to a no-prefetch baseline. Among all of them, DROPLET provides the best

performance for CC (102%), PR (30%), BC (19%), and SSSP (32%). In these four

algorithms, the only exception is the road dataset (CC-road, PR-road, and SSSP-road)

where streamMPP1 is the best performer (see Section 4.3.3). For BFS, DROPLET

provides a 26% performance improvement, but the best prefetcher is streamMPP1 with

an average improvement of 36% (see Section 4.3.3). DROPLET could easily be extended

to adaptively turn off the streamer’s data-awareness to convert it into the streamMPP1

design. In that case, our design would be no worse than streamMPP1 for BFS and the

road dataset.

Compared to a conventional stream prefetcher, DROPLET provides performance im-

provements of 74% for CC, 9% for PR, 19% for BC, and 16.8% for SSSP. These im-
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(a)

(b)

Figure 4.4: (a) Performance improvement of the six configurations; (b) Performance
summary for Fig. 4.4(a) (each entry is the geomean of the speedups across all the five
datasets).

provements come from both the MPP and the data-aware streamer, as shown by the

progressive speedup from stream to DROPLET. For BFS, streamMPP1 outperforms the

conventional streamer by 5.4% but DROPLET slightly degrades performance by 2.3%.

Compared to monoDROPLETL1 (close to [15]), DROPLET provides performance

improvements of 11% for CC, 4% for PR, 6% for BC, 12.5% for BFS, and 4% for SSSP.

DROPLET differs from monoDROPLETL1 by 1) adopting a physically decoupled design

and 2) prefetching into the L2 instead of the L1. DROPLET performs better because it

achieves better prefetch timeliness by decoupling the structure and property prefetching

(Section 4.2.1). The benefit of decoupling is more so because computation per memory

access is very low in graph processing. In addition, DROPLET does not pollute the more

useful L1 cache. Instead, it prefetches into the L2 cache which is poorly utilized in graph

processing (Section 5.5.3). In addition to the performance benefit, DROPLET offers two
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critical advantages over [15] in terms of practicality and simplicity. First, [15] triggers its

prefetcher with an implementation specific data structure called the worklist. However,

many all-active algorithms are the simplest to implement without having to maintain

a worklist [17]. For [15], these algorithms have to re-written to integrate a worklist

data structure. In contrast, DROPLET does not depend on any worklist, leverages the

intrinsic reuse distance feature of graph structure data to trigger the prefetcher, and

introduces a special malloc which is transparent to user code (Section 4.2.5). Second,

unlike [15], we do not require additional hardware to ensure prefetch timeliness. We

achieve timeliness by using a decoupled design to break the serialization between structure

and property data.

DROPLET outperforms G/DC GHB by 115% for CC, 35% for PR, 23% for BC,

19% for BFS, and 31% for SSSP. GHB is overall the least performing prefetcher in our

evaluation. This is because it is hard to identify consistent correlation patterns in graph

processing due to the heterogeneous reuse distances of different data types.

Compared to VLDP, DROPLET provides performance improvements of 74% for CC,

23% for PR, 14% for BC, and 20% for SSSP. For BFS, streamMPP1 outperforms VLDP

by 6% but DROPLET slightly degrades performance by 1.6%. On average, the per-

formance improvement of DROPLET compared to VLDP is similar to its improvement

compared to the conventional stream prefetcher. Due to complex reuse distances of

different data types, delta histories may not always make effective prefetch predictions.

4.3.3 Explaining DROPLET’s Performance

In this section, we zoom in on DROPLET to demystify its performance benefits. Since

DROPLET is an enhancement upon the L2 streamer to include a data-aware streamer

and a MPP, we compare to stream and streamMPP1 configurations to show the additional
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effect of each component.

Figure 4.5: L2 cache performance. For each algorithm, the set of numbers shows the
average for the three prefetch configurations across the five datasets.

Benefit to Demand Accesses

L2 cache performance: Fig. 4.5 shows that DROPLET converts the seriously

under-utilized L2 cache (Fig. 3.5) into a higher performance resource by increasing the

L2 hit rate to 62%, 76%, 14%, 38%, and 50% for CC, PR, BC3, BFS, and SSSP, re-

spectively. The L2 hit rate for DROPLET is the highest on average for CC, PR, BC,

and SSSP. Fig. 4.5 also explains why streamMPP1 is the ideal prefetcher for the road

dataset and most BFS benchmarks. For these benchmarks, the conventional streamer

provides a comparatively higher cache performance, indicating that the streamer may

also be effective at capturing some property prefetches. Hence, by making the streamer

structure-only in DROPLET, we lose the streamer-induced property prefetches, leading

to a lower L2 cache hit rate when using DROPLET over streamMPP1.
3The value is relatively lower due to BC-road and BC-urand exceptions which do not benefit highly from any prefetcher

configuration. However, DROPLET causes no slowdown for them (Fig. 4.4(a)).
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Figure 4.6: Off-chip demand accesses. For each algorithm, the set of numbers shows the
average for the baseline and the three prefetch configurations across the five datasets.

Off-chip demand accesses: To understand how the two components of DROPLET

(MPP and data-aware streamer) affect the off-chip demand accesses to structure and

property data, Fig. 4.6 breaks down the demand MPKI from the LLC by data type.

Below, we summarize our observations on the additive benefit of each prefetch configu-

ration:

(1) Compared to the no-prefetch baseline, stream reduces structure demand MPKI in

all cases (71.3%, 58.9%, 21.5%, 39.7%, and 44.4% for CC, PR, BC, BFS, and SSSP,

respectively), but it mostly fails in significantly reducing the property demand MPKI

because of its inability to capture such difficult-to-predict large reuse distances. The

only exception is BFS, in which the property MPKI is reduced by 23%, corroborating the

earlier observation that stream is comparatively better at capturing property prefetches

for most BFS benchmarks.

(2) Compared to stream, streamMPP1 significantly reduces the property MPKI for all

algorithms (39.5%, 48.7%, 24.8%, 92.8%, and 41.4% for CC, PR, BC, BFS, and SSSP,
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respectively), but it does not significantly reduce the structure MPKI. The property

MPKI reduction comes from the MPP, which follows structure prefetches to bring in a

high volume of useful property prefetches. Structure MPKI does not benefit because the

streamers in stream and streamMPP1 are the same.

(3) Compared to streamMPP1, DROPLET further reduces structure demand MPKI

(76.6%, 62.4%, 45.7%, 5.73%, and 41% for CC, PR, BC, BFS, and SSSP, respectively)

because a structure-only streamer leads to a larger volume of structure prefetches by

dedicating all the trackers to structure memory regions. Correspondingly, the prop-

erty MPKI is also reduced since property prefetches accompany the structure prefetches

(47.5%, 48.5%, 44.6%, 3.6%, and 39% for CC, PR, BC, BFS, and SSSP, respectively).

However, we observe that the benefit for BFS is small compared to other algorithms.

Hence, the small reduction in the LLC MPKI, together with a lower L2 cache perfor-

mance, further explains why streamMPP1 rather than DROPLET is the ideal prefetcher

for the BFS algorithm.

Prefetch accuracy: Fig. 4.7 shows the prefetch accuracies for the three prefetch

configurations and the two data types. For structure data, DROPLET has the highest

prefetch accuracy for all the algorithms. The accuracies are 100% for CC, 95% for PR,

53% for BC, 66% for BFS, and 64% for SSSP. For property data, DROPLET’s prefetch

accuracy is the highest for CC (94%), PR (95%), BC (46%), and SSSP (70%). For BFS,

the property prefetch accuracy for DROPLET (47%) is lower than that of stream (70%).

Overall, CC and PR have a higher prefetch accuracy for structure and property data

than BC, BFS, and SSSP. This is because the former two algorithms process vertices in

very sequential order. On the other hand, the BC, BFS, and SSSP algorithms depend

on intermediate data structures, such as bins or worklists, when processing vertices.

Consequently, the access pattern for structure data in BC, BFS, and SSSP consists of

random starting points from which data can start being streamed.
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Figure 4.7: Prefetch accuracy. For each algorithm, the set of numbers shows the average
for the three prefetch configurations across the five datasets.

Overheads of Prefetching

One of the side effects of prefetching is additional bandwidth consumption due to

inaccurate prefetches, which may offset performance gains. DROPLET incurs low extra

bandwidth consumption. Fig. 4.8 shows the extra bandwidth consumption for the three

configurations measured in BPKI (bus accesses per kilo instructions). Compared to a

no-prefetch baseline, DROPLET requires 6.5%, 7%, 11.3%, 19.9%, and 15.1% additional

bandwidth for CC, PR, BC, BFS, and SSSP, respectively. The bandwidth requirement

for CC and PR is smaller due to the comparatively higher structure and property prefetch

accuracies.
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Figure 4.8: Additional off-chip bandwidth consumption. For each algorithm, the set of
numbers shows the average for the three prefetch configurations across the five datasets.

4.4 Related Work

Graph characterization: Prior characterization on real hardware [9–13] provides in-

sights such as high cache miss rates [11], under-utilization of memory bandwidth [9, 10],

and limited instruction window size [9]. Prior work characterizes graph analytics work-

loads on Intel Xeon [9–12] or Intel Xeon Phi [13] and provides insights such as high cache

miss rates [11], under-utilization of memory bandwidth [9, 10], and limited instruction

window size [9]. Our profiling fills in the gaps in previous work through its data-aware

feature and an explicit performance sensitivity analysis of the instruction window and

the caches.

Prefetching : Although prefetching is a well-studied topic [23, 24, 96–105], our work

shows that many state-of-the-art prefetchers are not adequate for graph processing (Sec-

tion 4.3.2). Our contributions lie in the in-depth analysis of the data type behavior in

graph analytics and in the observation-oriented prefetching design decisions (data-aware

and decoupled prefetcher).
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IMP [106] is a hardware-only L1 prefetcher for indirect memory references. Unlike

IMP, we use the system support for data awareness to avoid long and complex prefetcher

training. A data-aware prefetcher removes the need for IMP’s strict and not-widely-

applicable assumption of very long streams to be eventually able to train the prefetcher.

In addition, we show that, for graph processing, a decoupled architecture provides perfor-

mance benefits over a monolithic prefetcher (the design adopted by IMP) (Section 4.3.2).

Many prefetchers have been proposed for linked-list type data structures [96–99].

However, they prefetch at multiple levels of recursion (over-prefetch), whereas the structure-

to-property indirect array access in graph analytics represents only one level of depen-

dency. Runahead execution [102] uses a stalled ROB to execute ahead in the program

path but can only prefetch independent cache misses. Dependence graph precompu-

tation [103] is not data-aware and it requires large hardware resources to dynamically

identify dependent load chains for precomputation.

Near-memory prefetchers and accelerators : There exist near-memory prefetchers that

perform next-line prefetching from the DRAM row buffer [107] or prefetch linked-list data

structures [97,108]. To the best of our knowledge, our work is the first to propose a data-

aware prefetcher in the MC for indirect array accesses in graph analytics. In addition,

our near-memory MPP is significantly different from previous approaches [97, 107, 108]

in how it is guided by a data-aware L2 streamer.

Hashemi et al. [88] propose, for SPEC CPU2006 benchmarks, dynamically offloading

dependent chains predicted to be cache misses to the MC for acceleration. However, in

graph analytics, such a scheme could lead to high overheads from very frequent offloading

since cache miss rates are much higher. Instead, we use the concept of issuing requests

directly from the MC to decouple our prefetcher and to achieve aggressive and timely

property prefetching (Section 4.2.1). Note that acceleration and prefetching are two

orthogonal techniques, and can be combined to gain benefit from both.
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4.5 Conclusion

We optimize the memory hierarchy for single-machine in-memory static graph analyt-

ics. Based on the workload characterization (Chapter 3), we propose a novel architecture

design for an application-specific prefetcher called DROPLET, which is data-aware and

prefetches graph structure and property data in a physically decoupled but function-

ally cooperative manner. The experimental results show that DROPLET can achieve

significant improvement over various prior work.
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Chapter 5

Broadening Graph Analytics Domain

Knowledge with SAGA-Bench

Performance Analysis Platform

5.1 Introduction and Contributions Overview

As discussed in Chapter 1, a large body of research in the computer architecture com-

munity focuses on static graph processing, whereas streaming graphs remain completely

unexplored. Domain knowledge, contributed by some influential workload characteriza-

tion and benchmarking efforts [9, 11, 17], has been key to driving research on domain-

specific architectures for static graphs. However, the domain knowledge is insufficient in

its existing state because it ignores the time-evolving nature of graphs. Streaming graphs

are neglected in today’s domain-specific architectures because of two issues: 1) imma-

ture software and lack of systematic performance analysis, and 2) absence of open-source

benchmarks. Motivated by these shortcomings, we broaden the domain knowledge for

the computer architecture community by 1) providing a performance analysis platform
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and benchmark called SAGA-Bench for StreAming Graph Analytics; and 2) performing

systematic workload characterization at both the software and the hardware levels on a

state-of-the-art CPU server. Specifically, we present three contributions:

Contribution 1: Development of SAGA-Bench (Section 5.2). SAGA-Bench is

an open-source C++ benchmark for StreAming Graph Analytics containing a collection

of data structures and compute models on the same platform for a fair and systematic

study. SAGA-Bench does not seek to be yet another novel and competitive state-of-the-

art streaming graph system. Instead, it is a systematic performance analysis platform for

software and hardware studies of the essential data structures and compute models pro-

posed across various existing systems. For software studies, the core data structures and

compute models (without system-specific optimizations) are integrated into SAGA-Bench

and evaluated using the same measurement methodology (thus alleviating the problem

of difficult-to-interpret comparisons across heterogeneous systems). At the architecture

level, SAGA-Bench provides an open-source benchmark for streaming graph workloads.

Since streaming graphs are still being actively researched at the software level, the goal of

SAGA-Bench is to remain in active development over time through progressive integra-

tion of future novel data structures and compute models. To the best of our knowledge,

our work is the first to develop a resource for streaming graphs which simultaneously

provides 1) a common platform for performance analysis studies of software techniques

and 2) a benchmark for architecture studies.

Contribution 2: Software-level Workload Characterization (Section 5.4). We

further use SAGA-Bench to perform software-level profiling to provide insights on the best

data structure and compute model. This analysis is important because 1) data structures

and compute models are still topics of active research and 2) we seek to demystify the

performance trade-offs of different data structures and compute models systematically on

the same platform, as opposed to prior difficult-to-interpret cross-system comparisons.
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In addition, this software-level analysis helps identify the best software for further ar-

chitecture characterization (see Contribution 3). Our key findings from software-level

profiling are as follows:

• The best data structure for a streaming graph depends on the per-batch degree distribu-

tion of the graph. Short-tailed graphs perform the best on adjacency list (occasionally

Stinger [27]), whereas hash-based data structure is the most scalable for heavy-tailed

graphs. The terms heavy-tailed and short-tailed are defined in Section 5.4.2 in the

context of this work.

• The incremental compute model offers performance benefits especially for larger graphs.

Although an intuitive finding, we provide detailed supporting data to quantitatively

confirm this observation.

• The graph update phase contributes at least 40% of the streaming graph processing

latency for many workloads.

Beyond prior work, 1) we provide novel insights on the comparative performance trade-

offs of various data structures on input datasets of different structural properties and 2)

we explicitly highlight the performance limitation of the graph update phase in terms of

the latency breakdown.

Contribution 3: Architecture-level Workload Characterization (Section 5.5).

We use the best data structure and compute model from software-level profiling to per-

form architecture-level characterization of both update and compute phases. Our key

observations and insights are as follows:

• The graph update phase exhibits lower utilization of hardware resources than the graph

compute phase, indicating lower thread-level parallelism (TLP) of the update phase.
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• The hardware resource utilization of the update phase strongly depends on the under-

lying structure of the batches of the graph. The update of heavy-tailed graphs benefits

negligibly from larger core counts, memory bandwidth, and inter-socket bandwidth.

In contrast, the update of short-tailed graphs shows higher utilization of these archi-

tecture resources. We further provide insights that the lower TLP of the update phase

arises from 1) thread contentions in short-tailed graphs and 2) workload imbalance in

heavy-tailed graphs.

• Compared to the update phase, the compute phase exhibits higher L3 cache hit ratio.

In contrast, the update phase exhibits a higher L2 cache hit ratio than the compute

phase. This occurs due to 1) a data reuse relationship and 2) a difference in working

set sizes between the update and compute phases.

To the best of our knowledge, our work is the first to perform a comparative study

between update and compute phases and to provide novel insights on the architecture-

level features of the graph update phase. Previous architecture-level research on graph

processing [9, 10, 14, 15, 95, 109–122] focuses on static graphs and does not consider a

detailed study of the graph update phase.

5.2 SAGA-Bench Description

SAGA-Bench is implemented in C++ and contains a collection of 4 data struc-

tures (Section 5.2.1), 2 compute models (Section 5.2.2), and 6 vertex-centric algorithms

(Section 5.2.3) implemented in both the compute models1.
1All implementations are done from scratch. Even when an open-source implementation is available

(e.g., Stinger [27]), it is modified to conform to the APIs of SAGA-Bench. Closed-source software
techniques are implemented by closely following their descriptions in the corresponding published papers.
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Figure 5.1: Chunked adjacency list (AC)
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Figure 5.2: Stinger

5.2.1 Data Structures for Graph Topology

SAGA-Bench contains four vertex-centric data structures which support multithreaded

edge update, as described below2, for storing the graph topology3. As described in prior

work [27,123], we implement each edge update only after a search operation so that edges

are ingested uniquely.

Adjacency List (shared style multithreading) (AS): AS is implemented as

an array of vectors where each vector contains the neighbors belonging to a particular

node. Multiple threads update a batch of edges into AS (implemented in the code with

OpenMP). A thread responsible for an edge update 1) locks the vector corresponding to

the source node, 2) scans the vector to search for the target edge, and 3) inserts the edge if

the search is negative. Since edge update involves locking the entire vector corresponding

to a source node, there is no parallelism in intra-node edge update. However, parallelism

is possible in updating edges for different nodes.

Adjacency List (chunked style multithreading) (AC): As shown in Fig. 5.1,

AC is an adjacency list partitioned into multiple chunks, each chunk storing neighbors

for a subset of source vertices. Each chunk is a single-threaded data structure and no

locks are required for updating the edges inside it (the rest of the intra-chunk operation
2The description assumes storing out-neighbors. For directed graphs, there is a second copy of the

data structure for storing in-neighbors.
3Vertex property values are maintained in a separate array in all cases.
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Figure 5.3: Degree-aware Hashing (DAH)

is the same as in AS). Update multithreading is achieved with multiple chunks.

Stinger: Stinger [27] is a shared-memory data structure where multithreading is

achieved with OpenMP. As shown in Fig. 5.2, it contains two components. First, an

array stores information on the source node ID and its degree. Second, each node entry

in the array points to a linked list of edgeblocks which contains the edge information for

the corresponding node. Each edgeblock accommodates a fixed number of edges (16 in

our implementation). Stinger differs from AS in two aspects. First, unlike AS, Stinger

can enjoy intra-node parallelism. Due to fragmented edgeblocks, Stinger can perform

multiple edge updates for a single node by acquiring fine-grained locks within its linked

list of edgeblocks. Second, unlike AS, Stinger requires two scans for an edge insertion as

a trade-off for its fine-grained locks. The first scan through the linked list searches for

the target edge. If not found, another scan through the same linked list is required to

find an empty space for inserting the edge.

Degree-aware Hashing (DAH): As shown in Fig. 5.3, DAH [123] contains two hash

tables, one for low-degree vertices and another for high-degree vertices. Multithreading is

achieved with multiple chunks of DAH, where each chunk is single-threaded and lockless

(similar to AC). Although DAH allows amortized constant-time edge update through

hashing, it incurs an overhead from the following meta-operations due to its degree-

awareness: 1) querying the degree of each table before deciding where to place the new
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edge and 2) periodic flushing of edge information from the low-degree table to the high-

degree table.

To enable systematic and insightful studies, the four data structures of SAGA-Bench

have been chosen to include variations in the following factors:

Edge update mechanism: To study the effect of the update technique on update latency,

SAGA-Bench contains a variety of update mechanisms: 1) hash-based update (DAH), 2)

update in memory-contiguous vectors (AS, AC), and 3) update in coarse-grained linked

lists (Stinger).

Intra-node parallelism: Stinger supports intra-node parallelism in edge update, whereas

others do not possess this flexibility (AS, AC, DAH). This allows us to study the benefit

of this extra degree of parallelism on the update latency.

Multithreading technique: SAGA-Bench contains data structures with two update multi-

threading techniques: 1) shared-memory style (AS, Stinger) and 2) chunked style (AC,

DAH). We implemented adjacency list in both the techniques in order to understand,

for a given data structure, the benefit of one over the other for datasets of different

properties.

Traversal mechanism: Graph data layout and compute latency are strongly tied because

a basic operation of vertex-centric computation is neighbor traversal for vertices. Data

structures in SAGA-Bench support a variety of traversal mechanisms in order to study

their effects on the compute latency.

5.2.2 Compute Models

SAGA-Bench supports two compute models:

Recomputation from scratch (FS): Every update phase is considered to produce a

brand-new version of the entire graph. All vertex values are reset to the initial values and
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an entirely new computation is started on this fresh graph, i.e., the current computation

is oblivious of the computation performed in the previous batch. This compute model is

implemented using conventional algorithms for static graphs (borrowed from GAP [17])

during each successive compute phase. We implement Max Computation and Single

Source Widest Paths (Section 5.2.3) since they are not implemented in GAP.

Incremental computation (INC): This compute model considers the fact that there

may be sharing of vertices and edges between two successive compute phases. Hence,

the amount of work may be saved by 1) reusing the outcome of the computations per-

formed in the previous batch and by 2) performing computation on only the portion of

the graph affected (directly and indirectly) by the latest update phase. We implement in-

cremental algorithms in SAGA-Bench using two techniques introduced in previous work

(pseudocode in Algorithm 1):

• Processing amortization [38,124]: Work is saved by starting the computation from the

vertex values right before the latest update, i.e., the vertex values produced by the

compute phase on the previous batch (lines 2-4). These intermediate values have been

shown to be closer to the final results, allowing faster convergence to the final results

in cases of many algorithms.

• Selective triggering [19, 30]: Computation starts from a subset of vertices affected by

the latest update (line 8), and large enough changes (decided by a triggering condition

in line 11) are progressively propagated iteration-by-iteration to neighboring vertices.

These iterations continue until no more vertices are triggered (lines 19-25). The goal is

to cut computation costs by operating on only a fraction of the graph affected (directly

and indirectly) by the latest update instead of on the entire graph.
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Table 5.1: Vertex functions for algorithms

Alg Vertex function
BFS v.depth← mine∈InEdges(v)(e.source.depth+ 1) [38]
CC v.value← min(v.value,mine∈Edges(v) e.other.value) [124]
MC v.value← max(v.value,maxe∈InEdges(v)(e.source.value)) [38]
PR v.rank ← 0.15 + 0.85 ∗

∑
e∈InEdges(v) e.source.rank [124]

SSSP v.path← mine∈InEdges(v)(e.source.path+ e.weight) [38]
SSWP v.path← maxe∈InEdges(v)(min(e.source.path, e.weight)) [38]

5.2.3 Algorithms

As summarized in Table 5.1, SAGA-Bench contains six vertex-centric algorithms

implemented in both FS and INC compute models: 1) Breadth First Search (BFS), 2)

Connected Components (CC), 3) Max Computation (MC), 4) PageRank (PR), 5) Single

Source Shortest Path (SSSP), and 6) Single Source Widest Path (SSWP).

5.2.4 API and extensibility

The API of SAGA-Bench is general enough to accommodate future software tech-

niques. The API includes functions that define batched updates, graph traversal, and

algorithm execution (specific functions: update(), in_neigh(), out_neigh(), and perfor-

mAlg()). A new data structure, compute model, or graph algorithm can be added in the

future by implementing these API functions.

5.3 Experimental Setup

Platform: Characterization is performed on a dual-socket Intel Xeon Gold 6142

(Skylake) server with 16 physical cores per socket and 2-way simultaneous multithreading

per physical core (total of 64 hardware execution threads in the system). The server

contains 32KB private L1 data and instruction caches per physical core, 1MB private
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L2 cache per physical core, 22MB shared last-level cache (LLC) per socket, and 768GB

DRAM with maximum per-socket memory bandwidth of 128GB/s. Three QuickPath

Interconnect (QPI) links provide 136.2GB/s of inter-socket communication (68.1GB/s in

each direction).

Methodology : SAGA-Bench is compiled with gcc-7.3.1. All experiments (except

for studies on core scaling in Section 5.5) are performed with 64 threads, the maximum

number of hardware execution threads. To make our analysis reproducible, we turn off

the Turbo Boost feature for all experiments. In addition, we pin software threads to

hardware threads to exclude performance variations due to OS thread scheduling.

Graph datasets are first randomly shuffled to break any ordering in the input files.

This is done to ensure the realistic scenario that streaming edges are not likely to come

in any pre-defined order. The shuffled input file is then read in batches of 500K edges

(similar batch size value has been considered in [26–28,37]).

All the experiments are repeated three times and each experiment provides batch-

Count (see Table 6.2) values. To analyze the over-time effect of changing graph size and

sparsity in streaming graphs, we divide the total number of batches in a given exper-

iment into three equal stages. Experimental results contain three representative data

points P1, P2, and P3, which are the averages for early, middle, and final stages, respec-

tively. The average for a given stage (P1, P2, or P3) is computed by taking into account

1) the corresponding one-third of batchCount values and 2) the fact that the experiment

has been repeated three times. For example, for BFS run in the incremental compute

model on the Orkut dataset on the AS data structure, the batch processing latency at

P1 is the average of 1/3 × Orkut’s batchCount × 3 latency values produced from the

three repeated experiments. All the averages are computed with 95% confidence inter-

vals. Despite three runs, our confidence intervals are tight because each run produces

batchCount values which are taken into account (as described above) for the calculation
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Table 5.2: Evaluated datasets. BatchCount computed with batch size of 500K (see
Section 5.3).

Dataset vertices edges batchCount
Livejournal (LJ) 4,847,571 68,993,773 138

Orkut 3,072,441 117,185,083 235
RMAT 32,118,308 500,000,000 1000

wiki-topcats (Wiki) 1,791,489 28,511,807 58
wiki-talk (Talk) 2,394,385 5,021,410 11

of the average.

Architecture-level profiling of memory, caches, and inter-socket bandwidth (Section

5.5) is performed with Intel Processor Counter Monitor (PCM) [125].

Datasets: The datasets in Table 6.2 are taken from SNAP [86], with the exception

of synthetic RMAT [126] for which we used parameters a=0.55, b=0.15, c=0.15, d=0.25.

Livejournal and Orkut are online social networks, Wiki-topcats is Wikipedia hyperlink

graph, and Wiki-talk is Wikipedia communication network. All the datasets are directed

except for Orkut.

5.4 Software-Level Profiling

We perform a systematic characterization of the data structures and the compute

models on the same platform to measure their impact on update, compute, and batch-

processing latencies for a range of algorithms and datasets.

5.4.1 Best Combination of Data Structure and Compute Model

Table 5.3 and 5.4 show, for a given algorithm and dataset, the combination of data

structure and compute model which provides the lowest batch processing latency. More-

over, the table shows the best combination over time in the early, middle, and final stages.

The observed trends are summarized below.
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Table 5.3: For BFS, CC, and MC, the best combination of data structure and compute
model and the corresponding absolute batch processing latency (in seconds). Conclusion
for each entry is derived by comparing 4 data structures × 2 compute models=8 averages
with 95% confidence intervals. [x/y=x is the best average but x and y are competitive].

Alg Datset P1 (early stage) P2 (middle stage) P3 (final stage)

BFS LJ
INC/FS+AS

0.1705
INC+AS
0.1502

INC+AS
0.1407

BFS Orkut
INC+AS
0.1521

INC+AS
0.1445

INC+AS
0.2003

BFS RMAT
INC+AS
0.2220

INC+AS
0.2029

INC+AS
0.2190

BFS Wiki
INC/FS+Stinger

0.2587
INC/FS+DAH

0.4063
INC+DAH

0.3757

BFS Talk
INC/FS+DAH/Stinger

0.3406
INC/FS+DAH

0.3330
INC/FS+DAH

0.3225

CC LJ
INC+AS
0.1818

INC+AS
0.1513

INC+AS
0.1374

CC Orkut
INC+AS
0.1486

INC+AS
0.1614

INC+AS
0.1932

CC RMAT
INC+AS
0.2453

INC+AS
0.2517

INC+AS
0.2757

CC Wiki
INC+Stinger

0.2731
INC+DAH

0.4082
INC+DAH

0.3728

CC Talk
INC+DAH/Stinger

0.3525
INC+DAH

0.3438
INC+DAH

0.3315

MC LJ
FS/INC+AS

0.3109
INC/FS+AS

0.3552
INC/FS+AS

0.4097

MC Orkut
FS/INC+AS/Stinger

0.3204
INC+AS
0.4094

INC/FS+AS
0.5208

MC RMAT
INC+AS/Stinger

0.9772
INC+AS/Stinger

1.9038
INC/FS+AS/Stinger

2.5754

MC Wiki
FS/INC+Stinger

0.3435
FS/INC+DAH/Stinger

0.6448
INC/FS+DAH

0.7657

MC Talk
FS/INC+DAH/Stinger

0.3806
INC/FS+DAH

0.3856
INC/FS+DAH

0.3901
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Table 5.4: For PR, SSSP, and SSWP, the best combination of data structure and compute
model and the corresponding absolute batch processing latency (in seconds). Conclusion
for each entry is derived by comparing 4 data structures × 2 compute models=8 averages
with 95% confidence intervals. [x/y=x is the best average but x and y are competitive].

Alg Datset P1 (early stage) P2 (middle stage) P3 (final stage)

PR LJ
INC+Stinger

0.3864
INC+Stinger

0.4397
INC+Stinger

0.4536

PR Orkut
INC+Stinger

0.3091
INC+AS/Stinger

0.3234
INC+AS
0.3578

PR RMAT
INC+Stinger

0.4347
INC+Stinger

0.4319
INC+Stinger

0.4582

PR Wiki
INC+Stinger

0.4311
INC+Stinger

0.6478
INC+DAH

0.7669

PR Talk
INC/FS+Stinger/DAH

0.4969
INC/FS+DAH

0.6649
INC/FS+DAH

0.6175

SSSP LJ
FS+AS/Stinger

0.2664
FS+Stinger/AS

0.2971
FS/INC+Stinger/AS

0.3384

SSSP Orkut
FS+Stinger

0.2785
INC+AS/Stinger

0.3761
INC+AS
0.4254

SSSP RMAT
INC+Stinger/AS

0.4919
INC+AS/Stinger

0.6074
INC+AS/Stinger

0.5069

SSSP Wiki
INC/FS+Stinger

0.3345
FS+DAH/Stinger

0.5756
FS+DAH
0.5718

SSSP Talk
FS/INC+DAH/Stinger

0.3478
FS+DAH
0.3471

FS/INC+DAH
0.3735

SSWP LJ
INC+AS/Stinger

0.2408
INC+AS
0.2078

INC+AS
0.2045

SSWP Orkut
INC+Stinger/AS

0.2064
INC+AS/Stinger

0.2896
INC+AS
0.3309

SSWP RMAT
INC+Stinger

0.2770
INC+AS
0.3070

INC+AS
0.3212

SSWP Wiki
FS/INC+Stinger

0.2863
FS+DAH/Stinger

0.5603
FS+DAH
0.5935

SSWP Talk
INC/FS+DAH/Stinger

0.3531
FS/INC+DAH

0.3841
INC/FS+DAH

0.3524
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Best data structure. The best data structure depends on the dataset. AS and Stinger

are the most competitive data structures over P1, P2, and P3 for LJ, Orkut, and RMAT.

For Wiki and Talk, on the other hand, DAH consistently shows good scalability over

time, i.e., DAH is the best data structure at P3. Wiki and Talk also exhibit strong over-

time variation in the best data structure. Although Stinger starts out being the best or

competitive to DAH in P1, DAH finally takes over by the time P3 is reached.

Best compute model. The incremental compute model (INC) is predominantly opti-

mal. However, the recomputation from scratch model (FS) is competitive in a few cases:

1) Wiki and Talk which are small datasets; 2) MC algorithm; and 3) SSSP algorithm

except for SSSP on the large RMAT dataset.

5.4.2 Impact of Data Structure

Primary Observation: The best data structure for a streaming graph depends on the

per-batch degree distribution of the graph. Short-tailed graphs perform the best on AS

(occasionally Stinger), whereas DAH is the most scalable data structure for heavy-tailed

graphs.

Fig. 5.4(a) shows, for each algorithm (at the best compute model) and dataset, the

total batch processing latency of each data structure normalized to AS at P3. The most

striking trend is the flipped relative performance benefits of AS and DAH for different

datasets. For LJ, Orkut, and RMAT, AS (occasionally Stinger) provides the lowest batch

processing latency and DAH provides the highest latency (1.66×-4.14× higher than AS).

For Wiki and Talk, on the other hand, AS is the lowest-performing data structure with

5.6×-12.8× higher latency than DAH, the best-performing data structure. Fig. 5.4(b)

and 5.4(c) further confirm that this difference is caused by the update phase. Although

the relative benefits of AS and DAH are consistent for all datasets in the compute phase,
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Figure 5.4: (a) Total (b) Update and (c) Compute latencies at P3 of AC, DAH, and
Stinger (normalized to AS) at the best compute model (P3 column of Table ??). The
compute model is kept to be the best to isolate the impact of only the data structure. We
show only BFS in (b) because the same trend is observed for other algorithms (update
is independent of the running algorithm).
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the update phase shows flipped behavior for Wiki and Talk. To understand the graph

structural property which affects this behavior, we define short (heavy)-tailed graphs.

Short (heavy)-tailed graphs are graphs with batches containing low (high) maximum

degree, indicating a short (heavy) tail in the degree distribution of the batch4. As shown

in Table 5.5, in contrast to the three other datasets, Wiki and Talk are heavy-tailed

graphs with much higher per-batch maximum degree, i.e., a heavier tail in each edge

batch’s degree distribution. Therefore, in contrast to the other datasets, Wiki and Talk

have to undergo a much higher maximum per-node edge updates in each batch. AS

suffers from coarse-grained locks (the entire vector for a source node is locked) and a lack

of intra-node parallelism. These cause substantial lock contention overhead and update

serialization in case of heavy-tailed graphs with a high count of edge updates for the

high-degree node. On the other hand, DAH is lockless due to chunked multithreading

and offers a fast hash-based update mechanism, which becomes highly beneficial for

heavy-tailed graphs. In contrast, for shorter-tailed graphs like LJ, Orkut, and RMAT,

DAH becomes lower performing (Fig. 5.4(b)) because the overhead due to its meta-

operations overpowers any other benefits. Hence, AS takes over as the higher-performing

data structure since the number of edge updates for the high-degree node is low enough

to not cause substantial lock contention.

In addition to the above primary observation, we provide insights on the relative

strengths of different data structures for both update and compute phases:

Update latency for short-tailed LJ, Orkut, and RMAT: Fig. 5.4(b) provides

evidence of the following relative ordering of the four data structures for update latency
4Our definition is with respect to a batch because it directly impacts the streaming graph processing

latency (Equation 2.1). However, in our setup, the degree distribution of the entire dataset is generally
reflected in a typical batch (batch size = 500K) due to random shuffling of the datasets (Section 5.3).
Table 5.5 shows that Wiki and Talk are heavy-tailed across the entire dataset as well as in a typical
batch. All our datasets and their corresponding edge batches show power-law degree distribution, and
the maximum degree indicates the heaviness of the tail of the degree distribution.
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Table 5.5: Max in/out degree for each dataset

Dataset
Entire Dataset One Batch (Batch size = 500K)

Max In-degree Max Out-degree Max In-degree Max Out-degree
LJ 13906 20293 106 147

Orkut 33313 33313 144 144
RMAT 8016 7997 10 10
Wiki 238040 3907 4174 70
Talk 3311 100022 330 9957

(from highest to lowest): DAH > AC > Stinger > AS5. Stinger exhibits 1.57×-1.76×

higher update latency than AS because it requires two passes to insert edges for a par-

ticular node. In addition, each pass involves occasional pointer-chasing, whereas AS con-

tains per-node edge information in a contiguous vector. Compared to AS, AC exhibits

2.2×-2.6× higher latency and DAH exhibits 2.3×-3.2× higher latency. Between AC and

DAH, the latter incurs higher latency due to meta-operations such as degree-querying

and inter-hash-table flushing during edge update.

Update latency for heavy-tailed Wiki and Talk: Fig. 5.4(b) shows the following

ordering of the four data structures for update latency (from highest to lowest): AS >

AC > Stinger > DAH. Averaged over Wiki and Talk, AS shows 12.6×, 3.9×, 2.6× higher

update latency compared to DAH, Stinger, and AC, respectively. The benefit of DAH

over AS for Wiki and Talk has been discussed above. Stinger and AC perform much

better than AS as well. This is because Stinger offers fine-grained locks and intra-node

parallelism, which can parallelize edge updates for the high-degree node in heavy-tailed

graphs. The benefit of AC comes from its chunked and lockless feature. Hence, unlike AS,

it does not suffer from lock contention overheads in the case of heavy-tailed graphs. Thus,

the choice of multithreading technique is important for the update phase. For adjacency

list, heavy-tailed graphs exhibit lower update latency on the lockless chunked-style AC,

whereas short-tailed graphs perform better on the shared-style AS.
5Although confidence intervals of DAH/AS and AC/AS overlap for Orkut, we report DAH > AC

because this relation holds strictly for 2 out of 3 cases.
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Impact of data structures and their traversal mechanisms on compute latency:

As shown in Fig. 5.4(c), DAH shows higher compute latency (up to 4.7×) compared to

AS in all cases. DAH has an expensive neighbor traversal due to degree-query meta-

operations to locate the right hash table for edge retrieval. It performs particularly

poorly in PR because we normalize the rank of an incoming neighbor by its out-degree,

requiring another degree-query in addition to the one involved in neighbor traversal. AC

and Stinger are competitive to AS in multiple cases because all three data structures

are based on adjacency list with similar traversal mechanisms. However, in some cases,

both show up to 2× higher latency than AS. For example, in Stinger this occurs due to

occasional pointer chasing during edge traversal.

5.4.3 Impact of Compute Model

Observation: Larger graphs benefit more from the incremental compute model.

As shown in Fig. 5.5, for a given algorithm (BFS, CC, PR, SSSP, and SSWP), at

any given stage (P1, P2, or P3), RMAT (the largest graph) is the largest beneficiary of

INC, whereas Wiki and Talk (the smallest graphs) are the smallest beneficiaries. For

RMAT at P3, INC improves compute performance by 15×, 40×, 18×, 5×, and 17×

in BFS, CC, PR, SSSP, and SSWP, respectively. In comparison, for Wiki at P3, INC

shows only 2.4×, 7.7×, 1.9×, 0.6×, and 0.8× improvements for BFS, CC, PR, SSSP,

and SSWP, respectively. In addition, the benefit of INC is higher for later stages P2

and P3 where the graph becomes larger. For example, for BFS on RMAT, INC improves

the compute performance by 6×, 13×, and 15× at P1, P2, and P3, respectively. Hence,

the incremental compute model offers performance advantages in the compute phase for

larger graphs, i.e., a larger dataset at a given stage (RMAT versus Wiki at P3) or the

same dataset becoming larger over time (RMAT at P1 versus P2 and P3). For larger
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graphs, INC saves substantial amount of computations by operating on only a small

fraction of the graph6.
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Figure 5.5: Compute latency of FS (normalized to INC) at the best data structure over
three stages for all the algorithms. Experiments are performed at the best data

structure to isolate the performance impact of only the compute model.

5.4.4 Latency Breakdown

Observation: The graph update operation is an important performance limiter in

streaming graphs. The update phase contributes at least 40% of the batch processing

latency for many workloads.

Fig. 5.6 shows that the update phase is expensive in many cases such as BFS, CC, and

SSWP across all the three stages P1, P2, and P3. For small datasets such as Wiki and

Talk, the amount of computation during the compute phase is small and the bottleneck

shifts to the update phase. However, the large contribution of the update phase is not

limited to only small datasets. Larger datasets LJ, Orkut, and RMAT also show near or

more than 40% latency contribution of the update phase in most cases. This provides

quantitative evidence that the update phase is as important as the compute phase in the

case of streaming graph analytics.
6MC is an exception which shows small benefit over INC because FS and INC implementations in

MC are similar. In SSSP, FS is competitive to INC (except for the large RMAT dataset) because the
delta-stepping FS implementation [17] is highly optimized.
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Figure 5.6: Percentage of batch processing latency occupied by the update phase over
three stages. Experiments are performed at the combination of the best data structure
and the best compute model to get the latency breakdown under the best conditions.

5.5 Architecture-Level Profiling

We quantitatively study the impact of different architecture resources on the per-

formance of both update and compute phases. Architecture-level characterization is

performed with the predominantly best data structure and compute model identified in

software-level study (Section 5.4). We use the incremental compute model (INC) for all

the algorithms and categorize the results into two groups: 1) STail, i.e., average across

short-tailed graphs LJ, Orkut, and RMAT on AS across six algorithms; and 2) HTail,

i.e., average across heavy-tailed graphs Wiki and Talk on DAH across six algorithms.

5.5.1 Update Phase vs Compute Phase

Observation and insight: Compared to the compute phase, the update phase exhibits

lower utilization of hardware resources, such as higher core counts and memory and inter-

socket bandwidths. This trend indicates lower thread-level parallelism (TLP) of the update

phase. This observation opens opportunities for inter-phase optimizations in streaming

graphs where, unlike in static graph analytics, update and compute phases are interleaved

(e.g., the slack in resource utilization in one phase could be leveraged to optimize the

other phase). To support our observation, we highlight the following results:

Performance Scalability to Core Counts: In contrast to the compute phase, the

72



Broadening Graph Analytics Domain Knowledge with SAGA-Bench Performance Analysis Platform
Chapter 5

4 8 1 2 1 6 2 0 2 4 2 80

2

4

6

8

1 0
1/la

ten
cy 

(1/
s)

n o .  o f  p h y s i c a l  c o r e s

 U p d a t e  S T a i l
 C o m p u t e  S T a i l
 U p d a t e  H T a i l
 C o m p u t e  H T a i l

(a)

P 1 P 2 P 3 P 1 P 2 P 3
0

1 0
2 0
3 0
4 0
5 0
6 0

( H T a i l )( S T a i l )
W i k i ,  T a l k  o n  D A H

Me
m 

BW
 (G

B/s
)

 U p d a t e  C o m p u t e
L J ,  O r k u t ,  R M A T  o n  A S

(b)

P 1 P 2 P 3 P 1 P 2 P 30
1 0
2 0
3 0
4 0 ( H T a i l ) 3 9 %

3 3 %
2 5 %

3 . 5 % 4 %4 %

4 1 %
3 1 %

3 8 %

2 4 %
3 2 %

W i k i ,  T a l k  o n  D A H

QP
I lin

k u
tili

zat
ion

 (%
)  U p d a t e  C o m p u t e

L J ,  O r k u t ,  R M A T  o n  A S

1 4 %

( S T a i l )

(c)

Figure 5.7: (a) STail/HTail update/compute performance scalability to physical core
count (cores are distributed equally among 2 sockets at any given core count. Hardware
execution threads=2 × number of physical cores), (b) memory bandwidth utilization,
and (c) QPI link utilization.

update phase shows lower performance scalability to larger core counts. Fig. 5.7(a)

shows that the performance scalability curves of the update phase flatten at earlier core

counts than that of the compute phase. At each 4-hop increment in core count (4-8, 8-12,

etc.), the update phase undergoes a lower incremental performance improvement than the

compute phase. Taking the example of STail, the incremental performance improvement

for the update phase is 52% (from 4 to 8 cores) and 17% (from 8 to 12 cores), beyond

which the incremental improvement diminishes substantially (6%, 5%, 6%, and 2% for

each successive 4-hop increment in core count). In contrast, the STail compute phase

shows 100%, 43%, 16%, 19%, 9.7%, and 6% incremental performance improvements for
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each successive 4-hop increment from 4 to 28 core count.

Memory and Inter-Socket Bandwidth Utilization: The update phase utilizes lower

memory and inter-socket bandwidths than the compute phase. As shown in Fig. 5.7(b),

the update memory bandwidth utilizations in STail are 13GB/s, 24GB/s, and 32GB/s

at P1, P2, and P3, respectively. In contrast, the corresponding compute phase utilizes

43GB/s, 51GB/s, and 54GB/s, respectively. Fig. 5.7(c) shows similar difference between

the update and compute phases for QPI link utilization. STail update utilizes 14%, 24%,

and 31% inter-socket bandwidth at P1, P2, and P3, respectively. In contrast, STail

compute utilizes 32%, 38%, and 41% of the available QPI bandwidth at P1, P2, and P3.

These experiments provide evidence that the update phase possesses lower TLP than

the compute phase. Even the best data structure for a given category of datasets (AS for

LJ, Orkut, RMAT and DAH for Wiki, Talk) suffers from low parallelism in the update

phase. Consequently, the update phase is unable to 1) leverage a large number of cores

to improve performance and 2) generate a large number of local and remote memory

requests to consume sufficiently large memory and inter-socket bandwidths. The next

section further elucidates the reasons behind the poor TLP in the update phase.

5.5.2 Graph Structure and Update Phase

Observation and insight: The hardware resource utilization of the update phase strongly

depends on the underlying structure of the batches of the graph. The update of heavy-

tailed graphs on the best data structure (DAH) benefits negligibly from larger core counts,

memory bandwidth, and inter-socket bandwidth. In contrast, the update of short-tailed

graphs on the corresponding best data structure (AS) shows higher utilization of these

architecture resources. This observation, together with the previous one in Section 5.5.1,

supports that the low TLP of the update phase arises from 1) thread contention in short-
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Figure 5.8: (a) Private L2 and shared LLC hit ratios. Private L2 and shared LLC MPKI
for (b) update and (c) compute phases.

tailed graphs on AS and 2) workload imbalance in heavy-tailed graphs on DAH. This

observation indicates that the parallelism bottleneck of the update phase can be ad-

dressed with better work distribution technique among threads either to reduce thread

contentions or workload imbalance, depending on the specific data structure. Fig. 5.7(a)

shows that, in contrast to STail update, HTail update performance scales worse with large

core counts. HTail update shows 17% incremental performance improvement for 4 to 8

cores, beyond which the incremental performance improvement drops below 10%. STail

update, on the other hand, shows 52% and 17% incremental performance improvements

up to 12 cores. In addition, Fig. 5.7(b) and 5.7(c) show that, in contrast to STail update,

HTail update exhibits particularly poor utilization of both memory bandwidth (about

5GB/s across P1, P2, and P3) and QPI bandwidth (about 4% across P1, P2, and P3).
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HTail update on DAH (the best data structure for Wiki and Talk) suffers from low TLP

due to workload imbalance, i.e., a large amount of edge updates for a very high-degree

node as discussed in Section 5.4.2. The thread corresponding to the DAH chunk which

accommodates the high-degree node is doing most of the work in the update phase. We

note that DAH chunks are single-threaded, eliminating the possibility of low TLP due

to thread contentions. As to STail update, although it exhibits higher TLP than HTail

update, it still shows lower TLP than the compute phase (Section 5.5.1). In this case,

low TLP arises from the thread contentions in AS where multiple threads share the edge

data of the same source node. Workload imbalance is not a serious issue for STail because

the datasets are not as heavy-tailed or highly imbalanced as HTail (Section 5.4.2).

5.5.3 On-Chip Caches

Observation and insight: Compared to the update phase, the compute phase exhibits

higher L3 cache hit ratios. In contrast, the update phase exhibits higher L2 cache hit

ratios than the compute phase. This occurs due to 1) a data reuse relationship and 2) a

difference in working set sizes between the two phases.

Fig. 5.8(a) shows that, for the shared LLC, the compute phase shows a higher hit

ratio than the update phase (comparison between “Update LLC” and “Compute LLC”).

This is because 1) the compute phase can reuse the edge data freshly brought into LLC

by the update phase and 2) the compute phase has a larger working set size because of

accesses to vertex property values in addition to the edge data and can therefore leverage

the large shared LLC capacity. Moreover, the LLC hit ratio for the compute phase

increases over time from P1 to P3 as the graph becomes less sparse and more connected,

leading to the possibility of higher reuse.

On the other hand, for the private L2 cache, the update phase shows a higher hit

76



Broadening Graph Analytics Domain Knowledge with SAGA-Bench Performance Analysis Platform
Chapter 5

ratio than the compute phase (comparison between “Update L2” and “Compute L2”)

because of the smaller working set size of the former. The update operation affects only

a part of the edge data whose reuse can be captured by the L2 cache. However, the L2

cache provides low benefit for the compute phase because of its large working set size

consisting of edge data and vertex property values whose reuse cannot be captured by

the L2 cache (such an observation matches prior work for the compute phase in static

graph analytics [121]).

Besides aggregate hit ratios, we measure misses per kilo instructions (MPKI) in Fig.

5.8(b) and 5.8(c) to further confirm our findings. The L2 cache does a better job at

servicing memory requests in the update phase than in the compute phase. This is

confirmed by the lower update L2 MPKI (3-9) in Fig. 5.8(b) compared to the compute

L2 MPKI (12-16) in Fig. 5.8(c). The LLC is effective for the compute phase and is

capable of reducing the MPKI from 15 (average) to 6 (average) between the L2 and LLC

levels (Fig. 5.8(c)).

5.6 Conclusion
We develop SAGA-Bench for streaming graph analytics and characterize these work-

loads at the software and the architecture levels. The software-level study shows that

1) the best data structure depends on the per-batch degree distribution of the graph; 2)

larger graphs benefit more from the incremental compute model; and 3) the update phase

occupies more than 40% of the latency in many cases. The architecture-level study re-

veals that the update phase shows lower utilization of architecture resources due to lower

TLP arising from thread contentions or workload imbalance. Finally, between update

and compute phases, the former shows a higher L2 cache hit ratio, whereas the latter

benefits more from the LLC.
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Algorithm 1 Incremental PageRank
Require: Streaming graph G{V,E} which contains |V | vertices and |E| edges as of the

latest update phase; PageRank scores {PR(vj)} from previous batch; array of affected
vertices affected.

1: Initialize: two queues Qcurr, Qnext; visited bitvector of size |V |; triggering threshold
ε = 10−7.

2: for vi in V do
3: if vi is a new vertex then
4: PR(vi) = 1/|V |
5:
6: # pragma omp parallel for
7: for i in range(|V |) do
8: if affected [i] == true then
9: old_score = PR(vi)
10: Re-calculate PR(vi)
11: if |old_score− PR(vi)| > ε then
12: for vj in vi’s out-neighbors do
13: if visited[j] == false then
14: if CAS(visited[j], false, true) then
15: Qnext.push_back(vj)
16:
17: Qcurr = Qnext

18: Qnext.clear()
19: while Qcurr is not empty do
20: visited← {false}
21: # pragma omp parallel for
22: for vj in Qcurr do
23: Re-do lines 9-15.
24: Qcurr = Qnext

25: Qnext.clear()
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SPRING: Improving Streaming GraPh

PRocessing Performance Using Input

KNowledGe

6.1 Introduction and Contributions Overview

Streaming graph processing involves batched updates and analytics on graphs that

evolve over time (Fig. 2.2(b), Fig. 2.3, Chapter 5). Effective handling of streaming

graph data requires high-performance solutions for 1) update (ingestion of new edges

contained in input batches), and 2) compute (analytics on the latest snapshot of the

graph). Numerous competitive streaming graph systems have recently proposed novel

data structures and computation models [7, 19–22, 25–38, 43, 123, 124, 127–131]. How-

ever, the shortcoming of existing systems is that they do not consider the issue of input

sensitivity which is critical to optimize both update and compute performances. Input

batches may exhibit variations in structural properties such as degree distributions of

individual input batches or locality characteristics between consecutive input batches.
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These diverse input properties give rise to challenging trade-offs in software performance

which, if ignored, can lead to a substantially sub-optimal performance. It is possible to

significantly optimize the system performance through a design approach where input

knowledge-driven adaptive software and hardware solutions complement each other. For

example, batch reordering (RO) is a software optimization which reorganizes an input

batch to remove lock-based operations in streaming graph updates [25, 26]. The state-

of-the-art input-oblivious RO improves the update performance for wiki ’s input batches

by 2.7× but severely degrades the update performance for uk ’s input batches (0.69×)

(Fig. 6.1(a) and 6.1(b)). Our proposed input-aware adaptive software recovers uk ’s

lost update performance (from 0.69× to 0.92×) by capturing RO’s input-dependent per-

formance trade-offs (Fig. 6.1(c)). Our proposed complementary input-aware hardware

solution further increases uk ’s update performance improvement to 1.60× (Fig. 6.1(d)),

improving the overall system performance across both the workloads. Despite the poten-

tial gains, input knowledge-driven software and hardware design remains unexplored in

state-of-the-art streaming graph system design approaches. Motivated by the shortcom-

ing, we adopt the SPRING design approach, i.e., improving Streaming graPh pRocessing

performance using Input kNowledGe. We provide input-guided adaptive software and

hardware solutions which complement each other.

For efficient graph updates, we propose input-aware batch reordering with software

and hardware dynamic execution modes (Section 6.3). We characterize RO across 260

workloads and find that its impact on the update performance depends on the degree

distribution of the input batches. Our experiments show that RO performance varies from

high speedups to significant degradations. This study motivates the need to adaptively

reorder incoming batches based on their input characteristics. We propose adaptive batch

reordering (ABR) which uses a low-overhead online technique to collect information on

the degree distribution of incoming batches. Specifically, we propose the concept of order-
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Figure 6.1: (a)/(b): Speedup in update performance from input-oblivious batch
reordering for wiki and uk at input batch size=100K. (c)/(d): Input-aware software and
hardware design recover and improve uk ’s update performance. See Section 6.5.1 for

benchmarks and evaluation setup.

λ clusterable average degree (CADλ) which is used by ABR to predict whether an input

batch is suitable for batch reordering. Compared to a naive always-RO solution, ABR

can save the update performance from degradation in reordering-adverse cases without

compromising the high speedup of reordering-friendly cases.

We propose two additional case-specific optimizations which complement ABR during

the update phase: software-level update search coalescing (USC) for reordering-friendly

cases and hardware-accelerated update (HAU) for reordering-adverse cases. USC lever-

ages the degree distribution and the reordered organization of reordering-friendly input

batches to substantially reduce the amount of search operations during edge updates.

Since reordering clusters the incoming edges of a vertex, it is possible to search for all the

incoming edges in the current edge data of the vertex in one go. ABR and USC coop-

eratively provide effective software optimizations for the updates of reordering-friendly

input batches.

HAU complements ABR during the update phase of input batches with reordering-

adverse degree distributions. Although ABR successfully recovers the RO performance

degradation for these cases, it is unable to provide any additional benefit over the baseline.

ABR turns off the optimizations of batch reordering and associated USC because their
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software overheads are expensive. Hence, reordering-adverse batches are still limited by

1) lock-based updates and 2) overheads of update search operations. HAU accelerates

graph updates to remove these two bottlenecks. To remove lock-based software updates,

HAU introduces enhancements to the cache controller and the on-chip processor-network

interface to map each update task to a specific core. To mitigate search overheads, HAU

uses simple dedicated logic in the cache controller to scan edge data cachelines, removing

CPU instruction overhead for search operations. ABR and HAU cooperatively provide

high-performance updates in reordering-adverse cases.

Figure 6.2: Input-aware SW/HW graph updates in SPRING

As summarized in Fig. 6.2, ABR, USC, and HAU together optimize the update

performance by dynamically adopting the best suited execution mode based on the in-

put batch characteristics. Input batches with reordering-friendly degree distributions

(identified by ABR) are updated in the software execution mode with two optimizations:

batch reordering and USC. In contrast, reordering-adverse input batches are updated

with our architectural support, HAU. We quantitatively show that input-aware dynamic

software/hardware execution for graph updates outperforms input-oblivious updates with

either exclusively software or exclusively hardware execution mode.

For higher streaming graph computation performance, we propose input-aware work

aggregation (Section 6.4). Consecutive input batches sometimes exhibit a large overlap

in graph modifications (i.e., inter-batch locality). Scheduling two separate computation

rounds/phases to analyze these high-overlap input batches leads to work redundancy. We
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propose overlap-based compute aggregation (OCA) which adaptively modulates the com-

putation granularity based on the inter-batch locality characteristics in input batches.

OCA uses a low-cost online technique to identify inter-batch locality, and, for high local-

ity, aggregates the computation. Thus, two input batches of similar graph modifications

can be analyzed by scheduling a single computation round, increasing the compute effi-

ciency.

Evaluation across 260 workloads shows that our SPRING approach provides signifi-

cant improvements in update and compute performances in streaming graphs.

6.2 Novelty and Impact

We discuss the ways in which our overall approach and techniques advance the state-

of-the-art prior work.

Streaming graph systems. We propose a novel perspective for efficient streaming

graph processing: using input knowledge to optimize the performance for a given un-

derlying data structure and computation model. This is orthogonal to the conventional

approach [7, 19–22, 25–27, 27–38, 43, 123, 124, 127–131] of presenting a new system com-

posed of input-oblivious data structures and/or computation models to outperform the

state-of-the-art. We perform a novel characterization study across 260 workloads (Section

6.3.2) and show that input-oblivious software optimizations degrade performance in many

cases. Our proposed input-dependent optimizations are applicable to most standard data

structures and computation models.

Input-dependent graph processing. Regrettably, existing input-aware solutions fo-

cus on static graph processing [132–135] and are not readily reusable for streaming graphs.

They 1) operate on static input whole graph, 2) typically make a decision once in the pre-

processing step, and 3) only capture the trade-offs for the graph computation phase. In
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contrast, the requirements for streaming graphs are substantially different. Our proposed

ABR 1) operates on input batches whose size is much smaller than a whole graph, 2)

makes online decisions multiple times during the execution on continuously incoming

input batches, and 3) captures the performance trade-offs for the graph update phase

(i.e., whether RO overhead pays off in terms of performance gains from lock-free up-

dates). Hence, our designed ABR is an extremely lightweight (due to requirements 1 and

2) input-dependent algorithm with a novel and minimally intrusive CADλ metric which

captures the update phase’s performance trade-offs. Furthermore, another novelty in

our input-dependent approach is using input batch characteristics to dynamically decide

between software and hardware execution modes to achieve a higher update performance

than a SW-only or a HW-only solution.

Hardware support for graph processing. Prior domain-specialized solutions for

graph analytics are valuable but restricted to static graph computation [14, 15, 95, 111–

118, 120–122, 136–138]. Although a few papers [122, 136] provide APIs for graph up-

dates, the discussion is limited to a subsidiary feature for a design targeted at static

graphs and does not address the specific challenges for streaming updates. In contrast

to prior proposals, we focus in-depth on the dynamic nature which is indispensable in

real-world graphs. We tackle unique acceleration considerations which arise due to the

characteristics in streaming graph updates. First, by treating input properties as the

first-class design determinant, we provide insights that hardware acceleration is benefi-

cial and meaningful for reordering-adverse input batches where software overheads are

too high. Second, we selectively trigger HAU for these input batches to resolve the rele-

vant challenges (overheads of software locks and search operations). Concerning HAU’s

specific design techniques (Section 6.3.5), HAU’s concept of “task” bears some resem-

blance to GraphPulse’s event-driven approach [138]. Although an important work for

static graph computation, GraphPulse is not a drop-in replacement for HAU because 1)
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its events cannot represent and process streaming graph updates, 2) its design cannot

solve update search overheads, and 3) it is a fully customized stand-alone ASIC, whereas

HAU acceleration is CPU-coupled where the introduced changes are aware of the CPU

architecture.

Search and computation in streaming graphs. USC: The novelty of our input-

guided USC for reordering-friendly batches is that it resolves update search overheads

by opportunistically leveraging the reordered data organization. It is low-overhead and

applicable on simple data structures (e.g., adjacency lists). In contrast, prior work has

proposed new data structures to solve this problem often at the cost of high additional

memory consumption [130] or complex data structures [26]. OCA: We propose online

modulation of computation granularity in response to the degree of overlap between

consecutive input batches. Our approach is orthogonal to that of prior work [19, 34, 36,

37, 43, 127, 129]. The latter focuses on incremental computation models to address the

overlap in the latest snapshot of the graph data structure.

6.3 Input-Aware Streaming Graph Updates

We first provide some background on batch reordering (RO) and present our charac-

terization study of the performance trade-offs of RO. After explaining ABR, USC, and

HAU, we discuss input-aware SW/HW dynamic execution.

6.3.1 Batch Reordering (RO) Basics

RO is a pre-update operation where the input batch of edges is reorganized to ensure

lock-free edge updates [25,26]. In the baseline input batch, during parallel edge updates,

two separate threads may update edges for the same vertex, requiring locks to protect

against shared memory access conflict. In contrast, in the reordered input batch, the
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Figure 6.3: Left y-axis: Effect of RO on update and overall (i.e., update and compute
combined) performances (see Section 6.5.1 for the evaluation methodology). Right
y-axis: Maximum in/out degree in an input batch (average across all batches).

edges of the same vertex v are clustered (parallel stable sort from C++ Boost library

[139]) and a carefully designed work division ensures that a specific thread updates all the

input edges of v (dynamic OpenMP scheduling ensures load balancing). Batch reordering

does not violate the ordering of updates because for a given vertex v, stable sort ensures

that the updates for v are ordered. In addition, the updates for two distinct vertices v

and w can be performed in any order. In other words, ordering must be guaranteed for

a given vertex (achieved through stable sort) but is not necessary between two distinct

vertices. In case an input batch contains both insertions and deletions, the two categories

can be separated and each sub-batch can undergo batch reordering based update, with

the insertions being applied before the deletions.

The baseline (non-reordered) and RO-based update methodologies possess different

benefits and costs, giving rise to RO’s input-dependent performance trade-offs. Baseline:

The benefit of the baseline is that it offers fine-grained edge-level parallelism and re-

quires no change to the input batch format. The edge-centric work division is in perfect

alignment with the input batch format. Incoming graph changes arrive as edges and

the baseline treats the edge as the granularity of parallelism by assigning one thread per

edge. However, the baseline’s cost constitutes lock operations because separate threads

may update edges for the same vertex. RO: RO’s benefit involves completely eliminating

locks by adopting vertex-centric updates (i.e., a thread updates all the edges of a given
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vertex). However, this comes at the cost of software overheads because the input batch

format is inherently organized as edges instead of in a vertex-centric fashion. First, the

input batch must be sorted to cluster edges belonging to the same vertex. Second, sorting

should be carried out with respect to both source vertices and destination vertices to ac-

count for both in-edges and out-edges. This results in two reordered input batches which

must each be updated separately. Finally, lock elimination involves additional scheduling

overheads (scheduling must ensure that each thread updates all the edges belonging to

a given vertex before moving on to another vertex in its task list). Our characterization

in Section 6.3.2 shows how input batches of different degree distributions are affected by

the relative costs and benefits of the two update methodologies.

6.3.2 Characterization of RO Performance Trade-offs

Our characterization across 260 workloads shows that the performance from RO ex-

hibits input sensitivity (Fig. 6.3, left y-axis). Datasets like topcats, talk, berkstan, yt,

superuser, and wiki indeed achieve up to about 3× improvement in update and overall

performances at higher batch sizes of 100K and 500K (also at 10K for talk, yt, and wiki).

However, at smaller batch sizes of 100 and 1K, these datasets experience degradations in

update and overall performances. The remaining datasets (lj, patents, fb, flickr, amazon,

stack, friendster, and uk) experience performance degradation from RO at all batch sizes.

We observe that high-degree input batches are reordering-friendly, whereas low-degree

input batches are reordering-adverse. We define “high (low)-degree input batch” as an

input batch where the top degrees are high (low). For example, Fig. 6.3.2 shows the

degree distributions of representative input batches of lj and wiki at batch size of 100K.

Lj ’s input batch is low-degree (e.g., top ten degrees lie in the range of 7-30, 30 being the

maximum degree), whereas wiki ’s input batch is high-degree (e.g., top ten degrees lie in
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Figure 6.4: Input batch degree distributions of lj and wiki at batch size 100K (log-log

plot)

the range of 401-1881, 1881 being the maximum degree)1. Since the maximum degree

represents the upper bound of an input batch’s top degrees, we use it as an indicator

metric in Fig. 6.3 (right y-axis) to show the correlation with the RO performance (left

y-axis). Compared to the reordering-adverse cases, the reordering-friendly cases exhibit

a higher maximum in-degree or out-degree, indicating a high-degree input batch. For

a given dataset, a smaller batch size naturally leads to a low-degree input batch (max-

imum possible degree = batch size). Therefore, small batches suffer from performance

degradation when RO is applied (Fig. 6.3).

The performance trade-offs of RO can be understood by connecting the degree dis-

tribution of the input batches to the relative costs and benefits of RO (Section 6.3.1).

High-degree input batches are reordering-friendly because:

• In the baseline, a large number of locks needs to be acquired to update a top-degree

vertex v. High-degree batch means v possesses a very high edge count. Updating each
1Terminology clarification: We consistently use the term top degree to refer to an intra-input-

batch large degree. In contrast, the term high/low-degree is used to differentiate between the top degrees
across different input batches. Thus, a top-degree vertex in a high-degree input batch has a larger edge
count than a top-degree vertex in a low-degree input batch.
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incoming edge of v needs a lock to be acquired on v ’s edge data because multiple

threads may update v ’s incoming edges.

• In the baseline, in addition to the large number of locks described above, the cost of

acquiring a lock is high for v. The cost of a lock acquisition involves waiting for another

thread to finish updating an incoming edge for v. The wait time is proportional to

the length of v ’s edge data array because updating involves a search scan for duplicate

check (Section 6.3.4). The length of v ’s edge data array is large because v is a top-

degree vertex in a high-degree input batch.

The above two factors together lead to high lock overheads for high-degree input batches

in the baseline scheme. RO can eliminate these serious lock overheads. The cost of RO

is small compared to the savings from baseline’s lock overheads. In contrast, low-degree

input batches are reordering-adverse because lock overheads in the baseline technique are

not serious (i.e., top degrees are relatively small) and RO’s extra software overheads are

larger than the potential savings.

In addition to the above performance trade-offs, we find temporal stability in the input

batch degree distribution for a given dataset and batch size combination. As shown with

an example in Fig. 6.5 for lj at input batch size of 100K, the input batches consistently

show much alike degree distribution over time with increasing batch numbers. However,

across different dataset-batch size combinations (lj -100K versus wiki -100K), the degree

distribution is clearly different (Fig. 6.3.2). In the next section, we discuss how these

insights are used to design a low-cost and effective adaptive batch reordering technique.

6.3.3 Adaptive Batch Reordering (ABR)

ABR is an online technique that adaptively reorders input batches depending on their

degree distributions. As shown in Fig. 6.6, ABR instruments the update phase of every
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Figure 6.5: Input batch degree distribution over time

nth input batch (called ABR-active batch) to collect information on the input batch’s

degree distribution. Using this information, ABR makes a binary decision (reorder/don’t

reorder) and, for the next n update batches (called ABR-inert batch), the latest ABR

decision is applied. ABR has a low overhead because of:

• Small number of ABR-active batches: ABR leverages the temporal stability of input

batch degree distribution (Section 6.3.2) to reduce the amount of instrumentation. A

reordering decision made by observing one ABR-active batch can be applied to multiple

subsequent ABR-inert batches.

• Low-cost degree distribution collection in ABR-active batches: In the ABR-active

batches, instrumentation is overlapped with the actual edge updates. Moreover, we

propose a practical, low-cost, and minimally intrusive metric for instrumentation (ex-

plained below).

Figure 6.6: Adaptive Batch Reordering (ABR) design

We propose a metric called order-λ clusterable average degree (CADλ) which is

computed by ABR during instrumentation in the ABR-active batches to make accurate

reordering decisions with small overhead. We describe the metric below:
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order − λ clusterable average degree (CADλ) =
b− y
x

where,

b = input batch size

y = number of edges from vertices with 1 ≤ degree ≤ λ

x = number of unique vertices with degree > λ

If CADλ ≥ TH, reorder. Else don’t reorder.

TH = some experimentally determined threshold.

CADλ intuition. CADλ is a measure of the average degree of the top-degree vertices

in an input batch (i.e., the average degree computed by focusing on intra-batch vertices

with large edge counts). A high CADλ for an input batch indicates a high-degree input

batch which is essential to achieve performance benefit from RO (Section 6.3.2). ABR

decides to reorder if CADλ is greater than or equal to some experimentally determined

threshold (TH). The design parameters of ABR are n (determines the instrumentation

frequency), λ (distinguishes the top-degree vertices in the input batch), and TH (distin-

guishes between high CADλ and low CADλ). λ parameter is a cutoff applied to locate an

individual input batch’s top degrees. In contrast, TH parameter is used to understand

the relative values of the top degrees across different input batches. Section 6.5.2 shows

1) how the parameter values are determined, and 2) the high decision-making accuracy

of CADλ.

CADλ measurement techniques. In an ABR-active batch, the counting of y and
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x for CADλ metric occurs as edges are updated. This overlapping operation reduces

the instrumentation overhead. The method to collect y and x depends on whether the

ABR-active batch has batch reordering turned on or off. When reordering is turned

on, a thread keeps track of the total number of edges it updates for a given vertex v,

and, based on that value, atomically increments one of the two global variables x and y.

On the other hand, when reordering is turned off, a concurrent hash map implemented

using Intel TBB [140] (key: vertex ID; value: degree) is populated during edge updates

(multiple threads may update edges for the same vertex). Upon update completion, a

parallel iteration over the hash map provides the values of y and x. When the updates

are complete, ABR calculates CADλ and makes a reordering decision by comparing it

with TH.

Choice of CADλ and general applicability. CADλ fulfills the two essential re-

quirements for a good metric: 1) high decision accuracy and 2) low overhead (see Section

6.5.2). We also considered other alternatives. For example, average degree exhibits poor

decision-making accuracy. It is always a consistently low value because most vertices in an

input batch possess low degrees. This obscures the distinction between high-degree/low-

degree input batch. Rigorous mathematical measures of skewness and heavy-tailedness

have been proposed in areas of network and probability theory [141–143]. However, they

are computationally heavyweight for our streaming graphs scenario where measurements

needs to be made online and multiple times. The lightweight and accurate CADλ is a

better choice for practical system design where performance is a key metric. Moreover,

these proposed measures [141–143] have been applied to large-scale whole graph instead

of to input batches. A rigorous statistical analysis of their applicability to input batches

is beyond the scope of this work. In addition to being accurate, practical, and low-

overhead, CADλ is widely applicable. It has been developed by observing the examples

of thousands of input batches from our large evaluation suite.
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6.3.4 Update Search Coalescing (USC)

USC complements ABR in reordering-friendly cases to reduce update search over-

heads during duplicate checking. Duplicate checking is a common procedure in graph

updates. Before updating an incoming edge A→B, a search through the edge data of

A checks for B so that B is not duplicated (the edge may have appeared in an earlier

batch or may have already appeared earlier in the current batch). We identify that a

high-degree input batch reordered by ABR provides the opportunity to substantially re-

duce the number of search scans for duplicates through search coalescing. Since a given

thread updates all the input edges of a given vertex A, it is possible to search for all

of A’s incoming target vertices during a single scan of A’s edge data. The effectiveness

of USC depends on the underlying highly clusterable degree distribution (i.e., very high

top degrees in high-degree batches). The higher the clusterability of the input batch,

the higher the scope of search savings through search coalescing (see below and Section

6.5.2). These high-degree input batches are also reordering-friendly (hence reordered by

ABR) and USC conveniently leverages their reordered data organization.

Fig. 6.7 shows the implementation of USC taking the example of updating three

edges for source vertex A. 1 As a thread walks through the chunk of the reordered/sorted

input batch consisting of the edges of A, it populates a small hash table with A’s targets

and weights (Section 6.5.2 shows that this incurs very small overheads). 2 Edge data for

A is scanned only once. Each neighbor ID in the edge data array is searched for in the

hash table with the ID as the key. A positive match leads to updating the weight only

(if weighted graph) and the specific target’s entry is deleted from the hash table. Once

the scan is complete, the remaining <target, weight> in the hash table are inserted into

A’s edge data array (either in some empty spot identified during the scan or appended

to the end of the array). In contrast, a non-reordered batch requires three separate scans
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through the edge data of A because multiple threads update the edges. Therefore, the

higher the clusterability (i.e., per-vertex edges), the higher the benefits of USC. Note

that USC does not impact the granularity or amount of parallelism with respect to batch

reordering. The contribution of USC is that it saves search-related work for individual

threads participating in the parallel update process.

Figure 6.7: Overview of update search coalescing (USC)

6.3.5 Hardware-Accelerated Update (HAU)

HAU provides architectural support for the update of reordering-adverse input batches.

Although their RO performance degradation is successfully recovered by ABR, they are

still limited by 1) lock-based updates and 2) update search overheads. To resolve the

former, HAU assigns each incoming update to a specific core. To resolve the latter, HAU

uses specialized logic in the cache controller to scan returning cachelines, removing CPU

instruction overhead for searches.

Design overview

(Fig. 6.8). The task-producing core triggers the HAU by feeding update tasks from

the software 1. An update task for an incoming edge <src, target> takes the form of

<src’s edge data start address, src’s current degree, target>. It is routed through the

network-on-chip (NOC) to a task-consuming core 22 obtained by src mod N where N is
21) A core can be both task-producing and task-consuming. Fig. 6.8 illustrates a decoupled behavior

only for clarity. 2) For weighted graphs, HAU includes an extra field weight in the update task.
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Figure 6.8: HAU overview

the number of task-consuming cores (Section 6.3.5 discusses this algorithm). The task-

consuming core’s cache controller uses the task description received from the NOC to

fetch the edge data cachelines 3. Upon each cacheline’s return to the L1D cache, the

cache controller captures and searches it for target (duplicate check) using its dedicated

scan logic 4.

For example, we consider a toy graph in memory consisting of vertices V0, V1, V2,

and V3. We also consider a small input batch of size 1 consisting of the incoming edge

V1->V2. The update task <V1’s edge data start address, V1’s current degree, V2> is

assigned to core 1 (V1 mod 2). Core 1’s cache controller fetches V1 ’s edge data cachelines,

searches for the target V2 before updating the edge. A similar set of operations needs

to be performed to update V2 ’s edge list to include V1.

Design details

We take the reference network interface in [144] and highlight our enhancements (Fig.

6.9/6.10).

Task production (Fig. 6.9): Driven by the software, the core initiates a request of

95



SPRING: Improving Streaming GraPh PRocessing Performance Using Input KNowledGe Chapter 6

Figure 6.9: Task production Figure 6.10: Task consumption

a new type called task 1 (already existing types are read, write, etc.). The address

corresponding to this request is the start address of the edge data of vertex src and

the data fields encode src’s current degree and target. We use the tag field to encode

the destination core ID (in a conventional request, this field helps the core identify the

corresponding reply). Unlike a read or write request, the address field of a task request

does not mean this core expects data from this address. It only encodes some information,

together with the data field, that needs to be sent to another core. The control flow for

a task request involves bypassing caches 2 and initializing a new miss status handling

register (MSHR) entry with a new type of status called task pending 3. Allocating an

MSHR entry is essential because the message transmit unit only reacts to MSHR status

changes [144]. The message transmit unit formats the NOC message of the update task

and injects it into the network 4. The MSHR entry status is changed to idle and it is

freed 5.

Task consumption (Fig. 6.10): Upon receiving a TaskReq message from the NOC at

the message receive unit 1, a new MSHR entry is allocated with the status task received

2. The protocol FSM takes appropriate actions on the MSHR status change: the task

is forwarded to a FIFO buffer to the cache controller 3 and the MSHR entry is freed 4.
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Simple dedicated logic in the controller 5 uses the edge data start address to fetch the

edge data cachelines. Each returning cacheline to the L1D cache is scanned to check for

the target node. If found, the loop stops. Otherwise, the controller brings in consecutive

cachelines until the number of scanned elements matches the degree. If the target is not

found even after the entire edge data has been exhausted, the controller hands over the

write operation to the core through the FIFO buffer 6. The core takes over this action

because new memory region may need to be allocated to accommodate the target.

Discussion

We discuss HAU’s important details.

Task assignment : Hashing-based task scheduling is very low-cost and requires no

tracking overhead of scheduling history or progress status of large core counts in a modern

multicore architecture. Moreover, this scheduling ensures that all incoming edges for

vertex v are updated at the same core where v ’s edge data resides, implicitly guaranteeing

safety against race conditions from concurrent accesses (allowing us to eliminate software

lock overheads). A more complex assignment would require expensive design to explicitly

guarantee race-safe accesses (e.g., GraphPulse [138] requires additional cycles to coalesce

events for identical vertex in large hierarchical queues). Minimizing design complexity

and scheduling overheads is critical because, in contrast to static whole graph processing

[138], acceleration granularity for dynamic graph updates is a much smaller input batch,

making the design constraints tighter. Section 6.5.2 discusses workload distribution.

Interaction with SW : To achieve the interaction between software and HAU, we adopt

the technique used in previous work [14] where low-level software API methods translate

to two specific instructions. On the task-sending side, the core uses a supply_task

instruction to communicate the information related to the update task to HAU. On the

task-receiving side, the core uses a fetch_task instruction to get the information from
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the FIFO buffer.

Virtual memory : The cache controller logic requires virtual-to-physical address trans-

lation for the address it obtains from the task description in the FIFO buffer. We adopt

the approach of previous work [14, 15] to ensure this. The cache controller logic shares

the core’s address translation machinery and handles page faults like [14].

Coherence protocol : HAU does not affect the cache coherence protocols. An up-

date task request is a cache-bypassing point-to-point push-style communication between

well-defined sender and destination cores and does not involve any additional coherence

messages (Fig. 6.9/6.10). To process the task, changes are confined to the cache controller

after edge data cachelines return through traditional coherence protocols.

Update ordering : HAU maintains the same consistency as software graph updates

because, in the execution model we consider, the programmer expects that consistency

is guaranteed at the granularity of an input batch. In a batch, individual updates (i.e.,

incoming edges) for vertex v may arrive and be processed at task-consuming core c in

any order. The final result (i.e., at the end of the update phase for this input batch) is

the same (and equivalent to software updates) because all the updates show up in v ’s

edge data (the order of showing up does not matter). To maintain consistency in case

the input batch contains both edge insertions and deletions, software triggers HAU to

perform all insertions first before performing deletions (deletion requires that the edge

already exists). Since tasks are independent, this update ordering policy ensures that

updates are deadlock-free, i.e., no circular dependencies exist between any subset of tasks.

MSHR management : Keeping the baseline NOC topology, routing, and buffering un-

changed, we introduce a new request/response type and show how it fits into the reference

processor-network interface [144]. We add ten new MSHR entries (2× increase) reserved

for outgoing/incoming tasks to avoid MSHRs becoming a performance bottleneck. Task -

MSHRs are proactively freed, making space for new tasks. A task pending MSHR is freed
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as soon as the task is released into the network (Fig. 6.9 4, 5). A task received MSHR

is freed as soon as the FIFO buffer is populated (Fig. 6.10 3, 4). The total volume of

task traffic is limited to input batch size, which is much smaller than a whole graph (Fig.

6.3).

Hardware overhead : HAU incurs small hardware overhead. Using McPAT integrated

with Sniper [145], the area of the baseline chip (Table 6.1) is 212 mm2 in a 22nm tech-

nology node. We implement the cache controller logic in RTL and synthesize it with

Synopsys Design Compiler. We obtain an area of 0.0058 mm2, leading to an overhead

of ~0.044%. Each FIFO buffer entry consists of four 64-bit fields (fourth field is weight

to account for weighted graphs). Ten new MSHR entries and two 32-entry FIFO buffers

lead to an additional 1KB and 2KB storage per core tile, respectively.

Generality : Since graph processing is an important application domain, domain spe-

cialization for higher performance and efficiency is a common approach in previous work

on static graphs [14,15,121,136,146,147]. HAU follows the similar approach of specializa-

tion to handle the more general case of dynamic graphs which is important but remains

unexplored in prior proposals.

6.3.6 Input-Aware SW/HW Dynamic Execution

To address the software performance trade-offs arising from input sensitivity (Section

6.3.2), we adopt input-aware SW/HW dynamic execution for optimized performance and

efficiency across all input types (experiments in Section 6.5.2). A SW-only approach (i.e.,

RO+USC) is sub-optimal for low-degree input batches because the SW overheads are

higher than the performance gains. Without RO and USC, low-degree batches are still

bottlenecked by software locks and search. HAU removes these bottlenecks and further

improves graph update performance for low-degree batches. A HW-only approach (HAU)
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is sub-optimal for high-degree batches because HAU design is sophisticated only enough

for low-degree batches, minimizing its hardware overhead and functional complexity. For

example, HAU does not support search coalescing because it is not necessary (e.g., lj’s

input batches mostly contain of degree=1 vertices (Fig. 6.5), making search coalescing

superfluous and a source of inefficiency). Adding more functionality to HAU is possible

but only increases engineering effort, design complexity, and overhead when effective

software solutions are realizable.

6.4 Input-Aware Streaming Graph Computation

Input-aware computation aggregation adaptively modulates the streaming computa-

tion granularity during the runtime based on the locality characteristics between con-

secutive input batches. Fig. 6.11 explains how it differs from the baseline computation

workflow. In the latter (Fig. 6.11 (a)), update and streaming computation are interleaved

like numerous previous streaming graph systems [19,34,36,37,43,127,129]. Once a batch

of updates are applied to the graph, an algorithm re-executes on the latest snapshot of

the graph to reflect the changed data structure. Thus, the update batch size indicates

the streaming computation granularity because the computation considers the changes

to the graph data structure caused directly and indirectly by an amount of modifications

equal to the batch size. On the other hand, the proposed input-aware computation ag-

gregation (Fig. 6.11 (b)) uses overlap-based compute aggregation (OCA) technique to

adaptively increase the computation granularity when there is high inter-batch locality,

i.e., high overlap between the graph modifications contained in batches n and n + 1.

OCA increases compute efficiency for high inter-batch locality because TCagg is less than

TCn + TCn+1, i.e., aggregating computation helps amortize the scheduling and data

access overheads of launching two separate computation rounds.
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Figure 6.11: Overview of OCA

Design details. We classify the inter-batch locality between batches n and n + 1

to be high when a large percentage of the unique vertices in batch n + 1 also appeared

in batch n (i.e., edge updates affect a lot of identical vertices across the two batches).

This is reasonable because incremental computation models concentrate computation at

or around the affected vertices. So, identical affected vertices across two input batches

means that consecutive computation rounds touch similar regions of the graph. Schedul-

ing two separate computation rounds to perform operations on similar regions of the

graph leads to work redundancy in scheduling and data accesses. Computation aggrega-

tion eliminates this redundancy with a single aggregated round. We implement a low-cost

online mechanism for measuring inter-batch locality. The graph representation is aug-

mented with an additional per-vertex field latest_bid which tracks the last batch where

a vertex appeared. This field is updated along with edge updates during each update

phase. During an ABR-active batch (Section 6.3.3) (batch n + 1), an update for vertex

src increments a global counter overlap_counter if the latest_bid field for src reads

n. In addition, another global counter node_counter is incremented to record the total

number of unique vertices that appear in the ABR-active batch. When the updates of

the ABR-active batch are over, the ratio of overlap_counter and node_counter pro-

vides the value of inter-batch locality. It is high if it exceeds a certain threshold which

is determined empirically as follows: starting from a high threshold of 0.5, we progres-

sively decrease the threshold and note the batch sizes where aggregation is activated and
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the corresponding level of speedup. We choose a value of 0.25 where most of the larger

batch sizes experience high performance improvement. Below 0.25, we note that aggre-

gation is triggered for smaller batch sizes. However, we avoid granularity aggregation for

smaller batch sizes (see below). In addition, the speedup from these smaller batch sizes

is small due to a low overlap. For example, yt dataset at a batch size of 10K experiences

computation aggregation at a threshold of 0.15 (but not at higher thresholds) but the

corresponding speedup is only 8%.

Application scenarios. Extremely latency-sensitive applications (e.g., security ap-

plications such as financial fraud detection) utilize a fine-grained computation granularity

or small batch size for faster reaction to graph modifications. Trading off granularity for

a higher computation performance is not a good choice in these application scenarios. We

experimentally show that the adaptive OCA deactivates at small batch sizes and only

activates at relatively larger batch sizes. A larger batch size indicates an application

scenario which can trade off some granularity for a higher compute efficiency. Moreover,

when OCA is activated, we coarsen the granularity by only one additional batch size

worth of graph modifications. In addition, OCA is an adaptive optimization and can be

easily entirely turned off if the application does not tolerate any sacrifice in granularity

even for the larger batch sizes.

6.5 Evaluation

6.5.1 Experimental Setup and Methodology

ABR, USC, and OCA are evaluated on a dual-socket Intel Xeon Platinum 8180 (Sky-

lake) server with a total of 112 hardware execution threads (28 cores per socket, 2-way

SMT). The server contains 38.5MB last-level cache per socket and 768GB memory. Per-
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formance evaluation of HAU is done on Sniper-7.2 [145] with the baseline architecture in

Table 6.1.
Table 6.1: Simulated Baseline Architecture on Sniper-7.2

core 16 cores, 2.5GHz, 4-issue
L1D/I 32KB private, 8-way, 3 cycles
L2 256KB private, 8-way, 8 cycles
L3 16MB NUCA (2MB slices), 16-way, 8 cy-

cles bank access latency
NOC 4x4 mesh, 2-cycle hop, per-link per-

direction bandwidth = 256 bits/cycle
DRAM 4 memory controllers, 17GB/s per con-

troller, 40ns device access latency, queue
delay modeled

Table 6.2: Evaluated Datasets

dataset (short name) vertices edges
Wiki-Talk (Talk) [86] 2,394,385 5,021,410
WebBerkStan (BerkStan) [86] 685,230 7,600,595
cit-Patents (Patents) [86] 3,774,768 16,518,948
Wiki-Topcats (Topcats) [86] 1,791,489 28,511,807
soc-LiveJournal (LJ) [86] 4,847,571 68,993,773
com-Friendster (Friendster) [86] 65,608,366 1,806,067,135
UK-Union-2006-2007 (UK) [148,149] 133,633,040 5,507,679,822
Facebook-wall (FB) [150] 46,952 876,993
Flickr-photo (Flickr) [151] 11,730,773 34,734,221
Youtube (YT) [152] 3,223,589 12,223,774
Amazon-ratings (Amazon) [152] 2,146,057 5,838,041
Stack-overflow (Stack) [86] 2,601,977 63,497,050
Superuser (Superuser) [86] 194,085 1,443,339
Wiki-talk-temporal (Wiki) [86] 1,140,149 7,833,140

Table 6.2 shows the evaluated datasets. The first seven (talk-uk) are static datasets

that are randomly shuffled to break any ordering in the input files (they are often ordered

in increasing source vertex ID, which is not the likely scenario of edge appearance for

real-world streaming graphs). The remaining datasets (fb-wiki) are timestamped, i.e., the

input file specifies the order in which the edges appear in the graph. We use SAGA-Bench

[153] and perform experiments on the adjacency list data structure because it is used
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in multiple existing systems [25, 124, 130]. Four algorithms are evaluated: incremental

PageRank (PR), incremental Single Source Shortest Paths (SSSP), static PR (start-from-

scratch), and static SSSP. SAGA-Bench uses the computation model proposed in prior

work [19,124] for incremental algorithms and takes the static versions from GAP [17]. The

evaluated input batch sizes are 100, 1K, 10K, 100K, and 500K. Combining 14 datasets, 5

batch sizes, and 4 algorithms, we run 260 workloads. The largest datasets friendster and

uk are run on only the incremental algorithms because prior work [153] has shown that

incremental compute models provide significantly better performance for larger datasets.

The speedup in update/compute performance for each workload represents the ratio

(between the baseline and the proposed technique) of the total update/compute time

across all the batches (we start from an empty graph). Real hardware experiments

of ABR, USC, and OCA are repeated three times. For simulation-based evaluation of

HAU, it is not feasible to perform experiments as extensively as on a real hardware.

Each of the 260 workloads consists of hundreds of batches; months of simulation time

would be required. Therefore, we evaluate HAU on a subset of 9 datasets and 4 batch

sizes (Fig. 6.13). The datasets cover different sizes (vertex/edge counts) and types

(shuffled/timestamped).

6.5.2 Experimental Results

Performance

Fig. 6.12 shows that ABR does not substantially compromise the high RO update

performance of reordering-friendly cases. As summarized in the table-inset, the geo-

metric mean across reordering-friendly cases shows that the update speedups of always-

RO and ABR are 1.92× and 1.85×, respectively. For reordering-adverse cases, ABR

successfully recovers the update performance from degradation in a naive always-RO
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Figure 6.12: Speedup in update performance from ABR and USC. Each bar is the average
across runs with different algorithms. ABR parameters are n=10, λ=256, and TH=465
(Section 6.5.2). The inset-table shows the average update/overall performances for both
the categories (averaged across all the dataset and batch size combinations which fall
under the given category).

Figure 6.13: Speedup in update performance from ABR+USC+HAU (normalized to
ABR+USC)

Figure 6.14: Speedup in compute performance from OCA
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solution. Geometric mean across reordering-adverse cases shows that ABR pushes up

the update performance closer to the baseline (0.37× to 0.87×). The table-inset shows

that the benefits of ABR are carried over to the overall performance (i.e., update and

compute combined), providing evidence that graph updates have an important contribu-

tion to the overall performance. ABR saves the overall performance from degradation for

reordering-adverse cases (0.78× to 0.91×) while minimally disturbing the overall speedup

of reordering-friendly cases (1.77× to 1.71×). The perfect ABR bars and inset column

show that ABR performs close to a perfect adaptive technique with zero overheads.

ABR performs at 93%, 85%, 94%, and 91% of the perfect ABR for reordering-friendly

update, reordering-adverse update, reordering-friendly overall, and reordering-adverse

overall performances, respectively. For the updates of reordering-friendly input batches,

ABR and USC together provide average speedups of 4.55× (max 23× for wiki -100K

and 20× for wiki -500K) and 3.49× (max 17× for wiki -100K, 500K) in update and over-

all performances, respectively. Reordering and USC software optimizations are not ap-

plied on reordering-adverse cases. Instead, HAU complements ABR in these scenarios

to improve the update performance (Fig. 6.13). The update speedup obtained from

ABR+USC+HAU is normalized to ABR+USC running on the simulated architecture in

Table 6.1 (note that ABR+USC+HAU means reordering-adverse input batches undergo

ABR and HAU, whereas reordering-friendly ones undergo ABR and USC). Compared

to ABR only, HAU provides on average 2.6× (max 7.5×) improvement in update per-

formance across the reordering-adverse cases. HAU is not applied to reordering-friendly

topcats-100K, berkstan-100K, and superuser -100K, as shown by the ~1× speedup. They

are executed in software mode with reordering and USC optimizations (Fig. 6.12).

For streaming graph computation, OCA is activated in cases of higher inter-batch

overlap and can provide up to 2.7× speedup in compute performance (Fig. 6.14). Av-

eraged across all datasets and batch sizes, the performance benefits experienced by in-
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cremental PR and incremental SSSP are 1.24× and 1.26×, respectively. OCA is pre-

dominantly triggered at relatively larger batch sizes (a desirable feature as explained in

Section 6.4). This happens because of: 1) inherent traits of large batches, and 2) our

choice of a relatively high overlap threshold. Larger input batches inherently contain

larger number of vertices, leading to an increased possibility of high overlap in unique

vertices between consecutive batches. Smaller input batches also exhibit some extent of

inter-batch overlap which fails to satisfy the overlap threshold.

Figure 6.15: (a) Extension of Fig. 6.12 across reordering-adverse cases; shows the im-
pact of enforcing software optimizations (RO+USC) (b) Extension of Fig. 6.13 across
reordering-friendly cases; shows the impact of enforcing HAU

Dynamic SW/HW graph updates

We quantitatively show that input-aware SW/HW execution mode outperforms an

input-oblivious HW-only or SW-only update technique (see Section 6.3.6 for insights and

explanation). SW-only: Our input-aware solution deviates from an input-oblivious SW-

only solution by applying HAU on reordering-adverse input batches. We instead enforce

RO+USC on them (Fig. 6.15 (a)) and find that RO+USC performs almost as poorly as

RO. Since ABR+USC outperforms RO+USC (Fig. 6.15 (a)) and ABR+USC+HAU

outperforms ABR+USC (Fig. 6.13), it follows that ABR+USC+HAU outperforms

RO+USC. HW-only: Our solution deviates from a HW-only solution by dynamically

applying RO+USC on reordering-friendly input batches. We extend Fig. 6.13 by enforc-

ing HAU on them and show that the performance degrades (Fig. 6.15 (b)).
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Further analysis

We further quantitatively analyze different techniques. Any overheads analyzed in

this section are already included in the speedups reported in Section 6.5.2.

ABR and OCA overheads (Fig. 6.16): Reordered ABR-active batches experience

negligible overhead (0.90×) due to CADλ collection. Non-reordered ABR-active batches

experience a higher overhead on average (0.54×) because of instrumentation with a con-

current hash map. However, a small number of ABR-active batches ensures a small

combined overhead across all batches. Normalized to ABR+USC, the average overhead

incurred by OCA is very small (Fig. 6.16 (b)).

Figure 6.16: Overhead of (a) ABR and (b) OCA

USC insights and overheads: We study the examples of superuser -100K and wiki -

500K to provide three key insights:

• High/low-degree input batches: Wiki -500K predominantly achieves a larger speedup

than superuser -100K (Fig. 6.17) because the input batches of the former are high-

degree in terms of both CADλ (1072 vs. 528) and maximum degree (43992 vs 3171).

The exception are the first two batches of wiki -500K which are low-degree and where

the graph is small (see below). A high-degree input batch means more coalescing,

leading to more search savings.

• Graph size: For a given combination of dataset and batch size, USC’s performance

benefit increases as the graph becomes larger (Fig. 6.17). Over time, search becomes
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more expensive as vertex degrees increase, and the benefit from search savings becomes

higher.

• Negligible overhead: USC does not degrade the update performance even when the

scope of speedup is smaller. This provides evidence that USC incurs negligible overhead

of preparing the hash table (Fig. 6.7).

Figure 6.17: Temporal speedup from USC (normalized to ABR)

ABR parameters/accuracy: The design parameters of ABR are n, λ, and TH. By

analyzing the batches from different combinations of dataset and batch size, we choose

the combination of λ and TH which maximizes the decision-making accuracy at 97%

(λ=256 and TH=465) (Fig. 6.18(a)). The parameter n impacts both the decision accu-

racy and the overhead. A large n can reduce ABR overhead by reducing the frequency

of instrumentation. However, it leads to coarse-grained decision-making which can miss

temporal fluctuations in degree distributions, compromising ABR accuracy and perfor-

mance. Fig. 6.18(b) shows that a larger n leads to a slightly better update performance

on average (1.04× at n=10 versus 1.07× at n=100). However, flickr -500K, yt-100K, and

stack -500K experience a poorer performance. For example, stack -500K has 127 batches

in total, leading to 2 ABR decisions at n=100 and 12 ABR decisions at n=10. Therefore,

n=100 misses some over-time fluctuations.

HAU analysis: We study uk -100K at a batch number of 100. For work distribution,
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Figure 6.18: (a) ABR accuracy as a function of λ-TH combination. (b) Sensitivity of
update performance to n.

the maximum value of vertices/core (core 6) is 3% higher than the minimum (core 11)

and 1.3% higher than the average across all cores (Fig. 6.19; since core 0 hosts the

master thread in SAGA-Bench setup, we show the information on cores 1-15 which host

the worker threads for graph updates). The maximum number of cachelines accessed per

dedicated cache controller logic (core 13) is 600% higher than the minimum (core 11) and

148% higher than the average across all cores. A heavy-workload core does not straggle

substantially because HAU eliminates i) remote cache accesses and ii) CPU instruction

overheads for searches. In other words, HAU substantially minimizes time per unit of

work (cacheline access + cacheline search), ensuring that non-uniform work distribution

is not the most significant performance limiter for HAU (Fig. 6.13 shows HAU’s existing

design can achieve on average 2.6× update performance improvement). First, our update

task assignment ensures that 98%-99% of the accessed edge data cachelines hit in the

local core tile (Fig. 6.20), eliminating straggling due to more expensive remote cache

accesses. In fact, HAU eliminates all remote cache accesses that would otherwise be

present in the baseline software updates. Second, specialized logic in the cache controller

eliminates the overheads of several CPU instructions for searches, limiting straggling due

to time-consuming searches. We believe that, in future, HAU can easily be optimized
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with well-known load balancing schemes such as work-stealing [154]. Finally, Fig. 6.20

shows the impact of using NOC for update task distribution. The increase in average

packet latency is within 10%, and some cores also experience a decrease in packet delay,

depending on the relative change in the number of different types of packets.

Figure 6.19: Work distribution among cores in HAU

Figure 6.20: Remote cache accesses and NOC performance

6.6 Conclusion

We propose the SPRING design approach which consists of input-aware software and

hardware solutions to improve the performance of streaming graph workloads. Evalu-

ated across 260 workloads, our proposed techniques provide on average 4.55× and 2.6×

speedup in graph update for different input types (on top of eliminating the performance

degradation from input-oblivious batch reordering). The graph compute performance is

improved by 1.26× (up to 2.7×).
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Summary

7.1 Thesis Contributions

The contributions of this dissertation lie at the intersection of important emerging

applications and computer architecture. For the former, we focus on both static and

streaming graph processing which are important in data analytics scenarios such as rec-

ommendation systems, financial fraud detection, and social network analysis. The rich

space of graph applications poses several challenges for the computer architecture com-

munity. First, standard static graph algorithm performance is sub-optimal on today’s

general-purpose architectures such as CPUs due to inefficiencies in the memory subsys-

tem. It is currently increasingly difficult to rely on relative compute/memory technology

scaling for continued performance improvement for a given optimized static graph al-

gorithm on a general-purpose CPU. This is because graph applications become more

memory-bound due to the explosion of data, whereas the memory technology does not

scale as fast as the compute technology. Hence, it is worthwile to specifically study the

application bottlenecks and address them using domain-specific computer architecture.

Second, while a large body of research in the computer architecture community focuses on
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static graph workloads, streaming graphs remain completely unexplored. In reality, how-

ever, most graphs are fast-changing in today’s big data era where data evolves rapidly.

The primary practical barriers for computer architecture researchers toward studying

streaming graphs are immature software, a lack of systematic software analysis, and an

absence of open-source benchmarks. This dissertation seeks to solve these challenges for

both static and streaming graph workloads through benchmarking, performance analysis,

and CPU-centric domain-specific architectures using software/hardware co-design.

Chapters 3 and 4 of the dissertation analyze and optimize static graph workloads.

In Chapter 3, we perform a data-aware performance analysis of the GAP benchmark

suite [17], focusing on the memory-level parallelism and the cache hierarchy. We show

that load-load dependency chains that involve specific application data types, rather

than the instruction window size limitation, make up the key bottleneck in achieving a

high memory-level parallelism. Moreover, we find that different graph data types ex-

hibit heterogeneous reuse distances. The architectural consequences are (1) the private

L2 cache shows negligible impact on improving system performance, (2) the shared L3

cache shows higher performance sensitivity, and (3) the graph property data type ben-

efits the most from a larger shared L3 cache. Based on these profiling observations,

we propose, in Chapter 4, a domain-specific prefetcher called DROPLET to solve the

memory access bottleneck. DROPLET is a physically decoupled but functionally coop-

erative prefetcher co-located at the L2 cache and at the memory controller. Moreover,

DROPLET is data-aware because it prefetches different graph data types differently ac-

cording to their intrinsic reuse distances. DROPLET achieves 19%-102% performance

improvement over a no-prefetch baseline and 14%-74% performance improvement over

a Variable Length Delta Prefetcher. DROPLET also performs 4%-12.5% better than a

monolithic L1 prefetcher similar to the state-of-the-art prefetcher for graphs.

Chapters 5 and 6 of the dissertation focus on streaming graph workloads. For the
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latter, this thesis develops a performance analysis framework called SAGA-Bench and

performs workload characterization at both the software and the architecture levels.

SAGA-Bench (Chapter 5) is targeted at software and hardware studies of the essential

data structures and compute models proposed across various existing streaming graph

systems. For software performance analysis, we enable systematicness by using com-

parable implementations of the core software components (without system-specific op-

timizations) and identical measurement methodology, thus alleviating the problem of

difficult-to-interpret comparisons across heterogeneous stand-alone systems. For hard-

ware studies, SAGA-Bench provides a benchmark to study the architecture bottlenecks

for these workloads. Workload characterization on SAGA-Bench leads to several findings:

1) the performance limitation of the graph update phase, 2) the input-dependent software

performance trade-offs in graph updates, and 3) the difference in architecture resource

utilization (core counts, memory bandwidth, and cache hierarchy) between the graph

update and the graph compute phases. In addition, in Chapter 6, using the SPRING

design approach, we demonstrate that input knowledge-driven software and hardware co-

design is critical to optimize the performance of streaming graph processing. To improve

graph update efficiency, we first characterize the performance trade-offs of an input-

oblivious software technique called batch reordering [25,26]. Guided by our findings, we

propose input-aware batch reordering to adaptively reorder input batches based on their

degree distributions. To complement adaptive batch reordering, we propose updating

graphs dynamically, based on their input characteristics, either in software (via update

search coalescing) or in hardware (via acceleration support). To improve graph computa-

tion efficiency, we present input-aware work aggregation which adaptively modulates the

computation granularity based on inter-batch locality characteristics. Evaluated across

260 workloads, our input-aware techniques provide on average 4.55× and 2.6× improve-

ment in graph update performance for different input types (on top of eliminating the
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performance degradation from input-oblivious batch reordering). The graph compute

performance is improved by 1.26× (up to 2.7×). Evaluated across 260 workloads, our

input-aware techniques provide on average 4.55× and 2.6× improvement in graph update

performance for different input types. The graph compute performance is improved by

1.26× (up to 2.7×).

7.2 Future Directions

As highlighted below, the work developed in this thesis opens the path for multiple

future research directions:

• Flexible prefetchers for graph workloads : DROPLET provides performance im-

provement for static graphs represented in CSR, the most common graph represen-

tation. However, there exist alternative static graph representations such as edge

list [111, 155], shards [55], doubly compressed sparse row/column (DCSR/DCSC)

[156], etc. which, although not the most common case, may be valuable in cer-

tain cases (e.g., DCSR is more space-efficient than CSR for hypersparse graphs).

A practical and valuable future direction is to extend DROPLET to be a flexi-

ble and programmable prefetcher to be able to handle multiple underlying graph

representations.

• Application-specific software-assisted hardware prefetching : DROPLET provides

evidence for the benefits of software-assisted hardware prefetching (i.e., with data

type hints from the software, a hardware prefetcher is capable of achieving high

accuracy and performance). This prefetching methodology can be practical and a

source of high performance for not just graph workloads but also for other sparse

workloads such as sparse linear algebra. For these types of workloads, it is difficult
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to rely on a completely hardware prefetcher due to the challenging and difficult-to-

predict access patterns. On the other hand, data type hints from the application

layer can make prefetching easier for the hardware.

• Performance analysis of future novel data structures and compute models for stream-

ing graph workloads : SAGA-Bench simultaneously provides 1) a common platform

for performance analysis studies of software techniques and 2) a benchmark for

architecture studies. As streaming graph software is still in active research, the

API of SAGA-Bench is designed to be flexible so that future streaming graph codes

can be easily implemented and analyzed on this common platform. Our frame-

work improves research productivity during the stage of novel workload discovery

and characterization. A common platform 1) relieves the difficulty of navigating

through heterogeneous stand-alone systems for software performance comparison,

and 2) provides a means to easily implement the core software of the workload to

quickly characterize it on the hardware to understand the architecture bottlenecks.

• Architectural support for streaming graph workloads to make more practical domain-

specific architectures for graph processing : Today’s graph-targeted domain-specific

architectures ignore streaming graphs, whereas, in reality, graphs are seldom static.

By neglecting the dynamic nature of graphs, the research community is missing the

opportunity to design more adequate architecture solutions for practical and re-

alistic graph processing. Motivated by this situation, we provide input-dependent

architectural support for streaming graph workloads in this thesis. However, this

is only the first step and there are numerous opportunities to further pursue this

direction. For example, the update and the compute stages in streaming graphs ex-

hibit different levels of parallelism and working set sizes, leading to heterogeneous

architecture resource utilizations in terms of core counts, cache hierarchy levels,
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and memory and inter-socket bandwidths. Future graph-targeted domain-specific

architectures need to be equipped with dynamic resource allocation strategies be-

tween the two stages to achieve a high utilization. In addition, an interleaved

update/compute execution flow provides opportunities for inter-phase optimiza-

tions. For example, the slack in hardware resource utilization of the update phase

can be leveraged to optimize the compute phase.
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