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Abstract

The tumor immune microenvironment (TIME) is commonly infiltrated by diverse collections of 

myeloid cells. Yet, the complexity of myeloid-cell identity and plasticity has challenged efforts 

to define bona fide populations and determine their connections to T-cell function and their 
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relationship to patient outcome. Here, we have leveraged single-cell RNA-sequencing analysis of 

several mouse and human tumors and found that monocyte–macrophage diversity is characterized 

by a combination of conserved lineage states as well as transcriptional programs accessed along 

the differentiation trajectory. We also found in mouse models that tumor monocyte-to-macrophage 

progression was profoundly tied to regulatory T cell (Treg) abundance. In human kidney cancer, 

heterogeneity in macrophage accumulation and myeloid composition corresponded to variance in, 

not only Treg density, but also the quality of infiltrating CD8+ T cells. In this way, holistic analysis 

of monocyte-to-macrophage differentiation creates a framework for critically different immune 

states.

Introduction

A key component of most immune responses, including those to cancers, are mononuclear 

phagocyte cell populations, which share common features of phagocytosis, tissue repair, 

and immunoregulation but diverge in functional specialization. Conventional dendritic cells 

(cDCs) are positioned in tissues to initiate and sustain adaptive T-cell responses (1), 

whereas macrophages engage in high rates of phagocytosis and tissue remodeling (2). 

Self-renewing tissue-resident macrophages are seeded during embryonic development (3), 

whereas inflammatory stimuli prompt infiltration of adult hematopoietic stem cell–derived 

monocytes that give rise to tumor macrophages (4–7). These monocyte-derived macrophages 

preferentially accumulate as tumors progress (8) and may predominate in regulating the 

ongoing antitumor T-cell response (9).

Macrophages consist of numerous subset populations that have been identified across tissues 

(10–13). Therapeutic blockade of key epigenetic and signaling pathways has demonstrated 

their amenability to transcriptional reprogramming (14), but how phenotypic diversity 

arises remains poorly understood. Recruited bloodborne monocytes exhibit plasticity in 

differentiation potential and can acquire features of macrophages and/or DCs depending 

on the inflammatory setting (5,6,10,15–17). In addition, early studies demonstrated that 

macrophage exposure to type 1- or type 2-associated cytokines induces “M1” or “M2” 

cellular programs, respectively, and a model was put forth in which myeloid cells 

are polarized to be pro- (“M1”) or anti- (“M2”) inflammatory (18–20). Although this 

nomenclature was thereafter understood to require nuance to account for additional plasticity 

(21), it remains undetermined if these binary programs are applicable to describe tumor 

macrophage differentiation in vivo.

Myeloid phenotypic diversity has challenged efforts to utilize myeloid populations as 

biomarkers for patient treatment options and outcome. cDCs are critical for coordinating 

antitumor T-cell immunity (22–25) and higher cDC abundance is broadly associated with 

improved cancer patient survival, although additional tumor immune microenvironment 

(TIME) features may inform functionality (23,24,26). In contrast, macrophages have 

largely been considered to be pro-tumorigenic (2,14) and monocytes have often been 

described as myeloid-derived suppressor cells (MDSCs) (27). Yet, several studies have 

indicated that macrophages are not consistently a negative predictor of patient prognosis 

(28–31), and increased levels of circulating monocytes were unexpectedly linked to patient 
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responsiveness to immune checkpoint blockade (ICB) (32). These contrary findings speak to 

the need for improved resolution of myeloid-cell categorization and phenotype in order to 

dissect heterogenous responses amongst cancer patients.

Using single-cell RNA-sequencing (scRNA-seq), we uncovered transcriptional 

heterogeneity amongst tumor-infiltrating myeloid cells and distinguished monocyte and 

macrophage lineage- and activation-induced programs shared between multiple mouse 

tumor models and human kidney cancer samples. Monocyte differentiation is dynamically 

regulated, and we found that regulatory T cell (Treg) density was one immunoregulatory axis 

capable of modulating macrophage density. Further comprehensive analysis of key myeloid 

populations revealed distinct network connections between different myeloid-cell types and 

T-cell subsets, including Tregs and effector T cells. This is consistent with an archetypal 

organization of immune systems in tumors — collections of cell types that move together 

as modules (33) — and improved classification of patients such that we could identify those 

with effective antitumor T-cell responses.

Materials & Methods

Mice

The following mice were housed and/or bred under specific pathogen-free conditions at the 

University of California, San Francisco Animal Barrier Facility: C57BL/6J (The Jackson 

Laboratory), MMTV-PyMT-mCherry-OVA transgenic (34), and Foxp3-DTR (The Jackson 

Laboratory). All mice were handled in accordance with NIH and American Association 

of Laboratory Animal Care standards, and experiments were approved by the Institutional 

Animal Care and Use Committee of the University of California, San Francisco.

Human Tumor Samples

Renal cell carcinoma (RCC), melanoma, and head and neck tumor samples were transported 

from various cancer operating rooms or outpatient clinics. All patients provided informed 

written consent to the UCSF IPI clinical coordinator group for tissue collection under a 

UCSF IRB approved protocol (UCSF IRB# 20–31740) in accordance with the Declaration 

of Helsinki guidelines. Patients were selected without regard to prior treatment and 21 RCC 

(all primary tumors), 22 melanoma (20 primary and 2 metastasis tumors) and 4 head and 

neck tumors (all primary tumors) were collected. All samples were defined as primary 

tumor or metastasis by pathology assistants. Samples were obtained after surgical excision 

with biopsies taken to confirm the presence of tumor cells. Freshly resected samples were 

placed in ice-cold DPBS (Thermo Fisher Scientific, catalog no. 14190144) or Leibovitz’s 

L-15 medium (Thermo Fisher Scientific, catalog no. 11415064) in a 50 mL conical tube 

and immediately transported to the laboratory for sample labeling and processing. As 

described below (Human Tissue Processing and Flow Cytometry Analysis), the whole tissue 

underwent digestion and processing to generate a single-cell suspension. In the event that 

part of the tissue was sliced and preserved for imaging analysis, the remaining portion of the 

tissue sample was used for flow cytometry analysis.
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Tumor Cell Lines

B16-F10 cells (ATCC, CRL-6475) were purchased in 2015 and stock vials were generated 

from an initial thaw. Cells in use were taken from early passages and maintained consistent 

and homogenous morphological characteristics, during which time they were tested for 

Mycoplasma. B16-F10-ZsGreen was previously generated in our laboratory as described 

(35) and tested for maintained expression of ZsGreen by flow cytometry. After thawing, 

tumor cells were cultured at 37°C in 5% CO2 in DMEM (Thermo Fisher Scientific, catalog 

no. A4192101), 10% FCS (Benchmark, catalog no. 100–106), Penicillin, Streptomycin, 

and L-Glutamine (Thermo Fisher Scientific, catalog no. 10378016). Cells were generally 

cultured for 2–5 days (0–1 passages) before use for subcutaneous injection.

Mouse Tumor Cell Injections and Growth

Prior to injection, adherent B16-F10 or B16-ZsGreen tumor cells were dissociated with 

0.05% Trypsin-EDTA (Thermo Fisher Scientific, catalog no. 25300120) and washed 2–3X 

with DPBS (Thermo Fisher Scientific, catalog no. 14190144). 1.0×105 – 2.5×105 cells were 

resuspended in DPBS and mixed 1:1 with Matrigel GFR (Corning, catalog no. 356231). 

Mice were injected subcutaneously with a volume of 50 μl either unilaterally or bilaterally 

depending on the experimental setup. Tumor tissue was harvested approximately 12–16 days 

later.

MMTV-PyMT-mCherry-OVA transgenic mice were bred and genotyped for the transgene 

by PCR. Spontaneous tumor growth was monitored by measuring with electronic calipers. 

Tumors were harvested when the mice were approximately 20–30 weeks of age such that 

palpable tumors had developed but had not exceeded a size of 100mm2.

In Vivo Mouse Treatments

To deplete Treg cells, Foxp3-DTR and control mice were injected intraperitoneally with 

500ng of unnicked diptheria toxin (List Biologics, catalog no. 150). Mice were typically 

injected 9, 10, and 12 days following initial inoculation with tumor cells (see Mouse Tumor 

Cell Injections and Growth).

For specified experiments, wild-type mice were injected intraperitoneally 7, 9, 10, 11, 

and 13 days following tumor injection with 250 μg of anti-mouse CTLA-4 IgG2c 

(modified clone 9D9, Bristol-Myers-Squibb), mouse IgG2C isotype, anti-mouse CTLA-4 

IgG1 (modified clone 9D9, Bristol-Myers-Squibb), or mouse IgG1 isotype.

Mouse Tissue Processing and Flow Cytometry Analysis

Mouse tumor tissue was harvested and enzymatically digested with 0.2mg/ml DNase I 

(Sigma-Aldrich, catalog no. D5025), 100U/ml Collagenase I (Worthington Biochemical, 

catalog no. LS004197), and 500U/ml Collagenase Type IV (Worthington Biochemical, 

catalog no. LS004189) for 30 minutes at 37°C while under constant agitation. Blood 

was collected via cardiac puncture from mice that were euthanized by overdose with 

2.5% Avertin. Blood samples were treated with 175 mM NH4Cl for 5 minutes at room 

temperature to lyse red blood cells.
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Samples were filtered, washed with stain media (DPBS, 2% FCS), and resuspended in stain 

media. Cells from this single-cell suspension were washed with DPBS and stained with 

Zombie NIR fixable viability dye (BioLegend, catalog no. 423106) for 30 minutes at 4°C. 

Cells were washed and resuspended in stain media containing anti-CD16/32 (BioXCell, 

catalog no. BE0307), 2% rat serum (Thermo Fisher Scientific, catalog no. 10710C), 2% 

Armenian hamster serum (Innovative Research, catalog no. IGHMA-SER), and antibodies 

against surface proteins of interest. Cells were stained for 30 minutes at 4°C. In some 

experiments, cells were then washed and stained for intracellular protein levels, for which 

they were fixed, permeabilized, and stained according to BD Cytofix/Cytoperm Kit (BD 

Biosciences, catalog no. 554655) or the FoxP3/Transcription Factor Staining Buffer Set 

(Thermo Fisher Scientific, catalog no. 00–5523-00).

The following antibodies were from Biolegend: anti-mouse CD45 (clone A20, catalog 

no. 110727), anti-mouse Ly-6C (clone HK1.4, catalog no. 128037), anti-mouse CD11b 

(clone M1/70, catalog no. 101257), anti-mouse CD11c (clone N418, catalog no. 117339), 

anti-mouse MHC-II (clone M5/114.15.2, catalog no. 107622), anti-mouse F4/80 (clone 

BM8, catalog no. 123135, 123107, or 123131), anti-mouse CD24 (clone M1/69, catalog 

no. 101822), anti-mouse Ly-6G (clone IA8, catalog no. 127645), anti-mouse NK1.1 (clone 

PK136, catalog no. 108749), anti-mouse CD90.2 (clone 30-H12, catalog no. 105331), anti-

mouse/human CD45R/B220 (clone RA3–6B2, catalog no. 103246), anti-mouse CD301b 

(clone URA-1, catalog no. 146814 or 146803), anti-mouse CD64 (clone X54–5/7.1, catalog 

no. 139306), anti-mouse CD127 (clone A7R34, 135031). The following antibodies were 

from BD Biosciences: anti-mouse Siglec-F (clone E50–2440, catalog no. 740956), anti-

mouse CD106 (clone 429, catalog no. 745672). The following antibodies were from R&D: 

anti-mouse/human ARG1 (polyclonal, catalog no. IC5868F), normal sheep IgG (polyclonal, 

catalog IC016F). The following antibodies were from Thermo Fisher Scientific: anti-mouse 

FoxP3 (clone FJK-16s, catalog no. 48–5773-82).

Following staining, cells were washed, resuspended in stain media, and analyzed on a BD 

Biosciences Fortessa or sorted with a BD Biosciences FACSAria Fusion. Flow cytometry 

data was analyzed using FlowJo software (BD Biosciences, version 9 or 10).

Human Tissue Processing and Flow Cytometry Analysis

Human tumor or metastatic tissue was thoroughly chopped with surgical scissors and 

transferred to gentleMACS C Tubes (Miltenyi Biotec) containing 20 uL/mL Liberase TL 

(5 mg/ml, Roche, catalog no. 5401020001) and 50 U/ml DNAse I (Roche, catalog no. 

10104159001) in RPMI 1640 (Thermo Fisher Scientific catalog no. 11875093) per 0.3 

g tissue. gentleMACS C Tubes were installed onto the gentleMACS Octo Dissociator 

(Miltenyi Biotec) and incubated for 45 minutes according to the manufacturer’s instructions. 

Samples were then quenched with 15 mL of sort buffer (DPBS, 2% FCS, 2mM EDTA), 

filtered through 100 μm filters, and spun down. Red blood cell lysis was performed with 

175 mM NH4Cl if needed. Cells were incubated with Human FcX (Biolegend, catalog no. 

422301) to prevent non-specific antibody binding. Cells were then washed in DPBS and 

incubated with Zombie Aqua Fixable Viability Dye (Thermo Fisher Scientific, catalog no. 

L34957). Following viability dye, cells were washed with sort buffer and incubated with 
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cell surface antibodies that had been diluted in the BV stain buffer (BD Biosciences, catalog 

no. 563794) for 30 minutes on ice. Cells were subsequently fixed in either Fixation Buffer 

(BD Biosciences, catalog no. 554655) or in Foxp3/Transcription Factor Staining Buffer Set 

(Thermo Fisher Scientific, catalog no. 00–5523-00) if intracellular staining was required.

The following antibodies were from BD Biosciences: anti-human HLA-DR (clone G46–6, 

catalog no. 564040), anti-human CD56 (clone NCAM16.2, catalog no. 564448), anti-human 

CD127 (clone HIL-7R-M21, catalog no. 563225) anti-human CD25 (clone 2A3, catalog 

no. 340939), anti-human CD45RO (clone UCHL1, catalog no. 561889), anti-human PD-1 

(clone EH12, catalog no.563789), anti-human CTLA-4 (clone BNI3, catalog no. 565931), 

and anti-human CD64 (clone 10.1, catalog no. 564425). The following antibodies were from 

Thermo Fisher Scientific: anti-human CD45 (clone HI30, catalog no. 47–0459-42), anti-

human CD3ε (clone OKT3, catalog no. 46–0037-42), anti-human FoxP3 (clone 236A/E7, 

catalog no. 25–4777-41), anti-human Ki-67 (SolA15, catalog no. 11–5698-82), anti-human 

CD19 (clone H1B19, catalog no. 45–0199-42), anti-human CD20 (clone 2H7, catalog no. 

45–0209-42), anti-human CD56 (clone CMSSB, catalog no. 46–0567-42), and anti-human 

CD11c (clone 3.9, catalog no. 56–0116-42). The following antibodies were from Biolegend: 

anti-human CD4 (clone S3.5, catalog no. 100455), anti-human CD8α (clone RPA-T8, 

catalog no. 301039), anti-human CD38 (clone HIT2, catalog no. 303523), anti-human CD16 

(clone 3G8, catalog no. 302039), CD1C/BDCA-1 (clone L161, catalog no. 331515), anti-

human CD14, (clone M5E2, catalog no. 301837) anti-human CD304 (clone 12C2, catalog 

no. 354503), and streptavidin. Anti-human BDCA-3 (clone AD5–14H12, catalog no. 130–

098-843) was purchased from Miltenyi Biotec.

Stained cells were washed and analyzed on a BD Biosciences Fortessa or sorted with a BD 

Biosciences FACSAria Fusion. Flow cytometry data was analyzed using FlowJo software 

(BD Biosciences, version 10.6). Clustering and heatmap analyses were performed using 

Morpheus (Broad Institute).

Single-Cell RNA-Sequencing Data Generation

Mouse B16 samples were generated over 2 independent experiments. Samples were 

pooled from at least 5 mice per experiment to ensure representation across a cohort 

of tumor-bearing mice. In the first experiment, CD45+CD90–B220–NK1.1–Ly6G– cells 

that were Ly6C–MHC-II+ or Ly6C+CD11b+ were sorted as 1 bulk myeloid sample. 

Individual monocyte (CD45+CD90–B220–NK1.1–Ly6G–Ly6C+CD11b+) and macrophage 

(CD45+CD90–B220–NK1.1–Ly6G–Ly6C–MHC-II+F4/80+CD24loCD11clo/hi) populations 

from these tumors were also sorted. Each of these samples were processed separately, 

but in parallel, for scRNA-seq analysis. In the second experiment, B16 tumor myeloid 

cells (CD45+CD90–B220–NK1.1–Ly6G– cells that were CD11b+ and/or CD11c+) were 

sorted from control or Foxp3-DTR mice. Blood myeloid cells (CD45+CD90B220–NK1.1–

Ly6G– cells that were CD11b+ and/or CD11c+) were also sorted from these B16 tumor-

bearing wildtype mice. Each of these 3 samples were processed separately, but in parallel, 

for scRNA-seq analysis. In a subsequent experiment, myeloid cells (CD45+CD90–B220–

NK1.1–Ly6G–CD11b+ and/or CD11c+) from a mouse PyMT tumor were sorted. In addition, 

myeloid cells (CD45+CD3ε–CD19–CD20–CD56–HLA-DRdim/hi) from a total of 1 RCC, 4 
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head and neck, and 6 melanoma biopsies were sorted and processed individually as they 

became available.

Once sorted, cells were resuspended at a concentration of 1×103 cells/μl in media 

(DPBS, 0.04% BSA) and loaded onto the Chromium Controller (10X Genomics). Samples 

underwent single-cell encapsulation and cDNA library preparation using the Chromium 

Single Cell 3’ v1 or v2 Reagent Kits (10X Genomics, catalog no. 120237). The cDNA 

library was sequenced on an Ilumina HiSeq 4000 or Illumina Novaseq.

Single-Cell RNA-Sequencing Data Processing

Sequencing data was processed using the 10X Genomics Cell Ranger V1.2 pipeline. Fastq 

files were generated from Ilumina bcl files with the Cell Ranger subroutine mkfastq. Fastq 

files were then processed with Cell Ranger’s count to align RNA reads against UCSC mm10 

or GRCh38 genomics for mouse and human cells, respectively, using the aligner STAR (36). 

Redundant unique molecular identifiers (UMI) were filtered, and a gene–cell barcode matrix 

was generated with count. Mkfastq and count were run with default parameters.

For mouse B16 tumor samples, the gene–cell barcode matrix was passed to the R software 

package Seurat (v2.3.0) (37) for all downstream analyses. Genes that were expressed in at 

least 3 cells were included. Cells that did not express at least 200 genes were excluded, as 

were those that contained >5% reads associated with cell cycle genes (38,39). For mouse 

PyMT and human tumor samples, raw feature–barcode matrices were loaded into Seurat 

(v3.1.5) (40) and genes with fewer than 3 UMIs were dropped from the analyses. Matrices 

were further filtered to remove events with greater than 20% percent mitochondrial content, 

events with greater than 50% ribosomal content, or events with fewer than 200 total genes. 

The cell cycle state of each cell was assessed using a published set of genes associated with 

various stages of human mitosis (41).

Using Seurat’s ScaleData function, read counts were log2 transformed and scaled 

using each cell’s proportion of cell cycle genes as a nuisance factor. A set of 

highly variable genes was generated by Seurat’s FindVariableGenes function, which 

were used for principal component analysis (PCA). Genes associated with principal 

components (selected following visualization with scree plots) were used for graph-based 

cluster identification and dimensionality reduction using t-distributed stochastic neighbor 

embedding (t-SNE) or Uniform Manifold Approximation and Projection (UMAP) analysis. 

Seurat’s FindAllMarkers function was used for subsequent cluster-based analyses, including 

cluster marker identification and differentially expressed (DE) gene analyses.

Single-Cell RNA-Sequencing Signature Generation

To generate mouse monocyte- and macrophage-specific gene signatures, sorted monocyte, 

CD11clo macrophage, and CD11chi macrophage samples were aggregated, log2 

transformed, and scaled using Seurat. DE gene analysis was performed using FindMarkers 
with the parameters log N fold change > 1.5 and a min.pct of 0.25. Genes were selected by 

ranked fold change and the criteria that min.pct1/min.pct2 > 1.5. Genes used for cell cycle 

regression analysis were excluded. The top 10 genes (or fewer if less remained) were median 

normalized and aggregated, scaled 0–1, and plotted on specific t-SNE plots.
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Gene signatures for cellular programs such as metabolism (42), “M1” 

and “M2” polarization (43), and MHC-II–associated genes (GSEA, 

REACTOME_MHC_CLASS_II_ANTIGEN_PRESENTATION), previously published cell 

types (44,45), and cell populations identified here were generated by taking the mean of 

log-normalized expression for a particular set of genes related to the specific pathway 

or phenotype. To visualize the distribution of these scores across cells, we binarized the 

distribution of the score at the 70th percentile unless specified otherwise and overlaid on the 

calculated t-SNE coordinates.

For correlation analysis of “M1” and “M2” genes, the expression of each gene in the 

signatures was calculated for each B16 tumor Csf1r+Mafb+ cluster cell and binarized at the 

median. A cross-correlation gene–gene matrix was obtained using the R cor function with 

method=”pearson”.

Single-Cell RNA-Sequencing Sample Aggregation

Pairwise comparison analyses were performed between B16 tumor myeloid-cell clusters 

from wildtype and Treg-depleted mice. For this, 1 sample from wildtype mice and 1 sample 

from Foxp3-DTR mice were used, along with an additional wildtype sample that had been 

generated in a previous independent experiment. The 3 objects were first transformed from 

Seurat v2 to Seurat v3. The raw UMI counts were renormalized using person residuals 

from “regularized negative binomial regression,” with sequencing depth a covariate in a 

generalized linear model via the R sctransform package (46). Pairwise “anchor” cells were 

identified between the 3 objects using the original wild-type mouse sample as a reference 

via the Seurat FindIntegrationAnchors function. Briefly, each pair of samples was reduced to 

a lower dimensional space using diagonalized Canonical Correlation Analysis (CCA) using 

the top 3,000 genes with the highest dispersions. The canonical correlation vectors were 

normalized using L2-normalization. Multiple Nearest Neighbors (MNNs) across datasets 

were identified for each cell in each dataset and cell–cell similarities are used as anchors to 

integrate the datasets together using the Seurat IntegrateData function.

For the integration of all human samples, the individually processed samples were 

normalized, and variance stabilized using negative binomial regression via the scTransform 

method offered by Seurat (46). Counts matrices were merged into a single Seurat object and 

the batch (or library) of origin was stored in the metadata of the object. The log-normalized 

counts were reduced to a lower dimension using PCA and the individual libraries were 

aligned in the shared PCA space in a batch-aware manner (each individual library was 

considered a batch) using the Harmony algorithm (47). The resulting Harmony components 

were used to generate a batch-corrected UMAP, and to identify clusters of transcriptionally 

similar cells across each of the 11 samples.

Single-Cell RNA-Sequencing Pseudotime Analysis

Raw UMI counts from the cleaned and processed Seurat objects for the control and Treg-

depleted mouse experiment were extracted and coerced into Monocle2 (48,49). CellDataSet 
objects were generated, normalizing the data using a negative binomial distribution with 

fixed variance (negbinom.size). Each object was independently processed to identify a 
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pseudotime trajectory. Briefly, each object was processed to estimate per-cell coverage and 

sequencing depth (estimateSizeFactors) and gene dispersions (estimateDispersions). Cells 

were further filtered to retain high-quality cells with ≥500 genes and genes were filtered 

to retain only those in at least 10 cells. The dataset was reduced to 2 dimensions using 

the DDRTree algorithm and the marker genes that differentiated the Ly6c2+Hp+ monocytes 

and C1qa+ macrophage clusters from other cell types were used to guide the trajectory 

inference. Relative pseudotime was obtained through a linear transformation relative to the 

cells with the lowest and highest pseudotimes (1-min_pseudotime)/max_pseudotime. The 

“wave” plots were constructed using the Seurat LogNormalized counts and the relative 

pseudotime described above for the top 5 genes per cluster as identified by scRNA-seq.

Human samples were analyzed with Monocle3 (48,49), and the cell_data_set object along 

with the batch-corrected PCA and UMAP embeddings were imported directly from the 

Seurat object. Each cell-specific trajectory was inferred by reverse embedding the UMAP 

coordinates using the DDRTree method. Relative pseudotime was obtained as described for 

the mouse tumor samples.

TCGA Survival Analyses

Tumor RNAseq counts and transcripts-per-million (TPM) values for 985 kidney renal clear 

cell carcinoma (KIRC) samples from the Toil recompute data in the TCGA Pan-Cancer 

(PANCAN) cohort (50) were downloaded from the UCSC Xena browser (51). A gene 

signature score for each patient was calculated using the gene signature score method 

below. The feature gene signature scores were calculated using an m x n matrix where m 

represented the TPM normalized log2 counts per million (logCPM) expression of the feature 

signature genes and n represented the selected sample set (52). The expression of each gene 

was converted to percentile ranks across the samples using the SciPy Python module (53). 

The top and bottom 30 percentile were then used to define low and high patients for each 

respective signature unless otherwise noted.

Statistical analysis and data visualization

Comparisons between groups were analyzed using GraphPad Prism software. Experimental 

group allocation was determined by genotype or by random designation when all wild-

type mice were used. Error bars represent mean ± SEM calculated with Prism unless 

otherwise noted. Comparisons between 2 groups were analyzed with Student’s t-test. For 

statistical measures between more than 2 groups, one-way ANOVA was performed unless 

otherwise noted. Nonsignificant comparisons are not shown. Investigators were not blinded 

to experiment group assignment during experimental data generation or analyses. The R 

packages Seurat and ggplot2 were used to generate figures.

Data Availability

The expression matrices for the scRNA-seq samples reported in this paper can be found 

with the following GEO accession numbers: GSE188548, GSE184096, GSE159913, and 

GSE184398. Code used to generate the scRNA-seq analyses are included on Github (https://

github.com/UCSF-DSCOLAB/mujal_et_al_MonoMac_2021).
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Results

Mouse B16 Tumors Harbor a Diversity of Myeloid States

Subcutaneous implantation of B16 melanoma cells is a well-established mouse tumor model 

with abundant infiltration of monocytes, macrophages, and cDCs (23). To study these 

cells along their differentiation trajectories, we used conventional markers to sort bulk 

myeloid populations, along with reference populations of Ly6C+ monocytes and two tumor-

associated macrophage (TAM) populations, distinguished based on level of expression of 

CD11c and MHC-II (23) (Fig 1A, Supplementary Fig S1A). Each of these samples were 

then subjected to scRNA-seq analysis.

Within the bulk myeloid population, t-SNE clustering yielded eight transcriptionally-distinct 

cell populations (Fig. 1B, Supplementary Fig S1B–C), including three Flt3+Kit+ cDC 

populations (Clusters 4, 6, 7), which were marked by signatures specific to cDC1s, cDC2s, 

and conserved cDC activation programs (Supplementary Fig. S1D, Supplementary Table S1) 

(23,24,26). The remaining myeloid cells (Clusters 0, 1, 2, 3, 5) broadly expressed Csf1r and 

Mafb (Fig. 1C), indicative of monocytes and macrophages. In addition, these cells broadly 

expressed Ccr2 and modest but appreciable levels of Cx3cr1 (Supplementary Fig. S1E). 

Having focused on the stimulatory capacity of cDCs in previous work (23,24,45), here we 

focused on the diversity of monocytes and macrophages as it related to the TIME.

To align transcriptional cell type categorization with flow cytometry analysis, we generated 

cell type–specific gene signatures from the scRNA-seq analysis of the FACS-sorted 

monocytes and TAMs (Fig. 1A, Supplementary Fig. S1F). When applied (Fig. 1D), these 

indicated that four Csf1r+Mafb+ populations (Clusters 0, 1, 2, 5) expressed monocyte-

specific genes. The four monocyte populations expressed Ly6c2, but varied in levels of 

other monocyte-associated genes (e.g., Hp, Chil3) and, as found in Cluster 0, also expressed 

TAM-associated genes (e.g. H2-Ab1, C1qa, Ms4a7) (Fig. 1E–F). Monocyte-like clusters 

were differentiated from one another by cellular activation programs. For example, Cluster 

1 (“IFN-responsive”) was specifically enriched for interferon (IFN)-inducible genes such 

as Cxcl10, Gbp2, and IFIT-family members. Cluster 2 (“stress-responsive”) cells expressed 

Arg1 and were enriched for cellular stress processes, including oxidative stress–responsive 

genes and heat-shock protein genes such as Hmox1, Hspa1a, Hilpda, Bnip3, Ero1l, and 

Ndrg1 (Fig. 1F, Supplementary Fig. S1G). In contrast to the heterogeneity observed amongst 

monocytes, signatures for both populations of TAMs localized within Cluster 3 (Fig. 1D).

We applied pseudotime analysis (48) to generate a model of tumor monocyte-to-

macrophage differentiation (Fig. 1G–H, Supplementary Fig. S1H). This model placed 

Cluster 5 Ly6c2+Hp+ monocytes and Cluster 3 C1qa+ TAMs at opposite ends of a 

linear trajectory, consistent with our expectations. Cluster 0 monocytes occupied the 

continuum between them and expressed a combination of both monocyte- and TAM-

associated gene signatures such that we designated these cells “Intermediate monocytes” 

(“Mono-Int”). Kinetic analysis of cluster-enriched genes confirmed gradual downregulation 

of Ly6c2+Hp+ monocyte-associated genes and up-regulation of “Mono-Int”- and TAM-

associated genes along the pseudotime trajectory (Fig. 1I). This transcriptional model 

thus supported a framework of progressive monocyte-to-TAM differentiation, in which 
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Ly6C down-regulation is paired with up-regulation of CD64, MHC-II, and F4/80 (15) 

(Fig. Supplementary S1I–J). In contrast, IFN- and stress-responsive cells occupied 

distinct branches that diverged from the dominant differentiation trajectory at intermediate 

timepoints (Fig. 1H–I, Supplementary Fig S1H).

Heterogeneous Acquisition of ‘Stress-’ and ‘IFN-Responsive’ Cellular Programs

To gain higher resolution on the differentiation trajectories within the monocyte/macrophage 

lineage, we performed cluster analysis on the sorted monocyte and TAM samples. Sorted 

monocytes expressed Ly6c2 and contained clusters similar to those identified within the 

bulk myeloid-cell sample (Fig. 2A, Supplementary Fig S2A), indicating that these cells 

may not consist purely of early-stage monocytes but also include some cells that have 

acquired macrophage attributes (Supplementary Fig. S1J). Cluster analysis of CD11clo and 

CD11chi TAMs, however, resolved diversity beyond the C1qa+ TAM signature (Fig. 2B, 

Supplementary Fig. S2B–C) including identifying clusters enriched for cell cycle–related 

genes, and an Mgl2+ TAM subset that expressed immune modulators such as Ccl6, Il1b, 
and Retnla as compared to the C1qa+ cluster, which more highly expressed genes such as 

Ms4a7. Although these cells had not formed a distinct population in our original analysis 

of bulk myeloid cells (Fig. 1), we did retrospectively detect Mgl2+ cells in that scRNA-seq 

dataset, as well as by flow cytometry (Supplementary Fig. S2D). TAM-subset clusters 

were also accompanied by an Arg1+ stress-responsive cluster akin to that found in the 

sorted monocytes (Fig. 2B, Supplementary Fig. S2B–C). Indeed, re-clustering of the entire 

stress-responsive cluster from the bulk tumor myeloid sample revealed that this program was 

acquired by monocytes, “Mono-Int” and TAMs (Fig. 2C, Supplementary Fig. S2E).

Segregated expression of stress-responsive genes and canonical TAM-associated genes 

suggested divergent transcriptional programs and we sought to determine if these 

populations could also be distinguished by flow cytometry. Differential gene expression 

analysis of the stress-responsive and C1qa+ TAM clusters from our bulk myeloid-cell sample 

revealed cluster-specific expression of cell surface genes Il7r and Vcam1, respectively (Fig. 

2D). Using the same gating as in Supplementary Fig. S1A, we confirmed this split in both 

“Mono-Int” and TAMs (Fig. 2E) and we found enriched arginase 1 (ARG1) expression 

in both IL-7Rα+ populations (Fig. 2E–F, Supplementary Fig. S2F). As expected from the 

single-cell transcriptional analysis, VCAM1+ cells were more abundantly found within 

TAMs (Fig. 2E–F, Supplementary Fig. S2F).

Together, this dissection of sorted cell populations lent support to a model in which 

monocytes and TAMs exist in a differentiation trajectory, along which cells can adopt 

specialized cellular programs (Fig. 2G–H). Some programs, such as those associated with 

Mgl2+ or Vcam1+ TAMs, selectively emerged later, in mature TAMs. Others, such as 

IFN-induced signaling or stress-responsiveness may be more universally accessible across 

differentiation stages. In addition, we detected populations of IFN-responsive monocytes 

in the peripheral blood of B16 tumor-bearing mice (Supplementary Fig. S2G–H), perhaps 

suggesting that systemic IFN signaling, or other induction of this program, may define 

monocytes prior to tumor entry. In contrast, stress-responsive populations were not detected 

in the blood, suggesting that microenvironmental cues in the TIME likely induce this 
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activation program locally. Further studies are warranted to explore if these programs 

directly influence monocyte differentiation processes or act as ‘layers’ that accessorize a 

canonical differentiation trajectory.

Mouse Tumor Macrophage Subset Heterogeneity Does Not Reflect “M1/M2” Polarization

Macrophage exposure to type-1 or type-2 cytokines in vitro results in “M1” and “M2” 

transcriptional signatures that are often used to describe ‘pro-inflammatory,’ or ‘anti-

inflammatory’ and wound-healing processes, respectively (18–20). To address whether 

“M1/M2” polarization was a useful construct to define tumor macrophage diversity in vivo, 

we tested how “M1” and “M2” gene signatures (43) corresponded to the tumor myeloid-cell 

subsets profiled here. Using correlation and clustering analyses (Fig. 3A, Supplementary 

Fig. S3A), we found that, contrary to in vitro findings, tumor myeloid cells were marked 

by broad expression of both “M1”- and “M2”-associated genes, and we did not observe 

substantial correlation of gene expression within “M1” or “M2” gene groups across single 

cells. These data suggest that although tumor myeloid cells can express individual “M1” 

and “M2” genes, they rarely do so in any distinguishably consistent way during unperturbed 

tumor growth. We next processed tumor myeloid cells from MMTV-PyMT spontaneous 

mammary carcinomas for scRNA-seq analysis, sorting on Lin–CD11c+ and/or CD11b+ cells 

to capture the full cadre of myeloid populations including MHCII+/– cells (Supplementary 

Fig. S1A). We found that MMTV-PyMT tumors shared populations with the identical 

signatures as those defined for B16 tumors in Figure 1, albeit in different proportions, 

and also showed a lack of co-association between “M1” and “M2” signatures amongst the 

clusters (Fig 3B–C, Supplementary Fig. S3B–E).

While myeloid-cell populations appeared to be largely defined by differentiation stage and 

activation programs, we considered whether other core cellular features could help to further 

distinguish subsets across diverse microenvironments. It is now increasingly appreciated 

that metabolic reprogramming accompanies differentiation of immune cells, including 

macrophages (54). Indeed, assessment of metabolism-related genes (42) demonstrated that 

glycolysis-associated genes were specifically enriched in the stress-responsive cell cluster, 

whereas genes pertaining to oxidative phosphorylation were specifically enriched in C1qa+ 

TAMs in two distinct mouse models (Fig. 3D–E, Supplementary Fig. S3F). This suggests 

that these populations have additional important biological features in common—namely 

those coupled to distinct bioenergetic processes and demands.

Together, our data provides compelling evidence that “M1” and “M2” pathways have 

limited use in defining in vivo tumor myeloid-cell differentiation and subset plasticity during 

normal tumor development. Rather, common microenvironmentally-induced programs and 

associated metabolic programs may yield greater insight in efforts to transcriptionally define 

and selectively target monocyte/TAM subsets.

Human RCC-infiltrating monocytes and macrophages mirror murine populations

We next assessed how the mouse monocyte/macrophage transcriptional programs we 

identified might compare to those from human cancers. We performed scRNA-seq analysis 

on HLA-DRdim/+Lin– myeloid cells sorted from an RCC sample, which are described to 
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have substantial myeloid-cell infiltration (55), as well as 6 melanoma and 4 head and neck 

cancer samples (Fig. 4A–B, Supplementary Fig. S4A). Signatures derived from previously 

described blood myeloid-cell populations (11,44) guided cluster identification and exclusion 

of cDCs (Supplementary Fig. S4B). Analysis of the CSF1R+MAFB+ clusters revealed a 

heterogenous collection of monocytes and macrophages with varying levels of CD14 and 

CD16 (Fig 4C–E).

As in mouse models, we detected early-stage CD14+S100A8+ classical monocytes along 

with terminally-differentiated C1QC+ TAMs (Fig. 4 E–F, Supplementary Table S2). Another 

population was CD14+ and differentially expressed LYPD3 and MHC-II genes, consistent 

with intermediate differentiation of monocytes towards TAM (“Mono-Int”; Fig. 4E–F). A 

population of FCGR3A+ non-classical monocytes also expressed IFN-stimulated genes and 

thus appears to functionally represent ‘IFN-responsive’ cells (Fig. 4E–F, Supplementary Fig. 

S4C).

Finally, we found that there were a mix of cells on the monocyte–macrophage trajectory 

that expressed the stress-responsive program identified in mice, including the gene SPP1 
(Fig. 4F, Supplementary Fig. S4C). When compared further to C1Q+ TAMs, this SPP1+ 

cluster was less mature based on higher expression of monocytic markers (i.e. S100A 
genes) and lower expression of MHC-II–related genes (Fig. Supplementary S4D). This 

analysis revealed also a population marked by expression of the antioxidant gene SEPP1 
(Fig. 4F). These cells largely resembled C1Q+ TAMs but were enriched for FOLR2 
(Fig. 4F, Supplementary Fig. S4E). FOLR2 is a marker previously associated with tissue-

resident macrophages in breast cancer (56). Pseudotime analysis recapitulated a monocyte-

to-macrophage differentiation trajectory (Fig. 4G–H) but did not connect the SEPP1+ cluster 

to the other monocyte–macrophage subsets, potentially due to the distinct ontogeny of 

tissue-resident macrophages, and thus this cluster was not considered for further trajectory 

analysis (Fig. 4G–H).

As in the mouse samples, the stress- and IFN-responsive programs aligned over the 

monocyte-to-macrophage trajectory, although in these samples, IFN-responsive monocytes 

appeared more advanced in differentiation stage. Again, there was broad co-expression 

of “M1”- and “M2”-associated genes across the populations (Supplementary Fig. S4G). 

Also, as in mice, there was a striking enrichment of a glycolytic signature (42) within the 

stress-responsive (SPP1+) cluster as compared to the C1Q+ TAMs, supporting the notion 

that these cells were functional orthologs in the two species (Fig 4I). Altogether, these data 

confirm the limitation of “M1” and “M2” applicability in human tumors and illustrate the 

ability of other pathways to better define myeloid-cell subsets in vivo.

Treg depletion elicits reprogramming of the tumor myeloid-cell compartment

Myeloid-cell density can vary across patients (55), but how myeloid-cell infiltration and 

differentiation is collectively regulated in human cancer is still not well understood. When 

we quantified myeloid-cell populations in 20 RCC patient biopsies using flow cytometry 

we found that the proportion of myeloid cells amongst live immune cells was increased 

in tumors of greater size and later stages (Supplementary Fig. S5A). Closer examination 

revealed that the ratio of macrophages-to-monocytes was also specifically increased in more 
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advanced tumors (Fig. 5A, top). This suggested that the balance between monocytes and 

macrophages is dynamically regulated and that tumor growth is tied to higher macrophage 

density.

We thus sought other immunosuppressive parameters that might work in concert with 

increased macrophage accumulation. Tregs are a potent immunosuppressive force in the 

TIME and ablation can result in tumor clearance (24,57). We found that Tregs accumulated 

as kidney tumor size increased (Fig. 5A, bottom), and that Treg abundance correlated well 

with macrophage-to-monocyte ratios in RCC as well as melanoma (Fig. 5B). The positive 

correlation between Treg and macrophage density spurred us to ask whether one caused the 

other. Using Foxp3-DTR mice, we found that depletion of Tregs dramatically reduced the 

macrophage-to-monocyte ratio in mouse B16 tumors (Fig. 5C, top) as assessed by flow 

cytometry. These results were phenocopied by treatment of mice with an anti–CTLA-4 that 

specifically depletes tumor Tregs (24,58) (Fig. 5C, bottom, Supplementary Fig. S5B–C). 

The shift in macrophage-to-monocyte ratio observed following both methods of Treg loss 

preceded subsequent tumor growth control (24,58).

To further examine how Tregs may be influencing monocyte and macrophage proportions, 

we performed scRNA-seq analysis on mouse tumor Lin–CD11b+ and/or CD11c+ myeloid 

cells from B16 tumor-bearing control and FoxP3-DTR mice. Csf1r+Mafb+ clusters from this 

experiment were aggregated with those from the original wild-type B16 tumor sample in 

Figure 1 and we observed similar cell populations across both experiments and treatment 

conditions (Fig. 5D, Supplementary Fig. S5D–E). Cluster proportions were modestly shifted 

with Treg loss (Fig. 5D), but cells from control and Treg-depleted tumors shared similar 

differentiation trajectories (Fig. 5E). However, Monocle analysis revealed differences in the 

accumulation of cells along the trajectory. Namely, whereas tumor monocytes, “Mono-Int”, 

and TAMs from the control sample acquired progressively increased pseudotime scores, 

“Mono-Int”, and TAM populations in the Foxp3-DTR sample did not exhibit sequential 

increases in pseudotime scores (Fig. 5E). In effect, TAM progression appeared stunted 

following depletion of Tregs.

In addition to increased expression of inflammatory and immunomodulatory genes (e.g., 

Ccl24, Arg1, Retnla, Mmp12, Mmp13, Nos2), expression of monocyte-associated genes 

was sustained in TAMs from Treg-depleted tumors (Fig. 5F–G, Supplementary Table S3). 

Moreover, expression of genes tied to macrophage differentiation (e.g., C1qa, H2-Ab1, 

Apoe, Ms4a7) were decreased across stages of differentiation (Fig. 5H, Supplementary 

Fig. S5F), further indicating these TAMs were more immature. Our analysis suggests that 

Treg-depletion may impair implementation of TAM transcriptional programs, a remodeling 

detected early during tumor monocyte differentiation. Altogether these findings support 

a model in which Treg abundance promotes an accumulation of terminally-differentiated 

TAMs in both mouse and human tumors.

Multiparametric immune-cell analysis improves classification of kidney cancer patients

Given this association between T-cell subset density and TAM maturation, we sought to 

further explore how features of tumor macrophage infiltration could be harnessed to reliably 

inform features of patient outcome, such as survival. Analysis of TCGA KIRC samples 
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using a myeloid gene signature from CiberSort (59) demonstrated that patients with varying 

levels of overall myeloid-cell density did not significantly differ in their survival (Fig. 6A, 

left). We next stratified TCGA patient data based on levels of the monocyte–macrophage 

lineage genes CSF1R and MAFB, finding that patients with higher levels of these had 

modest improvements in outcome (Fig. 6A, middle). As these genes are not strictly 

macrophage-specific, we leveraged our scRNA-seq analyses of human RCC samples to 

generate signature scores based on the ratio between macrophage and monocyte (Fig 4E). 

However, no significant differences in survival were revealed using this metric (Fig. 6A, 

right).

As TAM density did not appear to robustly inform patient outcome, we sought to test 

how TAM abundance corresponds with other immune parameters and may stratify kidney 

cancer patients, using flow cytometry analysis of their biopsies. We thus performed 

unbiased clustering analysis using measurements of myeloid-cell, Treg and conventional 

T cell (Tconv)-frequencies. This revealed three groups of patients that were characterized 

by nearly binary (all high or all low) levels of CD8+ T cells, CD4+ Tconv, cDC2s, and 

cDC1s (Fig. 6B). These groups could be further parsed by varied macrophage–monocyte 

density: low (pink), moderate (yellow) and high (red) (Fig. 6B, right). Consistent with our 

previous finding (Fig. 5), the group with the highest degree of macrophage differentiation 

was associated with the consistent presence of Treg infiltration (Treg–Mp). Of two groups 

with lowest macrophage differentiation, one (CD8–Mo–cDC1; pink) was distinguished by 

notable infiltration of cDC1s, which are critical for CD8+ T-cell responses (22,23), and 

that group presented with uniformly high CD8+ T-cell infiltration. A second group had 

higher frequencies of both CD4+ T cells and cDC2s along with a variable amount of Tregs, 

consistent with the demonstrated role of cDC2s in supporting both CD4+ Tconv and Treg 

responses (24). Further, the same patients clustered together again based on phenotypic 

analysis of the CD8+ T-cell compartment (Fig. 6C). Notably, CD8+ T cells from the CD8–

Mo–cDC1 group (pink) expressed low levels of the exhaustion markers PD-1 and CD38 

(Fig. 6C–D) and were also distinguished by higher expression of the checkpoint regulator 

CTLA-4, which may indicate ongoing activation (60) (Fig. 6C–D). In contrast, the Treg–Mp 

(red) group showed the highest levels of both exhaustion markers and proliferative capacity 

(i.e., Ki-67).

In testament to the heightened antitumor CD8+ T-cell profile associated with low 

macrophage and Treg abundance but high cDC1 density, the subset of patients with these 

attributes (pink) had dramatically improved survival, showing no mortality for over three 

years (Fig. 6E). This multiparametric clustering parsed patients with the highest survival 

rates more profoundly from our data set than the sole metric of cDC1 infiltration (Fig. 

Supplementary Fig. S6A). Similarly, although sole measurement of a cDC1 signature alone 

corresponded to higher survival rates amongst TCGA patients (Fig. Supplementary Fig. 

S6B) in support of previous studies (23,45), a combined measurement of the ratio of 

cDC1s to macrophages through combined gene signatures using the C1Q+ macrophage 

gene signature (Fig. Supplementary Fig. S6C–D) allowed for identification of kidney cancer 

patients with better survival. Thus, fine-tuned stratification of the kidney cancer TIME 

provided the resolution critical for identifying three biologically-distinct patient classes 
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including this CD8–Mo–cDC1 group, which defines patients with the best CD8+ T-cell 

infiltration and outcome.

Discussion

Here we undertook scRNA-seq analysis of tumor monocytes and macrophages to determine 

the key hallmarks of their transcriptional diversity. We found two types of differentiation 

manifest during tumor development. On the one hand we found a classical lineage 

differentiation trajectory that progresses from monocytes-to-macrophages in a way that 

has been long appreciated (61) with a discernable ‘intermediate’ monocyte (“Mono-Int”) 

cell population. A “Mono-Int” population is, for reference, well-described in other settings. 

For example, Randolph and colleagues detect ‘intermediate’ monocytes in lymphoid and 

non-lymphoid tissue in steady-state conditions (62), and fluorescent real-time lineage tracing 

identifies cells undergoing that transition during allergic challenge (63).

On the other hand, we found two differentiation layers – ‘stress-responsive’ and ‘IFN-

responsive’ – that co-exist along that trajectory and that were shared across multiple 

mouse models as well as a profiled human RCC biopsy (Fig. 1, 4). These programs 

were also present in other recently published studies (11,13,64,65). For example, in a pan-

cancer study, Cheng et al. discern myeloid populations whose primary distinction is their 

expression of IFN-induced genes (e.g., ISG15+ TAMs) (11). Similarly, we noted that the 

stress-responsive population shares characteristics with cells historically contained within 

MDSCs (i.e. Arg1 expression and glycolytic programming) (27). A notable difference in 

our interpretation compared to these previous reports lies in our incorporation of these 

layers within the monocyte–macrophage differentiation axis, rather than proposing them as 

a unique trajectory. Through independent profiling of purified monocytes and macrophages 

in our study and pseudotime analysis (Fig. 1–2), we find the stress-responsive signatures 

evident in both cell populations and indeed across them. In additional support of such 

a view, we found that an IFN-responsive signature was enriched amongst monocytes in 

one mouse model and macrophages in another (Fig. 1, 3). We believe that this indicates 

that macrophages can differentiate in two dimensions – progression through the classical 

lineage as well as acquisition of specialized states characterized by examples of IFN 

or stress exposure. For these reasons, we prefer employing a nomenclature system that 

integrates the degree of monocyte-to-macrophage differentiation first, followed by additional 

transcriptional and functional qualities. Intuitively, this is similar to CD4+ T cells that can 

differentiate along a naïve–effector–memory axis while also being able to layer on Th1/Th2/

Th17 programs.

Despite the comparison with CD4+ T cells, we do not find any populations, nor indeed any 

cells, that have an exclusively “M1” or “M2” signature (Fig. 3). Individual genes such as 

Arg1 are associated with certain clusters, as some have observed (11), but both correlation 

and signature analyses fail to identify any of the described ‘M1’ or ‘M2’ genes as either 

being selectively linked with one another in single cells, or as key classifiers of cell clusters. 

To this extent, the ‘M1/M2’ nomenclature has provided direction in the fruitful study of 

myeloid-cell signaling and differentiation but does not appear to be accurately categorize 

distinct differentiation states, at least for tumors in vivo. We note the absence of data to the 
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contrary of this conclusion in other recent reports (43,55,65), although of course individual 

nomenclature (e.g., “M2-like”) is clearly a matter of choice and needs only discussion as to 

which part of the in vitro signature might be biologically relevant.

One important aspect of myeloid cell biology that requires further elaboration is how 

to identify IFN- and stress-responsive phenotypes. For example, Gubin et al. use iNOS 

as a marker by flow cytometry to define the IFN-stimulated population induced by 

ICB (12), whereas Cheng et al. utilize ISG15 (11). Particularly in the former study, 

which studied macrophage identity following ICB therapies, varied levels of type I and 

II IFNs may also modulate properties of this differentiation layer. In the case of ‘stress-

responsive’ populations, our data also point to IL-7Rα expression, which may indicate 

involvement of TSLP signaling through heterodimeric pairing with TSLPR (66). An 

important set of conserved genes for ‘stress-responsive’ macrophages, taken from our 

manuscript, is their consistent and significant enrichment for glycolytic genes, particularly 

in comparison to conventional C1q ‘mature’ TAMs. Given that HIF-1 is known to induce 

glycolytic genes under inflammatory and/or hypoxic conditions (54), this finding raises 

the question of whether these cells are selected for hypoxic environments where oxidative 

phosphorylation may not proceed, as well as their specific function. Going forward, the 

use of multiplexed imaging technologies such as ion beam imaging (MIBI) and single-cell 

spatial transcriptomics will enable this question to be addressed.

Our investigation of monocyte–macrophage differentiation led us to explore how its 

regulation could inform our understanding of antitumor immunity. Analysis of RCC 

and melanoma patient cohorts revealed an increase in macrophage-to-monocyte ratios 

with tumor grade, a rise that coincided with Treg density and was Treg-dependent. 

Tregs exert potent immunosuppression and are thought to restrain T-cell activity and 

antitumor responses through modulation of DC stimulatory capacity, production of 

immunosuppressive cytokines and substrates, and competitive usage of growth factors 

and metabolic byproducts (24,67,68). It is becoming clear now that tumor Tregs also 

strongly influence the monocyte–macrophage lineage, likely through multiple mechanisms. 

In a recent study, tumor Tregs promoted tumor macrophage numbers by supporting their 

mitochondrial capacity and viability (69). Here, our scRNA-seq data demonstrates that 

early-stage monocytes and “Mono-Int” cells are already unable to properly implement 

TAM-associated transcriptional programs in the absence of Tregs, indicating that Tregs also 

fuel macrophage differentiation processes. This liaison between Tregs and macrophages 

mirrors one identified in the adipose fat of lean mice, where Tregs are thought to actively 

maintain homeostasis and hold inflammatory macrophages at bay (70,71). Similarly, during 

the resolution of injury and inflammation in skeletal muscle and heart tissue, a transition 

from pro- to anti-inflammatory macrophages occurs in a manner that appears to rely on Treg 

accumulation (72,73). That Tregs may act on tumor macrophages in a similar fashion offers 

another example of how the TIME can exploit immune programs of “accommodation” that 

are otherwise in place to achieve tissue homeostasis in the face of perturbations (74).

Accumulation of a broad swath of macrophages in the TIME has previously been implicated 

with poor outcome (75). Consistent with this but at higher resolution, we detected a group of 

kidney cancer patients for whom high macrophage-to-monocyte abundance was associated 

Mujal et al. Page 17

Cancer Immunol Res. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with diminished T-cell infiltration and exhaustion of those cells detected, concurring with 

other reports (55,64). Our manuscript thus points to an emerging trio of Tregs, macrophages, 

and exhausted T cells, whereby effector T cells may be corrupted through direct cellular 

interactions with TAMs, as has been suggested by observations of TAM–CD8+ T-cell co-

localization in clear cell RCC (ccRCC) (64), or indirectly through macrophage-induced Treg 

expansion and activity (8,76) or DC suppression (24,77).

Yet, high myeloid cell infiltration or skewed macrophage-to-monocyte ratios alone were 

not prognostic for KIRC patient survival. Indeed, although macrophages have often been 

found to be negatively associated with patient outcome, macrophage abundance as a sole 

biomarker has not been universally useful with prior studies similarly reporting instances 

in which macrophage abundance is not informative for patient cohorts with specific cancer 

sub-types, treatment regimens, or tumor stage (78–81). Clustering analysis of kidney TIME 

composition using comprehensive immune parameters, however, uncovered an archetype 

characterized by low macrophage-to-monocyte differentiation in conjunction with high 

cDC1 infiltration. These patients (CD8–Mo–cDC1) had elevated infiltration of CD8+ T cells 

with low surface expression of proteins associated with exhaustion and highly enhanced 

survival rates (Fig. 6, pink). Notably, recent work focused on ascertaining the different 

immune archetypes across solid tumors suggests that these patient groups, though most 

frequent in kidney cancer, span cancer types including frequent representation in colorectal 

and bladder tumors (33).

Identification of a CD8–Mo–cDC1archetype emphasizes the value of integrating 

multiparametric biomarkers as a means to better parse patient outcome and to establish 

principles of TIME organization. Given that T-cell activity appears to be collectively 

influenced by multiple immune cell populations with distinct partnering patterns, our 

analysis suggests that dual targeting of TIME axes may elicit the best CD8+ T-cell 

responses. For example, reprogramming and/or depletion of macrophages may relieve 

active suppression (2,14) and strategies that boost cDC1 recruitment and survival (1) may 

further benefit even those with favorable macrophage-to-monocyte density. It is also notable 

that this protective archetype is specifically enriched for monocytes. Indeed, monocyte 

differentiation into macrophages may not be inevitable and accumulation of “Mono-Int” 

cells have been detected in multiple forms of inflammation (10,16,82,83). Additionally, the 

potential importance of monocytes is indicated by their increased numbers in the blood of 

ICB responsive as compared to non-responsive melanoma patients (32). In ccRCC patients, 

IFN-responsive TAMs exhibited lower levels of HLA-DR, reminiscent of the “Mono-Int” 

cells described here, and higher levels of these ISGhi TAMs were predictive of survival after 

tyrosine kinase inhibitor treatment (79). Such a relationship opens questions across cancer 

type; namely, whether “Mono-Int” are distinct in their antitumor function, and how might 

monocytes be additive or synergistic with cDC1s to drive antitumor CD8+ T cells?

Altogether these findings contribute to the endeavor of clarifying useful distinctions in 

myeloid cell gene expression and highlight settings in which multiparametric analysis 

of tumor myeloid cell composition can inform patient immune archetype and guide 

development of relevant therapies.
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Synopsis

Single-cell RNA-sequencing analyses of mouse and human tumor-infiltrating myeloid 

cells show that monocyte-to-macrophage differentiation is marked by conventional 

lineage-associated and microenvironmental-induced cellular programs. Multiparametric 

analysis of myeloid composition, including monocyte-to-macrophage differentiation, 

helps to identify patients with improved survival.

Mujal et al. Page 24

Cancer Immunol Res. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. ScRNA-seq analysis of mouse B16 tumor myeloid cells maps transcriptional 
heterogeneity amongst monocytes and TAMs.
(A) Schematic illustration of workflow for isolation of specified myeloid cell populations 

from B16 tumors subcutaneously implanted in wild-type C57Bl/6 mice.

(B) t-SNE plot of graph-based clustering of Ly6C+CD11b+ monocytes and Ly6C–MHCII+ 

myeloid cells that were sorted and pooled from at least 5 B16 tumors, and underwent 

scRNA-seq (A). Each dot represents a single cell.

(C) Expression of Csf1r (left) and Mafb (middle) on t-SNE plot of bulk myeloid cells (B), 

and display of selected Csf1r+Mafb+ clusters (right).
(D) Expression of gene signatures specific to Ly6C+ monocyte, CD11clo TAM1, or CD11chi 

TAM2 populations (A, Supplementary Fig. S1F) displayed on t-SNE plot of Csf1r+Mafb+ 

myeloid cells (C). Cells with top median of signature expression level labeled in red.

(E) Heatmap displaying expression levels of top 5 DE genes between Csf1r+Mafb+ cell 

clusters (C). Genes ranked by fold change.
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(F) Expression levels of selected genes amongst Csf1r+Mafb+ cell clusters (C).

(G) Differentiation trajectory model using Monocle analysis of cells from Csf1r+Mafb+ 

clusters (C). Color coding corresponds to previous labels (B).

(H) Graph of relative pseudotime values of Csf1r+Mafb+ cluster cells (C) from Monocle 

analysis (G).

(I) Expression levels of cluster-specific genes (E) over relative pseudotime (H). Each line 

corresponds to an individual gene.
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Figure 2. ScRNA-seq analysis highlights layering of microenvironment-induced programs during 
tumor monocyte-to-macrophage differentiation.
(A) t-SNE plot of graph-based clustering (top) of Ly6C+ monocytes sorted from B16 tumors 

and processed for scRNA-seq (Fig. 1A), and heatmap displaying expression levels of top 5 

DE genes between clusters (bottom) with genes ranked by fold change.

(B) t-SNE plot and graph-based clustering (top) of CD11chi TAMs sorted from B16 tumors 

and processed for scRNA-seq (Fig 1A), and heatmap displaying expression levels of top 5 

DE genes between clusters (bottom) with genes ranked by fold change.

(C) Stress-responsive cells (Cluster 2) from bulk B16 myeloid cells (Fig. 1B) were selected 

for further clustering analysis (top). Heatmap of expression levels of monocyte- and 

macrophage-specific genes (Fig. 1E) by Cluster 2 sub-cluster (bottom).

(D) Heatmap of DE gene expression levels between Cluster 2 and Cluster 3 of bulk tumor 

myeloid cell sample (Fig. 1B). Genes ranked by degree of exclusivity to a given cluster 

(min.pct1/min.pct2).
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(E) Expression levels of IL7Rα and VCAM-1, as assessed by flow cytometry, of “Mono-

Int” (Ly6C+CD64+) (top) and TAMs (Ly6C–F4/80+CD64+) (bottom) from B16 tumors.

(F) Example (left) and quantification (right) of intracellular ARG1 expression by 

VCAM-1+ (top) or IL7rα+ (bottom) TAMs from B16 tumors using flow cytometry. ARG1+ 

gating determined by isotype control. Data are representative of 2 independent experiments 

with 3–5 mice per experiment (mean ± SEM).

(G) Expression levels of selected genes along differentiated trajectory generated by Monocle 

(Fig. 1G).

(H) Schematic model of tumor monocyte-to-macrophage differentiation that integrates 

lineage-associated and microenvironmentally-induced transcriptional programs.
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Figure 3. B16 and PyMT tumor monocyte–macrophage heterogeneity can be attributed to 
diversity in transcriptional and metabolic programs, but not “M1/M2” polarization.
(A) Heatmap (left) and density plot (right) of Pearson r coefficient scores between “M1”- 

and “M2”-associated gene expression levels within Csf1r+Mafb+ cells from B16 tumors 

(Fig. 1C).

(B) t-SNE plot of Csf1r+Mafb+ clusters from B16 tumors (top; Fig. 1C) with expression 

levels of “M1” (bottom, left) and “M2” (bottom, right) gene signatures (A) displayed. 

Cells with top median of signature expression level labeled in red.

(C) t-SNE plot and graph-based clustering of Csf1r+Mafb+ clusters of myeloid cells 

that were sorted from 1 PyMT tumor and processed for scRNA-seq in an independent 

experiment (top; Supplementary Fig. 3B). Expression levels of “M1” (bottom, left) and 

“M2” (bottom, right) gene signatures (A) displayed. Cells with top 70 percentile of 

signature expression level labeled in red.
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(D) Expression levels of glycolysis (left) and oxidative phosphorylation (“OxPhos”) (right) 
gene signatures (Supplementary Fig. 3F) displayed on t-SNE plot of Csf1r+Mafb+ clusters 

from B16 tumors (Fig. 1C). Cells with top 70 percentile of signature expression level labeled 

in red.

(E) Expression levels of glycolysis (left) and oxidative phosphorylation (“OxPhos”) (right) 
gene signatures (Supplementary Fig. 3F) displayed on t-SNE plot of Csf1r+Mafb+ clusters 

from PyMT tumors (C). Cells with top 70 percentile of signature expression level labeled in 

red.
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Figure 4. Human RCC and mouse tumor myeloid cell compartments exhibit shared 
transcriptional features.
(A) Schematic of the 1 human RCC, 6 melanomas, and 4 head and neck biopsy samples 

processed for scRNAseq analysis.

(B) UMAP plot of graph-based clustering of bulk myeloid (Lin–HLA-DR+) cells sorted 

from human biopsy samples (A).

(C) Gene expression levels of CSF1R (left) and MAFB (right) displayed on UMAP plot of 

human tumor-infiltrating myeloid cells (B).

(D) UMAP plot of graph-based clustering of CSF1R+MAFB+ cells (C) with cells from all 

human biopsy samples (left) or specified cancer type (right) displayed.

(E) Expression levels of selected genes (CD14, FCGR3A, CD68) or gene signature (MHC-

II-associated genes) displayed on t-SNE plot of CSF1R+MAFB+ clusters (C).

(F) Expression of selected genes expressed by CSF1R+MAFB+ clusters (C).
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(G) Differentiation trajectory model generated by Monocle analysis of CSF1R+MAFB+ 

clusters (C).

(H) Relative pseudotime values of early-stage CD14+ monocytes, CD14+ “Mono-Int”, C1Q+ 

TAMs, IFN-responsive cells, and stress-response TAM clusters (C) from Monocle analysis 

(G).

(I) Expression levels of glycolysis-associated gene signature by cells in stress-responsive 

and C1Q+ TAM cells (B).
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Figure 5. Immunosuppressive Treg cells promote tumor monocyte-to-macrophage 
differentiation.
(A) 20 human RCC biopsies were measured and processed for flow cytometric analysis. 

The ratio of macrophage-to-monocyte (log2) cell numbers (top) and Treg frequency amongst 

CD45+ cells (bottom) were quantified. Samples were acquired and pooled for analysis. 

*p<0.05, Kruskal Wallis rank test. Dashed lines represent the median and dotted lines 

represent 25th percentile and 75th percentile.

(B) Dot plot and Spearman’s correlation coefficient of macrophage-to-monocyte cell 

number ratio (log2) and Treg frequency within CD45+ cells in 20 human RCC (top) and 16 

melanoma (bottom) biopsies that were analyzed by flow cytometry. Samples were acquired 

and pooled for analysis.

(C) Quantification of the ratio between macrophages (Ly6C–F4/80+CD64+) and monocytes 

(Ly6C+CD11b+) cell number ratio in B16 tumors of DT-treated control and Foxp3-DTR 

mice (top), or of wild-type mice treated with depleting anti-CTLA-4 (IgG2c clone) or 
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isotype antibody (bottom). Data is representative of at least 2 independent experiments with 

3–9 mice per group per experiment (mean ± SEM). **p <0.01, ****p<0.0001, unpaired 

t-test.

(D) t-SNE plot of graph-based clustering (top) of B16-infiltrating Csf1r+Mafb+ cells from 

wildtype mice (Fig. 1) which were aggregated with DT-treated control and Foxp3-DTR mice 

(Supplementary Fig. 5D) from a second independent experiment in which tumors from at 

least 5 mice were pooled. Cell numbers in specified clusters were quantified (bottom).

(E) Differentiation trajectory model generated from Monocle analysis (top) and relative 

pseudotime values (bottom) of Csf1r+Mafb+ cluster cells from B16 tumors from DT-treated 

control (left) and FoxP3-DTR mice (right).
(F) Volcano plot displaying DE genes between B16 tumor “Mono-Int” (top) and C1qa+ 

TAM (bottom) cluster cells from DT-treated control and FoxP3-DTR mice (D). Genes with 

> 0.4 log-fold changes and an adjusted p value of 0.05 (based on Bonferroni correction) are 

highlighted in red. Genes of interest labeled.

(G) Expression of selected monocyte-associated genes displayed on the differentiation 

trajectory (E) of control (top) or Foxp3-DTR (bottom) B16 tumor-infiltrating Csf1r+Mafb+ 

cells.

(H) Expression of selected macrophage-associated genes displayed on the differentiation 

trajectory (E) of control (top) or Foxp3-DTR (bottom) B16 tumor-infiltrating Csf1r+Mafb+ 

cells.
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Figure 6. Multiparametric analysis of tumor myeloid composition identifies kidney cancer 
patients with effector CD8+ T-cell responses and improved survival rates.
(A) Survival curves of kidney tumor patients whose TCGA tumor samples exhibited high 

(33%) or low (33%) levels of expression levels of pan-myeloid cell gene signatures derived 

from CIBERSORT (left), MAFB and CSF1R (middle), or ratio of monocyte-to-TAM gene 

signatures (Fig. 4) (right), analyzed with log-rank test.

(B) Heatmap of specified immune cell population frequencies (left) and the ratio of 

macrophage-to-monocytes (right) detected in 20 human kidney tumor samples by flow 

cytometry.

(C) Heatmap of specified surface receptor or Ki-67 expression frequencies amongst CD8+ T 

cells from 20 human kidney tumor samples that were analyzed with flow cytometry.

(D) Quantification of the frequency of CD8+ T cells from 20 human tumor kidney samples 

that are PD1+ or CD38+. Labeling of dots corresponds to patient groups (B,C).
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(E) Survival curves of kidney cancer patients in cohort analyzed with log-rank test (B-D).
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