
UC Berkeley
UC Berkeley Previously Published Works

Title
A Formalization of Robustness for Deep Neural Networks

Permalink
https://escholarship.org/uc/item/9gk2441z

Authors
Dreossi, Tommaso
Ghosh, Shromona
Sangiovanni-Vincentelli, Alberto
et al.

Publication Date
2019-03-24
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9gk2441z
https://escholarship.org/uc/item/9gk2441z#author
https://escholarship.org
http://www.cdlib.org/


A Formalization of Robustness for Deep Neural Networks

Tommaso Dreossi, Shromona Ghosh, Alberto Sangiovanni-Vincentelli, Sanjit A. Seshia∗

University of California, Berkeley, USA

Abstract

Deep neural networks have been shown to lack robustness
to small input perturbations. The process of generating the
perturbations that expose the lack of robustness of neural net-
works is known as adversarial input generation. This process
depends on the goals and capabilities of the adversary, In this
paper, we propose a unifying formalization of the adversarial
input generation process from a formal methods perspective.
We provide a definition of robustness that is general enough
to capture different formulations. The expressiveness of our
formalization is shown by modeling and comparing a variety
of adversarial attack techniques.

1 Introduction
Deep neural networks and other machine learning models
have found widespread application. However, concerns have
been raised on their use in safety-critical systems because
of their lack of robustness to perturbations of input data.
The literature is rich in so-called “adversarial attacks” on
neural networks where networks trained to high accuracy
on data sets can be “fooled” by generating inputs that dif-
fer only slightly from inputs in the training data. However,
there is no consensus on what constitutes robustness to ad-
versarial attacks. Some papers have provided a categoriza-
tion of adversarial attacks (see Barreno et al. [2006]; Dreossi
et al. [2018b]; Goodfellow et al. [2018]; Papernot et al.
[2016b,c]), but there has been no unifying formulation that
encompasses most, if not all, definitions of robustness in the
literature.

Adversarial analysis of neural networks can be viewed
as formal verification. A typical formal verification problem
consists of three components: the system S under verifica-
tion, the environment E in which the system operates, and
a specification ϕ that formalizes the correctness of the sys-
tem. The problem is to check whether S, while operating in
E, satisfies ϕ, usually denoted as S ‖ E |= ϕ. One of the
biggest challenges for verification of artificial intelligence
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(AI) based systems, and neural networks in particular, is to
find a suitable formalization in terms of S, E, and ϕ Seshia
et al. [2016].

In this paper, we present such a formalization for adver-
sarial analysis of robustness of neural networks (and ma-
chine learning models, in general). Specifically, we formu-
late the adversarial input generation problem as a formal ver-
ification problem where the machine learning model (deep
neural network) is the system S under study, the adversary
(or attacker) is the environment E, and the robustness of
the model is described by the specification ϕ. Overall, we
propose a unifying formulation of robustness from a formal
methods perspective that provides the following benefits:

• A clear separation between the elements that form the
goals of the adversary;

• A general formalization that facilitates comparisons
among different techniques, and

• A bridge between adversarial analysis based on formal
methods and those based on optimization and other ap-
proaches used commonly in machine learning.

In the next section, we propose our formal definition of ro-
bustness and provide examples of how our framework can be
used to capture different definitions of robustness (Sec. 2).
Next, we characterize the attackers based on strength, i.e.,
what level of knowledge they have about the system (Sec. 3).
Finally, we show how several existing techniques can be
captured by our framework (Sec. 4), summarizing them in
Table 1.

2 Robustness as Specification
Let R and B be the sets of reals and booleans, respectively.
Let f : X → Y be a machine learning (ML) model that,
for a given input x ∈ X predicts a label y = f(x). In this
paper, we focus on deep neural networks (DNNs), albeit our
approach extend to other ML models as well. Let X̃ ⊆ X be
a set of allowed perturbed inputs, µ : X × X → R≥0 be a
quantitative function (such as a distance, risk, or divergence
function), D : (X × X) × R → B be a constraint defined
over µ, A : X×X×R→ B be a target behavior constraint,
and α, β ∈ R be parameters. Then the problem of finding
a set of inputs that falsifies the ML model can be cast as a
decision problem as follows



Definition 1. Given x ∈ X , find x∗ ∈ X such that the
following constraints hold:

1. Admissibility Constraint: x∗ ∈ X̃;
2. Distance Constraint: D(µ(x, x∗), α), and
3. Target Behavior Constraint: A(x, x∗, β).

The Admissibility Constraint (1) ensures that the adver-
sarial input x∗ belongs to the space of admissible perturbed
inputs. The Distance Constraint (2) constrains x∗ to be no
more distant from x than α. Finally, the Target Behavior
Constraint (3) captures the target behavior of the adversary
as a predicate A(x, x∗, β) which is true iff the adversary
changes the behavior of the ML model by at least β mod-
ifying x to x∗. If the three constraints hold, then we say that
the ML model has failed for input x. We note that this is a so-
called “local” robustness property for a specific input x, as
opposed to other notions of “global” robustness to changes
to a population of inputs (see Dreossi et al. [2018b]; Seshia
et al. [2018].

Typically, the problem of finding an adversarial example
x∗ for a model f at a given input x ∈ X as formulated
above, can be formulated as an optimization problem in one
of two ways:

• Minimizing perturbation: find the closest x∗ that alters
f ’s prediction. This can be encoded in constraint (2) as
µ(x, x∗) ≤ α;

• Maximizing the loss: find x∗ which maximizes false clas-
sification. This can be encoded in the constraint (3) as
L(f(x), f(x∗)) ≥ β.

Definition 2. The optimization version of Definition 1 is to
find an input x∗ such that either x∗ = argminx∗∈X α or
x∗ = argmaxx∗∈X β, subject to the constraints in Defini-
tion 1.

The following examples demonstrate how Definition 1
can be used to express different formulations of the adver-
sarial input generation.

Example 1. In the seminal paper Szegedy et al. [2013], the
adversarial generation problem is formulated as min ‖r‖2
subject to f(x + r) = y and x + r ∈ [0, 1]m, where r
is the perturbation and y is the target label. This definition
can be recast in our decision framework where (1) is x +
r ∈ [0, 1]m, (2) is ‖r‖2 ≤ α, and (3) is f(x + r) = y.
Here, the adversary minimizes the perturbation by solving
argminx∗∈X α in Definition 2.

Example 2. Madry et al. Madry et al. [2017] consider the
robustness of models with respect to adversarial attacks. It
is assumed that a loss function L(θ, x, y) is given, where
θ ∈ Rp is the set of model parameters. The paper formu-
lates adversarial training as the robust optimization problem
minθ ρ(θ) where ρ(θ) = E(x,y)∼D[maxδ∈S L(θ, x + δ, y)]

and, for each data point x ∈ Rd, S ⊆ Rd is the set of al-
lowed perturbations such as the L∞ ball around x. The in-
ner maximization problem constitutes the adversarial attack
model.

In this case, the robustness problem can be encoded in
Definition 1 as (1) x + δ ∈ Rd, (2) δ ∈ S, and (3)

maxδ∈S L(θ, x+ δ, y) ≥ β. Here, the adversary maximizes
the loss by solving argmaxx∗∈X β in Definition 2.
Example 3. Yet another formulation is given by Athalye et
al. Athalye et al. [2018b] who address the problem of synthe-
sizing robust adversarial examples, i.e., examples that are
simultaneously adversarial over a distribution of transfor-
mations. The key idea is to constrain the expected effective
distance between adversarial and original inputs, defined
as Et∼T [d(t(x′), t(x))] where T is a chosen distribution
of transformation functions t and d is a distance function.
Thus, for a given target label yt, the problem is formulated
as to find x∗ = argmaxx′ Et∼T [logP (yt|t(x′))] subject to
Et∼T [d(t(x′), t(x))] < ε and x ∈ [0, 1]d.

In this case, the constraints of our characterization are
(1) x∗ ∈ [0, 1]d, (2) Et∼T [d(t(x), t(x∗))] ≤ ε, and (3)
Et∼T [logP (yt|t(x∗))] ≥ β. Here, ε is a given constant and
the adversary maximizes the loss by solving argmaxx∗∈X β
in Definition 2.

3 Adversary as Environment
In this section, we focus on the environment in which the
model operates, i.e., the kind of attack.

A key factor that determines the strength of an attack is
the access that the adversary has to the model. There are
several levels at which the attacker can operate:

• White-box: The adversary has access to the model’s ar-
chitecture. It may have full knowledge about some of the
model’s components such as parameters, gradients, or loss
function. In many of these cases, the adversarial input
generation can be recast as an optimization problem.
Let L : Y × Y → R≥0 be the loss func-
tion indicating the penalty for an incorrect prediction.
The adversarial attack can be formulated as x∗ =
argmaxx∗ L(y, f(x

∗)), subject to δ(z) ≤ ε where x∗ =
x+ z and ε bounds the maximum perturbation applicable
to x in order to generate x∗. This optimization problem is
typically intractable but relaxations and assumptions on L
and f can be addressed by techniques able to efficiently
generate adversarial examples.

• Black-box: The attacker does not have access to the
model’s gradients and parameters but must rely only on
a limited interface that, for a given input, reveals to the
adversary the model’s prediction. In particular, the adver-
sary must develop a strategy by generating a set of inputs
x1, . . . , xn and observing the classifications y1, . . . , yn
generated by the model. The ability of the attacker resides
in observing the generated samples and identifying possi-
ble weaknesses of the model.

Data poisoning or false learning Biggio et al. [2012] can
also be seen as adversarial attacks. This family of methods
falls outside the scope of this paper.
Example 4. Goodfellow et al. [2014] assumes that the ad-
versary has access to the gradient of the targeted model.
Under the key observation that many machine learning mod-
els are linear, the proposed attack approximates the clas-
sic optimization-based adversarial attack by replacing the
cost function J(x, y) by a first-order Taylor series of J(x, y)



formed by taking the gradient at x. Thanks to this relaxation,
the adversarial optimization problem can be solved in closed
form x∗ = x+ ε · sign(∇xJ(x, y)).
Example 5. Finally, Papernot et al. [2017] assumes no
knowledge about the attacked model’s architecture, train-
ing data, nor training process. The only way the adversary
interacts with the model is through an API that returns the
predictions of the model for any input chosen by the adver-
sary. In this technique the attacker builds a substitute model
trained on a data set generated by the interaction with the
original model. Then, the adversary, by reasoning on the
substitute, develops an attack that is likely to transfer to the
original model. Papernot et al. [2016a] shows how this kind
of black-box attack applies across different kinds of machine
learning models.

4 Adversarial Landscape
In this section we survey some representative papers on ad-
versarial input generation and cast them into our framework.
Table 1 summarizes the various formulations surveyed here.

White-Box Attacks
Most of the proposed techniques revolve around targeted
white-box attacks, i.e., the target behavior constraint (3)
A(x, x∗, β) is of the form f(x∗) = y for a particular
y 6= f(x). These attacks are white-box in the sense that they
often exploit the knowledge of the model by using gradient
based optimization.

The seminal work Szegedy et al. [2013], showed that, by
adapting the L-BFGS method to a box-constrained optimiza-
tion problem, imperceptible perturbations are sufficient to
make neural networks fail. In Papernot et al. [2016b], the
authors formalize the space of adversaries against NN and
introduce a novel class of algorithms to craft adversarial
samples based on a precise understanding of the mapping
between inputs and outputs of NNs, referred to as Jacobian
Saliency Map Attacks (JSMA). Recent improvements Car-
lini and Wagner [2017] exploiting the Adam optimizer fur-
ther reduced the perturbations finding attacks that can break
defensive distillations. Recently Athalye et al. [2018a] pro-
posed a generalized attack against networks with obfuscated
gradients, where the existing gradient based attacks tech-
niques performs poorly. This new attack technique, Back-
ward Pass Differentiable Approximation (BPDA) builds a
differentiable approximation of the layers of the NN to find
adversarial examples.

Some approaches address more formally the adversarial
generation problem by specializing over particular classes
of models. For instance, Wong and Kolter [2018] addresses
ReLU neural networks and proposes a linear program based
optimization procedure that minimizes the worst case loss
over a convex approximation of the set of activations reach-
able through bounded perturbations. A different formulation
given by Chen et al. [2018], addresses an elastic-net opti-
mization formulation which involves an objective function
containing a regularizer that linearly combines L1 and L2

penalty functions.

An orthogonal problem to finding the adversarial exam-
ples is verifying that no adversarial examples exist in a
neighbourhood of an input. A common way to character-
ize this neighbourhood is by defining a ball around the in-
put, whose radius is defined as the robustness metric. In
these cases, the distance constraint (2) D(µ(x, x∗), α) takes
the form ‖x − x∗‖ ≤ α, where ‖ · ‖ is a norm (often
L0 or L∞) and the target behaviour A(x, x∗, β) becomes
∀x∗(f(x∗) = f(x)).

In Weng et al. [2018a], the authors propose a linear and
Lipschitz approximation of ReLU networks. These approx-
imations can be used to compute a tight lower bound of the
robustness by efficiently propagating the bounds through the
NN layers using matrix products. The authors in Dvijotham
et al. [2018] formulate verification is an optimization prob-
lem, and solve a Lagrangian relaxation of the optimization
problem to obtain an upper bound on the worst case viola-
tion within a prespecified neighborhood around an input.

We now look at non-targeted white-box attacks where
the adversary’s target behaviour A(x, x∗, β) is relaxed to
f(x∗) 6= f(x). Non-targeted adversarial examples are easier
to find as compared to their targeted counterpart, but harder
to defend against.

We already encountered a non-targeted white-box attack
in Ex. 4 where the authors Goodfellow et al. [2014] ex-
ploit the linear nature of NN to identify adversarial exam-
ples. DeepFool Moosavi-Dezfooli et al. [2016] is another
approach based on an iterative linearization of the classi-
fier. It finds adversarial examples by generating minimal per-
turbations that are sufficient to change classification labels.
In Madry et al. [2017] the authors provide a saddle point
formulation for training a NN against adversarial examples.
They conjecture that the adversarial examples found by pro-
jected gradient descent (PGD) are the strongest first-order
adversaries. They showed that in order to obtain a model
robust against all first-order adversarial examples, it is suffi-
cient to increase the capacity of the network and train it on
the adversarial examples found by PGD.

Weng et al. [2018b] convert the robustness analysis of a
NN into a local Lipschitz constant estimation problem, and
propose to use the Extreme Value Theory for efficient evalu-
ation of the Lipschtiz constant. Their analysis yields a novel
attack-agnostic robustness metric, Cross Lipschitz Extreme
Value for nEtwork Robustness (CLEVER), which is com-
puted using gradients from i.i.d. samples with backpropaga-
tion. Zantedeschi et al. [2017] propose building more robust
NN by introducing two new constraints, namely restricting
the activation functions to bounded ReLU, and training on
Gaussian augmented data, i.e., training data augmented with
inputs perturbed with Gaussian noise. The overall effect is a
smoother, more stable model, which is able to sustain a wide
range of adversarial attacks (both white-box and black-box).
This technique avoids computing adversarial examples and
training on them.

Similarly to the targeted attacks case, a range of ver-
ification techniques have been proposed for the class of
non-targeted attacks, where the adversary’s target behaviour
A(x, x∗, β) is of the form ∀x∗(f(x∗) = y).

Reluplex Katz et al. [2017] extends the simplex method



to handle non-convex ReLU activation functions to verify
local robustness of a NN. In Huang et al. [2017], the au-
thors propose a general framework for verifying NN with-
out restricting the activation functions. They discretize the
neighborhood around a given input, and exhaustively search
it with an SMT solver for an adversarial misclassification.
The authors in Dutta et al. [2018] employ a local gradient
search and a global mixed-integer optimization program to
compute the output range for ReLU networks for polytopic
neighbourhoods of the input. In Ruan et al. [2018] robust-
ness analysis is recast into a reachability problem which is
solved using an adaptive nested optimization technique. Fi-
nally, in Ehlers [2017] generate a linear approximation of
NN with piece-wise linear activation functions.

Black-Box Attacks
We now look at a few black-box attacks where the adversary
does not have access to the model’s data, training process,
nor architecture.

In Ex. 5 we mentioned how Papernot et al. [2016a] ex-
poses the strong phenomenon of adversarial sample transfer-
ability across models trained by different techniques. In Pa-
pernot et al. [2017], the authors generate adversarial ex-
amples from a substitute model fsub trained on synthetic
data. This approach, called Jacobian-based Dataset Aug-
mentation, generates inputs using the Jacobian of the NN.
This allows us to build a substitute NN accurately approx-
imating the original network’s decision boundaries using
far lesser samples. If the substitute model fsub accurately
captures the original model f , then an adversarial exam-
ple x∗ generated for fsub should be transferable to f , i.e.,
fsub(x

∗) 6= fsub(x) =⇒ f(x∗) 6= f(x).
Another ensemble based approach is shown in Liu et al.

[2016], where the authors train multiple NN using the data
collected from querying the target network. An alternate ap-
proach, which does not depend on training a substitute NN
is introduced in Chen et al. [2017]. The authors propose a
zero-th order optimization (ZOO) based attacks to directly
estimate the gradients of the targeted NN for generating ad-
versarial examples. Finally, genetic programming and black-
box morphing agents have been considered for finding ad-
versarial examples in Xu et al. [2016] and Dang et al. [2017]
respectively.

A special type of black-box attack, model-extraction at-
tacks, is shown in Tramèr et al. [2016] where the adversary
with black-box access, but no prior knowledge of an ML
model’s parameters or training data, aims to duplicate the
functionality of (i.e., ”steal”) the model. Xu et al. [2018]
propose feature squeezing as a technique to harden NN mod-
els by detecting adversarial examples. Feature squeezing re-
duces the search space available to an adversary by coalesc-
ing samples that correspond to many different feature vec-
tors in the original space into a single sample.

Semantic Perturbations
In the works that have been presented so far, we do not con-
sider the context of the perturbation or the adversarial ex-
ample. This renders the adversarial sample to be somewhat

ad hoc and may not capture realistic samples. We now ex-
plore some works which consider semantics in the adver-
sarial example generation process. In our general robustness
framework, this corresponds to forcing the adversary to sam-
ple from a particular set of allowed perturbations X̃ ⊆ X or
dealing with special distance constraintsD(µ(x, x∗), α) that
quantify the semantic similarity of two inputs rather than just
their pure representation.

DeepXplore Pei et al. [2017], is a white-box framework
for systematically testing real-world deep learning systems.
The interesting aspect of DeepXplore is that it produces
adversarial examples by altering a particular input x with
meaningful perturbations T (x) (e.g., brightness adjusting or
occlusion) rather than just noise. In addition, DeepXplore
compares examples using a coverage metric called neuron
coverage fn(x) that quantifies how many neurons are ac-
tivated by an input. DeepXplore searches for inputs that
achieve high neuron coverage, i.e., maxx∗∈T (x) fn(x

∗).
Athalye et al. [2018b] looks at generating targeted robust

adversarial examples for NN. The authors generate adver-
sarial examples which remain adversarial over a distribu-
tion of transformations such as translation, rotation and 3D-
rendering. Another notable work in this space, which con-
siders verification is Wicker et al. [2018], use SIFT (Scale
Invariant Feature Transform) to extract features from the in-
put image. They formalize adversarial example generation
as a stochastic two player game; where player 1 choose the
feature to modify, and player 2 chooses the associated pixel
and perturbation.

While these techniques studied how semantics affects the
search or test metric, recent work has also looked at defining
robustness in terms of an abstract semantic feature space.
The authors of Dreossi et al. [2017a,b, 2018b] assume that
the attacker is equipped with a renderer R : S → X that
maps an abstract representation of the world (e.g., the pose
of objects composing a scene) into a concrete input for the
analyzed model (e.g., a picture of the scene) and a closed
loop system model M : S → Rn. Thus, the search of ad-
versarial examples is performed on the abstract space S that
is equipped with a function µ : S × S → R that quanti-
fies the semantic similarity between abstract items. An input
is considered to be adversarial if it leads a system Mf us-
ing an ML model f to violate a system-level specification
φ. This means that the adversary does not focus on the ML
model only, but rather on the falsification of the specifica-
tion at the system level. The target of the adversary is to find
a diverse set of adversarial examples {x∗1, x∗2, . . . } such that
∀x∗i ,M(x∗i ) 6|= ϕ. Diversity can be captured in the distance
constraint as µ(R−1(x∗i ), R

−1(x∗j ), ) ≤ α. In this particular
case, the adversary is maximizing the α parameter in Defini-
tion 2. Such an approach can be useful to improve the accu-
racy of a neural network by augmenting training sets Dreossi
et al. [2018a].

5 Conclusion
In this paper we proposed a general formal definition of ro-
bustness of neural networks. We showed how our framework
can be used to capture different adversarial input generation



Paper x∗ ∈ X D(µ(x,x∗), α) A(x,x∗, β)
Szegedy et al. [2013]

x∗ = x+ r ∈ X ‖r‖p ≤ α f(x∗) = y
Goodfellow et al. [2014]
Papernot et al. [2016d]

Carlini and Wagner [2017]
Moosavi-Dezfooli et al. [2016]

x∗ = x+ r ∈ X ‖r‖p ≤ α f(x∗) 6= f(x)Athalye et al. [2018a]
Weng et al. [2018a]
Madry et al. [2017] x∗ = x+ r ∈ X ‖r‖∞ ≤ α = ε L(θ, x∗, y) ≥ β

Athalye et al. [2018b] x∗ = x+ r ∈ X Et∼T [d(t(x∗), t(x))] ≤ α = ε Et∼T [logP (yt|t(x∗))] ≥ β
Dvijotham et al. [2018]

x∗ = x+ r ∈ X x∗ ∈ Sin(x) f(x∗) 6∈ Sout(f(x))
Katz et al. [2017]

Huang et al. [2017]
Dutta et al. [2018]
Ruan et al. [2018]
Liu et al. [2016]

x∗ = x+ r ∈ X ‖r‖2 ≤ α
fsub(x

∗) = y, fsub(x
∗) 6= fsub(x)

fsub(x) 6= fsub(x
∗) =⇒ f(x) 6= f(x∗)

Papernot et al. [2017]
Tramèr et al. [2016]

Pei et al. [2017] x∗ ∈ X x∗ ∈ {γx, x+ r} f1(x) = · · · = fk(x) =⇒ fi(x
∗) 6= fj(x

∗)
Fn(x

∗) ≥ β
Dreossi et al. [2017a] s∗ ∈ S =⇒ x∗ = R(s∗) ∈ X µ(s∗i , s

∗
j ) ≤ α f(R(s∗)) =⇒ M(s∗) 6|= ϕ

Table 1: Different adversary input generation techniques under the same general notion of robustness.

techniques. Our work is part of a broader effort to formalize
properties of neural networks (see Seshia et al. [2018]) such
as input-output relations, semantic invariance, and fairness.
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