
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title

Computing Nash Equilibria in Adversarial Stochastic Team Games

Permalink

https://escholarship.org/uc/item/9gm341cq

Author

Stavroulakis, Stelios Andrew

Publication Date

2022

Supplemental Material

https://escholarship.org/uc/item/9gm341cq#supplemental
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9gm341cq
https://escholarship.org/uc/item/9gm341cq#supplemental
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA,
IRVINE

Computing Nash Equilibria in Adversarial Stochastic Team Games

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Electrical and Computer Engineering

by

Stelios Andrew Stavroulakis

Thesis Committee:
Professor Athina Markopoulou, Chair
Assistant Professor Ioannis Panageas

Assistant Professor Yanning Shen

2022



© 2022 Stelios Andrew Stavroulakis



TABLE OF CONTENTS

Page

LIST OF FIGURES iv

LIST OF ALGORITHMS v

ACKNOWLEDGMENTS vi

ABSTRACT OF THE THESIS vii

1 Introduction 1

2 Single-Agent Reinforcement Learning 7
2.1 Markov Decision Processes (MDP) . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Finite Horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Infinite Horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Stochastic Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Deterministic Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Value Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1 Action-value Function . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 State-value Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Bellman Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.1 State-value Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.2 Action-value Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Optimal Policies/Value Functions . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.1 Bellman Optimality Equations . . . . . . . . . . . . . . . . . . . . . . 15
2.6.2 Existence of Optimal Policies . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Computing Optimal Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7.1 Value-Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7.2 Policy-Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7.3 Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Multi-Agent Reinforcement Learning 25
3.1 Markov Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Solution Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

ii



3.2.1 Nash Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Existence of Nash policies . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3 Cooperative Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.4 Competitive Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.5 Mixed Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Main Results 32
4.1 Adversarial Team Stochastic Games . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Policies, Values, Solution Concept . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.1 Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Experimental Evaluation 47
5.1 Multi-Agent Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Concluding Remarks 52

Bibliography 53

iii



LIST OF FIGURES

Page

1.1 On the left we see the two-player, zero-sum, competitive setting [18]. On the
right the N-player, fully cooperative setting [33]. . . . . . . . . . . . . . . . . 4

1.2 The setting considered. A team of N agents facing an adversary. This setting
includes cooperation and competition. . . . . . . . . . . . . . . . . . . . . . 5

2.1 A discrete-time dynamical system describing the interaction of the agent with
the environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 A sequence of states, actions, and rewards, defining a trajectory in the MDP. 8

3.1 A discrete-time dynamical system describing the interaction of multiple agents
with the environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1 Action space of each agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Environment sketch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 We plot the Frobenius norm of the joint policies over time. . . . . . . . . . . 49
5.4 A replay after training. Agents (in purple) in iteration 0 both go towards

the middle, showing that they are unaware of the actions of their team-mate
and can’t decide (due to equal distance to the bottom-right target) on how to
coordinate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

iv



LIST OF ALGORITHMS

Page
1 Value Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2 Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3 Policy Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4 Independent Policy GradientMax (IPGmax) . . . . . . . . . . . . . . . . . . 35

v



ACKNOWLEDGMENTS

This thesis has been supported by NSF Awards 1939237, 1956393, 1900654. I would like
to express my deepest appreciation to Professor Athina Markopoulou, Professor Ioannis
Panageas and Professor Yanning Shen for supervising my thesis. It was also a pleasure
working with Salma Elmalaki on Reinforcement Learning applications during this period. I
would also like to extend my deepest gratitude to Fivos Kalogiannis, Ioannis Anagnostides,
Manolis Vlatakis and Vaggos Chatziafratis for the insightful suggestions and fruitful conver-
sations. Special thanks to Bill, Evi, and Fozzie for the unparalleled support when I most
needed it. Particularly helpful to me was George and I am extremely thankful for having him
next to me. I’m also extremely appreciative of all the love and encouragement my parents
and my brothers have given me. Finally, words can not express how grateful I am to Renata
for her unwavering support throughout this journey.

vi



ABSTRACT OF THE THESIS

Computing Nash Equilibria in Adversarial Stochastic Team Games

By

Stelios Andrew Stavroulakis

Master of Science in Electrical and Computer Engineering

University of California, Irvine, 2022

Professor Athina Markopoulou, Chair

Computing Nash equilibrium policies in Multi-agent Reinforcement Learning (MARL) is a

fundamental question that has received a lot of attention both in theory and in practice.

However, beyond the single-agent setting, provable guarantees for computing stationary Nash

equilibrium policies only exist for limited settings, e.g., two-player zero-sum stochastic games

and Markov Potential Games. This thesis investigates what happens when a team of players

faces an adversary in the absence of coordination. It is an initial step for understanding

non-cooperative two-team zero-sum stochastic games, even in this case, where one of the

teams is composed of only one agent. In this thesis we consider the aforementioned setting.

The contributions are twofold. We prove the existence of Nash equilibria in these settings

and also design a decentralized algorithm for computing Nash equilibria in such games. One

of the main technical challenges in the proof of correctness of the algorithm is the analysis

of a non-linear program with non-convex constraints that arises when applying the Bellman

equations; the analysis makes use of the so-called constraint qualifications and Lagrange

duality.

vii



Chapter 1

Introduction

At its core, the appeal of artificial intelligence (AI) relies on the potential to solve advanced

real-world problems. Machine learning methods have enabled data-based decision-making

across many industries, including manufacturing, education, healthcare, and marketing.

Nevertheless, there is still a myriad of unsolved problems that require progressively more

autonomous and adaptive decision-making to be solved.

This field has seen great success by leveraging Reinforcement Learning (RL), a subset of ma-

chine learning, to achieve excellent empirical performance in many tasks [51], [52], [10]. The

foundational idea behind RL is to enable learning by interactions with an environment – by

trial and error as follows: the learner (agent) uses feedback from its actions and experiences

to find, autonomously, solutions that maximize a numerical reward signal. In this paradigm,

instead of training examples that indicate the correct output for a given input, which can

be very inefficient or impossible for some problems, success is reached by enabling agents to

explore their environment while exploiting actions with immediate reward. Balancing these

exploration/exploitation trade-offs is an important point of RL.
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Reinforcement learning (RL) has recently demonstrated impressive results in a multitude

of domains ranging from biology [31], robotics [34], and video games [41], [44]. Many of

the aforementioned RL success stories relied on the rapid concurrent theoretical progress

in the field, check [27], [3], [35], [38], and references therein. However, many problems in-

volve multiple agents interacting with each other in the same, shared, environment and are

game-theoretic in nature. The general learning framework used for these particular settings

is the generalization of the single-agent reinforcement learning framework [11], known also

as Stochastic Games, first introduced by Shapley [50]. A comprehensive understanding of

the multi-agent setting remains elusive.

In a stochastic game, multiple agents co-exist in a discrete-time dynamical system. All play-

ers take actions and at every step the environment trantitions to a new state, based on the

actions of all players. The transition also produces rewards, different for each player, that are

distributed to all players at every state transition. The goal inevitably shifts from learning

optimal policies to equilibrium policies, as simultaneous optimization of multiple functions is

not attainable. Various setups within traffic control, robotics, economics, warehouse schedul-

ing, drone missions, auctions are captured by the aforementioned setting. Stochastic games

have been studied in a plethora of domains such as game-theory [43], [54], machine learning

[37], [11] and numerous other fields due to their broad applicability.

Current State-of-the-art

The fascinating problem that multi-agent RL (MARL) tackles is the ever-changing nature

of these non-stationary environments since all agents are constantly interacting in a coupled

environment. For that reason provable guarantees for MARL have been rather sparse.
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Centralized VS Decentralized Settings In an effort to organize MARL algorithms,

we can distinguish two large categories. Centralized/coordinated algorithms and indepen-

dent/decoupled algorithms [69]. The former includes a centralized controller whose objective

function is defined with respect to the joint policies of all agents. Examples of central-

ized/coordinated algorithms include self-play [32], [23] and are mostly used in setups where

the number of player and interaction type (competition/cooperation) is known beforehand.

The impressive practical results of centralized algorithms [44], [51], [59] have been recently

backed by solid theoretical results, such as finite-sample guarantees [64], [6], [67].

Decentralized settings do not contain a centralized controller. All agents act independently

and myopically with respect to their respective loss function and optimization objective. In-

dependent/decoupled algorithms capture settings where agent have their own observations

and have their own actions and rewards. The key distinction with the former is that inde-

pendent/decoupled algorithms can be deployed in a decentralized fashion in environments

where the number of agents is not defined a-priori. This setup is much more flexible but at

the same time much more challenging since coordination should be learned from interaction

instead of communication. Providing similar guarantees for decentralized settings seems to

be particularly tricky as independent algorithms might fail altogether, even in the simplest

of multi-agent settings [17], [16]. The reason for this is that independently updating poli-

cies introduce distribution shift that break the stationarity assumptions enjoyed by most of

the single-agent algorithms. This phenomenon is considered one of the grand challenges of

MARL [40], [24].

Potential Games VS Zero-Sum Games Provable guarantees for efficiently comput-

ing Nash equilibria have been thus far limited to either fully competitive settings, such as

two-player zero-sum games [18],[65], [48], [12], [49], or environments in which agents are en-

deavoring to coordinate towards a common global objective [33], [21], [70]. The two setups
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with multiple agents have orthogonal shortcomings. One has the number of players fixed

to 2 while allowing competition between the players, the other has an arbitrary number of

players but requires cooperation. Figure 1.1 pictorially illustrates the two different settings.

Figure 1.1: On the left we see the two-player, zero-sum, competitive setting [18]. On the
right the N-player, fully cooperative setting [33].

Many real-world strategic interactions feature both shared and competing interests between

the agents. Efficient algorithms for computing Nash equilibria in such settings are much more

scarce. In fact, even in stateless two-player (normal-form) games, computing Nash equilibria

is computationally intractable [19], [47], [13], [22] —subject to well-believed complexity-

theoretic assumptions. As a result, it is common to investigate equilibrium concepts that are

more permissive than Nash equilibria, such as coarse correlated equilibria (CCE) [5], [42],

[28]. Unfortunately, recent work has established strong lower bounds even for computing

approximate (stationary) CCEs in turn-based stochastic two-player games [20], [29].
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Scope of research

The recent negative results discussed above raise the following central question:

Are there natural multi-agent environments incorporating both competing and shared

interests for which we can establish efficient algorithms for computing (stationary) Nash

equilibria?

Figure 1.2: The setting considered. A team of N agents facing an adversary. This setting
includes cooperation and competition.

The work presented in the following thesis makes concrete progress in this fundamental direc-

tion. Specifically, we establish an efficient decentralized algorithm leading to Nash equilibria

in adversarial team stochastic games, an important setting in which a team of agents with a

common objective faces a competing adversary. This result pushes the boundary of what was

considered possible and unifies prior results that only applied to either two-player zero-sum

games or Markov potential games. The proposed algorithm has a complexity that is only lin-

early dependent on the number of players, breaking the “curse of multi-agents”, an inherent

problem in most multi-agent algorithms where the running time usually scales exponentially

with the number of players in the environment. Moreover, the proposed algorithm is fully

decentralized and requires no communication between the players. This thesis provides the

proof of the algorithm and also experimentally verifies the theoretical findings.
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Thesis Outline

Chapter 1 introduces the topic and provides a high-level description of the work.

Chapter 2 includes an overview of the single-agent reinforcement learning literature and all

the basic building blocks needed for the main result.

Chapter 3 extends the analysis to the multi-agent case and presents some fundamental

challenges in this domain.

Chapter 4 presents the results and the main Theorem.

Chapter 5 presents the experimental results. The multi-agent reinforcement learning envi-

ronment explicitly created for these tasks is publicly accessible and can be found on GitHub.

Chapter 6 summarizes the findings and proposes future directions.
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Chapter 2

Single-Agent Reinforcement Learning

2.1 Markov Decision Processes (MDP)

Real-world problems are often sequential. Moving from a state to another requires taking an

action, and taking action now affects the trajectory of events and experiences into the future.

The Markov decision process formalism captures these two aspects and provides a general

framework for sequential decision-making [57]. One way of formalizing the decision-making

process is through a discrete-time dynamical system. This system is reactive to the actions

taken by the agent, as shown in figure 2.1.

Figure 2.1: A discrete-time dynamical system describing the interaction of the agent with
the environment.
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The transition dynamics interaction function p(s′ | s, a). Given a state s in the set of all

possible states S and an action a in the set of all possible actions A, the function p returns

the probability of transitioning to state s′.

p =
∑
s′∈S

p(s′ | s, a) = 1, ∀s ∈ S, a ∈ A(s)

Allowing for probability distributions in each state-action pair enables stochastic transitions

between state-action pairs and new states. Otherwise, transitions would be deterministic.

The reward at every time-step is a function R(s′, s, a, ) that assigns the transition from the

state-action tuple (s, a) to the state s′ with a reward signal r experienced by the agent.

Formally,

s′t+1 ∼ p(· | st, at)

rt+1 = R(st, at, st+1)

This discrete-time transition from one state to the next is captured by the subscripts of the

states, rewards and actions and can also be pictorially shown in the figure below:

Figure 2.2: A sequence of states, actions, and rewards, defining a trajectory in the MDP.

Formally, an MDP captures the sequential interaction of the agent and the environment [1]

in the form of a tuple M = (S,A, P, r, γ, µ) that contains the following:

• A finite action space A.

• A state space S that is assumed to be finite or countably infinite.

• A transition function P : S × A −→ ∆(S) translating to a distribution of all states S

to all other states in the state space.
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• A reward function R : S ×A −→ [0, 1]. Rewards can be assumed to be upper-bounded

by 1 without loss of generality.

• A discount factor γ defining the horizon of the problem.

• An initial distribution µ ∈ ∆(S) that specifies the initial state distribution and how

the initial state s0 is generated

2.2 Objective Function

2.2.1 Finite Horizon

Given the transition probability matrix and the reward received for each transition, there

are various ways to behave in such an environment. One arbitrary strategy would be to

maximize the immediate reward meaning to act greedily with respect to the reward received

at time-step t. This, however, does not account for actions that lead to negative results

in the long run, even if they seem promising short-term. One way to get around this is to

consider the incremental aggregated sum of rewards collected throughout the trajectory. We

define the return at time-step t as:

Gt := Rt+1 +Rt+2 + ... (2.1)

The return G is a random variable since the transitions are stochastic in nature and might

not always yield the same return. For this reason, instead of the return G, the goal of

an agent in an MDP that accounts for future rewards as well as the stochasticity of the

environment should consider the expected sum of rewards.

9



E [Gt] := E [Rt+1 +Rt+2 + ...] (2.2)

The expected sum should be finite for the expectation to be well defined. Since every reward

Rt ∈ R is finite, the sum of a finite series is also finite. Since the sequence ends, this class of

events is called episodic. Each sequence defines one episode.

2.2.2 Infinite Horizon

In the infinite horizon case, the expectation in equation 2.2 might become infinite, as there

is no terminal state. A discount factor γ is introduced to bound the return G even if the

terms are infinite.

Gt := Rt+1 + γRt+2 + γ2Rt+3 + . . .

:=
∞∑
k=0

γkRt+k+1

(2.3)

which is bounded as Gt ≤
∞∑
k=0

γkRmax = Rmax ·
∞∑
k=0

γk = Rmax · 1
1−γ
∈ R since 0 ≤ γ < 1.

The discount factor intuitively works as a toggle controlling how ”myopic” an agent is with

respect to the rewards it receives over time. Incorporating the discount factor into the

return function G allows for the return to be written recursively, as shown in equation 2.4,

something that can be exploited by learning algorithms to provide convergence guarantees.

Gt := Rt+1 + γGt+1 (2.4)

Maximizing the expected sum of a cumulative scalar reward is enough to formulate a goal

in a sequential decision-making environment, according to the reward hypothesis [53].

10



2.3 Policies

The reinforcement learning problem is a sequential decision-making problem under uncer-

tainty. The agent’s role is to make decisions in each state of the sequence to optimize some

long-term reward signal. The policy π of the agent is a mapping of states to actions for

each state s ∈ S and a ∈ A. Each state of an MDP has, by definition, all the necessary

information required for decision making. We call this property the Markovian property [39].

The agent’s policy should only consider the current state of decision-making and recommend

an action either deterministically or stochastically.

2.3.1 Stochastic Policies

In each state, the policy recommends an action. A stochastic policy is a distribution of all

available actions assigned to each state s. The agent selects an action by sampling from the

probability distribution. This is done mainly to account for stochasticity in the environment.

Since the policy π(a | s) is a probability distribution, it follows the properties of a probability

distribution, shown below.

∑
a∈A

π(a | s) = 1

π(a | s) ≥ 0,∀a ∈ A, s ∈ S
(2.5)

2.3.2 Deterministic Policies

Deterministic policies are special cases of stochastic policies where all the mass of the prob-

ability density function is concentrated on one action, and the distribution collapses to an

action selection with probability 1. In this case, π(s) = a is the action taken by the policy

π in state s.

11



2.4 Value Function

Value functions are integral components of the reinforcement learning paradigm. They allow

the agent to query the quality of their state without having to experience a trajectory under

their current policy. Referencing the value of a state allows an agent to make decisions even

if rewards are not currently available and even if transitions are stochastic. Value functions

work as an estimated performance measure of the policy π. Values can be assigned to states

or actions taken in each state.

2.4.1 Action-value Function

An action-value function is by definition the expected return obtained in state s if action a

is taken, and policy π is followed thereafter.

Qπ(s, a) := Eπ [Gt | St = s, At = a] (2.6)

Equation 2.6 returns the value of choosing action a in state s and then behaving according

the the policy π.

2.4.2 State-value Function

Given a state s, the state-value function of that state is by definition the expected return of

the agent if policy π is followed thereafter.

Vπ(s) := Eπ [Gt | St = s] (2.7)

12



Intuitively, the state-value function aggregates all action-value functions into a single value

for each state s ∈ S. The formal connection between the action-state function and the

state-value function is presented below:

Vπ(s) =
∑
a∈A

π(a | s)Qπ(s, a)

Qπ(s, a) =
∑
s′∈S

p(s′ | s, a) [R(s, a, s′) + γVπ(s
′)]

(2.8)

2.5 Bellman Equations

The Bellman equations enable expressing the value at each state s is a function of the value

of every possible successive state st+1. This is the key that reduces the consideration of an

infinite number of possible trajectories to a set of linear equations with dimensions at most

the number of states. The solution of this linear system provides the state values directly.

2.5.1 State-value Equations

The Bellman equation of the state-value equation can be derived in the following manner:

Vπ(s) := Eπ [Gt | St = s]

Vπ(s) = Eπ [Rt+1 + γGt+1 | St = s]

Vπ(s) =
∑
a∈A

π(a | s)
∑
s∈S

∑
r∈R

p(s′, r | s, a)
[
r + γEπ [Gt+1 | St+1 = s′]

]
Vπ(s) =

∑
a∈A

π(a | s)
∑
s∈S

∑
r∈R

p(s′, r | s, a)
[
r + γVπ(s

′)
]

(2.9)
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2.5.2 Action-value Equations

Similarly, the action-value equations can be derived from the definition of the action-value

function as follows:

Qπ(s, a) := Eπ [Gt | St = s, At = a]

Qπ(s, a) =
∑
s′∈S

∑
r∈R

p(s′, r | s, a)
[
r + γEπ [Gt+1 | St+1 = s′]

]
Qπ(s, a) =

∑
s′∈S

∑
r∈R

p(s′, r | s, a)
[
r + γ

∑
a′∈A

π(a′ | s′)Eπ [Gt+1 | St+1 = s′, At+1 = a′]
]

Here, we express the state-action value Qπ(s, a) with respect to the next state-action value

Qπ(s
′, a′). The final equation becomes:

Qπ(s, a) =
∑
s′∈S

∑
r∈R

p(s′, r | s, a)
[
r + γ

∑
a′∈A

π(a′ | s′)Qπ(s
′, a′)

]
(2.10)

Equations of the state-value 2.9 and action-value 2.10 functions are now written recursively.

They can be used to efficiently estimate value functions by constructing and solving a system

of equations with the state-values or state-action values as unknowns.

2.6 Optimal Policies/Value Functions

To define an optimal policy, it makes sense to define an ordering of policies based on their

value in all states. Since policies might have different values in different states, we can only

claim that π1 ≻ π2 ⇐⇒ Vπ1(s) > Vπ2(s),∀s ∈ S.

The best policy π⋆ in an MDP achieves the best value in every state. The best value is

14



defined as:

V ⋆ = Vπ⋆(s) = max
π

Vπ(s) := Eπ⋆

[
Gt | St = s

]
,∀s ∈ S (2.11)

The max operator considers all possible policies for a given state and outputs a value V ⋆

which is the same for potentially multiple optimal policies that achieve the same value. Every

optimal policy also mapped to an action-value function called Q⋆ and is defined as:

Q⋆ = Qπ⋆(s, a) = max
π

Qπ(s, a) := Eπ⋆

[
Gt | St = s, At = a

]
,∀s ∈ S, a ∈ A (2.12)

2.6.1 Bellman Optimality Equations

The Bellman equations 2.9 and 2.10 hold for every policy. If we substitute the optimal policy

π⋆, equation 2.9 becomes:

Vπ⋆(s) =
∑∑∑
a∈A

π⋆(a | s)
∑
s∈S

∑
r∈R

p(s′, r | s, a)
[
r + γVπ(s

′)
]

Since an optimal deterministic policy always exists, we can replace the distribution over

actions induced by the policy with the action that yields the highest reward.

Vπ⋆(s) = max
a

∑
s∈S

∑
r∈R

p(s′, r | s, a)
[
r + γVπ(s

′)
]

(2.13)

Similarly, for the action-value function:

Qπ(s, a) =
∑
s′∈S

∑
r∈R

p(s′, r | s, a)
[
r + γ

∑∑∑
a′∈A

π(a′ | s′)Qπ(s
′, a′)

]
Qπ(s, a) =

∑
s′∈S

∑
r∈R

p(s′, r | s, a)
[
r + γmax

a
Qπ(s

′, a′)
] (2.14)
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2.6.2 Existence of Optimal Policies

Providing some intuition behind why there always exists a deterministic policy π⋆ that

achieves the best value V ⋆ is helpful to understand the crux of the Bellman equations.

Definition : The Bellman operator T acting on an MDP is defined as:

T V (s) := max
a

(
(1− γ)r(s, a) + γ

∑
s′

p(s′ | s, a)V (s′)
)
, ∀ s ∈ S,∀ V ∈ R|S|

For a fixed policy π, the Bellman operator acts on the state-value function as follows:

TπV (s) :=
∑
a∈A

π(a | s)
(
(1− γ)r(s, a) + γ

∑
s′

p(s′ | s, a)V (s′)
)
, ∀ s ∈ S,∀ V ∈ R|S|

The Bellman operator maps the value vector V (s) to another vector V (s′) and works to effec-

tively do a one-step look-ahead at the following state-value function to determine a slightly

better value for the current state s. This operator T has some essential and convenient

properties that are used as building blocks in proving the existence of optimal deterministic

and stationary policies.

Contraction Mapping For any pair of value vectors V (s), V ′(s), the infinity norm of the

difference of the norms evaluated by the Bellman operator is bounded above by the infinity

norm of the difference of the values:

∥T V − T V ′∥∞ ≤ (1− γ)∥V − V ′∥∞

Monotonicity The Bellman operator preserves the ordering of the values:

V > V ′ =⇒ T V > T V ′, ∀ V ∈ R|S|
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Given these 2 properties, we can show that the optimal state-value V ⋆(s) is the fixed point

of the operator T and the policy induced by the value V ⋆(s) is the optimal deterministic

policy π⋆.

2.7 Computing Optimal Policies

The Bellman optimality equations 2.13 and 2.14 unfortunately are not linear. Therefore,

we can no longer use standard linear algebra methods to determine optimal values directly.

One way to circumvent the non-linearity would be to construct a linear set of equations to

find V ⋆ by substituting π⋆ and replacing the max() operator with the action that yields the

maximum expected return, but finding π⋆ is the fundamental problem we are trying to solve.

Fortunately enough, inducing the optimal policy from the optimal value is straightforward. It

only requires a one-step look-ahead of the state-value function and can be derived directly if

given the action-value function. Note that the transition probability matrix is also required.

From 2.13 we can scan through the available actions and choose the action that yields that

particular value.

π⋆(s) = argmax
∑
s′∈S

∑
r′∈R

p(s′, r | s, a)
[
r + γV ⋆(s′)

]
(2.15)

Given the optimal action-value function, the optimal policy is induced trivially:

π⋆(s) = argmaxQ⋆(s, a) (2.16)

This is because the action-value function caches the one-step look-ahead result of the state-

action value function. Calculating the policy that induces the maximum value is as simple as

taking the argmax() of the optimal action-value function. Next, we will present a collection

of different algorithms for deriving the best policy and solving the reinforcement learning
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problem.

2.7.1 Value-Based Methods

Value Iteration

The first algorithm is straightforward because it exploits the contractive property of the

Bellman operator. Select any value vector V (s), associate every state with an arbitrary

value and apply the Bellman operator on the value vector again and again. Eventually, the

values in each state will stabilize and reach their optimal values.

Algorithm 1 Value Iteration

V ← V0
k = 0
while Vk−1 − Vk > δ do ▷ Or equivalent convergence criterion

Vk+1 ← T Vk
end while

We apply this algorithm because we know that:

∥Vk − V ⋆∥∞ ≤ γk∥V0 − V ⋆∥∞, ∀k

Even though lim
k−→∞

Vk = V ⋆, the speed of convergence is exponential because of the contrac-

tion property. This exponential speed implies that after k steps the error will be log(1/ϵ)
log(1/γ)

The new policy induced by the algorithm at every iteration is

πk = argmax
a

(1− γ)r(s, a) + γ
∑
s′

p(s′ | s, a)Vk(s′)

The time complexity of the algorithm grows at least linearly with the size of the transition

probability matrix p : |S|2 × |A| and is of the order of O
(

|S|2|A|
1−γ

· log
(

1
(1−γ)ϵ

))
. [14]
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Q-Learning

One of the most popular value-based algorithms in the literature is the Q-learning [63]

algorithm. Its popularity is mainly attributed to the recent break-through results in games

like Atari [41] and has demonstrated impressive results despite its simplicity. This algorithm

effectively uses Bellman’s optimality equations for action values 2.14 as it tries to select a

better action at each state. The algorithm is as follows:

Algorithm 2 Q-Learning

α ∈ (0, 1]

ϵ > 0

Q(s, a)← instantiate arbitrarily

for each episode do

Initialize state s

while step in episode do

Choose action a using Q(s, a)

Take action a and observe s′, r

Q(s, a)← (1− α)Q(s, a) + α
[
r + γmax

a
Q(s′, a)−Q(s, a)

]
s← s′

end while

end for

The Q-learning algorithm solves the state-action Bellman optimality equation 2.14 by using

samples from the environment. Directly optimizing Q(s, a) enables Q-learning to directly

learn Q⋆ instead of constantly switching between policy evaluation and improvement steps.

Q-learning is a sample-based version of value iteration that applies the state-action Bellman

optimality equation repeatedly until it samples enough data to approximate Q⋆. There are

3 requirements [26] for Q(s, a) to converge to Q⋆.
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1. Memory equal to the cardinal product of the state and action space |S| × |A| to save

all pairs of Q values

2. A decaying learning rate αt

3. Coverage of the entirety of the state-space S.

The last requirement is usually taken care of by using the ϵ−greedy exploration procedure

that introduces a small exploratory term that makes the agent choose a random action at

every state to achieve the coverage mentioned above.

2.7.2 Policy-Based Methods

An alternative approach would be to search in policy space and find the optimal policy.

Policy-based methods have better convergence properties and can learn distributions over

actions and not explicitly deterministic actions.

Policy Iteration

Policy iteration takes a step in policy space towards a better policy that expects a slightly

higher accumulative reward. This requires first evaluating the policy produced and then

improving the policy in the right direction (in policy space). We know that policy evaluation

can be done through a system of linear equations. Once we compute the policy’s value, we

can act greedily with respect to the one-step look-ahead value induced by the policy.

Policy iteration seems slightly more complicated than value iteration. However, the main

advantage of this method is that we only need to consider the policy function class to optimize

upon and directly optimize in policy space. It is also reasonable to argue that the policy

space is (for most practical cases) a smaller space than the space of value functions. In
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Algorithm 3 Policy Iteration
π ← π0
k = 0
while Vk−1 − Vk > δ do ▷ Or equivalent convergence criterion

πk+1(s) ∈ argmax
a∈A

[
r(s, a) + γ

∑
s′∈S

p(s′ | s, a)V πk(s′)

]
end while

practice, dynamic programming techniques are implemented to solve both evaluation and

improvement steps if we were given access to the transition dynamics p [7].

Policy Gradient Methods

One of the most important policy-based methods for finding the optimal policy was initially

presented by Sutton et al. [58]. This straightforward idea updates the gradient along the

direction that yields higher potential long-term rewards. Fortunately, the gradient of the

expected reward has a closed-form:

∇Vπθ
= E [∇ log πθ(a | s)Qπθ

(s, a)] (2.17)

The Qπθ
(s, a) as mentioned earlier are some type of one-step look-ahead values estimating the

expected reward for taking a particular action, based on the current policy πθ. The expected

value can be estimated with sample-based methods such as Monte-Carlo simulations. The

last piece missing to calculate the gradient of the value function is the gradient of the

logarithm of the policy.

Direct Parameterization

Policy gradient methods require creating a class of parameterized functions to take define

gradients and take steps toward a particular direction in policy space. Usually, the opti-
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mization method used to decrease the cost function of interest (usually the value function

V πθ(s)) is gradient ascent:

θ ←− θ + η∇V πθ(s0)

One parameterization class called the direct parameterization class, associates each state-

action pair with a parameter θs,a.

π(a | s) = θs,a

Luckily, in that parameterization class [2] the gradient of the parameterization is well-defined

∂θ(s,a)
∂(s,a)

and has a closed-form. These parameters denote the probability of selecting action a in

state s. Changing individual parameters in any gradient ascent step might throw the vector

πs out of simplex, meaning that the vector might no longer be a probability distribution,

something that is not allowed by the definition of the policy. Policies should always have

the two requirements listed below:

•
∑
a∈A

θs,a = 1

• θs,a ≥ 0, ∀s ∈ S, a ∈ A

In order to keep the probability vector in probability space, after each gradient step the new

vector is projected back to the simplex by the projection operator P∆(A)S . The projected

projected gradient ascent (PGA) update rule at each time-step t is defined below:

π(a | s) = P∆(A)

(
π(a | s) + η∇πθ

V πθ(s)
)

The completeness of the class parameterization allows for some solid theoretical convergence

guarantees [2]. Calculating the gradient of 2.17 can be done through sampling as values

can also be calculated by some repeated random sampling method, also referenced as Monte

Carlo [30] in the literature. In reinforcement learning, one can sample a trajectory of states,
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actions, and rewards and estimate the value function without knowing explicitly the tran-

sition probability matrix p(s′ | s, a) that was responsible for the sequence of state, action,

reward tuples along the trajectory. As stated in 2.7, the value of a state under policy π is

an expectation over future returns. More samples lead to a better estimation of that expec-

tation, according to the theory of large numbers. This method of estimating the gradient

through sampling while also doing projected gradient ascent is called stochastic projected

gradient ascent [? ].

2.7.3 Linear Programming

One last set of methods used to derive the optimal policy and solve the Bellman equations is

linear programming. The Bellman optimality equations can be expressed without leveraging

properties of the Bellman operator but rather framing them as linear programs.

Specifically, equations 2.13 and 2.14 can be written as a |S| · |A| × |S| linear program where

the inequality constraints replace the max operator:

min
V

∑
s∈S

ξ0(s)V (s)

s.t. V (s) ≥ γ
∑
s′∈S

p(s′ | s, a)V (s′) + r, ∀s ∈ S

The term ξ0(s) corresponds to the initial distributions over states as we are now optimizing

for all states simultaneously. Writing the Bellman equations as a linear program also allows

us to consider the dual linear program with some surprisingly exciting interpretations. The

dual program is expressed below:

max
λ
⟨λ, r⟩

s.t.
∑
a∈A

λa = ξ0 + γ
∑
a∈A

pα(s
′ | s)λα
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Now, we are trying to optimize for λ and find λ⋆ which is called discounted cumulative

occupancy measure under the optimal policy:

λ(s, a)⋆ = Eπ⋆

[
∞∑
t=0

γt1(St = s, At = a)

]

This measure informs us about the long-term stationary state-action distribution induced

by the optimal policy. Searching in this abstract space of possible occupancy measures is

equivalent to searching for the optimal value as the inner product ⟨λ, r⟩ in the argument of

our maximization objective is the value function.

There are numerous results utilizing interior point methods to provide convergence rates,

that are unfortunately slower than value/policy iteration due to the lack of Bellman operator

exploitation. One such algorithm [68] guarantees a super-linear rate with respect to the input

size |S|2 · |A| of O
(
|S|4|A|4 log

(
|S|
ϵ

))
.
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Chapter 3

Multi-Agent Reinforcement Learning

Most of the recent advances in reinforcement learning have been made in the single-agent

domain introduced in Chapter 2 where a single agent is guaranteed to learn a policy that

maximizes the expected sum of discounted returns. Some problems are game-theoretic in

nature and involve multiple agents interacting, each with special incentives. Setups with

numerous agents are a natural extension of the single-agent case and are called stochastic

or Markov games. Recently, OpenAI [45] demonstrated superhuman performance in such

multi-player settings by utilizing extensive amounts of computation without any theoretical

guarantees of (global) convergence. In this chapter we introduce the extension of MDPs

for multiple players and explain the numerous challenges that need to be overcome when

designing efficient decentralized algorithms for team games.

3.1 Markov Games

The first formal description of these setups came from Shapley in 1952 [55], and they are

known to be a generalization of the single-agent MDP. As a model, stochastic games capture
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dynamic interactions between multiple agents and broaden the consideration of actions based

on the existence of other rational agents operating simultaneously in the same environment.

In this framework, the transitions depend on all actions of all players. All players experience

different reward signals that are all functions of all players’ actions again.

st+1 ∼ p(· | st, a1t , . . . , aNt )

rit+1 = Ri(st, a
1
t , . . . , a

N
t , st+1)

The stochastic game framework addresses sequential decision-making problems for multiple

agents. In this coupled setting, N > 1 agents all co-exist in an environment, take actions,

traverse to states and receive rewards. A pictorial illustration of the extension is provided

below:

Figure 3.1: A discrete-time dynamical system describing the interaction of multiple agents
with the environment.

Formally, a Markov game is defined as a tuple G =
(
N,S, {Ai}i∈N),P , {Ri}i∈N , γ

)
that
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represent the following:

• N is the number of players/agents in the environment.

• S is the state-space of the environment.

• Ai is the action set of each agent i and the total action space is the Cartesian product

of action spaces A := A1 ×A2 × · · · × AN

• The transition probability matrix P : S×A −→ ∆(S) transitions the environment from

a state s to another state s′.

• The reward functionRi : S×A×S −→ R broadcasts an immediate reward to each agent

in the environment, based on the transition from state s to state s′. It is important to

note that the reward is different for each agent.

• γ is the discount factor added as a parameter to capture the infinite-horizon case.

MARL Challenges

The multi-agent setup has many additional challenges compared to the single-agent case.

Interesting dynamics emerge in figure 3.1 as the action of each agent affects the transition of

the environment to different states that ultimately affect the rewards of all agents. Each agent

has to now optimize over actions that, on top of the stochasticity of the environment, should

account for the actions of other players in the environment. This property, by itself, makes

the theoretical single-agent convergence guarantees to no longer hold. All of the guarantees

enjoyed by the single-agent framework case rely on the stationarity of the environment that

does not contain any adaptive agents.

Furthermore, optimization algorithms within the general MARL scheme might have conflict-

ing objectives. Loss functions are multi-dimensional and sometimes mutually contradicting.
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This tension leads to shifting the main focus from finding the optimal policy to finding

equilibrium points in a multi-dimensional space of strategies/policies.

On top of that, the joint action-space of all the agents grows exponentially with respect to

the number of agents in the environment. Each agent adds one more dimension to the action

space, introducing what is known as the combinatorial nature of MARL, otherwise known

as the ”curse of multi-agents.”

Additionally, the multi-agent extension of the Markov decision process has a rather com-

plicated information structure. We see from figure 3.1 that each agent takes action based

on different obesrvation and experiences different rewards based on everyone’s actions. This

might lead to sub-optimal local results as far as each agent is concerned. This notion is

well studied in game theory and is called the price of anarchy [15]. This measure quantifies

performance degradation when transitioning from a centralized to a decentralized algorithm

where agents are trying to locally optimize with respect to their individual loss function.

3.2 Solution Concept

Simultaneously optimizing a set of functions for the same value is not possible. The maxi-

mization of one function might not imply the maximization of any other function from our

pool of functions. This inherent obstacle leads the research direction towards approximating

Nash equilibria as a natural solution concept to the problem.

3.2.1 Nash Equilibrium

Before introducing Nash policies and Nash equilibria, it is important to understand why Nash

equilibria are considered to be the appropriate solution concept for multi-agent reinforcement
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learning. Finding Nash equilibria might be complicated for the following reasons:

• Nash equilibria do not guarantee optimality. A game might have a globally optimal

solution with players preferring to deviate from their current strategy unilaterally and

behave greedily with respect to their local payoff.

• There might be a set of individual policies that achieve a solution with the same quality.

It is, therefore, difficult to determine which combination of policies to choose from.

Luckily, pure Nash equilibria are not the only solution concept in game theory. Algorithm

designers have also crafted algorithms that converge to other notions of equilibria. Some

examples are correlated equilibria and coarse correlated equilibria.

Definition ANash equilibrium of the stochastic gameG is a set of policies π⋆ = (π⋆
1, π

⋆
2, . . . , π

⋆
N)

that given the other players policies, they have no incentive unilaterally deviating from their

policy as they payoff they will experience will be less than their current one. The value of

each agent is defined as:

V i
s (π

i, π−i) := E
[∑

t≥0

γtRi(st, at, st+1) | ait ∼ πi(· | st), s0 = s
]

(3.1)

No incentive for unilateral deviation equivalently means that the policy of every agent i is

the best response of the set of the remaining set of policies π⋆
−i. For a Nash policy π⋆

i , it

holds that:

V i
s (π

⋆
i , π

⋆
−i) ≥ V i

s (πi, π
⋆
−i), ∀ πi ∈ ∆(Ai)

s), and ∀s ∈ S (3.2)

29



3.2.2 Existence of Nash policies

One remarkable fact about stochastic games is that Nash policies always exist. Shapley

proved [55] that the minimax theorem applies in a two-player zero-sum stochastic game. A

well-defined notion of value exists. Hence, if agents execute policy gradient independently,

they converge to the Nash policy (π⋆
1, π

⋆
2) . For every policy π⋆

i :

Vρ(πi, π
⋆
−i) ≤ Vρ(π

⋆
i , π

⋆
−i), ∀ i ∈ [N ]

Nash equilibria always exist but might not necessarily be unique. Many of the MARL

algorithms are set to converge to these points. In stark contrast with the single-agent case, an

optimal deterministic policy does not exist. Agents should be able to converge to stochastic

policies since they account for the actions of other agents in the environment. Markov games

are capable of capturing all three fundamental MARL settings.

3.2.3 Cooperative Setting

One of the most common settings in multi-agent reinforcement learning is the fully collabo-

rative setting. All agents have to collaborate to achieve a common goal. All agents share the

same reward R = R1 = R2 = · · · = RN . This model is widely used in warehouse environ-

ments [56] and is also referenced as Markov team games in the literature [62]. Cooperative

games are also interesting because they fall under the umbrella of Markov potential games

[33], a class of games that has provable convergence guarantees if all agents optimize their

local value function by using independent policy gradient methods. Part of this important

result will be leveraged to extend the results to a more general setup where a team of agents

collaborates against an adversary.
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3.2.4 Competitive Setting

Competition between players arises when the rewards received are opposite. From a game-

theoretic perspective, these games are zero-sum because the sum of rewards for all players

is zero.

3.2.5 Mixed Setting

Games where coordination and cooperation are involved are called general-sum games [25].

Rewards might be aligned for some and misaligned for others. This setting is challenging

due to the lack of structure in the game. Computing Nash equilibria is notoriously hard in

these settings. It has been shown that even for two-player general sum stateless games (called

normal-form), finding the Nash equilibrium is intractable [13]. Many known algorithms in the

literature fail in stochastic MDPs. Cyclic behavior has been observed when applying value

iteration in mixed settings [71]. Therefore, experts studying algorithms should exploit any

structure of the game when designing efficient algorithms to find Nash equilibria, especially

in mixed settings.
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Chapter 4

Main Results

In this section we first introduce our MARL setting, state our results and lay down the

techniques used in our work.

4.1 Adversarial Team Stochastic Games

An Adversarial Team Stochastic Game (or Adversarial Team Markov Decision Process) is

the stochastic game extension of static, normal-form adversarial team games [60]. The

game takes place in an infinite-time horizon and future rewards are discounted by some

positive constant shared across all agents. A team of agents that share the same utility

win what the adversary loses (utilities sum to zero). The game is represented by a tuple

G = (S,N ,A,B, {rk}k∈N , P, γ, ρ) whose constituents are:

• S a finite set of states, with size S = |S| and an initial state distribution ρ over states

ρ ∈ ∆(S) over all states ∆(S)

• a set of n team agents and one adversary N = NA ∪NB = {1, . . . , n} ∪ {n+ 1}
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• the action-space, i.e. a finite, non-empty set of actions for each team-agent k, Ak (

A−k denotes the action-space of all team-agents apart from k); respectively, by B we

denote the adversary’s set of actions ; also, Ak = |Ak| and respectively B = |B| stand

for the cardinality of the corresponding action-space

• a deterministic reward function rk : ∆(S)×∆(A)×∆(B)→ [−1, 1] for the k-th player

of the team and a reward function radv : ∆(S) × ∆(A) × ∆(B) → [−1, 1] for the

adversary, all mapping distributions of states and actions to instantaneous rewards

• a transition probability function P : ∆(S)×A → [0, 1], such that P (s′|a, b, s) denotes

the probability of moving to state s′ from state s when the team selects an action

profile a ∈ A and the adversary picks an action b ∈ B

• γ ∈ [0, 1) a discount factor shared among all agents for the future rewards of the game

What makes the latter an adversarial team game is the fact that all team-agents k ∈ NA get

the same reward rteam = rk, ∀k ∈ NA, opposite to the adversary’s reward r = −rteam. We

note that when time t ≥ 0 is relevant, we denote it with a superscript over the corresponding

variable. Ultimately, at time t and state s(t), team-agent k
(
resp. the adversary

)
picks action

a
(t)
k

(
resp. b(t)

)
obtains a reward r(t) = r(s(t), a(t), b(t)), and the game transitions to a new

state st+1 drawn from a probability distribution P (·|s(t), a(t), b(t)). Furthermore, if we set r(t)

to be a vector whose every entry is each agent’s reward, we can use τ = (s(t), r(t), a(t), b(t))

to notate a given trajectory of the game.

Direct Parametrization For our analysis we assume all players use direct policy parametriza-

tion. As such we replace ∆(Ak) → Xk,
(
resp. ∆(B) → Y

)
, πk → xk,

(
resp. πadv → y

)
,

πk(a|s)→ xk,s,a,
(
resp. πadv(a|s)→ ys,a

)
.
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4.2 Policies, Values, Solution Concept

A stationary, deterministic policy for agent k (i.e. time-invariant and picking a certain action

at each state with probability equal to 1) is a function π : S → Ak. A natural extension of the

latter is a stationary, stochastic policy that maps a given state to a distribution over available

actions, πk : S → ∆(Ak)
(
resp. πadv : S → ∆(B)

)
. Finally, by Πteam : S → ∆(A) and

Πadv : S → ∆(B) we denote the policy-space of the team and the adversary correspondingly,

while by Π : S → ∆(A)×∆(B) we denote the policy-space of all agents.

We define the value function Vs : Π→ R as the expected sum discounted reward experienced

by the adversary. In the case that the initial state is s0 with probability equal to 1, the value

function is defined as:

Vs(π, πadv) = E(π,πadv)

[
∞∑
t=0

γtr
(t)
k

∣∣s0 = s

]
(4.1)

Whereas, when s0 is drawn from a probability distribution ρ over states, the value function

takes the form Vρ(π, πadv) = Es∼ρ

[
Vs(π, πadv)

]
. The adversary’s objective is to maximize

Vρ, while the team strives to minimize it. Subsequently, the solution concept we are concerned

with is the Nash equilibrium (NE) in infinite-horizon discounted stochastic games.

Nash Equilibrium

A joint policy profile
(
π∗, π∗

adv

)
=
(
(πk∗; π−k∗), π∗

adv

)
is said to be a Nash equilibrium when:

 Vρ
(
(π∗

k; π
∗
−k), π

∗
adv

)
≤ Vρ

(
(π′

k; π
∗
−k), π

∗
adv

)
, ∀k, ∀π′

k ∈ ∆(Ak)
S

Vρ
(
π∗, π∗

adv

)
≥ Vρ

(
π∗, π′

adv

)
, ∀π′

adv ∈ ∆(B)S
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4.3 Results

We study an infinite-horizon stochastic (Markov) game with a finite state space S in which a

team of agents NA with a common objective function is competing against a single adversary

with opposing interests. Every agent k ∈ NA has a (finite) set of available actions Ak, while

B represents the adversary’s set of actions. We also let γ be the discounting factor. Our

goal will be to compute a Nash equilibrium; that is, a strategy profile so that neither player

can improve via a unilateral deviation (see Definition 4.2 for a formal description). In

this context, our primary contribution is summarized with Theorem 1. Below we present

algorithm 4.

Algorithm 4 Independent Policy GradientMax (IPGmax)

1: for t← 1, 2, . . . do
y(t) ← argmaxy Vρ

(
x(t−1),y(t−1)

)
x
(t)
i ← ProjXi

{
x
(t−1)
i − η∇xi

Vρ
(
x(t−1),y(t)

)}
▷ for all agents i

2: end for
3: x̂← x(∞)

4: ŷ← AdvNashPolicy(x̂)
5: return (x̂, ŷ)

4.3.1 Techniques

Our decentralized Algorithm 4 (IPGmax) works in turns. At each iteration, the adversary

chooses his/her optimal policy (plays best response) and then each player of the team runs

one step of independent policy gradient on their value function. The algorithm we suggest ex-

ploits the machinery provided by [36] for the analysis of GDmax. GDmax is gradient descent

on the function maxy∈Y f(·,y). [36] showed that GDmax converges to a point
(
x̂,y⋆(x̂)

)
in

which x̂ is a stationary point of the Moreau envelope of maxy∈Y f(x,y) and y∗(x̂) is a best

35



response to x̂. If the function f(x, ·) is strongly-concave, by Dantzig’s theorem, one can show

that
(
x̂,y∗(x)

)
is a stationary point of f . However, if the function f is not strongly-concave

in y (concavity does not suffice),
(
x̂,y∗(x)

)
does not necessarily translate to a stationary

point of f(x,y); this is the case for our setting since the value function Vρ(πteam, πadv) is

nonconvex-nonconcave.

Using an analysis similar to that of GDmax, IPGmax is guaranteed to converge to a policy

profile
(
π̂team, π

∗
adv(π̂team)

)
at which the adversary plays best response and π̂team is guaranteed

to be a first-order stationary point of maxπadv
V (πteam, πadv) with respect to πteam. In this

context, we are able to show the following characterization.

If π̂team is a first-order stationary point of maxπadv
V (πteam, πadv), then there exists a policy

of the adversary π̂adv that can be extended to a Nash equilibrium policy (π̂team, π̂adv).

In the special case of normal-form games, a weaker extension theorem was established in the

seminal work of [60]. In particular, that result is derived by employing fairly standard linear

programming techniques, analyzing the structural properties of the optimal of a suitable

LP. On the other hand, our setting introduces several new challenges, not least due to the

non-convexity non-concavity of the objective function. Indeed, our method leverages more

refined techniques from non-convex programming:

Respectively, while our work makes use of standard policy gradient properties similar to the

single-agent Markov Decision Process setting [1, 66], the analysis will not rely on the gradient-

dominance property (see [8]), as it does not appear to hold in a team-wise sense. Instead, our

technique is inspired by an alternative proof of Shapley’s theorem [50] for two-person zero-

sum stochastic games that utilizes mathematical programming [61]. In particular, we adopt

concepts from the literature of mathematical programming and optimization, namely the

guarantees of Karush-Kuhn-Tucker (KKT) conditions and constraint qualifications (CQs)

when non-convex constraints are in run. Generally, Constraint Qualifications are used to
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prove that all feasible (local) optima of the objective function are contained in the set of KKT

points. In a nutshell, we prove the extensibility of stationary points of maxπadv
Vρ(·, πadv) to

Nash equilibria (rendering them efficient to compute) using a modification of Arrow-Hurwiz-

Uzawa CQs [4] and Lagrange duality of the NLP [46]. Then, we observe that the structure

of our model (Adversarial Team Stochastic Games) supplies a natural meaning (within the

context of the model) to a subset of the Lagrange multipliers. That is, a part of this subset

can be used to define a Nash policy for the adversary whereas another part of it is intrinsically

related to the value of the corresponding Nash Equilibrium.

4.4 Main Theorem

Theorem 1. Suppose that both agents of the team NA and the adversary follow the IPGmax

(Algorithm 4) with direct parametrization. If the learning rates are sufficiently small, the

fixed points of IPGmax, let (x̂, ŷ), are guaranteed to be Nash equilibria policies.

Proof Sketch

This proof shows that in the setting of adversarial team games, any local minimum of a

nonlinear program describing the payoff of the team can be extended to a Nash Equilibrium

through the use of Lagrange Duality. The argument is simple, after showing that any local

minimum satisfies the Arrow-Hurwicz-Uzawa constraint qualification, the non-negativity of

the Lagrange multipliers is leveraged to i) demonstrate relations between the multipliers and

the value of the objective function ii) form an optimal strategy vector for the adversary iii)

show that the local minimum w.r.t. to the team extends to a Nash Equilibrium.
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Proof of Theorem 1

Extendibility of team-local minima to NE in normal-form games through Math-

ematical Programming

This section contains the proof for Theorem 1. This proof boils down to proving that x̂ can

be extended to (x̂, ŷ) so that (x̂, ŷ) is a Nash equilibrium policy for the game.

Let a game between a team of n players with (mixed) strategy vectors xk for each player k,

playing against an adversary with a strategy vector y.

Let Cb(x) denote the payoff the team gets when they play x = (x1, · · · ,xn) and the adversary

plays her b-th pure strategy.

The payoff of the adversary is U(x,y) =
∑

b ybCb(x).

A (local) team-minmax strategy for the team, is given by the following nonlinear program

(NLP):

min u (4.2a)

s.t. Cb(x) ≤ u (4.2b)

x⊤
k 1 = 1 (4.2c)

xk,a ≥ 0 (4.2d)
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We denote the constraints:

hb = Cb(x)− u (4.3)

hk = x⊤
k 1− 1 (4.4)

h′k = 1− x⊤
k 1 (4.5)

h(k,a) = −xk,a (4.6)

Let ea denote the one-hot vector with 1 in the a-th entry. Also, by multi-linearity, see that:

Cb(x) =
∑
a

xk,aCb(ea;x−k) (4.7)

Now, it is easy to observe that:

∂Cb(x)

∂xk,a
= Cb(ea;x−k) (4.8)

The Lagrangian of the NLP and the Karush-Kuhn-Tucker optimality conditions

Write the Lagrangian of the NLP:

L
(
(x, u),µ

)
= u+

∑
b

µb

(
Cb(x)− u

)
+
∑
k

µk

(
x⊤
k 1− 1

)
+

∑
k

µ′
k

(
1− x⊤

k 1
)
+
∑
(k,a)

µ(k,a)

(
− xk,a

)
(4.9)

Rename the Lagrangian multipliers for convenience:

λ(b)︸︷︷︸
µb

, ω(k)︸︷︷︸
µk

, ψ(k)︸︷︷︸
µ′
k

, γ(k, a)︸ ︷︷ ︸
µ(k,a)

(4.10)

Write the derivatives of the Lagrangian and of the constraints:
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• For all λ(b):

W.r.t. u:

∂hb
∂u

= −1 (4.11)

W.r.t. xk,a:

∂hb
∂xk,a

= Cb(ea;x−k) (4.12)

• For ω(k) and ψ(k): W.r.t. u:

∂hk
∂u

=
∂h′k
∂u

= 0 (4.13)

W.r.t. xk,a:

∂hk
∂xk,a

=


1, if k = k

0, else

(4.14)

and

∂h′k
∂xk,a

=


−1, if k = k

0, else

(4.15)

• For γ(k, a): W.r.t. u:

∂h(k,a)
∂u

= 0 (4.16)
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W.r.t. xk,a:

∂hk
∂xk,a

=


1, if (k, a) = (k, a)

0, else

(4.17)

• For the Lagrangian:

W.r.t. u:

∂L
∂u

= 1−
∑
b

λ(b) (4.18)

W.r.t. xk,a:

∂L
∂xk,a

=
∑
b

λ(b)Cb(ea;x−k) + ω(k)− ψ(k)− γ(k, a) (4.19)

We can now write the Karush-Kuhn-Tucker optimality conditions for the program above:

∇(x,u)

(
u
)
+
∑
b

λ(b)∇(x,u)

[
Cb(x)− u

]
+
∑
k

ω(k)∇(x,u)

[
x⊤
k 1− 1

]
+

+
∑
k

ψ(k)∇(x,u)

[
1− x⊤

k 1
]
+
∑
(k,a)

γ(k, a)∇(x,u)

[
− xk,a

]
= 0 (4.20)

λ(b)
(
Cb(x)− u

)
= 0, ∀b (4.21)

ω(k)
(
x⊤
k 1− 1

)
= 0, ∀k (4.22)

ψ(k)
(
1− x⊤

k 1
)
= 0, ∀k (4.23)

−γ(k, a)xk,a = 0, ∀(k, a) (4.24)

λ(b), ω(k), ψ(k), γ(k) ≥ 0 (4.25)
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Under the assumption that a constraint qualification is satisfied, there do exist non-negative

Lagrange multipliers

λ(b), ω(k), ψ(k), γ(k) satisfying the above system of equations.

Goal With U(x,y) denote U(x,y) =
∑

b ybCb(x) Let (x̂, û) be a local minimum of the

NLP. We are going to try to show that:

• There exists ŷ:

ŷ = λ · 1∑
b λ(b)

that is optimal for the adversary when the team plays x̂.

• x,y is a NE, i.e.:

U(x̂,y) ≤ U(x̂, ŷ) ≤ U(xk, x̂−k, ŷ)

Idea Follow Vrieze’s proof for the two-player zero-sum stochastic game proof for the exis-

tence of a unique value.

Connect û with the Lagrange multipliers

x̂k,a ·
∂L
∂xk,a

∣∣∣∣
x=x̂

= x̂k,a

[∑
b

λ(b)Cb(ea; x̂−k) + ω(k)− ψ(k)− γ(k, a)
]
= 0⇒ (4.26)

∑
b

λ(b)x̂k,aCb(ea; x̂−k) + x̂k,a

(
ω(k)− ψ(k)

)
− x̂k,aγ(k, a) = 0⇒ (4.27)

∑
b

λ(b)x̂k,aCb(ea; x̂−k) + x̂k,a

(
ω(k)− ψ(k)

)
= 0 (4.28)
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Sum for all a:

∑
a

[∑
b

λ(b)x̂k,aCb(ea; x̂−k) + xk,a

(
ω(k)− ψ(k)

)]
= 0⇒ (4.29)

∑
b

λ(b)Cb(x̂k; x̂−k) +
(
ω(k)− ψ(k)

)
= 0 (4.30)

Compare the latters equation with λ(b)
(
Cb(x̂)− û

)
= 0⇒

∑
b λ(b)

(
Cb(x̂)− û

)
= 0 to see

that:

û =
ψ(k)− ω(k)∑

b λ(b)
(4.31)

Defining a strategy vector for the adversary by using the Lagrange multipliers

λ(b)

Now, divide the partial derivative of the Lagrangian w.r.t. xk,a by
∑

b λ(b):

1∑
b λ(b)

∂L
∂xk,a

= 0⇒ (4.32)

1∑
b λ(b)

(∑
b

λ(b)Cb(ea; x̂−k) + ω(k)− ψ(k)− γ(k, a)

)
= 0⇒ (4.33)

∑
b

λ(b)∑
b′ λ(b

′)
Cb(ea; x̂−k) +

ω(k)− ψ(k)∑
b′ λ(b

′)
− γ(k, a)∑

b′ λ(b
′)
= 0⇒ (4.34)

∑
b

λ(b)∑
b′ λ(b

′)
Cb(ea; x̂−k)− û−

γ(k, a)∑
b′ λ(b

′)
= 0⇒ (4.35)

∑
b

λ(b)∑
b′ λ(b

′)
Cb(ea; x̂−k)− û ≥ 0⇒ (4.36)

∑
b

λ(b)∑
b′ λ(b

′)
Cb(ea; x̂−k) ≥ û (4.37)
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Observe that, from ∂L
∂u

= 1 −
∑

b λ(b) = 0 w get that
∑

b λ(b) = 1 > 0. Hence, 1∑
b′ λ(b)

is

well-defined. Let ŷ = λ(b)∑
b′ λ(b

′)
and we get:

∑
b

ŷbCb(ea; x̂−k) ≥ û (4.38)

Deviations of team-players yield worse outcomes when adversary plays ŷ

Take an arbitrary convex combination (with coefficients xk,a) of the above equation to form

an inequality for a corresponding xk:

∑
b

ŷbCb(xk; x̂−k) ≥ û⇔ (4.39)

U
(
(xk; x̂−k), ŷ

)
≥ û (4.40)

Deviations of the adversary yield smaller value

By feasibility of (x̂, û)

Cb(x̂) ≤ û (4.41)

Take an arbitrary convex combination of the inequality (with coefficients yb) to get:

∑
b

ybCb(x̂) ≤ û⇔ (4.42)

U(x̂,y) ≤ û (4.43)
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Show that û = U(x̂, ŷ)

It is now straightforward to see that from:

U(x̂,y) ≤ û ≤ U
(
(xk; x̂−k), ŷ

)
⇒ (4.44)

û = U(x̂, ŷ) (4.45)

Show that Arrow-Hurwicz-Uzawa Constraint Qualification are satisfied for any

local minimum of the NLP

Denote A(x̂) the set of all inequality constraints that are active at a local minimum x̂.

There exist at least one vectorw ∈ Rd, d = 1︸︷︷︸
u

+
n∑
k

mk︸ ︷︷ ︸
mk avail. moves to player k

, s.t. for all hi ∈ A(x̂):

 ∇zhi(z)
⊤w < 0 if hi non-(pseudo-)concave

∇zhi(z)
⊤w ≤ 0 if hi (pseudo-)concave

(4.46)

W.l.o.g. assume that the following constraints are active:



∇(x,u)hb(x, u)
⊤w < 0

∇(x,u)hk(x, u)
⊤w ≤ 0

∇(x,u)h
′
k(x, u)

⊤w ≤ 0

∇(x,u)h(k,a)(x, u)
⊤w ≤ 0

(4.47)

Index every entry or sub-sequence of the vector with the corresponding variable (i.e. u, xk,a)
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and write the inner product of each inequality in a simpler fashion:



−1 · wu +∇xhb(x, u)
⊤wx < 0

0 · wu +∇xhk(x, u)
⊤wx ≤ 0

0 · wu +∇xh
′
k(x, u)

⊤wx ≤ 0

0 · wu +∇xh(k,a)(x, u)
⊤wx ≤ 0

(4.48)

For any w⊤ = [wu | w⊤
x ], s.t. wu > 0 and wx = 0, the AHU constraint qualification is

satisfied.
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Chapter 5

Experimental Evaluation

In this section, we lay down all the implantation details of the experimental setup and show

the convergence of policies over time. We created a multi-agent team-vs-adversary zero-sum

grid-world environment. The setting includes two players and an adversary coexisting in

the same shared environment. The team members are assigned an objective that requires

collaboration (reaching two different locations on the map at the same time). Every time

they complete the task, positive and equal rewards are distributed to the team members, and

simultaneously a negative reward is experienced by the adversary. The sum of all rewards

is always zero; hence, the game is zero-sum. The adversary’s objective is not to let the

team win by reaching any target in the grid-world. In that case, the adversary wins, and

the team members get punished with a negative reward equal in magnitude to the reward

experienced by the adversary. Code snippets of this setting are publicly available on GitHub.

We implemented Theorem 1 on a c2-standard-4 machine type CPU platform on Google Cloud

∼ 3.5 days.
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5.1 Multi-Agent Environment

OpenAI standardized reinforcement learning environment creation in 2016 with the release

of what is known as the OpenAI Gym [9]. Gym is a python library used to decouple

environments from algorithms and help the research community test different algorithms in

different environments. We created a gym-compatible multi-agent reinforcement learning

environment to run our decentralized algorithms and support the theoretical findings of our

work. A Gym environment requires instantiating the observation and action space upon

creation. Both are pictorially shown below:

Figure 5.1: Action space of each agent Figure 5.2: Environment sketch.

Game In a 4× 4 grid-world environment, we place 2 agents and an adversary. The agents

and the adversary can move in all cardinal directions. The team’s goal is to capture the

2 diamonds in the environment before the adversary has time to grab any. If the team

successfully reaches both diamonds before the adversary, they are victorious. If the adversary

finds a diamond before the agents achieve their goal, he wins the game.

States Each positional configuration of the agents on the grid maps to a distinct state in

the MDP. Figure 5.2 shows a configuration of the agents in the grid as well as the 2 landmarks

at the 2 opposite corners of the grid. Each state has an encoding of the coordinates of the

team and the adversary.

|S| = 46
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The size of the state space is 46 as we have to save 3 pairs of coordinates, and each coordinate

can take discrete values from [0− 3].

Actions Each agent has 4 actions mapping to all cardinal directions. The agents take

actions simultaneously, and transitions happen synchronously. Actions are passed into the

environment as a list of actions containing all players’ decisions.

Reward A reward signal of +1 is distributed to the team if every member covers a land-

mark. If this happens before the adversary reaches any landmark, the adversary is rewarded

with −1. However, if the adversary reaches any landmark before all team members complete

their objective, he receives a reward of +1, and the team experiences a reward of −1.

Nash Equilibria To show convergence, we plot the Frobenius norm of consecutive joint

policies and the average estimated value of the team. Below are some screenshots of agents

in a multi-grid environment demonstrating the behavior.

Figure 5.3: We plot the Frobenius norm of the joint policies over time.

The Frobenius norm decreases over time, demonstrating that the agents approach Nash

equilibrium. Next, we provide some sequences of screenshots from roll-out trajectories after
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training.

Figure 5.4: A replay after training. Agents (in purple) in iteration 0 both go towards the
middle, showing that they are unaware of the actions of their team-mate and can’t decide
(due to equal distance to the bottom-right target) on how to coordinate.

Converging to a Nash equilibrium is a restrictive class of equilibria where correlated policies

are not allowed. The agents in iteration 0 cannot coordinate and separate tasks optimally.

They converge to independent probability distributions of actions. Sometimes they break ties

correctly, and sometimes they choose to go towards the same target since they are unaware

of what their team-mate will do in tie-breaking situations.

5.2 Discussion

In the above toy experiment, we see how agents implementing projected policy gradient

in tandem, followed by the best response from the adversary, asymptotically leads to all

players reaching the Nash equilibrium. Experiments were also conducted for 4× 4 and 5× 5

grids, as well as environments with three players in the team. Many GIF files with replays

are available online, showcasing Nash-equilibrium type behavior. Due to the nested loop
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in the algorithm, computation demand grows significantly with every player added to the

environment. At every iterate of policy gradient update from the team, the adversary. Speed

of convergence decreases, but asymptotic behavior is still guaranteed with any number of

players in the same team by Theorem 1.
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Chapter 6

Concluding Remarks

This thesis shows the existence of Nash equilibria in settings where multiple players try to

collaborate, given the presence of an adversary that is against them. A decentralized algo-

rithm that provably converges to Nash equilibria was designed to compute Nash equilibria

in such settings. The results are also experimentally tested and empirically confirmed. This

setting is the first in which decentralized algorithms provably converge to Nash equilibria.

This positive result is also the first step toward designing algorithms that provably converge

to near-equilibrium policies in non-cooperative two-team zero-sum stochastic games that

simultaneously contain cooperative and adversarial elements.
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