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Abstract

This thesis presents a new algorithm for material boundary interface reconstruction

from data sets containing volume fractions. The reconstruction problem is transformed

to a problem that analyzes the dual data set, where each vertex in the dual mesh has

an associated barycentric coordinate tuple that represents the fraction of each material

present. After constructing the dual tetrahedral mesh from the original mesh, material

boundaries are constructed by mapping a tetrahedron into barycentric space and cal-

culating the intersections with Voronoi cells in barycentric space. These intersections

are mapped back to the original physical space and triangulated to form the bound-

ary surface approximation. This algorithm can be applied to any grid structure and

can treat any number of materials per element/vertex. It is a generalization of previ-

ous work done in other fields, allowing for any number of materials to be present in

a given volume. This algorithm generates continuous surfaces. Experimental results

shows the preservation of overall volume fractions within a difference range of 0.5
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Figure 1: Grid and dual grid. The original grid (dashed lines) is replaced by a dual grid
(solid lines), obtained by connecting the centers of the original elements. Barycentric co-
ordinates are associated with each vertex of the dual grid. The barycentric coordinates
represent the fractions of each material present in the original grid cells.

1. INTRODUCTION

There are numerous instances in which it is necessary to reconstruct or track the boundary

surfaces (or “interfaces”) between multiple materials that commonly result from finite ele-

ment simulations. Multi-fluid Eulerian hydrodynamics calculations require geometric ap-

proximations of fluid interfaces to form the equations of motion to advance these interfaces

correctly over time. In typical simulations, the grid cells (finite elements) contain fractional

volumetric information for each of the materials. Each cell � of a grid � has an associated

tuple ���� ��� ���� ��� that represents the portions of each of � materials in the cell, i.e.,

�� represents the fractional part of material �. It is assumed that �� � �� � � � � � �� � �

and �� � �. Considerations in approaching this problem involve finding a (crack-free)

piecewise two-manifold separating surface approximating the boundary surfaces between

the various materials, local and global correctness, and spatial and temporal smoothness.

To solve this problem, consideration is given to the dual data set constructed from the

given data set, as shown in Figure 1. In the dual grid, each cell is represented by a point

(typically the center of the cell), and each point is associated with tuple ���� ��� ���� ���,

where � is the number of materials present in the data set, �� � �� � � � � � �� � �,

and �� � �. Thus, the boundary surface reconstruction problem reduces to constructing

the material interfaces for a grid where each vertex has an associated barycentric coordinate
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representing the fractional parts of each material at the vertex. This “barycentric coordinate

field” is used to approximate the material boundary surfaces.

Important applications of this problem occur for all grid types, e.g., when the data

points lie on a rectilinear grid, curvilinear grid, or an unstructured grid. Therefore a solution

strategy is developed that is tailored to tetrahedral grids, as all other types of grid structures

can be converted to this form, as demonstrated by Nielson [1]. In the case of rectilinear,

curvilinear, or even hybrid polyhedral meshes, a given grid is preprocessed by subdividing

each polyhedral cell into tetrahedra, and applying this algorithm to the resulting tetrahedral

grid.

Given a data set containing� materials, one can process each tetrahedral cell of the grid

and map our tetrahedral elements into an � simplex representing �-dimensional barycen-

tric space. Next, one can calculate intersections with the edges of Voronoi cells [2] in the

�-simplex. These Voronoi cells represent regions, where one material “dominates” the

other materials locally. One can map these intersections back to the original space and

triangulate the resulting points to obtain the boundary.

Section 2 describes previous work dealing with material boundary surfaces. Section 3

describes the two-material case, which can be viewed as a simple extension of a marching

cubes/tetrahedra algorithm [3, 4, 5]. Section 4 describes the three-material case. Here,

material boundaries are calculated in barycentric space (a triangle) and mapped back to

the original data set. The general �-material case is described in Section 5. In this case,

intersections are calculated in a barycentric �-simplex and mapped back to the tetrahedra

in the data set. Implementation details are described in Section 6. Section 7 presents results

for various data sets, and Section 8 provides error analysis for the same data sets. Section 9

contains conclusions and describes possible future work.

2. RELATED WORK

The bulk of research in material interface reconstruction has been conducted in computa-

tional fluid dynamics (CFD) and hydrodynamics, where researchers are concerned with the

movement of material boundaries during a simulation. The Simple Line Interface Calculation

(SLIC) algorithm by Noh and Woodward [6] is one of the earliest, describing a method for

geometric approximation of fluid interfaces. Their algorithm is used in conjunction with
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hydrodynamics simulations to track the advection of fluids. Their algorithm produces an

interface consisting of line segments, constructed parallel or perpendicular to a coordinate

axis. Multi-fluid cells can be handled by grouping fluids together, calculating the interface

between the groups, subdividing the groups, and iterating this process until interfaces are

constructed. Since this algorithm only uses line segments that are parallel to the coordinate

axes, the resulting interfaces are generally discontinuous.

In determining the direction of the line segment, cells to the left and right (in the ap-

propriate coordinate direction) of the current cell are considered, and classified according

to the fluid index. The fluid index is simply the presence (1) or absence (0) of a material.

Mixed fluid cells have multiple fluid indices, one per material. Fluids with the same fluid

index are grouped together in order that only two types may be treated at one time, and the

boundary constructed.

Consider a two-fluid 2D cell for and x-direction pass of the SLIC algorithm, consisting

of materials � (30%) and � (70%). The left neighbor has only material � and the right

neighbor has only material �. The interface in the mixed fluid cell would consist of a

vertical line dividing the cell into two regions, 30% � on the left and 70% � on the right.

Now conisder that same mixed fluid cell with different left and right neighbors. Suppose

that both left and right neighbors consist entirely of material �. Then, the interface in the

mixed material cell would consist of two vertical lines dividing the cell into three parts:

15% material � on the left, 70% material � in the center, and 15% material � on the right.

Iinterface lines parallel to the pass direction axis are generally only drawn in mixed fluid

cells consisting of three or more materials. Consider a three-fluid cell containing 20% �,

45% �, and 35% �, again with an x-direction pass. If the left neighbor consists entirely of

material � and the right neighbor consists entirely of material �, then the interface would

be two vertical lines, dividing the cell into three zones, with material � on the left, � in

the middle, and � on the right. If the left neighbor contains both � and �, and the right

neighbor contains � and �, then a horizontal line segment is used to first construct the zone

with material �, then the remaining portion of the cell is divided by a vertical line with �

on the left and � on the right.

Figure 2 is an example data set that will be used to compare the various algorithms to be

discusssed.

Figure 3 shows the approximation generated by the SLIC aglorithm for Figure 2 in an
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(.54,0,.46)(1,0,0)(.52,.48,0)

(.06,.94,0) (.60,.30,.10)

Figure 2: Three materials contributing to nine cells. The volume fractions for each material
are shown in the individual cells.

x-coordinate and y-coordinate pass. It must be noted that although the interface is discon-

tinuous, volume fractions are strictly perserved per cell.

The algorithm of Youngs [7] also operates on two-dimensional grids and uses line seg-

ments to approximate interfaces. In this algorithm, the line segments are not necessarily

perpendicular or parallel to a coordinate axis. Instead, the neighbor cells of a cell � are

used to determine the slope of a line segment approximating an interface in �. The exact

location of the line segment is adjusted to preserve the volume fractions in a cell. Multiple

materials are treated by grouping materials and determining interfaces on a two-material

basis. Again, the interfaces produced by this method are generally discontinuous.

Since this algorithm treats only two materials (or groups of materials) at a time, one

of the materials is used to determine the slope of the interface line. This is done by using

neighboring fractions of this material, and the pythagoream theorem. Figure 4 demonstrates

the neigbors of a cell containing materials � and �. The cell is treated as a unit-square for

this calculation. The slope is defined as:
�
�Æ� � ���� � �	� � ����, where ��, 	�, ��,

and Æ� are the fractions of material � present in the neighbor cells. Youngs mentions that

neighboring ”corner” cells may also be used to determine the slope if this equation fails.

(One needs to be careful not to overlook the negative slope. If one (but not both) of the
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Figure 3: SLIC approximation in x-pass (a) and y-pass (b).

��
�� ��

��

Æ�

��

Figure 4: A two-material cell with material fractions 
� and 
� . Neighbor cells have
material fractions ��, 	�, ��, and Æ� for material �.
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Figure 5: Result of Youngs’ Algorithm. The material interface representation is discontin-
uous.

interior differences is negative, the negative root should be used for the slope.)

Once the slope is determined, the line segment with this slope is positioned in the cell

such that the volume fractions are preserved. For more than two materials, the user must

determine in which order the interfaces must be calculated. For example, when �, �,

�, and � are present, are they grouped first by � and ��� or �� and ��? Different

interfaces will result depending on the ordering/grouping chosen. Figure 5 demonstrates

the results of applying Youngs’ algorithm to the example in Figure 2.

The algorithm of Gueyffier [8] is similar to that of Youngs in that it requires an estimate

of the normal vector to the interface in order to reconstruct the interface. He utilizes finite

differencing or least-squares methods to determine this normal, depending upon the order

of accuracy (first or second) desired. As with the SLIC algorithm, this one is used to track

the advection of fluids.

In 2D, a line segment representing the boundary surface is constructed perpendicular

to the interface normal. The line segment is positioned within the cell such that it divides

the cell into appropriately proportioned areas. For 3D, a cutting-plane is computed whose

normal is the computed interface normal. Again, the cutting plane is positioned within the

cell so that volume fractions are preserved.
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It is unclear how multiple materials can be handled, unless they are grouped as in other

algorithms discussed here, and the cutting planes clipped appropriately.

Pilliod and Puckett [9] compare various volume-of-fluid interface reconstruction algo-

rithms, including SLIC, noting differences in the surfaces reconstructed and demonstrating

first-order or second-order accuracy. Their goal is to reproduce a linear interface.

Nielson and Franke [10] have presented a method for calculating a separating surface

in an unstructured grid where each vertex of the grid is associated with one of several

possible classes. Their method generalizes the marching cubes/tetrahedra algorithm, but

instead of using a strict binary classification of vertices, it allows any number of classes.

Edges in tetrahedral grids whose endpoints have different classifications are intersected

by the separating surface. Similarly, the faces of a tetrahedron whose three vertices are

classified differently, are assumed to be intersected by the surface in the middle of the

face. When all four vertices of a tetrahedron have different classifications, the boundary

surface intersects in the interior of the tetrahedron. The resulting “mid-edge”, “mid-face”

and “mid-tetrahedron” intersections are triangulated to form the surface.

Using our dual-cell representation, Figure 6 shows how Nielson’s and Franke’s algo-

rithm might be applied to the example in Figure 2. As this algorithm requires classification

of vertices, the greater �� value in the volume fraction tuple for each cell was chosen as

the classifier. The dual mesh has also been triangulated so that the algorithm might be ap-

plied. Mid-edge intersections are made half-way between two endpoints that have different

classifications. Mid-face intersections are taken when all three vertices of the triangle have

different classifications.

The algorithm presented here generalizes the above schemes. It utilizes a grid that has a

barycentric coordinate associated with each vertex. This allows the generation of material

boundaries directly from the intersections calculated in “barycentric space.” This algorithm

handles multiple materials and can reconstruct layers and “Y-type” (non-manifold) inter-

faces with equal ease. This algorithm does not rely on application-specific knowledge of

hydrodynamics or other simulation codes, but solves the problem from a purely mathemat-

ical viewpoint.

Figure 7 demonstrates the results of applying this algorithm to the example in Figure 2.

It should be noted that the intersection point for this algorithm is not in the correct cell, for

the reasons provided in Section 6.
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Figure 6: Dual representation (a) and result (b) for the Nielson-Franke Algorithm.

��

��

��

Figure 7: Result of the algorithm developed in this thesis. The material interface represen-
tation is continuous.



12

���� ��� ���

��

��

��

��� �� ��

��� �� ��

��� �� ��

Figure 8: Barycentric triangle.

3. THE TWO-MATERIAL CASE

Consider a grid �, where each vertex of � has an associated barycentric coordinate �. In

the case of two materials, � is the two-tuple � � ���� ���, where �� � �� � �. In this

case, I define the material boundary to be the set of points where �� � �� � �

�
.1 As

linear interpolation of barycentric coordinates is used, only the point on each edge where

�� � �� � �

�
needs to be found. By computing these points on all edges of a cell, I can

use a marching tetrahedra implementation [5] to compute the boundary surface in a cell

when only two materials are present. (If only one material is present in a cell, no boundary

surface exists). The two-material case reduces to an isosurface calculation, determining the

isosurface �� �
�

�
, which can easily be implemented by a marching tetrahedra method.

4. THE THREE-MATERIAL CASE

In the three-material case, each vertex has an associated 3-tuple � � ���� ��� ���, where

�� � �� � �� � �. Here, �� is the fraction of material ��, �� is the fraction of ��, and

�� is the fraction of ��, respectively. The coordinate ���� ��� ��� lies on the equilateral

triangle with vertices ��� �� ��, ��� �� ��, and ��� �� ��, as shown in Figure 8. This triangle

1The rationale behind this decision is that an infinitesimally small cell whose center is on the boundary
will contain approximately half of each material.
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��� �� ��

��� �� ��

��� �� ��

�

���

���

��

��

�� ���

Figure 9: Partitioning the barycentric triangle into regions. The point � is the point � �
�
� �
�
� �
�
�,

the center of the triangle. The line segments ���, ���, and ��� bound the Voronoi cells �� in
the interior of the triangle.

is partitioned into three regions, defined by the Voronoi cells ��, ��, and ��, see Figure 9.

The Voronoi cells �� are bounded by the edges of the triangle, and the three line segments

���, ���, and ���, where �� � �� and �� �
�

�
, �� � �� and �� �

�

�
, or �� � �� and �� �

�

�
,

respectively.

For two-dimensional triangular grids, the associated barycentric coordinates of a trian-

gle 
 are mapped onto a triangle 
 � in barycentric space. The intersections of the edges of


 � with the edges of the Voronoi cells in the barycentric triangle are used to define material

interfaces in 
 �. These intersections are then mapped back to points in 
 , using the same

linear parameters to determine the intersections on the edges of 
 . There are three cases:

� The triangle 
 � does not intersect ���, ���, or ���. In this case, it is assumed that no

material boundary exists in 
 .

� The triangle 
 � intersects at least one of the line segments ���, ���, or ���, and the

center � of the barycentric triangle does not lie inside 
 �. In this case, intersections

are calculated on the edges of 
 , corresponding to the intersections of 
 � with ���,

���, and ���, respectively. (The triangle 
 � may intersect at most two of these lines.)

The material boundary line segments inside 
 are then defined as the line segments

that connect the corresponding edge intersections in 
 . Figures 10a, 10d, and 10e

illustrate these cases.

� The point � lies inside 
 �. In this case, three edge intersections are calculated for 
 ,
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Figure 10: Mapping intersections from barycentric space to the triangle 
 . The images
on the left show the triangle 
 � in barycentric space, and the images on the right show the
material boundary line segments mapped from barycentric space to the original triangle 

in physical space.
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corresponding to the intersections of 
 � with ���, ���, and ���, respectively, and a point

in the interior of 
 , corresponding to the point � in 
 �. The material boundary line

segments are defined as the three lines connecting the edge intersections and the face

point. Figures 10b and 10c illustrate this case.

If one of the �� values is zero for each of the three vertices of a triangle, then all points

map to an edge of the barycentric triangle. Thus, the situation reduces to the two-material

case. If only one material is present at all three vertices, then no intersections are calculated.

For three-dimensional tetrahedral grids, the associated barycentric values of the vertices

of each face of a tetrahedron 
 are used to map the tetrahedron to an image 
 � of 
 in

barycentric space. Intersections are calculated separately for each face of 
 � and mapped

back to 
 .

There are three cases:

� No edge of the tetrahedron 
 � intersects the line segments ���, ���, or ���. In this case,

no material boundaries exist in the tetrahedron 
 .

� The edges of the tetrahedron 
 � intersect at least one of the line segments ���, ���, or

���, but the point � �
�
� �
�
� �
�
�, the center of the barycentric triangle, does not lie inside

any of the faces of 
 �. In this case, the intersection line segments for each triangular

face of 
 are calculated and a triangulation is determined from these segments by

following the marching tetrahedra algorithm [5]. Figures 11a, 11c, 12d, 12f, and 13g

illustrate the possible cases.

� The center point of the barycentric triangle lies inside two faces of 
 �. In this case,

two faces have a single material boundary line segment connecting two edge inter-

section points, and two faces have three material boundary line segments meeting

in the interior of two faces. The intersections are mapped back to the tetrahedron


 , using linear interpolation. Using the material boundary line segments for each

face, and the line segment connecting the two points in the interior of two faces of 
 ,

a valid triangulation of the boundary surface can be determined. Figures 11b, 12e,

reffig:tet-split3h, 13i illustrate the possible cases.
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Figure 11: Examples of material boundary surface determination for tetrahedral grids.
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Figure 12: Examples of material boundary surface determination for tetrahedral grids.
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Figure 13: Examples of material boundary surface determination for tetrahedral grids.
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(a) (b)

Figure 14: Voronoi cell decomposition in four-material case. The figure illustrates a three-
dimensional projection of the barycentric tetrahedron from four-dimensional space. The
tetrahedron is segmented into four Voronoi cells in (a). In (b), a tetrahedron, mapped from
physical space, is shown inside the barycentric tetrahedron.

5. THE GENERAL CASE

In the case of four materials, each vertex has an associated barycentric coordinate given by

the four-tuple � � ���� ��� ��� ���, where �� � �� � �� � �� � �, and �� � �. By con-

sidering the tetrahedron having vertices ��� �� �� ��, ��� �� �� ��, ��� �� �� ��, and ��� �� �� �� in

four-dimensional space, a partition of this tetrahedron can be constructed similarly to the

three-material case. Again, the Voronoi cells are used for the decomposition of the barycen-

tric tetrahedron. The boundaries of these cells include parts of the faces of the tetrahedron

and six planar pieces, which are defined by �� � ��, �� � ��, �� � ��, �� � ��, �� � ��,

and �� � ��. This Voronoi partition is shown in Figure 14a.

For two-dimensional grids, the four-dimensional barycentric coordinates associated

with the vertices of a triangle 
 are mapped into a triangle 
 � in barycentric space. A

clipping algorithm is used to generate the intersections in the triangle 
 �, clipping against

the six planes defining the boundaries of the Voronoi cells of the barycentric tetrahedron.
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The tetrahedron is stored in a binary space partitioning (BSP) tree, and the clipping algo-

rithm described by Samet [11] is applied. Once the intersections are determined by the

clipping algorithm, the material boundary line segments can be determined for the triangle


 .

For three-dimensional tetrahedral grids, a similar clipping algorithm is used for the

image 
 � of a tetrahedron 
 . This enables the calculation of the boundary surfaces inside

the tetrahedron 
 �, which are then mapped back to the tetrahedron 
 in physical space.

In the general case of � materials, a tetrahedron 
 is mapped to a tetrahedron 
 � in

an �-simplex in barycentric space. The �-simplex is partitioned into Voronoi cells whose

boundaries consist of the faces of the �-simplex and the
�
�

�

�
hyperplanes defined by �� �

��, where � � � � � � �. The material boundaries for 
 � are calculated by using

a clipping algorithm and then are mapped back to physical space to form the material

boundaries inside 
 . A BSP algorithm is utilized to perform the clipping.

6. DISCUSSION

The algorithm presented in this thesis runs in effectively the same time as does the marching

cubes/tetrahedra algorithm. I traverse the cells of a grid and calculate, for each cell, a

polygonal representation of the material boundaries. Most grid cells in common examples

contain only one material, and boundaries do not exist in these cells.

One must note that the algorithm can miss material boundaries in tetrahedra. In any

isosurface-type algorithm, it is possible for the isosurface to enter a tetrahedron, but only

intersect one edge. In this case, the algorithm cannot detect the material boundary from

only the information at the vertices. It should also be ntoed that, as illustrated in Figure 11a,

the tetrahedorn has non-zero fractions of all three materials, but only two materials are

extracted.

In the three-material case, the point � � � �
�
� �
�
� �
�
� has been chosen as the “center” of

the barycentric triangle. This assumes that there are three distinct sectors in the barycentric

triangle, subdividing the triangle in a “Y” fashion, and that a cell of infinitesimally small

size contains about one-third of each material in the cell. This is not always the case. For

example, consider a “T intersection,” where any small cell would contain one-half of one

material and one-quarter of the other two materials. The segmentation of the barycentric
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triangle can be adjusted so that the point � is at an arbitrary location in the triangle, and

the edges that determine the intersections can be adjusted appropriately. This can be done

by sampling in a larger neighborhood of a specific cell to understand how to weigh the

materials about the “Y point.” This is a global process: neighboring cells must agree witht

the change in order to maintain continuity.

In the four-material case, the center of the tetrahedron can also be adjusted. However,

this implies that the “center” vertices on the faces must also be adjusted so that the separat-

ing surfaces remain planar. In the �-material case, similar considerations also hold when

adjusting the center of the �-simplex.

The algorithm presented here can be considered as a direct generalization of the Nielson-

Franke algorithm [10]. Each vertex of a grid � has an associated barycentric coordinate

� � ���� ��� ���� ���, and by restricting material fractions such that exactly one �� � �, the

case is obtained where each vertex is only associated with one material. In this case, this

algorithm produces the results produced by the Nielson-Franke algorithm.

7. RESULTS

This algorithm has been implemented and used to generate material interfaces for a variety

of data sets. Figure 15 illustrates the material interfaces for a data set consisting of three

materials. The boundary of the region containing material 1 has a spherical shape, and the

other two material regions are formed as concentric layers around material 1 – forming two

material interfaces. The original grid is rectilinear-hexahedral consisting of �� � �� � ��

cells. The dual grid was constructed and then each dual cell was split into six tetrahe-

dra, see Nielson [1], creating 1,572,864 tetrahedra. Approximately 30% of the tetrahedra

containing the material boundaries contain two boundary surfaces.

Figure 16 shows the material interfaces for a three-material data set of a simulation of a

ball striking a plate consisting of two materials. The original data set rectilinear-hexahedral

and has a resolution of �	� 
	� 
	 cells. Again, the dual grid was created, and each dual

cell was split into six tetrahedra, creating 28,037 tetrahedra. Four instances of the data set

are shown.

Figure 17 illustrates the material interfaces for a human brain data set. The original grid

is rectilinear-hexahedral containing 
��� 
��� �
� cells. Each cell contains a probability
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Figure 15: Boundary surfaces of two materials formed as concentric spherical layers.

Figure 16: Simulation of a ball striking a plate consisting of two materials. The picture in
the upper-left corner shows the initial configuration, and the following sequence of pictures
shows the boundary surfaces as the ball penetrates the two-material plate.
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(a) (b)

Figure 17: Brain data set. The material boundary surfaces are shown in red, green and
yellow. The polygons forming the material boundaries are clipped to show the interior of
the data set. Two views of the material boundary surfaces, rotated differently, are shown in
(a) and (b).

tuple giving the probability that each material is present at the point. The resulting dual

data set contains over eight million tetrahedra.

8. ERROR ANALYSIS

It would be interesting to know how the volume fractions resulting from the described

method compare to the original volume fractions, both over the entire mesh and on a per-

cell basis. To determine resulting volumes, a closed polyhedra is first computed, represent-

ing the individual material volumes, using the interface as a starting point. The volume of

the polyhedra is then calculated. This provides volumes for each material in the tetrahe-

dron. The volumes for each of the tetrahedra in a cell are summed, then averaged to volume

fractions.

Comparing overall volumes is then a straightforward procedure. First, the original

volume fractions are summed and averaged to volume fractions, then the resulting volume

fractions are summed and averaged.

In order to perform a comparison on a per-cell basis, data representing similar things
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(0.165, 0.5625, 0.2725) (0.17, 0.12, 0.71)

(0.545, 0.43, 0.025) (0.555, 0.075, 0.37)

(0.0, 0.83, 0.17) (0.0, 0.18, 0.82) (0, 0, 1)

(0.08, 0.0, 0.92)

(1, 0, 0)

(0.06, 0.94, 0.0)

(0.52, 0.48, 0.0) (0.54, 0.0, 0.46)

(0.60, 0.30, 0.10)

Figure 18: Average volume fractions at vertices of dual mesh. The averages are used to
obtain ”original” volume fractions per cell.

are needed. For this reason, the original volume fractions at the vertices of a dual cell are

averaged to obtain an original volume-fraction average per dual cell. These averages can

then be compared to the resulting fractions. Figure 18 illustrates this point. Figure 19

shows the computed volumes fractions resulting from the application of this algorithm, and

Figure 20 compares original volume fractions with these results.

The following charts illustrate the errors calculated from examples presented previ-

ously. Errors are reported as number of dual cells that fall into a certain error range. Dual

cells that contained zero error for a particular material are not reported in the charts. Thus,

the first error range is the interval (0, 0.05].

For Figure 21, which shows the errors for the data set in Figure 15, there were 
��� ���

total dual cells. The number of zero-error dual cells for materials �, 
 and 	 are 
	
���,



�
��, and 
		���, respectively. Figure 22 gives a comparison of the original and new

volume fractions.

Figures 23, 25, 27, and 29, show the errors for the data sets in Figure 16. There were


�� ��
 total dual cells in these data sets. Figures 24, 26, 28, and 30 give comparisons of

the original and new volume fractions.

Figure 31 charts the errors for the brain data set in Figure 17. The number of zero-
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(0.71609)

(0.28391)
(0.40047)

(0.59953)

(0.065625)

(0.934375)
(0.742187)

(0.161719)

(0.096094)

Figure 19: Volume fractions resulting from described algorithm.

Results:
(0.71609, 0, 0.28391)

Results:
(0.59953, 0.40047, 0)

Results: 
(0.065625, 0, 0.934375)

Results:
(0.096094, 0.742187, 0.161719)

Averaged Original:
(0.165, 0.5625, 0.2725)

Averaged Original:
(0.17, 0.12, 0.71)

Averaged Original:
(0.545, 0.43, 0.025)

Averaged Original: 
(0.555, 0.075, 0.37)

Difference:
(0.068906, 0.179687, 0.110781) 

Difference:
(0.104375, 0.12, 0.224375)

Difference:
(0.05453, 0.02953, 0.025)

Difference:
(0.16109, 0.075, 0.08609)

Figure 20: Overall volume fractions. Given: (0.3111, 0.3033, 0.3855); Computed: (0.3693,
0.2857, 0.3450); Difference: (0.0582, 0.0176, 0.0405). The higher error differences on the
per-cell basis were expected because mid-face intersections cause problems due to the dual
representation.
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Figure 21: Error analysis for ”thin shells data set” shown in Figure 15.

Original volume fractions (summed over original mesh)

New volume fractions (summed over dual mesh)

0.5205060 0.0276901 0.4518040

difference: 0.0049170 0.0002886 0.0046280

material 1 material 2 material 3

0.5155890 0.0279787 0.4564320

Thin Shells

Figure 22:
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Figure 23: Error analysis for first data set shown in Figure 16. The number of zero-error
dual cells for materials �, 
 and 	 are 
��
�, 
���	, and 
����, respectively.

Original volume fractions (summed over original mesh)

New volume fractions (summed over dual mesh)

0.18864400 0.00778844 0.80356800

difference: 0.04203800 0.00112163 0.04316000

material 1 material 2 material 3

0.14660600 0.00666681 0.84672800

Ball 1

Figure 24:
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Figure 25: Error analysis for second data set shown in Figure 16. The number of zero-error
dual cells for materials �, 
 and 	 are 
����, 
��	�, and 
����, respectively.

Original volume fractions (summed over original mesh)

New volume fractions (summed over dual mesh)

0.18780300 0.00723687 0.80496000

difference: 0.04199800 0.00070936 0.04270800

material 1 material 2 material 3

0.14580500 0.00652751 0.84766800

Ball 2

Figure 26:
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Figure 27: Error analysis for third data set shown in Figure 16. The number of zero-error
dual cells for materials �, 
 and 	 are 
���	, 
���
, and 
����, respectively.

Original volume fractions (summed over original mesh)

New volume fractions (summed over dual mesh)

0.18778000 0.00695660 0.80526300

difference: 0.04197100 0.00069727 0.04266800

material 1 material 2 material 3

0.14580900 0.00625933 0.84793100

Ball 3

Figure 28:
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Figure 29: Error analysis for fourth data set shown in Figure 16. The number of zero-error
dual cells for materials �, 
 and 	 are 
����, 
���
, and 
����, respectively.

New volume fractions (summed over dual mesh)

0.1876770 0.0667801 0.8056450

difference: 0.0415440 0.0613225 0.0427640

material 1 material 2 material 3

0.1461330 0.0054576 0.8484090

Ball 4

Original volume fractions (summed over original mesh)

Figure 30:
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Figure 31: Error analysis for the brain data set in Figure 17.

error dual cells for materials �, 
 and 	 are �����

, ���	���, and ���
���, respectively.

Figure 32 gives a comparison of the original and new volume fractions.

9. CONCLUSIONS

In this thesis, a new algorithm for material boundary surface reconstruction from data sets

containing material volume-fraction information has been presented. A given grid is trans-

Original volume fractions (summed over original mesh)

New volume fractions (summed over dual mesh)

0.1177090 0.0840189 0.7982720

difference: 0.0048540 0.0000359 0.0048890

material 1 material 2 material 3

0.1225630 0.0840548 0.7933830

Brain

Figure 32:
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formed to a dual grid, where each vertex has an associated barycentric coordinate that

represents the fractions of each material present. After tetrahedrizing the dual grid, the

material interfaces are constructed by mapping each tetrahedron to barycentric space, cal-

culating the intersections with Voronoi cells in barycentric space. These intersection points

are mapped back to physical space and triangulated to form the resulting boundary surface.

The algorithm can treat any number of materials per cell, and since it is based on tetrahedral

grids, it can be used with any grid structure.

Concerning future work, a “measure-and-adjust” feature could be added to the algo-

rithm. Once an initial boundary surface approximation is calculated, the caluclation of

(new) volume fractions for cells can be done directly from this boundary surface. This will

enable the calculation of the difference between the original volume fractions and the vol-

ume fractions as implied by the initial boundary surface approximation. It is then possible

to adjust material interfaces to minimize the volume fraction deviations. It may also be

possible to adjust the material interface within each tetrahedron (or cell), in a manner simi-

lar to the works cited in Section2. If so, it will be possible to presrve volume fractions on a

per-tetrahedron (per-cell) basis. It is planned to extend this algorithm to multidimensional

grids.
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