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reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



-V~ ' - LBL-909

DIFFUSION COEFFICIENTS IN HETEROGENEOUS MEDIA ™

Grove C. Nooney
Lawrence Berkeley Laboratory
University of California

Berkeley, California

April 4, 1972

ABSTRACT

In the general one-dimensional diffusion equation
appear a diffusion coefficient, D, and an activity coefficient, y.

Under conditions of continuity, if y depends only on concentration,

then the steady~state distribution of concentration is a

monotonic function of location. With such distributions
conditions on D are derived for herectofore anomalous

evaporation through membranes.

r——

Work done under the auspices of the U.S. Atomic Energy
Commission. '
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The genéral equation for one-dimensional diffusion in a medium

is (Jost, 1970, p. 156) .
Ce= (Cup /N, B M)

in which, and in what follows, subscripts denote pértial derivatives,

t and x are the timg and spaee variables, respectively, N is Avogadro's
number, and C .-—. C(x,t) is the molar concentration, B = pl;(x,C) the
chemical potential, and u = u(x, C) the mobility of the diffusing substance.
Rela.ting the poténtial to concentration and activity éoeffi_cient, Y = y(x, C).,
allows writing eq. (1) as.

Ce=[D(yC)lx . | (2)

where the diffusion coefficient, D = D(x,C), is proportional to u/y and
non-negative.
The steady-state.fo_rm of'elbq. (2) is
D(yClx = -P | - (3)
for some constant, P. Eq. (3) shows that if D is continuous, the‘n the

steady-state bactivity, yC, is amonotonic function of x, This in turn'implies

that if P #0 and Yy is a function of C alone then a continuous steady-state C is

vitéelf a monotonic function of x, For otherwise C-and hence  yC would

assume the same value at two distinct points in the medium, the monotonic

y C would be constant between those points, and P would be zero.



-2 \ LBL-909

More complicated steady-state distributions of concentration may
be obtained, in partic‘ular, with the more ‘general y = y(x, C). Thus, for

instance, if a steady-state concentration ass_oci‘a‘ted ‘with diffusive flow

through a continuous membrane should show a maximum within the membrane,

then }th'é .activity c‘oefficie.nt‘would depend explicitly on location within the‘
membrane.

When y depends on x only throﬁgh C, an assurhption made tacitly
by Jost (1960, p. 156) and others, then (yC), = -(y,c C +y)C,, aform
long recognized (Johnson, 1941; Birchenall and Mehl, 1947). Thus eq. (2)

becomes
C,=[Dlvg Cc+vyiC, ], .,

and with
D¥ = D(yc C + y) | | (4)
eq. (2) assumes the moreé usual form of the diffusi_o_n' equati.on,

Cy= (D*C_), . | o ()

In t,hils caS(e the ste_ady- state solution is monoto‘nic as sho_wn‘, and therefore
the steady-state D#* cannot change sign.

« ~Monotonic distributioﬁs of .conc_entrat-ion suffice in principle for the
>de.scrivption of certgih membrane behavior, although ex.p'lli‘civt dependence of

D on x may be necessary. For example, consider a membrane extending

®
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in thickness f.rom x = 0 tox = 1, and suppose the :silrface concentrations
maintained' at C(0) = a and C(1) = b,.a # b. lWith some biological or
synthetic polyﬁ)er membranes, inter(.:ha.hg;mg a and b increases the vsteady— _
state floW through the membrane. Su_ch membranes are called oriented.
Suppos'e the flow, P, through an orienfed membrane is given by the steady-
etate form of éq_. (5): —P = D*C,. If D* may be expressed as-a product

of two functions, each of a single variable: D*(X,C) = [1/f(x)] g(C), then

b 1 . -1
-P = [ g(C)C [ [ f(x)dx]
a 0

provided thvat both integrals exist. In this eése, the interchange of a and b
changes only the sign of P, rever_eihg the flow but preserving its mé.ghitude.
Therefo.re, the diffusion coefficient of »the .oriented membrane cannot be
separable i_n that way., In particular, D cannetvbe a function only of x or
ovn‘ly of C. Crank (1956, 'p.. 262) reached this co_ncluéion inv the same way.
Another egamﬁle of the llimitvation of the difﬁxsion C()t—‘fficie‘vnt is. a
problem in diffusion-controlled evaporation considered by Craﬁk (1950;
.1956., ‘p_. 2_89). Reported observations suggest thet under cﬁertein e'onditions_.
the "'ra.te df evaporatioﬁ of a substance throegh a reembraﬁe may be increasea
by inc;eesing the concentration of fhe}subs‘tanc_e in the meid-ium into which
evaporation occursv. That is, evapo.'ration into a hﬁmi.d atmosphere may
‘be'fast'e.r t.ha‘ri \.into adry atmosphere. These obser;/ation‘s Bev-(g until rﬂ)w
defied explanéti,on by.o.fdiria ry;div.ffus.ion-r'n.ei}.l‘ocvls.‘v.-_ In .t}}e ‘sttzra_d‘y— state ’i the

rate_ of evaporation is vthe,flow thro_ugh the membrane. Suppose this flow
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given by P - | -D*C,. Aﬁé with oriented merhbrané's, this D>l= rﬁust depen‘d‘
- explicitly on x and C- and cannot be éepafable into approp"riately integrable
factors of a singie variable each.

T‘o fix ideas, let the membrane extend in. thickness from x = 0
tox= 1, and denote by C(x) or C’(‘x) the distribut{qﬁ of concentration
when.the concentration at the ev.a‘porating. surface is b or b', respectively.
Let C(0) = Cc'(0) = i, and assume.l.)* continuous. ‘The steady states; are

" described by

D#(x,C)Cy = -P . ' , (7)

and
D*(x,C')C] = -Q _ (8)
" where Q > P for b' > b, Eva;poi_‘ation from the membrane surface at x =1

implies D* 2 0. Egs. (7) and (8) show that if, at some point x, C'(x) = C(x)

" then D*{ x, C(x)] = D¥[x, C'(x)] = 0 or C)’((x) < C)‘((x). If the latter held

at every point of coincidence of C and C', then C'(x) = C(x) throughout the

membrane and necessarily b' = b. Since b! > b and C'(0) = C(0), the steady-

state D>1< has a zero in the rﬁefﬁbrane. Moreover, if D*(O, 1) # 0 then there
.‘is;a.n x' > 0 where C and C' cv-oincide and wv}.lerev‘D>1<('>£', C) = 0. Thus, it’
may .be assumed that D*(‘O,v 1) = 0, for othe‘rvwvise onve déal; with es‘sentiall‘y
thevsame evaporation problem in a membrane extevndingt from x = x' -

to x = 1, with C(x') = C'(x') and D* = 0 at the surface x = x'.
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A D* leading to the evapdrative behavior described is

b>:<(x, C) = 2x Nx (1 - C)_Z

Note that this D* is not excluded by the fovfegoing since, although it is

multiplicatively sepaf'able, ‘the factors are not appropriately integrable.

.Solving eq. (7) with this D* and the boundary conditions C(0) = 1 and

C(1) = 1 - a yields C(x) = 1 - aNx and P = 1/a. For this solution, C,

D#(x, C) = 2 Nx/a® and D*(0, 1) = 0. Thus, as C(1) increases, P

‘increases also.
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