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DIFFUSION COEFFICIENTS IN HETEROGENEOUS MEDIA':' 

Grove C. Nooney 

Lawrence Berkeley Laboratory 
University of California 

Be rkeley, California 

April 4, 1972 

ABSTRACT 

In the general one-dimensional diffusion equation 

appear a diffusion coefficient, D, and an activity coefficient, y. 

Under conditions of continuity, if y depends only on concentration, 

then the stead y- sta te distribution of concentra tion is a 

monotonic function of location. With such distributions 

conditions on D are derived for heretofore anomalolls 

evaporation through membrane s. 

::: 
W()rk done under the auspices of the U. S. Atomic Energy 
Commission. 
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.The general equation for one-dimensional diffusion 111 a mediurn 

is (Jost, 1970, p. 156) 

== (e u fJ. IN) x x (1) 

in which, and in what follows, subscripts denote partial derivatives, 

t and x are the time and space variables, respectively, N is Avogadro's 

number, and e 0-; e(x, t) is the rnolar concentration, fJ. == fJ.(x, e) the 

chemical potential, and u ::: u(x, e) the mobility of the diffusing substance. 

Relating the potential to concentration and activity coefficient, y := Vex, e), 

allows writing eq. (1) as 

where the diffusion coefficient, D::: D(x, e), 1S proportional to u/y and 

11.011.- negative. 

The steady-state form of e,q. (2) 1S 

D(ye)x = -p (3) 

for some constant, P. Eq. (3) shows that if D is continuous, then the 

steady-state activity, ye, is a monotonic function of x. This in turn implies 

that if P f:. ° and y is a function of e alone then a continuous steady- state C is 

itself a monotonic ftinction of x. For otherwise G and hence ye would 

assume the same value at two distinct points in the medium, the monotonic 

ye would he constant between those points, and P wouldbe zero. 
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More complicated steady- state distributions of concentration may 

be obtained, in particular, with the more general y = y (x. C). Thlls, for .,,.-

instance, if a steady- state concentration associated with' diffusive flow 
I 

(. 

through a continuous membrane should show a maximum within the membrane, 

then the activity coefficient would depend explicitly on location within the 

n1ernbranf' . 

When y depends on x only through C, an as sumption made laci tly 

by Jost (1960, p. 156) and others, then (yC)x = {yc C + y )C x ' a form 

long recognized (Johnson, 1941; Birchenall and Mehl, 1947). Thus eq. (2) 

becon1e s 

and with 

D * = D (Yc C + Y ) (4) 

eq. (2) assumes the more usual form of the diffusion equation, 

C = (D':'C ) t x x (5) 

In this case the steady- state solution is monotonic as shown, and therefore 

I; 
the steady-state D':' cannot change sign. 

, 

Monotonic distributions of concentration suffice in principle for the 

de sc ription of ce rtain membrane behavior, although expl1c it dependence of 

D on x may be neces sary. For example, cons ide r a membrane extending 
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ln thickness from x=:O to ,x =: 1,. and suppose the surface concentrations 

maintained at C(O) := a and C(1) = b,. a f. b. With some biological or 

synthetic polymer rnembranes, interchanging a and b increases the steady-

state flow through the membrane. Such membranes are called oriented. 

Suppose the flow, P, through an oriented membrane is given by the steady-

state form of eq. (5): If D':' may be expressed as a product 

of two functions, each of a single variable: D':'(x, C) =: [1/f(x)J g(C), then 

b 1 -1 
-P =: J g(C)dC [J f(x) dxl 

a o 

provided that both integrals exist. In this case, the interchange of a andb 

changes only the sign of P, reversing the flow but preserving its magnitude. 

Therefore, the diffusion coefficient of the oriented membrane cannot be 

separable in that way. In particular, D cannot be a function only of x or 

only of C. Crank (1956, p. 262) reached this conclusion in the same way. 

Another example of the limitation of the diffusion coefficient is a 

problem in diffusion-controlled evaporation considered by Crank (1950; 

1956, p. 289). Reported observations suggest that under certain conditions, 

~-
the rate of evaporation of a substance through a menlbrane may be increased 

by increasing the concentration of the substance in the medium into which 

evaporation occurs. That is, evaporation into a humid atmosphere nlay 

be faster than into a dry atmosphere. Thcs(~ observations have until no\-v 

defied explanation by ordinary diffusion methods. In the steady-state, tht~ 

rate of evaporation is the flow through the membrane. Suppose this flow 
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given by p::.: .,.D':'C x • As with oriented membranes, this D':' must depend 

. explicitly on x and C and cannot be separable into appropriately integrable )-

factors of a single variable each. (. 

To fix ideas, let the membrane extend in thickness fronl x = 0 

to x::: 1, and denotc by C(x) or CI(x) the distribution of concentration 

when the concentration at the evaporating surface is b or hi, respectively. 

Let C(O) ::: C 1(0) ::: 1, and as sume D':' continuous. The steady state s are 

described by 

(7) 

and 

D*(x, C I)C~::: -Q (8) 

whereQ> P for hi > b. Evaporation from the membrane surface at x ::: 1 

implies D* ~ O. Egs. (7) and (8) show that if, at some point x, CI(x) ::: C(x) 

then D>:' [x, C(x)] ::: D*[ x, C '(x)] :: 0 or C' (x) < C (x). If the latter held x . x 

at every point of coincidencc of C and C I, then C I{X) :S C(x) throughout the 

membrane and necessarily b ' :S b. Since b l > b .and C 1(0) ..::. C{O), the steady-

state D>:' has a zero in the membrane. Moreover, if D':'(O, 1) :/:. 0 then there 

is an Xl> 0 where C and C' coincide and where D>:'(x', C) ::: O. Thus, it 

may be assumed that D>):(O, 1) ::: 0, for otherwise one deals with essentially 

the same evaporation problem in a membrane extending from X= Xl 

to x::: 1, with C(XI) ::: C'(XI) and D>:' ::: 0 at the surface x::: Xl. 

" 

r 
I 
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A D':' leading to the evaporative behavior described is 

D':'(x, C) = 2x ~ (1 - Cf2 

Note that this D':' is not excluded by the foregoing since, although it is 

multiplicatively separable, the faCtors are not appropriately integrable. 

Solving eq. (7) with this D':' and the boundary conditions C(O) == 1 and 

C(1) =: 1 - a yields C(x) = 1 - a '\jIX and P", 1/a. For this solution,C, 

D~'!(x, C):-.- 2 . Ix' la2 and D'··'(O, 1) = o. .... "\j " Thus. as C(1) increases, P 

inc rease s also. 
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