
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Power Efficient Image Classification and Generation using Fixed Point Gibbs Sampling

Permalink
https://escholarship.org/uc/item/9gn7g5cs

Author
Kan, Chih-yin

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9gn7g5cs
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Power E�cient Image Classification and Generation

using Fixed Point Gibbs Sampling

A thesis submitted in partial satisfaction of the

requirements for the degree

Masters of Science

in

Electrical Engineering
(Intelligent Systems, Robotics and Control)

by

Chih-yin Kan

Committee in charge:

Professor Ken Kreutz-Delgado, Chair
Professor Truong Nguyen
Professor Piya Pal

2018

Copyright

Chih-yin Kan, 2018

All rights reserved.

The thesis of Chih-yin Kan is approved, and it is

acceptable in quality and form for publication on

microfilm:

Chair

University of California, San Diego

2018

iii

EPIGRAPH

Torture the data, and it will confess to anything.

— Ronald Coase

No computer has ever been designed that is ever aware of what its doing;

but most of the time, we aren't either.

— Marvin Minsky

iv

TABLE OF CONTENTS

Signature Page . iii

Epigraph . iv

Table of Contents . v

List of Figures . vii

List of Tables . viii

Acknowledgements . ix

Vita and Publications . x

Abstract of the Thesis . xi

Chapter 1 Introduction . 1

Chapter 2 Markov Chain Monte Carlo 4
2.1 Gibbs Sampling . 5
2.2 Quantization . 7

Chapter 3 Overview of the Restricted Boltzmann Machine 8
3.1 What is an RBM? . 8
3.2 Deep Belief Network (DBN) 10
3.3 Training a Boltzmann Machine 11

3.3.1 Supervised Training 14
3.3.2 Unsupervised Training 14

3.4 Gibbs Sampling for the RBM 15
3.4.1 Spatial Approximation to the Activation Function 16
3.4.2 Temporal Approximation to the Activation Func-

tion . 17

Chapter 4 Discriminative RBM Model with Finite Precision (FP) 21
4.1 E�ciency of Discriminative RBM with FP 22

4.1.1 Accuracy of FP Discriminative RBM 23
4.1.2 Power Consumption of FP Discriminative RBM . 23

4.2 Results on the Discriminative RBM 26
4.2.1 Accuracy Results 26
4.2.2 Power Consumption Results 27
4.2.3 E�ciency . 28

4.3 Evaluation . 29

v

Chapter 5 Generative RBM Model with Finite Precision 31
5.1 E�ciency of Generative RBM with FP 32

5.1.1 MMD of FP Generative RBM 33
5.1.2 Power Consumption of FP Generative RBM . . . 34

5.2 Sigmoid Approximation for Generative RBM 36
5.2.1 Selecting the most e�cient temporal approximation 37

5.3 Results of the Generative Model 39
5.3.1 MMD Results . 39
5.3.2 Power Consumption Results 40
5.3.3 E�ciency . 42

5.4 Evaluation . 44

Chapter 6 Conclusions and Future Work 45

Bibliography . 47

vi

LIST OF FIGURES

Figure 1.1: Overview of the various aspects of hardware design which are
addressed and utilized in this thesis 2

Figure 2.1: Markov Chain . 5

Figure 3.1: Training of an RBM . 8
Figure 3.2: Single Layer Neural Network 9
Figure 3.3: Stacking of hidden layers to form DBN 11
Figure 3.4: Visible-hidden-reconstruction over MCMC steps 13
Figure 3.5: Supervised Training of an RBM 15
Figure 3.6: Unsupervised Training of an RBM 16
Figure 3.7: Spatial sigmoid approximation 17
Figure 3.8: Temporal sigmoid approximation 18
Figure 3.9: Tuning the Temporal Approximation of the Sigmoid function . 20

Figure 4.1: Discriminative model flow chart 21
Figure 4.2: Block Diagram for Verilog implementation of Discriminative

RBM . 24
Figure 4.3: Procedure for Verilog implementation and verification of Dis-

criminative RBM . 25
Figure 4.4: Power Measurement Flow . 26
Figure 4.5: Power Breakdown for Discriminative RBM 28
Figure 4.6: Accuracy (right axis) and Power Consumption (left axis) using

Spatial vs Temporal Approximations 29
Figure 4.7: E�ciency for Discriminative model 30

Figure 5.1: Generative model flow chart 31
Figure 5.2: Image Outputs (right-hand columns) of Generative Model at

MMD = 0.004 . 34
Figure 5.3: Block Diagram for Verilog implementation of Generative RBM 35
Figure 5.4: Procedure for Verilog implementation and verification of Gen-

erative RBM . 36
Figure 5.5: Box Plot of the spread of 100 MMD values for each parameter

set . 38
Figure 5.6: Image Output of Generative Model at MMDreq 39
Figure 5.7: Power Breakdown for Generative RBM 41
Figure 5.8: Power Consumption for Generative RBM 42
Figure 5.9: Power Consumption & MMD values for Generative model . . . 43
Figure 5.10: E�ciency of Generative RBM 44

vii

LIST OF TABLES

Table 2.1: Quantization structure . 7

Table 3.1: Parameters for Temporal Approximation for Tw = 1 19

Table 4.1: Accuracy Results . 27

Table 5.1: Tuning the temporal approximation using independent Tw val-
ues on 64-bit Temporal Approximation 37

Table 5.2: Parameters for Temporal Approximation when Tw = 6 38
Table 5.3: MMD Results . 40

viii

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my advisor Prof. Ken

Kreutz-Delgado for the continuous support of my Masters thesis and research,

for his motivation, enthusiasm, and immense knowledge in the field. With his

guidance, I learned a great deal in the research and the writing of this thesis.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof.

Truong Nguyen, and Prof. Piya Pal, for their support, insightful comments, and

challenging questions.

My sincere thanks also goes to my mentor, Srinjoy Das, for o↵ering me the

research opportunities and encouraging me to take on the thesis project. He was

very helpful, approachable and knowledgeable and guided me through the comple-

tion of my thesis. I also appreciate my fellow labmates in UCSD research Group:

Xinyu Zhang, Ian Colbert and Ojash Neopane, for their valuable feedback and

insights during meetings and discussions.

I would like to thank Jonas Chen and Professor Andrew Kahn for providing

access to VLSI tools, scripts, libraries and other support infrastructure. I was able

to conduct my research at the Calit2 Qualcomm Institute Pattern Recognition

Laboratory (PRLab), and in particular, I would like to thank John Graham and

Tom DeFanti of the PRLab for providing the computing infrastructure for the

thesis project.

Last, but not least, I would like to thank my family and friends who supported

me in one way or another throughout my Masters study.

ix

VITA

2016 B.S. in Electrical and Computer Engineering, Univer-
sity of California, San Diego

2018 M.S. in Electrical and Computer Engineering, Univer-
sity of California, San Diego

PUBLICATIONS

Arnav Acharyya, Dustin Hudson, Ka Wai Chen, Tianjia Feng, Chih-yin Kan,
Truong Nguyen, “Depth Estimation from Focus and Disparity”, IEEE (ICIP),
2016.

x

power consumption. Thus, it can be challenging to design a hardware for machine

learning purposes. In this thesis, we study the power-at-performance e�ciency

of Restricted Boltzmann Machine-based machine learning algorithms using Gibbs

samplers implemented with fixed point approximations and functional approxi-

mations of sigmoid activation functions. We discuss how hardware designers can

determine the trade-o↵s between using the di↵erent styles of activation function

approximations and di↵erent levels of bitwidth quantization, and develop a design

methodology which we implement and verify on a Verilog environment. Metrics

are developed for comparing the performance of both Discriminative and Genera-

tive RBM, various choices of bitwidth level and style of activation approximations

are explored to obtain a good performance-power trade-o↵.

xii

Chapter 1

Introduction

The use of Big Data is exploding and its use to a large extent a result of the

increase in the usage of sensors and the Internet of things (IoT). The number of

objects that will be connected to the internet is expected reach 50 billion by 2020

[1]. This explosive growth is predicted to generate approximately 507.5 Zettabytes

of data annually by 2020 [2]. In many applications, machine learning algorithms

are utilized to process and extract useful information from these data. Because

of the high processing requirements, systems often have to be connected to the

cloud in order to have access to high-performance machine learning algorithms,

but doing these computations on the cloud can be problematic, due to issues such

as the high volume of data flow, poor latency rate, and the lack of privacy. A more

e�cient method is to train the models on the cloud, and have a real-time processor

that is embedded onto devices and sensors at the “edge of the cloud” to locally

process the data using the trained model.

However, a major challenge with implementing machine learning algorithms

onto local hardware is power consumption. Due to the constraint in cost and size

of the hardware and local power supplies (such as batteries), minimizing the power

consumption on the chip, while keeping the performance of the model reasonably

high is essential. In this thesis, we propose a method to increase the power e�-

ciency of the local hardware implementation by using fixed point Markov Chain

Monte Carlos (MCMC) Gibbs sampling and functional approximation of activation

functions. By limiting the number of bits that are used and the functional approxi-

1

mations made in the implemented, trained algorithm, the number of registers used

in the local hardware can be reduced significantly, consequently reducing power

consumption. To test our methodology, the model is quantized and observed at 5

di↵erent bit widths: 4-bit, 8-bit, 12-bit, 16-bit, and 64-bit, and the e↵ects of the

fixed point Gibbs samplers are realized on both the discriminative and generative

model of a Restricted Boltzmann Machine (RBM) for the purpose of demonstra-

tion. The e�ciency of each quantized model is computed using test metrics devised

for this purpose and compared to identify a quantization level that is suitable for

the application. A Verilog model of the resulting hardware implementation is used

to ascertain the e�cacy of the proposed procedure and the ability to attained a

desired level of power-at-performance. See Figure 1.1 for a graphical view of the

various aspects of the proposed methodology.

Figure 1.1: Overview of the various aspects of hardware design which are addressed
and utilized in this thesis

The remainder of the thesis is structured as follows. Chapter 2 introduces the

Markov Chain Monte Carlo (MCMC) method and one of its most widely used

algorithms - the Gibbs sampler. The quantization scheme is also described in this

chapter. Gibbs sampling with limited bitwidth is used on the RBM, and the cor-

responding kernel is approximated using two di↵erent methods. Chapter 3 will

introduce the RBM and talk about the di↵erence in implementation and applica-

tion of the generative model version and the discriminative model version of the

RBM. Two di↵erent quantized activation function approximations are proposed

2

and their e↵ects are demonstrated on the RBM models. Test metrics are devel-

oped for comparing the quality of the approximated models. Experiments and

Verilog hardware implementations are described and the results are shown and an-

alyzed in Chapter 4 and 5, for the discriminative model and the generative model

respectively. Lastly, Chapter 6 provides conclusions and suggests possible future

extensions to the work described in this thesis.

3

Chapter 2

Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is a powerful inference technique for

sampling from high dimensional probability distributions. The term Monte Carlo

in MCMC refers to performing a stochastic sampling, which means that we want

to draw from a specified distribution, while the method that is used to perform this

stochastic sampling is based on drawing repeatedly from the transition probabilities

describing aMarkov chain (Figure 2.1). See reference [3] for a detailed discussion of

MCMC, the Gibbs sampler, and applications to the Restricted Boltzmann Machine

(RBM).

To perform MCMC, we need to sample from a specified distribution P (x)

through the construction of a Markov Chain that enables us to perform a ran-

dom walk on the state space X . The time spent in each state should be propor-

tional to the target density P (x), and to ensure that this occurs requires that the

state-transition probability P (xi|xi�1).

xi|xi�1, ..., x0 ⇠ P (xi|xi�1, ..., x0) = P (xi|xi�1)

With the use of Markov Chain Monte Carlo, the computation of the value of

each neuron is greatly simplified.

Once we have properly constructed the Markov Chain, if it is run for a su�cient

large number of transition steps, the state values attain their steady state behavior,

which corresponds to being drawn from the target distribution P (x). The process

of settling down to the steady-state behavior is known as burn-in. Suppose we

4

Figure 2.1: Markov Chain

have a function f(x). The expected value of the function is

E[f(x)] ⇡ 1

N

NX

i=1

f(xi)

and, as a consequence of the law of large numbers, equality in some stochastic sense

as N ! 1. Thus, according to the law of large numbers [4], if N is a large number,

i.e. N � 1, then burn-in can be assumed and the approximation is valid. Likewise,

the burn-in property accounts for the assumption that the dependency of the next

state of the neuron xi on the neurons further away than the current is insignificant

and thus Markov Chains often can be assumed to be almost memoryless (i.e.,

the correlation time-length often can be viewed as relatively inconsequential for

N � 1).

2.1 Gibbs Sampling

Gibbs sampling is an MCMC technique that is commonly used to generate se-

quential stochastic samples from a transition probability constructed from a con-

ditional distribution derived from the target static distribution P (x) of an RBM

neural network, where x denotes the instantaneous state of the RBM [3].

For example, given a joint sample S of all the RBM variables at time (“stage”)

S, we are able to generate a new sample S+1 by sampling each component with

respect to the most recent values of the other variables, i.e.

xS+1
i ⇠ p(xi| \i)

where \i is the set of the most recent (step S) variables other than xi, and p(xi| \i)

is the fully conditional for the variable i.

5

In this thesis, we use the Modified National Institute of Standards and Tech-

nology (MNIST) dataset as the data to which we wish to fit an RBM to serve as a

generative model. MNIST is a large dataset consisting hand-written digits from 0

to 9. The entire dataset has 60000 training images and 10000 testing images. For

the interest of process time, the first 5000 images in the MNIST training dataset

are used for training and the first 1000 images in the MNIST testing dataset are

used for testing in this thesis.

Each MNIST image is made up of 28 ⇥ 28 pixels, giving us 784 neurons, one

per pixel. Here, our random vector X is 784-dimensional, consisting of random

variables Xi, taking realization values xi, for i = 1, 2, ..., 784, i.e. X1, X2, ..., X784 ✏

X. Suppose the conditional distribution ofXi, given the values of all the other other

components X\i of X, is known. To implement Gibbs sampling, the conditional

distribution for each component of x is computed, and the new sample S+1 is

generated as follows [3]:

xS+1
1 ⇠ p(x1|xS

2 , x
S
3 , ..., x

S
784)

xS+1
2 ⇠ p(x2|xS+1

1 , xS
3 , ..., x

S
784)

...

xS+1
i ⇠ p(xi|xS+1

1 , ..., xS+1
i�1 , x

S
i+1, ..., x

S
784)

...

xS+1
784 ⇠ p(x784|xS+1

1 , xS+1
2 , ..., xS+1

783)

As shown, Gibbs sampling simplifies the process of sampling in a high di-

mensional space (here, N = 784) by using a uni-dimensional sampling cyclically

repeated to eventually sample from the overall dimension space. This complex-

ity simplifying property of the Gibbs samplers is the reason why this particular

MCMC technique is favored to training RBMs.

6

2.2 Quantization

The main approach to power saving in the thesis is through the quantization

of the parameters of the RBM models and Gibbs samplers. In order to do so, the

number of bits in each model is limited at 5 di↵erent levels of quantization: 4-bit,

8-bit, 12-bit, 16-bit and 64-bit. Within each level of quantization, the number of

bits before the decimal point m and the number of bits after the decimal point

n can also be essential to the quality of the model. To fully utilize the limited

number of bits, an iterative process of accuracy computation was done and the

most optimal m.n for each bitwidth was determined.

Table 2.1: Quantization structure

number of bits

Bitwidth sign m n

4-bit 1 2 1

8-bit 1 3 4

12-bit 1 7 4

16-bit 1 7 8

64-bit 1 55 8

The model is then quantized at the five di↵erent bitwidths, according to the

m.n structure in Table 2.1. These five levels of quantizations are performed on the

model which are used in the experiments throughout the thesis.

7

Chapter 3

Overview of the Restricted

Boltzmann Machine

3.1 What is an RBM?

A Restricted Boltzmann Machine (RBM) and a Deep Belief Network (DBN)

are stochastic neural networks that have been used for a variety of discriminative

and generative tasks, such as image classification, sequence completion, motion

synthesis and speech recognition.

Figure 3.1: Training of an RBM

An RBM can be trained to learn a probability distribution over a set of input

data. The structure of an RBM consists of two layers of neuron-like units: a visible

8

layer and a hidden layer. The neurons are interconnected between the two layers

and there are no connection within each single layer, meaning that all visible-to-

visible and hidden-to-hidden communications are restricted to be nonexistent, as

shown in Figure 3.1. Since the visible and hidden layers are such that no two

neurons within the same layer are adjacent in the graph, the resulting graphical

structure is a bipartite graph. The bipartite property of the RBM also allows

Gibbs sampling to be done in parallel, reducing the computation time.

Figure 3.2: Single Layer Neural Network

In Figure 3.2, we have 4 units of visible neurons on the top layer, and 3 units of

hidden neurons on the bottom layer. The notation Xi denotes each input feature.

Each of the features is fed into a visible unit. Now, each unit of the visible layer

represents a single feature of the input data. A hidden layer is then used to model

a distribution over the visible units. The value of the units in the hidden layer

depends on the inputs into the visible layer and their weights and biases. The

matrix W in the figure has a dimension of 4 ⇥ 3, where each element wji of the

matrix represents the weights between the visible neuron i and the hidden neuron

j, and bj is the value of the bias at the hidden neuron. The output of the hidden

neuron zj can be calculated as follows:

9

zj =
X

i

wjixi + bj

The output of the hidden neurons are then fed into an activation function.

The notation aj in Figure 3.2 denotes the output of the activation function. The

probability of activation is:

aj = P (zj = 1|x) = �(
X

i

wjixi + bj)

where �(x) = 1
1+e�x in the case of an RBM. Since the RBM is used with Gibbs

sampling in this research, the activation function will be the logistic sigmoid func-

tion which will be further elaborated in Section 3.4. In the binary RBM, each

output of the activation function is then compared to a number between 0 and

1, generated randomly from a uniform distribution. In the hardware implementa-

tion, the random number is generated using a pseudo-random number generator

(PRNG). If the output of the activation function is greater than the random num-

ber, the hidden unit is activated.

3.2 Deep Belief Network (DBN)

The Deep Belief Network (DBN) can be formed by stacking multiple layers of

hidden units on an RBM. Similar to an RBM, the neurons are inter-connected

between the layers but not intra-connected within a single layer.

Using the output of the RBM in Figure 3.1, we can stack a second hidden layer

z(2), and feed the outputs from the first layer a(1)1 , a(1)2 and a(1)3 into the second

layer of hidden units, as shown in Figure 3.3. The output of the second layer can

be computed as below:

z(2)k =
X

j

w(2)
kj a(1)j + b(2)k

The stacking of the hidden layers can be repeated in this manner in order to form

a deeper neural network.

10

Figure 3.3: Stacking of hidden layers to form DBN

In this thesis, all the e↵ects of each quantized sigmoid function approximation

are demonstrated on an RBM model for simplicity during evaluation and compar-

ison. However, similar trends in behavior are expected to be observed when the

e↵ects of the quantized sigmoid function approximations are applied to a DBN

model.

3.3 Training a Boltzmann Machine

The training of a Boltzmann Machine is done using Gibbs sampling in MCMC.

Each neuron is sampled based on the total input from other connected neurons

with a sigmoidal activation function.

The Boltzmann Machine is trained usually by using the gradient maximiza-

tion of the log-likelihood given the training data. The likelihood function of the

Boltzmann Machine is:

L(⇥; v, h) = P (v, h;⇥) =
e�E(v,h;⇥)

Z(⇥)

whereE(v, h;⇥) is the energy function of the RBM, and parameters⇥ = b, c,W, U, V ,

where b and c are the biases of the hidden and visible units respectively, and W ,

11

U and V are the weight matrices of the visible-to-hidden connections, visible-to-

visible connections, and hidden-to-hidden connections respectively. The energy

function of a general Boltzmann Machine is:

E(v, h;⇥) = �b0v � c0h� h0Wv � v0Uv � h0V h

An RBM feeds the input data into the visible layer, and connects the visible

neurons to the hidden neurons, as shown in Figure 3.1. To train an RBM means

to learn the weights of each connection W and the bias of the neurons b. In an

RBM, the inter-layer connections are restricted to be nonexistent, and therefore

the last two terms of the energy function will be zero:

E(v, h;⇥) = �b0v � c0h� h0Wv

In order to learn the parameters W , b, and c, we attempt to obtain the max-

imum log-likelihood estimate of the parameters ⇥, which requires computation of

the gradient of the log-likelihood function:

@ logP (v, h;⇥)

@⇥
= �

X

h

P (h|v;⇥)
@ E(v, h;⇥)

@⇥
+
X

ev,eh

P (ev,eh;⇥)
@ E(ev,eh;⇥)

@⇥

where ⇥ = b, c,W .

According to the Contrastive Divergence (CD) method proposed in [7], max-

imizing the log-likelihood is equivalent to minimizing the Kullback-Leibler (KL)

divergence between the data distribution P 0 and equilibrium distribution of the

model over visible variables P final
⇥ . By replacing the term

@ logP (v)

@⇥
with

@ ((P 0||P final))
⇥ � (P 1

⇥||P
final
⇥))

@⇥

where P 1
⇥ is the distribution over the reconstructions of the data vectors after one

step of Gibbs sampling. The maximization log-likelihood w.r.t the weight wji can

be rewritten as:

�@ ((P 0||P final
⇥)� (P 1

⇥||P
final
⇥))

@wji
= < hjvi >P 0 � < hjvi >P 1

⇥
+residual

where < hjvi >P 0 is the positive (wake) phase with the visible unit clamped to

the input data, and < hjvi >P 1
⇥
is the negative (sleep) phase where both hidden

12

and visible neurons are running freely to attempt to reproduce the positive phase.

The residual term is problematic to compute, and is shown in [7] that its e↵ect is

small and can be ignored.

�@ ((P 0||P final
⇥)� (P 1

⇥||P
final
⇥))

@wji
= < hjvi >P 0 � < hjvi >P 1

⇥

Figure 3.4: Visible-hidden-reconstruction over MCMC steps

The visible-hidden-reconstruction can iterate over multiple MCMC steps for

the purpose of training and inference as shown in Figure 3.4. Using CD, we can

force the weight update to be calculated with a specified number of steps, instead

of waiting infinitely for convergence. For training of a Discriminative RBM, it is

found that performing one MCMC step is su�cient to train the model. As a result,

CD-1 is used for the training of the Discriminative RBM:

CD�1 : < hjvi >P 0 � < hjvi >P 1
⇥

The generative model, on the other hand, requires prolonged Gibbs sampling

to be trained. CD-k is used for the training of the Generative RBM:

CD�k : < hjvi >P 0 � < hjvi >Pk
⇥

The change in weight is defined as:

�wji = �(< hjvi >P 0 � < hjvi >Pk
⇥
)

where � is the pre-determined learning rate. The weight can then be updated as:

w(⌧+1)
ji = w(⌧)

ji +�wji

13

Similarly, the other parameters in ⇥ can be updated using the same method.

The training of a DBN can be done greedily. It can be trained layer-wise,

similar to training a RBM. Using the same stochastic sampling procedure, the

values of each layer of neurons in the DBN can be inferred [7].

3.3.1 Supervised Training

The first 5000 images and labels from the MNIST dataset are used to train the

Discriminative RBM model. Since RBM is a bipartite graph, we notice that for

any visible image neuron to communicate with any visible class neuron, it will have

to go through a hidden neuron. Therefore, the position of the neurons in Figure

3.1 can be adjusted without changing any connections to show the training process

described in Figure 3.5. Each image in the training dataset and its corresponding

label are fed into the RBM model, forming the visible layers. The first 784 visible

image units represents each pixel of the MNIST image and 10 visible class units

represents the class labels of the image. These visible class unit corresponding to

the class of that image will be 1, and the other 9 units will be zero. From the figure,

we can tell that there are 5 parameters here that we have to learn: W, b, c,Wc, bc.

The RBM undergoes an iterative process through all the 5000 trained images

to adjust these weights and biases according to CD�1.

3.3.2 Unsupervised Training

The first 5000 images from MNIST dataset are used to train the Generative

RBM model, as shown in Figure 3.6. Note that no class label is used, so the

training is unsupervised in this case. Each image in the training dataset is fed

into the RBM model, forming the visible layer. The first 784 visible image units

represents each pixel of the MNIST image, and is fed into the 441 hidden units.

The hidden units then fed back to the visible units. The output from the visible

unit then tries to reproduce the original input, and the weights and biases are

updated each step. From 3.6, we can tell that there are 3 parameters here that we

have to learn at each MCMC step: W (t), b(t), c(t).

14

Figure 3.5: Supervised Training of an RBM

The RBM undergoes an iterative process through all the 5000 trained images

to adjust these weights and biases according to CD�k, where t ranges from 1 to

k=50.

3.4 Gibbs Sampling for the RBM

The Gibbs sampling MCMC method uses a state transition probability, often

referred to as a kernel. In a binary Restricted Boltzmann Machine (RBM), the

Gibbs sampling kernel is the logistic sigmoid function:

�(x) =
1

1 + exp(�x)

and the probability of activation of unit j is

p(xj = 1|xi) = �(
X

j

wjixi + bj)

where wji is the weight from unit i to unit j and bj is the bias at unit j.

In order to perform hardware implementation, we cannot use an ideal sigmoid

function as our activation function, because it is impossible to implement the

function �(·) to infinite precision (in finite time) on the finite-precision hardware

15

Figure 3.6: Unsupervised Training of an RBM

we are interested in. As a result, we have to approximate on the sigmoid function.

In this thesis, we explore two types of approximations for the sigmoid activation

function - a “spatial” approximation and a “temporal” approximation.

3.4.1 Spatial Approximation to the Activation Function

The spatial approximation is a piece-wise approximation of a sigmoid function

over its input domain. As shown in Figure 3.7, the ideal sigmoid function in blue

can be broken down into segments, and a linear approximation of each segment

can then be made. The green and red plots are examples of the spatial approxi-

mations made to approximate the ideal sigmoid function. From the figure, it can

be observed that the green plot is a better approximation of the sigmoid function

than the red plot, indicating that the higher the order of approximation of the

sigmoid, the closer the approximate would be to the ideal sigmoid function.

In this research, a three-segment (in red) and a five-segment (in green) approxi-

mations of the sigmoid function are used. The three-segment spatial approximation

is the first-order (simplest) spatial piece-wise approximation of the sigmoid func-

tion. It is the simplest to implement since the sigmoid function is only broken

down into the minimal number of segments. This minimal estimation of the sig-

moid function is not only simple to implement, but also proven to be su�cient to

16

Figure 3.7: Spatial sigmoid approximation

be used in the discriminative model [9].

The activation output from the spatial approximation is then compared to

a value generated by an on-chip pseudo random number generator (PRNG) to

determine the spiking of the output neurons. If the value from the PRNG is larger

than the value from the output of the spatial approximation, the output of the

neuron is spiked to 1.

3.4.2 Temporal Approximation to the Activation Function

The temporal approximation is a piece-wise approximation of a sigmoid func-

tion in the temporal domain, originally proposed in [10]. It uses 4 parameters: 1)

Tw, the number of discrete time steps, 2) V t, a fixed threshold value, 3) TM , the

number of bits allowed for a stochastic threshold variable, and 4) the stochastic

leak.

The algorithm for realizing the temporal sigmoidal sampling rule to perform

MCMC sampling in RBMs is [10]:

17

In the temporal approximation implementation, V t rand represents the thresh-

old and V represents the membrane potential. The spikes are determined by com-

paring the value of V and V t rand. If V is larger than V t rand, the neuron is

spiked. If a spike occurs in any of the preset number of steps Tw, the value of

the neuron is set to 1. This method to approximate the sigmoid function uses the

stochastic properties and spike synchronization at a fixed time steps to reproduce

a sigmoidal probability curve. The values of the random threshold V t rand and

leak are realized using the on-chip PRNG.

Figure 3.8: Temporal sigmoid approximation

These four parameters are non-linear and therefore, the approximation of the

sigmoid function cannot be done by varying a single parameter alone. Figure 3.8 is

an attempt to compare the di↵erent parameter tuning to implement the temporal

approximation of the ideal sigmoid function (in green).

Tuning the Temporal Approximation

In this thesis, we focus on two ways to vary the parameters for the temporal

approximation: varying the bitwidth and changing the number of discrete time

steps Tw. The values of the other parameters are tuned accordingly to attempt

to approximate the shape of an ideal sigmoid function. This method is used in

order to match the quantization structure specified in Table 2.1. To do so, the

scaling factor is set so that the input values are scaled by the number of bits after

18

the decimal point, denoted by n in Table 2.1. The total number of bits are also

limited to m + n + 1. The value of Tw are set to be 1 and 16 to demonstrate

the e↵ect of increasing the number of time steps. For each of the Tw and scaling

factor combination, the rest of the parameters are tuned.

The sets of parameters used for the first order (Tw = 1) temporal approxima-

tions are determined and shown in Table 3.1.

Table 3.1: Parameters for Temporal Approximation for Tw = 1

Parameters (Tw = 1)

Bitwidth Scaling Factor (Vt, TM, leak)

4-bit 2 -4, 3, 0

8-bit 16 -65, 7, 0

12-bit 16 -65, 7, 0

16-bit 256 -510, 10, 0

64-bit 256 -510, 10, 0

To find the parameters for other values of Tw, the parameters of the temporal

approximation are systematically adjusted. For example, using the 64-bit model

and Tw = 6, the tuning of the parameters are shown step by step in Figure 3.9.

First, set Tw to 6, and the other three parameters to zero. Then adjust TM

such that the curve of the upper corner becomes a good estimate of the ideal

sigmoid function. The value of leak can then be changed so that the shape of the

approximated function follows the shape of the ideal function. Lastly, adjust the

value of V t to center the approximated function to the origin. The tuned temporal

approximation (in green) is a good estimation of the ideal sigmoid function (in red

dashes).

19

Figure 3.9: Tuning the Temporal Approximation of the Sigmoid function

20

Chapter 4

Discriminative RBM Model with

Finite Precision (FP)

In this thesis, the MNIST dataset is used as the proof-of-concept test data.

The Discriminative RBM model was trained using 5000 images and their corre-

sponding labels as described in Section 3.3.1. The ideal values used for hidden

layer weights, W , and biases, b, and the classification layer weights, Wc, and bi-

ases, bc, are the optimized values for the weights and biases obtained from the

training process which is assumed to have occurred on the cloud. The ideal values

can then be systematically adjusted to finite-precision values for local hardware

implementation.

Figure 4.1: Discriminative model flow chart

The trained model is then used to classify the 1000 test images. Each image

21

is 28⇥ 28, giving it 784 distinct pixels. The input image is quantized to m.n bits

(following the infrastructure shown in Table 2.1), and fed into the visible layer,

where each of the 784 visible units corresponds to a single pixel in a MNIST image.

To get the value of each of the 441 hidden units j, each visible unit i is multiplied

by the weight wji, and the bias bj is then added to the sum of these products over

all the visible units. Here, the values of the weights and biases were also quantized

to m.n bits.

The hidden unit is then fed into the activation function, which is simulated

by an approximation of the sigmoid activation function for hardware implemen-

tation and the output from the approximation is compared to a random number

generated from the PRNG. If the output of the sigmoid approximation is greater

than the random number, the hidden unit is activated. The binary output from

the 441 hidden units are then fed into the classification layer which consists of 10

neurons. Similarly, the output is fed into the approximate sigmoid function and

compared to a random number generated by the PRNG to determine the activa-

tion. If the neuron is activated, it is spiked. The process is repeated over 1000

iterations and the argument of the most spiked classification neuron corresponds to

the output classification label for the input image. The entire process to perform

discrimination is summarized in the flow chart in Figure 4.1.

As mentioned in Section 3.4, two di↵erent kernels (spatial and temporal) were

used to approximate the sigmoidal activation function. Classification using the

Discriminative model was performed using both types of approximations and their

respective results are shown and compared in terms of e�ciency.

4.1 E�ciency of Discriminative RBM with FP

The term e�ciency here is defined loosely, and can be modified depending on

the preference of the designer. For the purpose of this paper, e�ciency e for the

discriminative case is defined to be:

e =
(Acc� Accreq)

Pconsumption

22

where Acc is the accuracy value of the model in percentage, Accreq is the minimum

accuracy requirement for the system, and Pconsumption is the total power consumed

by the model. In this demonstration, Accreq is set to 90%, meaning that we expect

our model to be at least 90% accurate when performing classification. Any model

that is less than Accreq% accurate will result in a negative e�ciency and would be

rejected by the hardware design.

4.1.1 Accuracy of FP Discriminative RBM

The accuracy of the Discriminative RBM is computed using the percentage of

correct predictions.

Acc =
of correct classifications

total # of classifications
⇥ 100%

The argument of the most spiked neuron in the classification layer after 1000

iterations is compared to the ground truth, which is the label of the test data. If the

position of the most spiked neuron matches the test image label, the classification

is accurate. The process is repeated over the 1000 test images and the average

accuracy can be obtained.

4.1.2 Power Consumption of FP Discriminative RBM

A hardware implementation of the Discriminative RBM is implemented in Ver-

ilog and the block diagram of the Verilog code is shown in Figure 4.2. The power

consumption of the Discriminative RBM is measured using this Verilog implemen-

tation.

In the Verilog design, there is a main block which consists of two big blocks. The

first block (in light blue) simulates the flow from the visible layer to the hidden

layer, and the second block (in light green) simulates the flow from the hidden

layer to the class layer. Within each of the two blocks, there is an accumulator, a

sigmoid function, a Random Number Generator (PRNG) and a comparator. The

entire design is quantized to j bits, where j = 4, 8, 12, 16, 64. The PRNG is set to

k = 16 bits to allow a reasonable amount of variation in the numbers generated.

23

Figure 4.2: Block Diagram for Verilog implementation of Discriminative RBM

The quantization of the model is set to follow the m.n infrastructure described in

Table 2.1.

The input states x represents the 784 pixels in an input image, and the quan-

tized j-bit weight W and bias b are fed into the accumulator. The accumulator

computes the sum of the product of the weights and the corresponding input states,

and adds the sum to the respective biases of the hidden units. The output zh is

then fed into the approximated sigmoid function. The output of the sigmoid func-

tion ah is compared to the output of the PRNG. The PRNG generates a random

number of a fixed bitwidth of k = 16 bits and the number has to be zero-padded or

truncated to j bits in order to be compared to the output of the sigmoid function.

If ah > rand, then the hidden state is spiked to 1. Otherwise, the hidden state is

0.

The 441 hidden states, the quantized j-bit weights from the hidden neurons to

the class neurons W 0
c, and bias of the class layer bc are fed into the accumulator

in the second (light green) block. The process is similar to that of the top (light

blue) block and the class states are spiked accordingly. The position of the spiked

class state is the class which the model classified the input image to be in.

24

Figure 4.3: Procedure for Verilog implementation and verification of Discriminative
RBM

The neurons, intermediate states and computations are programmed using reg-

isters, wires, and digital logics in Verilog, following the procedure described in Fig-

ure 4.3. The values of the visible, hidden and class units from the ModelSim are

compared with the values from Matlab simulation to ensure consistency between

Verilog and Matlab simulations. If the values matches, we proceed to measure the

power consumed by the model. Power in the hardware are consumed through dy-

namic activities such as the switching activities of the registers in the digital logic

and through static events such as the current leakage in the transistors. Thus,

changing the number of bits of the model, would significantly a↵ect the power

consumed by it. The power measured in the Verilog simulation will then be an

essential component to determine the e�ciency of the model. The procedure used

for power measurement is shown in Figure 4.4.

25

Figure 4.4: Power Measurement Flow

4.2 Results on the Discriminative RBM

To compare the results of the experiment in this thesis, the e�ciency of the

Discriminative RBM using the two di↵erent methods of sigmoid approximations

(spatial and temporal) are obtained across the 5 quantization levels in Table 2.1.

The e�ciency is dependent on the classification accuracy and the power consump-

tion of the model.

4.2.1 Accuracy Results

For each bitwidth of the model, the values of the weights and biases are quan-

tized according to the m.n structure in Table 2.1, and the accuracy of the model

using the spatial approximation and the temporal approximation are shown in the

second and third columns in Table 4.1 respectively. In the table, the notation

DS represents using the Discriminative RBM model with spatial approximation

(3-segment), and notation DT refers to using the Discriminative RBM model with

temporal approximation(Tw = 1). The accuracy is also plotted in Figure 4.6.

From Table 4.1, the accuracy of the model increases in general, as the number

of bitwidth increases. In the spatial approximation example, the accuracy is low

26

Table 4.1: Accuracy Results

Classification Accuracy(%)

Bitwidth DS DT

4-bit 86.4 92.2

8-bit 94.2 94.1

12-bit 93.8 94.0

16-bit 94.4 94.3

64-bit 94 94.8

(about 86.4% on average) at 4 bits. As the number of bits increase to 8, the

accuracy increased to about 94.2% on average. However, the accuracy saturates

at around 8 bits. As we can see from table 4.1, the accuracy is not significantly

changing after it saturates at 8 bits. The slight fluctuations in accuracy rate can be

due to the uncertainty caused by the random number generated from the PRNG,

slightly a↵ecting the spiking of the neurons.

In the case of a temporal approximation example, the accuracy is relatively

high (about 92.2% on average) even at 4 bits. As the number of bits increase to

8, the accuracy increased to about 94.1% on average. However, the accuracy also

saturates at around 8 bits. According to the table 4.1, the increase in accuracy is,

again, not significant as the number of bits continue to increase.

By comparing the accuracy performance between the the Discriminative RBM

model using the two di↵erent approximations, the performance of the temporal

approximation is better than the spatial approximation across bit widths on aver-

age. The di↵erence in accuracy is negligible for models that are 8-bit and above,

but is significant at 4-bit.

4.2.2 Power Consumption Results

The power consumption of the models were first reduced through e�cient clock

gating methods, by activating the blocks only when necessary. As a result, for

each simulation, the RBM layer (connecting 784 visible units to 441 hidden units)

consumes more than 90% of the power on average across all the bitwidth, while

27

the Classification layer (connecting 441 hidden units to 10 class units) consumes

only less than 10% of the power on average across all the bit width. An example

of the power breakdown is shown in Figure 4.5, demonstrating the e�cient clock

gating methods which leads to the reduction in switching activities [12].

Figure 4.5: Power Breakdown for Discriminative RBM

The power consumption for the discriminative models are then measured at dif-

ferent bitwidths, using the spatial approximation and the temporal approximation.

The results are plotted and compared in Figure 4.6.

The power consumption trends shown in Figure 4.6 are expected. As the num-

ber of bits used in the model is reduced, the area of the design is scaled down

and the number of switching activities is also cut down due to the fewer number

of registers used across the entire model. As a result, the power consumption is

significantly lowered as the bitwidth of the model is reduced [12].

4.2.3 E�ciency

With the results from the sections 4.2.1 and 4.2.2, the e�ciency of both the

spatial approximation and the temporal approximation used on the Discriminative

RBM are computed. Figure 4.6 shows the combined total power versus accuracy

plots for the Discriminative RBM model using the spatial approximation and the

28

Figure 4.6: Accuracy (right axis) and Power Consumption (left axis) using Spatial
vs Temporal Approximations

temporal approximation respectively. In general, as the number of bits increases,

the power consumed by the model increases significantly, while the increase in

accuracy saturates at around 8 bits. Using our e�ciency definition, the e�ciency

across all bitwidths for both approximations are computed and plotted in Figure

4.7.

Figure 4.7 shows that the e�ciency of both spatial and temporal approximation

used on the Discriminative model to be highest at 8-bit quantization. However,

the performance of the model using the temporal approximations is significantly

better at low bitwidth, specifically at 4-bit quantization. At higher bitwidths, the

performances of the two approximations in terms of e�ciency are very similar.

4.3 Evaluation

The performance of the spatial and temporal approximations are very similar

at higher bitwidths. As a result, the performance for a 8-bit or above model would

be identical whichever method of sigmoid approximation the designer chooses to

use. However, a designer should choose the 8-bit quantization over the higher

29

Figure 4.7: E�ciency for Discriminative model

bitwidth models since it performs as well in terms of accuracy, and yet uses the

least power.

For specific applications with very low power allowance (below 8-bit imple-

mentation), using the temporal approximation can assure a significantly better

performing model. This is because the performance in terms of e�ciency and ac-

curacy at 4-bit quantization is significantly higher when using the temporal sigmoid

approximation.

On a side note, the temporal approximation is easier to tune and can be more

flexible to changes to the order of approximation of the sigmoid function. To

increase the order of approximation temporally, we are only required to change

the number of time steps, and then adjust the other three parameters accordingly;

Increasing the order of approximation spatially requires the hard-coding of the new

cut-o↵s for each segment of the sigmoid function.

30

Chapter 5

Generative RBM Model with

Finite Precision

The Generative RBMmodel was trained using 5000 images, without their labels

as described in Section 3.3.2. The visible-to-hidden weights W , hidden layer biases

bh, and the visible layer biases c are optimized from the iterative training process

over multiple Gibbs steps.

Figure 5.1: Generative model flow chart

The trained model can then be used to perform di↵erent types of tasks, such as

denoising a noisy image, and completing an incomplete image. The entire process

to perform discrimination is summarized in the flow chart in Figure 5.1. In the

thesis, the generative model is used to complete 1000 incomplete images.

The incomplete images are quantized to m.n bits (following the procedure

31

shown in Table 2.1), and individually fed into the visible layer, where each of

the 784 visible units corresponds to a pixel in an incomplete image. The learned

weights and biases were also quantized to m.n bits. The value of each of the 441

hidden unit j were computed by summing the multiplication of each visible unit

i with the weight wji over all the visible units, and then adding the bias of the

hidden units bj.

The hidden unit is fed into an approximation of the sigmoid activation function

for hardware implementation and the output from the approximation is compared

to a random number generated from the PRNG. If the output of the sigmoid

approximation is greater than the random number, the hidden unit is activated.

The binary output from the 441 hidden units are then fed back to the visible layer,

and then into the approximate sigmoid function and compared to a random number

generated by the PRNG to determine the activation. The process is repeated over

a 1000 generation steps. The states of the visible neurons can be reconstructed

into a 28x28 image, and with each generation step, the model would attempt to

complete the image.

The results of the experiments on the Generative RBM is compared through the

e�ciency of the RBM using the two di↵erent methods of sigmoid approximations

across the 5 quantization levels. The e�ciency is dependent on the MMD values

explained in Section 5.1.1 and the power consumption of the model shown in

Section 5.1.2.

5.1 E�ciency of Generative RBM with FP

In this thesis, e�ciency e for the generative model is defined to be:

e =
(MMDreq �MMD)

Pconsumption

where MMD is the maximum mean discrepancy between the MNIST dataset,

described below, and the output data, and MMDreq is the maximum MMD of

the system for the generated image to be just recognizable by a human expert.

Pconsumption is the total power consumed by the generative model.

32

Note that the definition of e�ciency can be modified depending on the purpose

of the design and the preference of the designer.

5.1.1 MMD of FP Generative RBM

The relative accuracy of the generative model is determined by using a non-

parametric test, the maximum mean discrepancy (MMD). MMD is a measure

of the distance between mean elements µ in a Reproducing Kernel Hilbert Spaces

(RKHS)[8]. In this thesis, we used the MMD test because in high-dimensional data

spaces, it has proven to have outperform many traditional two-sample hypothesis

testing such as the generalized Wald-Wolfowitz test, the generalized Kolmogorov-

Smirnov (KS) test, the Hall-Tajvidi test, and the Biau-Gyorf test. MMD between

the MNIST data, X, and the generated data, Y , can be computed by taking the

square-root of the following equations.

MMD2(X, Y) = (sup
||k||<1

(E[k(X,X 0)]� E[k(Y, Y 0)]))2

= ||µp � µq||2

=
1

m(m� 1)

X

X,X0

k(X,X 0) +
1

n(n� 1)

X

Y,Y 0

k(Y, Y 0)� 2

mn

X

X,Y

k(X, Y)

where k(X,X 0) = exp((X�X0)2

2�XX0
) and �XX0 is the standard deviation between X and

X 0. p and q are the distributions of X and Y respectively.

One common method to choose a good �XX0 is to use the median heuristic.

To do that, we first need to compute the Euclidean distances between each pair

of points on the original N-dimensional dataset X. The median value of the
�
N
2

�

Eucildean distances will be a fairly suitable value for �XX0 . In this thesis, we use

the first 1000 images in the MNIST dataset, and obtain the Euclidean distances

between all the
�
1000
2

�
number of di↵erent pairs. The median value of the Euclidean

distances was 33.

The value of MMDreq is defined to be the maximum MMD value at which a

model can just generate a good enough reconstruction of the incomplete image to

33

be recognizable by a human. The value of MMDreq is a heuristic choice, chosen by

manually examining quality of generated images for all classes. By trial-and-error,

we determine that the MMDreq can be set to around MMD = 0.004.

Figure 5.2: Image Outputs (right-hand columns) of Generative Model at MMD =
0.004

At MMD = 0.004, the generative model is able to do generate an output that

is just acceptable as shown in Figure 5.2. The first and third column is the input

incomplete image and the second and fourth columns are the output image after

1000 generation steps. The output images are not a perfect completion of the input

images, but is doing a fair job in the completion process. Therefore, the MMDreq

is set at 0.004.

5.1.2 Power Consumption of FP Generative RBM

A hardware implementation of the Generative RBM is programmed in Verilog

and the block diagram of the Verilog code is shown in Figure 5.3. The power con-

sumption of the Generative RBM is estimated from this Verilog implementation.

Similar to the Verilog block diagram for the discriminative model, there is

a main block which consists of two big blocks. The first block (in light blue)

simulate the flow from the visible layer to the hidden layer, and the second block

(in light green) simulates the flow from the hidden layer to the visible layer. Within

each of the two blocks, there is an accumulator, a sigmoid function, a Random

Number Generator (PRNG) and a comparator. The entire design is quantized to

34

Figure 5.3: Block Diagram for Verilog implementation of Generative RBM

j bits, where j = 4, 8, 12, 16, 64, except for the PRNG that is set to k bits. The

quantization is set to follow the m.n infrastructure in Table 2.1.

Input states consists of the 784 pixels in an input image, and the quantized

j-bit weight W and bias bh are fed into the accumulator. The accumulator com-

putes the sum of the product of the weights and input states and add the sum to

the respective biases. The output zh is then fed into the approximated sigmoid

function. The output of the sigmoid function ah is then compared to the output of

the PRNG. The PRNG generates a random number of a fixed bitwidth of k = 16

bits and the number has to be zero-padded or truncated to j bits in order to be

compared to the output of the sigmoid function. If ah > rand, then the hidden

state is spiked to 1. Otherwise, the hidden state is 0.

The 441 hidden states, the quantized j-bit weights from the hidden neurons to

the visible neurons W 0 and bias of the visible layer bv are fed into the accumulator

in the second (light green) block. The process is similar to that of the top (light

blue) block and the visible states are spiked accordingly. The visible states are

then fed back to the top block as the new input states into the accumulator. This

process is repeated for the desired number of MCMC generation steps.

The Generative RBM implemented in Verilog was verified according to the

35

Figure 5.4: Procedure for Verilog implementation and verification of Generative
RBM

procedure described in Figure 5.4. The values of the visible and hidden units from

the ModelSim are compared with the values from Matlab simulation to ensure

consistency between Verilog and Matlab simulations. If the values matches, power

consumption of the model is measured as shown in Figure 4.4.

5.2 Sigmoid Approximation for Generative RBM

The generative task is more demanding demanding than the discriminative

task. As a result, using the first order approximation of the sigmoid function

can be inappropriate. Instead, using a higher order approximation of the sigmoid

function can significantly increase performance in a generative model.

For the spatial approximation, we will use the 5-segment approximation of

the sigmoid function in our experiment, and compare the results to a 3-segment

approximation.

36

The selection of the temporal approximation is chosen at the optimal number

of time steps Tw0, and will be compared to the first-order temporal approximation

with Tw = 1.

5.2.1 Selecting the most e�cient temporal approximation

To tune the temporal approximation, we start by using the 64-bit Generative

RBM model. First, the parameters for the temporal approximation are tuned

according to the independent factor Tw = 1, 2, 4, 6, 8, 10, 12, 14, 16. The value of

Tw is set and the rests of the parameters V t, TM and leak are tuned to ensure

a good approximation of the sigmoid function. The sets of parameters are named

from P1 to P9 as shown in Table 5.1.

Table 5.1: Tuning the temporal approximation using independent Tw values on
64-bit Temporal Approximation

Set Tw Vt TM leak MMDmean

P1 1 -510 10 0 0.000832

P2 2 50 10 450 0.000538

P3 4 500 10 430 0.000422

P4 6 350 11 300 0.000380

P5 8 500 11 250 0.000442

P6 10 700 11 240 0.000346

P7 12 870 11 225 0.000417

P8 14 510 12 165 0.000416

P9 16 645 12 160 0.000409

For each parameter set P1 to P9, the 64-bit Generative RBM is implemented

with a temporal approximation of the sigmoid function as the activation function.

The mean MMD values and power consumed by each simulation are computed.

The mean MMD values are calculated by averaging the MMD values of 100 gen-

erated output from each input image. The box plot of the MMD values against

parameter sets are shown in Figure 5.5. E�ciency of the model is computed and

plotted against the parameter sets as shown in Figure 5.6.

37

Figure 5.5: Box Plot of the spread of 100 MMD values for each parameter set

From the plot in Figure 5.6, the parameter set P4 gives the highest e�ciency.

The corresponding time step to the most e�cient parameter set is Tw = 6. Using

Tw = 6 and the predetermined scaling as shown in Table 5.2, the parameters V t,

TM and leak are tuned to approximate the sigmoid function.

Table 5.2: Parameters for Temporal Approximation when Tw = 6

Parameters (Tw = 6)

Bitwidth Scaling Factor (Vt, TM, leak)

4-bit 2 5, 4, 3

8-bit 16 18, 7, 17

12-bit 16 18, 7, 17

16-bit 256 350, 11, 300

64-bit 256 350, 11, 300

38

Figure 5.6: Image Output of Generative Model at MMDreq

5.3 Results of the Generative Model

5.3.1 MMD Results

For each bitwidth of the model, the values of the weights and biases are quan-

tized according to the m.n structure in Table 2.1, and the MMD values of the

model using the first order spatial and temporal approximations of the sigmoid

function are shown in the second and fourth columns in Table 5.3 respectively,

and the MMD values of the model using the higher order spatial and temporal

approximations are shown in the third and fifth columns respectively. The orders

of the approximated sigmoid function is described in Section 3.4.1 and 3.4.2, and

tuned according to Table 3.1 and 5.2.

MMD vs Bitwidth

In Table 5.3, the notation GS represents using the Generative RBM model

with spatial approximation, and notation GT refers to using the Generative RBM

39

Table 5.3: MMD Results

MMD (GS) MMD (GT)

Bitwidth 3-segment 5-segment TW = 1 TW = 6

4-bit 0.009356 0.009122 0.009377 0.008278

8-bit 0.006593 0.003864 0.004118 0.003742

12-bit 0.004279 0.003607 0.003777 0.003753

16-bit 0.000844 0.000390 0.000801 0.000377

64-bit 0.000787 0.000400 0.000338 0.000380

model with temporal approximation. The general trends of the MMD of the model

for both approximations are similar: the MMD value decreases, as the number of

bit width increases.

MMD vs Order of Sigmoid Approximation

From Table 5.3, the MMD values of the 5-segment spatial approximation is

evidently lower than the MMD values of the 3-segment spatial approximation.

The MMD values of the temporal approximations at Tw = 6 is also generally

lower than that of the Tw = 1 case. This result shows that the generative models

are sensitive to the quality of the sigmoid approximation functions.

MMD vs Type of Sigmoid Approximation

The MMD values of temporal approximation is seen to be always lower than the

MMD values of the spatial approximation, in both the first order approximation

and the higher order approximation. This indicated that the quality of image

generated is higher when temporal approximation is used.

5.3.2 Power Consumption Results

The power consumption of the models were again reduced through e�cient

clock gating methods, by activating the blocks only when necessary. As shown

in Figure 5.7, the amount power consumed by the visible to hidden block and by

40

the hidden to visible block is almost the same. This is power e�cient, since the

number of connections in both blocks are the same at 784x441.

Figure 5.7: Power Breakdown for Generative RBM

The power consumption for the Generative models are then measured at dif-

ferent bitwidths, using the spatial and the temporal approximation respectively.

The results are plotted and compared in Figure 5.8.

Power vs Bitwidth

The general trend of the power consumption of the model using all four ap-

proximations are similar. As the number of bits increases, the power consumption

increases evidently.

Power vs Order of Sigmoid Approximation

The order of sigmoid approximation has no noticeable di↵erence in power con-

sumption in the case of the spatial approximations. However, in the case of the

temporal approximations, the higher order approximation Tw = 6 consumes more

power than the first order Tw = 1 approximation, due to the additional time steps.

41

Power vs Type of Sigmoid Approximation

The power consumed by temporal approximations are in general slightly higher

than the power consumed by the spatial approximations, for both the first order

and higher order approximations.

Figure 5.8: Power Consumption for Generative RBM

5.3.3 E�ciency

Using the MMD and power consumption results from the sections 5.3.1 and

5.3.2, the e�ciency of the higher order spatial approximation and the temporal

approximation used on the Discriminative RBM are computed. Figure 5.9 shows

the combined total power versus MMD plots for the Generative RBM model using

the first-order spatial approximation and the temporal approximation respectively.

In general, as the number of bitwidth increases, the power consumed by the model

increases significantly, while the MMD value decreases. Using our e�ciency def-

inition, the e�ciency across all bitwidths for both approximations are computed

and plotted in Figure 5.10.

42

Figure 5.9: Power Consumption & MMD values for Generative model

Figure 5.10 shows that the e�ciency of both first and higher order spatial and

temporal approximations used on the Generative model to be highest at 16-bit

quantization.

For the 3-segment spatial approximation, the e�ciency is negative for 4, 8,

and 12 bits implementations, and for the Tw = 1 temporal approximation, the

e�ciency is negative for 4 and 8 bits. For both higher-order approximations (5-

segment spatial and Tw = 6 temporal approximations), the e�ciency is negative

only for the 4-bit implementation.

Comparing between the 3 and 5 segments spatial approximation, the 5-segment

approximation gives a higher e�ciency throughout all the bitwidths, especially

at low bitwidths. The comparison between the Tw = 1 and Tw = 6 temporal

approximations is similar. The e�ciency of the higher-order approximation is

higher than the first-order approximations for all bitwidth, and the di↵erence is

more significant at low bitwidths.

At low bitwidth, the temporal approximations generally outperform the spatial

approximations in terms of e�ciency. However, at higher bitwidths, the e�ciency

performance of both the spatial and temporal approximations are very similar.

43

Figure 5.10: E�ciency of Generative RBM

5.4 Evaluation

The performance of the spatial and temporal approximations used in the Gen-

erative RBM are very similar at high bitwidths. At 4-bit, none of the approxi-

mations are su�ciently powerful to meet the requirement of the 0.004 maximium

MMD values to perform a su�ciently decent generation. At high bitwidths, the

performance of all the approximations are very similar.

However, if the designer has low power allowance and are able to sacrifice the

MMD performance of the model, the higher order temporal approximation will be

the best performing choice.

An advantage of using the temporal approximations is that it is easier to tune to

alter order of approximation of the sigmoid function by adjusting the parameters.

However, using a temporal approximation with high time steps can be detrimental

to the level of power consumption by the RBM.

44

Chapter 6

Conclusions and Future Work

To study the performance-power e�ciency of Gibbs samplers implemented with

fixed point arithmetic and functional approximations, image generation and clas-

sification were performed using an RBM. Stochastic Gibbs sampling was done for

learning and inferencing on an RBM. Test metrics were developed to compare the

quality of the models, and power consumption were measured from the Verilog

implementation of the RBM. The trade-o↵s between the two styles of activation

function approximation, and among the di↵erent levels of quantization, were then

identified.

Experimental results show that classification using the Discriminative RBM is

less sensitive to the quality of the activation function approximations. Therefore,

using the first-order approximations were su�cient. The performance of both spa-

tial and temporal approximations are similar at high bitwidths, but the temporal

sampler performs better at low bitwidths. From the Discriminative RBM results,

we can conclude that it is most e�cient to perform classification at 8 bits.

For the Generative RBM, it is shown that the quality of the activation function

approximation is essential to the performance of the generation. Higher order

sigmoidal approximation gives a higher e�ciency especially at low bitwidths. In

general, the temporal approximation performs better than spatial approximation

at low bitwidth. From the Generative RBM results, we can conclude that it is

most e�cient to perform generation at 16 bits.

Since the temporal approximations are proven to outperform the spatial ap-

45

proximations at low bitwidths, and matches the performance of the spatial ap-

proximations at high bitwidths, designs are advised to select the temporal sigmoid

approximations over the spatial approximations if the power constraint allows.

Additonally, temporal implementations are more flexible to changes in the order

of sigmoid approximations than spatial implementations.

A suggested future extension to the work reported in this thesis is to stack

hidden layers to the RBM to form the DBN, and perform the same experiments

on the DBN. Another possible extension on the hardware side, is to develop the

design on the Field-Programable Gate Array (FPGA) for real-time application of

image classification and generation tasks. The research can also be applied to a

Bayesian Inference.

P (✓|x) = P (x|✓)P (✓)

P (x)

where P (x) =
R
P (x|✓)P (✓) d✓, which is a similar high dimensional complex com-

putation that can be done using Gibbs sampling.

46

Bibliography

[1] Versa Technology. How much Data will The Internet of Things (IoT) Generate
by 2020?. Web, 2015.

[2] M. Deutscher. Cisco predicts Internet of Things will generate 500 zettabytes of
tra�c by 2019. SiliconANGEL, Web, 2015.

[3] Haykin, Simon. Neural Networks and Learning Machines. Vol. 3. Upper Saddle
River, NJ, USA: Pearson, 2009.

[4] Grinstead, Charles M. Snell, James Laurie. Introduction to Probability. Amer-
ican Mathematical Soc., 2012.

[5] Murphy, Kevin P. Machine Learning A Probabilistic Perspective. The MIT
Press, 2015.

[6] Larochelle, Hugo. Bengio, Yoshua. Classification using Discriminative Re-
stricted Boltzmann Machines. In Proceedings of the 25th international con-
ference on Machine learning, pp. 536-543. ACM, 2008.

[7] Carreira-Perpinan, Miguel A. Hinton, Geo↵rey E. On Contrastive Divergence
Learning. Springer, Berlin, Heidelberg, 2012.

[8] Danafar, Somayeh. Rancoita, Paola M.V. Glasmachers, Tobias. Whittingstall,
Kevin. Schmidhuber, Jurgen. Testing Hypotheses by Regularized Maximum
Mean Discrepancy. arXiv preprint arXiv:1305.0423, 2013.

[9] Pedroni, Bruno U. Das, Srinjoy. Arthur, John V. Merolla, Paul A. Jackson,
Bryan L. Modha, Dharmendra S. Kreutz-Delgado, Kenneth. Cauwenberghs,
Gert. ”Mapping Generative Models onto a Network of Digital Spiking Neu-
rons”. IEEE transactions on biomedical circuits and systems 10, no. 4: 837-854,
2016.

[10] Das, Srinjoy. Pedroni, Bruno Umbria. Merolla, Paul. Arthur, John. Cas-
sidy, Andrew S. Jackson, Bryan L. Modha, Dharmendra. Cauwenberghs, Gert.
Kreutz-Delgado, Ken. ”Gibbs Sampling with Low-Power Spiking Digital Neu-
rons”. In Circuits and Systems (ISCAS), 2015 IEEE International Symposium
on, pp. 2704-2707. IEEE, 2015.

47

[11] Neopane, Ojash. Das, Srinjoy. Arias-Castro, Ery. Kreutz-Delgado, Ken. A
nonparametric framework for quantifying generative inference on neuromorphic
systems. In Circuits and Systems (ISCAS), 2016 IEEE International Sympo-
sium on, pp. 1346-1349. IEEE, 2016.

[12] Marconi, Thomas. Theodoropoulos, Dimitris. Bertels, Koen. Gaydadjiev,
Georgi. A Novel HDL Coding Style to Reduce Power Consumption for Reconfig-
urable Devices. In Field-Programmable Technology (FPT), 2010 International
Conference on, pp. 295-299. IEEE, 2010.

48

