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A link queue model of network traffic flow

Wen-Long Jin∗

July 31, 2013

Abstract

Fundamental to many transportation network studies, traffic flow models can be
used to describe traffic dynamics determined by drivers’ car-following, lane-changing,
merging, and diverging behaviors. In this study, we develop a deterministic queueing
model of network traffic flow, in which traffic on each link is considered as a queue.
In the link queue model, the demand and supply of a queue are defined based on the
link’s fundamental diagram, and its in- and out-fluxes are computed from junction flux
functions corresponding to macroscopic merging and diverging rules. We demonstrate
that the model is well defined and can be considered as a continuous approximation to
the kinematic wave model on a road network. From careful analytical and numerical
studies, we conclude that the model is physically meaningful, computationally efficient,
always stable, and mathematically tractable for network traffic flow. As an addition to
the multiscale modeling framework of network traffic flow, the model strikes a balance
between mathematical tractability and physical realism and can be used for analyzing
traffic dynamics, developing traffic operation strategies, and studying drivers’ route
choice and other behaviors in large-scale road networks.

Keywords: Network traffic flow, kinematic wave models, cell transmission model, link
transmission model, fundamental diagram, link demand and supply, junction flux functions,
macroscopic merging and diverging rules, link queue model

1 Introduction

Fundamental to many transportation network studies, traffic flow models can be used to
describe traffic dynamics determined by drivers’ car-following, lane-changing, merging, and
diverging behaviors, subject to constraints in network infrastructure and control measures.
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For a network traffic flow model, its inputs include initial traffic conditions, traffic control
signals, and traffic demands determined by drivers’ choice behaviors in routes, destinations,
departure times, modes, and trips, and its outputs include vehicles’ trajectories and travel
times as well as congestion patterns.

A traffic flow system, which is highly complex due to heterogeneous and stochastic
characteristics of and interactions among drivers, road networks, and control measures, can
be modeled at different spatio-temporal scales: at the vehicle level, microscopic models have
been proposed to describe movements of individual vehicles (Gazis et al., 1961; Gipps, 1986;
Nagel and Schreckenberg, 1992; Hidas, 2005); at the cell level, the LWR model (Lighthill and
Whitham, 1955; Richards, 1956), higher-order continuum models (Payne, 1971; Whitham,
1974), and gas kinetic models (Prigogine and Herman, 1971) have been proposed to describe
the evolution of densities, speeds, and flow-rates inside road segments; at the link level,
models based on variational formulations (Newell, 1993; Daganzo, 2006), exit flow functions
(Merchant and Nemhauser, 1978; Friesz et al., 1993; Astarita, 1996), and delay functions
(Friesz et al., 1993) have been proposed to describe the evolution of traffic volumes on
individual links; and at the regional level, the two-fluid model (Herman and Prigogine,
1979) and macroscopic fundamental diagrams (Daganzo and Geroliminis, 2008; Geroliminis
and Daganzo, 2008) have been proposed for static traffic characteristics, and continuous
models have been proposed to describe the dynamical evolution of the traffic density on a
two-dimensional plane (Beckmann, 1952; Ho and Wong, 2006). These models have different
levels of detail and form a multiscale modeling framework of network traffic flow (Ni, 2011):
different models can describe different traffic phenomena at different spatio-temporal scales,
and models at a coarser scale are usually consistent with those at a finer scale on average.

Traditional vehicle- and cell-based traffic flow models have been widely applied in studies
on traffic dynamics, operations, and planning (Daganzo, 1996; Lo, 1999). But they are too
detailed to be mathematically tractable for many transportation problems in large-scale road
networks, such as dynamic traffic assignment problems (Peeta and Ziliaskopoulos, 2001). In
contrast, existing link-based network loading models are more amenable to mathematical
analyses but fail to capture critical interactions among different traffic streams when queues
spill back at oversaturated intersections (Daganzo, 1995a).

In this study, we attempt to fill the gap between kinematic wave models and network
loading models by proposing a link-based deterministic queueing model. The model is
consistent with both kinematic wave models and existing link-based models but strikes a
balance between mathematical tractability and physical realism for network traffic flow. Here
we consider traffic on each link as a queue, and the state of a queue is either its density
(the number of vehicles per unit length) on a normal link or the number of vehicles on an
origin link. Based on the fundamental diagram of the link, we define the demand (maximum
sending flow) and supply (maximum receving flow) of a queue. Then the out-fluxes of
upstream queues and in-fluxes of downstream queues at a network junction are determined by
macroscopic merging and diverging rules, which were first introduced in network kinematic
wave models. Hereafter we refer to this model as a link queue model.
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It is well known that a traffic system can be approximated by a deterministic network
queueing system, in which traffic dynamics are dictated by link characteristics and interactions
among traffic streams at merging, diverging, and other bottlenecks (Newell, 1982). In the
transportation literature, point queue models have been used to model traffic dynamics on a
road link (Vickrey, 1969; Drissi-Käıtouni and Hameda-Benchekroun, 1992; Kuwahara and
Akamatsu, 1997). Point queue models are similar to fluid queue models for dam processes
proposed in 1950s (Kulkarni, 1997). For stochastic queueing models of network traffic flow,
refer to (Osorio et al., 2011) and references therein. Different from existing queueing models,
the link queue model is deterministic, link-based, and highly related to kinematic wave
models by incorporating the fundamental diagrams and macroscopic merging and diverging
rules of the latter. The model captures important capacity constraints imposed by links
and junctions but ignores the detailed dynamics on individual links. Therefore, the model is
suitable for analyzing traffic dynamics, developing traffic operation strategies, and studying
drivers’ route choice and other behaviors in large-scale road networks.

In a sense, the relationship between the link queue model and the kinematic wave model
resembles that between the LWR model and car-following or higher-order continuum models.
In steady states, the LWR model and car-following or higher-order continuum models are the
same as the fundamental diagram (Greenshields, 1935; Gazis et al., 1959); but car-following
or higher-order continuum models can be unstable on a road link and demonstrate clustering
and hysteresis effects (Gazis et al., 1961; Payne, 1971; Treiterer and Myers, 1974; Kerner
and Konhäuser, 1993), but the LWR model is devoid of such higher-order effects and is
always stable on a single road. That is, the LWR model can be considered as a continuous
approximation of car-following or higher-order continuum models on a road. In this study, we
will demonstrate that the link queue model can be considered as a continuous approximation
of the LWR model on a network.

The rest of the paper is organized as follows. In Section 2, we review link-based models
and kinematic wave models of network traffic flow. In Section 3, we present the link queue
model and discuss its analytical properties and a numerical discrete form. In Section 4, we
examine the relationships between the model and existing models. In Section 5, we apply
it to simulate traffic dynamics in a simple road network and compare the model with the
kinematic wave model. In Section 6, we discuss future research topics.

2 Review of network traffic flow models

For a general road network, e.g., a grid network shown in Figure 1, the sets of unidirectional
links and junctions are denoted by A and J , respectively. If link a ∈ A is upstream to a
junction j ∈ J , we denote a→ j; if link a is downstream to a junction j, we denote j → a.
The set of upstream links of junction j is denoted by A→j = {a ∈ A | a→ j}, and the set of
downstream links of junction j is denoted by Aj→ = {a ∈ A | j → a}. If a /∈ Aj→ for any
j ∈ J , link a is an origin link; if a /∈ A→j for any j ∈ J , link a is a destination link. We denote
the sets of origin and destination links by O and R, respectively. We have that O ∩R = ∅,
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Figure 1: A grid network

O ⊂ A, and R ⊂ A. We denote the set of normal links by A′, where A′ = A \ (O ∪R). For
a ∈ A′, its length is denoted by La. Here origin and destination links are dummy links with
no physical lengths.

In a traffic system, vehicles can be categorized into commodities based on their attributes
such as destinations, paths, classes, etc. The set of commodities in the whole network is
denoted by Ω. If commodity ω ∈ Ω uses link a ∈ A, we denote ω ∼ a. The set of commodities
using link a is denoted by Ωa; i.e., Ωa = {ω ∈ Ω | ω ∼ a}. Then a unidirectional traffic
network can be characterized by ∆ = (A,O,R, J, {(A→j, Aj→) : j ∈ J}, {Ωa : a ∈ A}).

2.1 A link-based modeling framework based on traffic conserva-
tion

For a traffic network ∆, we denote the average density on a normal link a ∈ A′ at time t
by ka(t) and denote the in-flux and out-flux of link a by fa(t) and ga(t), respectively. For
commodity ω on link a, we denote its average density by ka,ω(t), in-flux by fa,ω(t), and
out-flux by ga,ω(t). Thus we have for a ∈ A′: ka(t) =

∑
ω∈Ωa

ka,ω(t), fa(t) =
∑

ω∈Ωa
fa,ω(t),

and ga(t) =
∑

ω∈Ωa
ga,ω(t). For an origin link o ∈ O, we denote the queue length at time

t by Ko(t) and denote the arrival rate (in-flux) and departure rate (out-flux) by fo(t) and
go(t), respectively. For commodity ω on link o, we denote its queue length by Ko,ω(t),
in-flux by fo,ω(t), and out-flux by ga,ω(t). Thus we have for o ∈ O: Ko(t) =

∑
ω∈Ωo

Ko,ω(t),
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fo(t) =
∑

ω∈Ωo
fo,ω(t), and go(t) =

∑
ω∈Ωo

go,ω(t).
From traffic conservation on normal and origin links, we have the following dynamical

system for a traffic network ∆: (a ∈ A′ and o ∈ O)

dka(t)

dt
=

1

La
(fa(t)− ga(t)) , (1a)

dka,ω(t)

dt
=

1

La
(fa,ω(t)− ga,ω(t)) , (1b)

dKo(t)

dt
= fo(t)− go(t), (1c)

dKo,ω(t)

dt
= fo,ω(t)− go,ω(t). (1d)

Further, from traffic conservation at a junction j, we have∑
a∈A→j

ga(t) =
∑
b∈Aj→

fb(t), (2a)

∑
a∈A→j

ga,ω(t) =
∑
b∈Aj→

fb,ω(t). (2b)

Here we assume that there is no queue on a destination link r ∈ R, and its in-flux equals the
out-flux all the time. Then (1) and (2) constitute a general link-based model of the queueing
network ∆. It is a finite-dimensional dynamical system, whose dimension equals the total
number of commodities on all origin and normal links. The link-based model, (1) and (2), is
only based on traffic conservation on all links and junctions, and all traffic flow models on
a network ∆ should satisfy these conditions, whether they are vehicle-, cell-, or link-based
models. Note that, the in-fluxes and out-fluxes, except the origin arrival rates, in (1) and (2)
are under-determined, and additional relationships between densities and fluxes are needed
to complement them. Ideally, the relationships are consistent with vehicles’ car-following,
lane-changing, merging, and divering behaviors on links and at junctions.

2.2 Review of link-based network loading models

Link-based traffic flow models, (1) and (2), satisfying the path FIFO principle are usually
called network loading models for traffic assignment problems, in which selfish drivers choose
their paths to minimize their own travel times (Wardrop, 1952).

In the literature, there have been several existing network loading models, which differ
from each other in the ways of complementing (1) and (2). The link performance functions
in the static traffic assignment problem can be interpretated as a network loading model
by assuming that the origin arrival rates and traffic queue lengths on all links are constant
during a peak period, there are no origin queues, and there exists a link travel time function
in link fluxes. Various extensions have been proposed in the literature to address many
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limitations of the static traffic flow model, and the corresponding traffic assignment problems
become asymmetric, multi-class, and capacitated (Boyce et al., 2005). In (Friesz et al., 1993),
a delay function model was proposed to complement (1) and (2) by introducing a dynamic
link performance function. (Daganzo, 1995a; Nie and Zhang, 2005; Carey and Ge, 2007). In
(Merchant and Nemhauser, 1978), an exit flow function was defined in link densities. More
discussions on this model can be found in (Carey, 1986; Friesz et al., 1989) and references
therein. In (Carey, 2004), some extensions of exit flow functions were proposed to incorporate
queue spillbacks, but they are limited without considering merging and diverging behaviors
at network junctions. In (Vickrey, 1969; Drissi-Käıtouni and Hameda-Benchekroun, 1992;
Kuwahara and Akamatsu, 1997), a point queue model is derived based on the assumption
that vehicles always travel at the free-flow speed on a link but wait at the downstream end
before leaving the link.

The aforementioned models are of finite-dimensional and amenable to mathematical
formulations and analysis for network problems. However, these models cannot capture
interactions among traffic streams at junctions, queue spillbacks, or capacity constraints on
in- and out-fluxes.

2.3 Review of network kinematic wave models

In network kinematic wave models, which are extensions of the LWR model (Lighthill and
Whitham, 1955; Richards, 1956), traffic dynamics inside a link can be described by the
evolution of traffic densities at all locations. For link a ∈ A′ in a network ∆, we can introduce
link coordinates xa, and any location can be uniquely determined by the link coordinate
(a, xa). For a ∈ A′, at a point (a, xa) and time t, we denote the total density, speed, and
flow-rate by ρa(xa, t), va(xa, t), and qa(xa, t), respectively; we denote density, speed, and
flow-rate of commodity ω ∈ Ωa by ρa,ω(xa, t), va,ω(xa, t), and qa,ω(xa, t), respectively. Here
0 ≤ ρa(xa, t) ≤ ρa,j(xa), where ρa,j(xa) is the jam density at xa.

For single-class, single-lane-group network traffic flow, vehicles of different commodities
have the same characteristics, and there is a single lane-group on each link. Thus vehicles at
the same location share the same speed with a speed-density relation of va,ω = va = Va(xa, ρa).
The corresponding flow-density relation is qa = Qa(xa, ρa) = ρaVa(xa, ρa), and qa,ω = ξa,ωqa,
where commodity ω’s proportion is ξa,ω = ρa,ω/ρa. Generally, Qa(xa, ρa) is a unimodal
function in ρa and reaches its capacity, Ca(xa), when traffic density equals the critical density
ρa,c(xa) (Greenshields, 1935; Del Castillo and Benitez, 1995). Then we have the following
commodity-based LWR model

∂ρa,ω
∂t

+
∂ρa,ωVa(xa, ρa)

∂xa
= 0, (3a)

∂ρa
∂t

+
∂ρaVa(xa, ρa)

∂xa
= 0, (3b)

which is a system of hyperbolic conservation laws on a network structure (Garavello and
Piccoli, 2006).
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A new approach to solving (3) was proposed within the framework of Cell Transmission
Model (CTM) (Daganzo, 1995b; Lebacque, 1996). In this framework, two new variables,
traffic demand (sending flow) and supply (receiving flow), can be defined at (x, t) as follows:

da = Da(xa, ρa) ≡ Qa(xa,min{ρa, ρa,c(xa)}), (4a)

sa = Sa(xa, ρa) ≡ Qa(xa,max{ρa, ρa,c(xa)}), (4b)

where the demand da increases in ρa, and the supply sa decreases in ρa. Furthermore, com-
modity demands are proportional to commodity densities; i.e., da,ω(xa, t) = da(xa, t)

ρa,ω(xa,t)

ρa(xa,t)
.

Then at a junction j, out-fluxes, gj(t), and in-fluxes, fj(t), can be computed from upstream
commodity demands, dj(t), and downstream supplies, sj(t), using the following flux function:

(gj(t), fj(t)) = FF(dj(t), sj(t)), (5)

which should be consistent with macroscopic merging and diverging behaviors at different
junctions. In (Jin, 2012b), it was shown that (5) serves as an entropy condition to pick out
unique, physical solutions to (3). Therefore, (3), (4), and (5) constitute a complete kinematic
wave theory of network traffic flow.

Compared with the aforementioned link-based network loading models, the kinematic
wave model can describe shock and rarefactions waves, capture a link’s storage capacity and
interactions among traffic streams at junctions. It has been used to study traffic dynamics,
operations, and assignment problems (Daganzo, 1996; Lo, 1999; Jin, 2009). However, the
model does not capture drivers’ delayed responses, hysteresis in speed-density relations, or
other properties of microscopic car-following models. More importantly, being an infinite-
dimensional dynamical system, it is both computationally and analytically demanding for
transportation network studies.

2.4 Review of two link-based models incorporating junction flux
functions

In the literature, there have been several attempts to introduce demand and supply functions
and junction flux functions into link-based models. In (Nie and Zhang, 2002; Zhang and Nie,
2005), the so-called spatial queue model was introduced as an extension to the point queue
model. In this model, however, the demand of a link is defined as a delayed function in the
in-flux.

In (Yperman et al., 2006), a discrete link transmission model was proposed based on the
variational version of the LWR model by (Newell, 1993). In their model, link demands and
supplies are defined by cumulative flows, and the fundamental diagrams and merging and
diverging rules are also consistent with those in the kinematic wave models. But as in the
spatial queue model, such demands and supplies are defined as delayed functions in in- and
out-fluxes.
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Although the number of state variables is finite, and interactions among traffic streams
are properly captured in these two models, the resulted dynamical system (1) is a system
of delay differential equations, since the link demands and supplies are defined in terms of
historical out- and in-fluxes, respectively. Therefore, the link transmission model is still
infinite-dimensional and not as mathematically tractable as traditional link-based models.

3 A link queue model

In this section, we present a new link-based model to complement (1) and (2). We consider
traffic on a link as a single queue and call this model as a link queue model. For each link
queue, the state variable is the link density, ka(t) (a ∈ A′), or the link volume, Ko(t) (o ∈ O).
In this model, in-fluxes, out-fluxes, and travel times can be computed from link densities.
This model inherits two major features from network kinematic wave models: first, the local
fundamental diagram is used to define the demand and supply of a link queue; second, flux
functions are used to determine in- and out-fluxes from link demands and supplies at all
junctions.

3.1 The link queue model for single-class, single-lane-group traffic

In this subsection, we consider single-class, single-lane-group network traffic and further
assume that a normal link a (a ∈ A′) is homogeneous1 with a local fundamental diagram
qa = Qa(ρa) at all locations for ρa ∈ [0, ka,j], where ka,j is the jam density on link a. In
addition, Qa(ρa) is a unimodal function in ρa, and the capacity Ca is attained at critical
density ka,c; i.e., Ca = Qa(ka,c) ≥ Qa(ρa). For a normal link queue a (a ∈ A′), we extend the
definitions of local demands and supplies in (4) and define its demand by

da(t) = Qa(min{ka(t), ka,c}) =

{
Qa(ka(t)), ka(t) ∈ [0, ka,c]
Ca, ka(t) ∈ (ka,c, ka,j]

(6a)

and its supply by

sa(t) = Qa(max{ka(t), ka,c}) =

{
Ca, ka(t) ∈ [0, ka,c]
Qa(ka(t)), ka(t) ∈ (ka,c, ka,j]

(6b)

For commodity ω, its proportion is denoted by ξa,ω(t) = ka,ω(t)/ka(t), and its demand is
proportional to ξa,ω(t).

For an origin link o ∈ O, if we omit the origin queue, then its demand, da(t), and the
commodity proportions, ξa,ω(t), should be given as boundary conditions. Otherwise, if the
arrival rates fo(t) and fo,ω(t) at the origin are given as boundary conditions, a point queue
can develop at the origin, and we define its demand by

do(t) = fo(t) + IKo(t)>0 =

{
∞, Ko(t) > 0
fo(t), Ko(t) = 0

(6c)

1An inhomogneous road can be divided into a number of homogeneous ones.
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where the indicator function IKo(t)>0 is infinity if Ko(t) > 0 and zero otherwise. For a
destination link r ∈ R, its supply, sr(t), is given as boundary conditions: if the destination
link is not blocked, we can set sr(t) =∞.

At a junction j, we apply (5) to calculate corresponding in- and out-fluxes from upstream
demands and downstream supplies

(gj(t), fj(t)) = FF(dj(t), sj(t)), (7)

where dj(t) is the set of upstream commodity demands, sj(t) the set of downstream supplies,
gj(t) the set of out-fluxes from all upstream links, and fj(t) the set of in-fluxes to all
downstream links.

Therefore, completing (1) by demand-supply functions in (6) and well-defined flux
functions in (7), we obtain the following link queue model of network traffic flow (a ∈ A′ and
o ∈ O):

dka(t)

dt
=

1

La
(fa(k(t))− ða(k(t))) , (8a)

dka,ω(t)

dt
=

1

La
(fa,ω(k(t))− ða,ω(k(t))) , (8b)

dKo(t)

dt
= fo(t)− ðo(k(t)), (8c)

dKo,ω(t)

dt
= fo,ω(t)− ðo,ω(k(t)), (8d)

(8e)

where k(t) is the set of all link densities or volumes, and fa(t) = fa(k(t), ga(t) = ða(k(t)),
fa,ω(t) = fa,ω(k(t)), ga,ω(t) = ða,ω(k(t)), go(t) = ðo(k(t)), and go,ω(t) = ðo,ω(k(t)) are
computed from k(t) with (6) and (7). The link queue model, (8), is a system of first-order,
nonlinear ordinary differential equations, and the number of state variables equals the number
of commodities on all normal and origin links,

∑
a∈A′ |Ωa| +

∑
o∈O |Ωo|. When the initial

states and boundary conditions are given, state variables at all times can be calculated from
(8).

3.2 Some examples of junction flux functions

A flux function (7) should be consistent with physically meangingful merging and diverging
rules. A well-defined flux function in (7) should have the following properties:

1. Traffic conservation at a junction, (2), is automatically satisfied.

2. A link’s out-flux is not greater than its demand. As a special case, if a link’s demand is
zero, its out-flux is zero.
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(a) A linear junction

1

2

3

(b) A merge

2

1

0

(c) A diverge

1

m

(d) A general junction

m+n

m+1

Figure 2: Four types of junctions

3. A link’s in-flux is not greater than its supply. As a special case, if a link’s supply is
zero, its in-flux is zero.

4. The flux function should be Godunov or invariant for the network kinematic wave
model in the sense of (Jin, 2012a). That is, non-invariant flux functions, which can be
used in network kinematic wave models, cannot be used in the link queue model, since
they can introduce non-trivial interior states (Jin, 2012b).

In this subsection, we present some valid flux functions for four types of typical junctions
shown in Figure 2. These flux functions have been proved to be invariant or Godunov for
the network kinematic wave model in (Jin et al., 2009; Jin, 2010b,a, 2012b,a).

For a linear junction with an upstream link 1 and a downstream link 2 in Figure 2(a), (7)
can be defined as follows:

g1(t) = f2(t) = min{d1(t), s2(t)}, (9a)

g1,ω(t) = f2,ω(t) = g1(t)ξ1,ω(t). (9b)

Here we assume that the boundary fluxes are maximal subject to constraints in the upstream
queue’s demand and the downstream queue’s supply. When signals or other types of
bottlenecks present at the junction, this model has to be modified.

For a merge with two upstream links, 1 and 2, and a downstream link, 3, as shown in
Figure 2(b), if the two upstream links are the same type of roads, e.g., freeways, (7) can be
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defined by the fair merging rule:

f3(t) = min{d1(t) + d2(t), s3(t)}, (10a)

g1(t) = min{d1(t),max{s3(t)− d2(t),
C1

C1 + C2

s3(t)}}, (10b)

g2(t) = f3(t)− g1(t), (10c)

f3,ω(t) =
2∑

a=1

ga(t)ξa,ω(t). (10d)

Note that the non-invariant fair merge model in (Jin and Zhang, 2003), g1(t) = min{d1(t), s3(t) d1(t)
d1(t)+d2(t)

},
cannot be used in (7). If the two upstream links have different merging priorities; e.g., when
an on-ramp has a higher merging priority than a freeway, (7) can be defined as follows:

f3(t) = min{d1(t) + d2(t), s3(t)}, (11a)

g1(t) = min{d1(t),max{s3(t)− d2(t), αs3(t)}}, (11b)

g2(t) = f3(t)− g1(t), (11c)

f3,ω(t) =
2∑

a=1

ga(t)ξa,ω(t). (11d)

where α is the merging priority of link 1. Obviously the fair merging model is a special case
of the priority merging model.

For a diverge with an upstream link, 0, and two downstream links, 1 and 2, as shown in
Figure 2(c), if all vehicles have pre-defined route choices and follow the FIFO diverging rule,
(7) can be defined as follows:

g0(t) = min{d0(t),
s1(t)

ξ0→1(t)
,
s2(t)

ξ0→2(t)
}, (12a)

f1(t) = ξ0→1(t)g0(t), (12b)

f2(t) = ξ0→2(t)g0(t), (12c)

fa,ω(t) = g0(t)ξ0,ω(t), a = 1, 2, ω ∈ Ωa, ω ∈ Ω0. (12d)

where ξ0→1(t) =
∑

ω∈Ω0∩Ω1
ξ0,ω(t) and ξ0→2(t) =

∑
ω∈Ω0∩Ω2

ξ0,ω(t) are the proportions of
vehicles on link 0 traveling to links 1 and 2, respectively. Here ξ0→1(t) ≥ 0, ξ0→2(t) ≥ 0,
and ξ0→1(t) + ξ0→2(t) = 1. Again, the non-invariant diverge model in (Lebacque, 1996),
f1(t) = min{ξ0→1(t)d0(t), s1(t)}, cannot be used in the link queue model. In emergency
evacuation situations, vehicles have no pre-defined route choices, (7) can be defined as follows:

g0(t) = min{d0(t), s1(t) + s2(t)}, (13a)

f1(t) = min{s1(t),max{d0(t)− s2(t), βd0(t)}}, (13b)

f2(t) = g0(t)− f1(t), (13c)
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where β is the evacuation priority of link 1.
For a general junction j with m upstream links and n downstream links, as shown in

Figure 2(d), if all vehicles follow the FIFO diverging and fair merging rules, (7) can be
defined as follows (A→j = {1, · · · ,m} and Aj→ = {m+ 1, · · · ,m+ n}):

1. From total and commodity densities on all links, ka(t) (a ∈ A→j), ka,ω(t) (a ∈ A→j,
ω ∈ Ωa), kb(t) (b ∈ A←j), and kb,ω(t) (b ∈ A←j, ω ∈ Ωb), from (6) we can calculate all
upstream demands, da(t) (a ∈ A→j), downstream supplies sb(t) (b ∈ Aj→), and the
turning proportion ξa→b(t)

ξa→b(t) =
∑

ω∈Ωa∩Ωb

ξa,ω(t), (14a)

where
∑

b∈Aj→ ξa→b = 1 for a ∈ A→j . Note that origin demands and destination supplies
could be given as boundary conditions.

2. The out-flux of upstream link a ∈ A→j is

ga(t) = min{da(t), θj(t)Ca}, (14b)

where the critical demand level θj(t) uniquely solves the following min-max problem

θj(t) = min{ max
a∈A→j

{da(t)
Ca
}, min

b∈Aj→
max
A1(t)

sb(t)−
∑

α∈A→j\A1(t) dα(t)ξα→b(t)∑
a∈A1(t) Caξa→b(t)

}. (14c)

Here A1(t) a non-empty subset of A→j.

3. The commodity-flux is (a ∈ A→j, b ∈ Aj→, ω ∈ Ωa ∩ Ωb)

fb,ω(t) = ga,ω(t) = ga(t)ξa,ω(t). (14d)

4. The in-flux of downstream link b ∈ Aj→ is

fb(t) =
∑
a∈A→j

ga(t)ξa→b(t). (14e)

Since (9), (10), and (12) are its special cases, (14) is a unified junction flux function. We
have the following observations on the unified junction model (14): (i) From (14e), in-
and out-fluxes satisfy the conservation equations (2); (ii) The model satisfies the first-
in-first-out (FIFO) diverging rule (Daganzo, 1995b), since the out-fluxes of an upstream
link are proportional to the turning proportions; (iii) The model satisfies the fair merging
rule (Jin, 2010b), since, when all upstream links are congested, da(t) = Ca for a ∈ A→j,
ga(t) = θj(t)Ca < Ca, and the total out-flux of link a is proportional to its capacity.
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4 Analytical properties and numerical methods

In this section, we discuss the analytical properties and numerical methods for the link queue
model. We also compare the model with existing models qualitatively.

4.1 Analytical properties

In this subsection we focus on the link queue model defined by (6), (8), and (14), where
vehicles have predefined routes and follow the fair merging and FIFO diverging rules. Then
we obtain the following finite-dimensional link queue model:

dk(t)

dt
= F(k(t),u(t); θθθ), (15)

where u(t) denote boundary conditions in origin demands or arrival rates and destination
supplies, and θθθ include link lengths, fundamental diagrams, speed limits, metering rates,
numbers of lanes, and other network and driver characteristics. In an extreme case with
triangular fundamental diagrams, if all links carry free flow, then (15) becomes a linear
system and is therefore well-defined. Here we demonstrate that (15) is well-defined with (6)
and (14) under general traffic conditions.

Lemma 4.1 The critical demand level in (14c) is well-defined: its solution exists and is
unique. In addition, θj(t) ∈ [0, 1], and it is a continuous function of upstream demands,
downstream supplies, and turning proportions.

Proof. Since the number of non-empty subsets of A→j is finite, the min-max problem in (14c)
has a unique solution. Thus θj(t) has a unique solution for any combinations of upstream
demands, downstream supplies, and turning proportions. Obviously it is a continuous function

in these variables. In addition, θj(t) ≥ 0, since maxA1(t)⊆A→j
sb(t)−

∑
α∈A→j\A1(t)

dα(t)ξα→b(t)∑
a∈A1(t)

Caξa→b(t)
≥

sb(t)∑
a∈A→j(t)

Caξa→b(t)
≥ 0. Since da(t) ≤ Ca from (6), we have θj(t) ∈ [0, 1]. �

Lemma 4.2 In (14), 0 ≤ ga(t) ≤ da(t), and 0 ≤ fb(t) ≤ sb(t). That is, in- and out-fluxes
are bounded by the corresponding demands and supplies.

Proof. From (14b), we have 0 ≤ ga(t) ≤ da(t).

As shown in (Jin, 2012a), θj(t) = maxa∈A→j
da(t)
Ca

if and only if sb(t) ≥
∑

a∈A→j da(t)ξa→b(t)

for all b; in this case, ga(t) = da(t), and fb(t) =
∑

a∈A→j da(t)ξa→b(t) ≤ sb(t) for all b.
Otherwise, there exists A∗ such that

θj(t) = min
b∈Aj→

sb(t)−
∑

α∈A→j\A∗ dα(t)ξα→b(t)∑
a∈A∗ Caξa→b(t)

,

θj(t) <
da(t)

Ca
, a ∈ A∗

θj(t) ≥
dα(t)

Cα
, α ∈ A→j \ A∗
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Then from (14b), we have ga(t) = θj(t)Ca for a ∈ A∗ and gα(t) = dα(t) for α ∈ A→j \ A∗.
Thus for all b ∈ Aj→:

fb(t) = θj(t)
∑
a∈A∗

Caξa→b(t) +
∑

α∈A→j\A∗

dα(t)ξα→b(t) ≤ sb(t).

Therefore 0 ≤ fb(t) ≤ sb(t). �

Lemma 4.3 ga is a continuous function of da. In addition, it is piece-wise differentiable in
da:

∂ga
∂da

=

{
1, da ≤ θjCa
0, da > θjCa

Therefore, ga is Lipschitz continuous in da. In addition, all out- and in-fluxes in (14) are
Lipschitz continuous in all upstream demands and downstream supplies.

Proof. Since θj is continuous in da, ga is also continuous in da. From properties of θj discussed
in Section 4.3 of (Jin, 2012b), we can see that: (i) θj increases in da when da ≤ θjCa; (ii) when

da > θjCa, θj is constant at θ∗j = minb∈A←j
sb−

∑
α∈A→j\A∗1

dαξα→b∑
a∈A∗1

Caξa→b
, where a ∈ A∗1. Therefore,

when da ≤ θ∗jCa, from (14b) we have ga = da, and ∂ga
∂da

= 1; when da > θ∗jCa, from (14b) we

have ga = θ∗jCa, and ∂ga
∂da

= 0. Similarly, we can use properties of θj to prove that all out- and
in-fluxes in (14) are Lipschitz continuous in all upstream demands and downstream supplies.
�

Theorem 4.4 The link queue model of network traffic flow, (8) together with (6) and (14),
is well-defined. That is, under any given initial and boundary conditions, solutions to the
system of ordinary differential equations (15) exist and are unique.

Proof. For general flow-density relations in fundamental diagrams, both traffic demand and
supply defined in (6) are Lipschitz continuous in traffic density. Further from Lemma (4.3),
we can see that the right-hand side of (15) is Lipschitz continuous in all state variables
as well as boundary conditions. Then from the Picard-Lindelöf theorem, solutions to the
system of ordinary differential equations (15) exist and are unique under any given initial
and boundary conditions (Coddington and Levinson, 1972). That is, the link queue model is
well-defined. �

In summary, the link queue model, (15), has the following properties:

1. If a link is empty, from (6) its demand is zero, and its out-flux is zero. Thus from (8)
the link’s density is always non-negative.

2. If a link is totally jammed, from (6) its supply is zero, and its in-flux equals zero. Thus
from (8), the link’s density cannot increase after it reaches the jam density. Therefore,
a normal link’s density is always bounded by its jam density.
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3. In addition, a link’s out- and in-fluxes are bounded by its demand and supply, re-
spectively. Since demand and supply are not greater than the capacity, the in- and
out-fluxes are also bounded by road capacities.

4. At a junction, all related link queues interact with each other. Especially when a
downstream link is congested, even if it is not totally jammed, the upstream links will
be impacted due to the limited supply provided by the downstream link. Therefore,
queue spillbacks are automatically captured.

5. The information propagation speed on a link may not be finite, since traffic on a link is
always stationary instantaneously in a sense. Thus the model cannot capture shock or
rarefaction waves inside a link.

6. For link a, the dynamic link flow-rate qa can be defined as qa = Qa(ka). But it is not
used in the model, and may not be the same as the in-flux and out-flux, even when

traffic is stationary; i.e., when dka(t)

dt
= 0. Thus link flow-rates are less important than

in- and out-fluxes in the model. Similarly, the link travel speed qa/ka is not explicitly
considered.

7. Since the link queue model is a system of ordinary differential equations, its solutions in
densities, fluxes, and, therefore, travel times are all smooth (Coddington and Levinson,
1972).

4.2 A numerical method

The link queue model, (15), cannot be analytically solved under general initial and boundary
conditions, but many numerical methods are available for finding its approximate solutions
(Zwillinger, 1998). Here we present an explicit Euler method for the model. We discretize
the simulation time duration [0, T ] into M time steps with a time-step size of ∆t. At time
step i, the total and commodity densities on link a ∈ A′ are denoted by kia and kia,ω; Ki

o and
Ki
o,ω denote the numbers of vehicles, i.e., queue lengths. In addition, the boundary fluxes

during [i∆t, (i+ 1)∆t] are denoted by f ia, f
i
a,ω, gia, and gia,ω.

On a normal link a, its demand, dia, and supply, sia, can be computed from kia with (6).
For an origin link o, its demand can be computed as follows:

dio =
Ki
o

∆t
+ f ia. (16)

Then traffic states at time step i+ 1 can be updated with the discrete version of (15):

ki+1
a = kia +

∆t

La
(f ia − gia), (17a)

ki+1
a,ω = kia,ω +

∆t

La
(f ia,ω − gia,ω), (17b)
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Ki+1
o = Ki

o + (f io − gio)∆t, (17c)

Ki+1
o,ω = Ki

o,ω + (f io,ω − gio,ω)∆t, (17d)

(17e)

where the boundary fluxes are computed by (14) with densities at time step i; i.e., at a
junction j, the boundary fluxes for all upstream links a ∈ A→j and downstream links b ∈ Aj→
are given by

ξia→b =
∑

ω∈Ωa∩Ωb

kia,ω
kia

, (18a)

θij = min{ max
a∈A→j

dia
Ca
, min
b∈Aj→

max
Ai1

sib −
∑

α∈A→j\Ai1
diαξ

i
α→b∑

a∈Ai1
Caξia→b

}, (18b)

gia = min{dia, θijCa}, (18c)

f ib =
∑
a∈A→j

giaξ
i
a→b, (18d)

f ib,ω = gia,ω = giaξ
i
a,ω, (18e)

where Ai1 a non-empty subset of A→j. Here the arrival rates f io and f io,ω and destination
supplies sir are given as boundary conditions. Note that, for an explicit Euler method, the
time step-size ∆t should be small enough for the discrete model, (17), to converge to the
continuous version. In addition, the smaller ∆t, the closer are the numerical solutions to
theoretical ones.

5 Comparison with existing models

In this section, we carefully compare the link queue model with existing link-based models as
well as kinematic wave models.

5.1 Comparison of qualitative properties and computational effi-
ciency

Compared with existing link-based network loading models, the link queue model has the
following properties:

• The link queue model can be considered as an extension to the exit flow function
model, since out-fluxes are computed from link densities. However, in the link queue
model, in-fluxes are also calculated from link densities, and both in- and out-fluxes are
determined by densities of all links around a junction.
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• In the link queue model, a point queue model is used for an origin link. But different
from the traditional point queue model, we define the demand in (6c), and the out-flux
is determined by the flux function (5) at the junction downstream to the origin queue.
That is, the origin out-flux is determined by downstream links’ supplies when they’re
congested. But in the traditional point queue model, interactions between a point
queue and its downstream queues are not fully captured.

• The densities are bounded by jam-densities. That is, ka(t) ∈ [0, ka,j ] on a normal link a.

• Speed-density and flow-density relations are directly incorporated into the demand and
supply functions.

• At a junction, merging and diverging rules are included, and interactions among different
links are explicitly captured.

• The FIFO principle is automatically satisfied in such junction flux functions as (14).

• Link travel times can be calculated from in- and out-fluxes but are not included in the
model.

Compared with the network kinematic wave model (3), the link queue model, (8), can
be considered an approximation, since (i) fundamental diagrams of the kinematic wave
model are used to calculate link demands and supplies and, therefore, in- and out-fluxes,
and (ii) invariant flux functions of the kinematic wave model are used to calculate in- and
out-fluxes through a junction. In addition, the discrete equations in (17) are highly related
to the corresponding multi-commodity CTM when each link is discretized into only one
cell. This also suggests the consistency between the link queue model and the kinematic
wave model.2 From this relationship, we conclude that the time-step size, ∆t, in (17) should
satisfy the following CFL condition for all normal links (Courant et al., 1928), Va

∆t
La
≤ 1;

i.e., ∆t ≤ mina∈A′
La
Va

, where Va is the free-flow speed on link a. That is, the maximum
time-step size should not be greater than the smallest link traversal time in a network.
However, different from the kinematic wave model, which is a system of infinite-dimensional
partial differential equations, the link queue model is a system of finite-dimensional ordinary
differential equations and cannot describe the formation, propagation, and dissipation of
shock and rarefaction waves on links. In a sense, in the link queue model, traffic is always
stationary on a link. Moreover, neither (17) or its continuous counterpart, (8), is equivalent
to CTM: first, in (17), the solutions are more accurate with a smaller ∆t, but in CTM, ∆t
should be as big as possible so as to reduce numerical viscosities; second, in CTM, the cell
size, ∆x, should be small enough to capture the evolution of shock and rarefaction waves on
a link, but in the link queue model, there is always one cell on a link.

Compared with the spatial queue and link transmission models, the link queue model also
incorporates the concepts of linke demands and supplies and apply junction flux functions

2In a sense, CTMs can be considered cell queue models.
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to determine links’ in- and out-fluxes. But the link queue model defines link demands
and supplies from link densities and is finite-dimensional. Therefore, it captures physical
characteristics of network traffic flow and remains mathematically tractable at the same
time.

In Table 1, we compare the computational efficiency, including both memory usage and
calculations, of the cell transmission, link transmission, and link queue models. In the table,
∆x is the cell size, ∆t the time-step size, and Wa the shock wave speed in congested traffic.
From the table, we have the following observations:

1. The state variable for the cell transmission model is infinite-dimensional, since it is
location dependent; but the other two models have a finite number of state variables.

2. Note that, in the cell transmission model, the cell size and the time-step size have to
satisfy the CFL condition: Va

∆t
∆x
≤ 1, where Va is the free-flow speed. In (Daganzo,

1995b), ∆x = Va∆t, which may not be always feasible in general road networks, but
the CTM has smaller numerical errors with larger CFL number Va

∆t
∆x

(LeVeque, 2002).
Therefore, when we decrease ∆t, we also need to decrease ∆x to obtain more accurate
numerical solutions in the cell transmission model.

3. In the cell transmission model, the number of state variables equals the number of
cells, La

∆x
. Therefore, it increases when we decrease the cell size. Therefore the memory

usage is proportional to the number of cells. For the link transmission model, since
link demands and supplies at time t are defined by fluxes at t − La

Va
and t − La

Wa
,

respectively, fluxes between t − La
Wa

, which is smaller than t − La
Va

, and t have to be
saved in memory for fast retrieval. Therefore, the memory usage is proportional to
La

Wa∆t
. Since Wa∆t < Va∆t ≈ ∆x, the memory usage of the link transmission model is

actually higher than that of the cell transmission model. But for the link queue model,
we only need to save the current link density, and its memory usage is 1.

4. At each time step, the number of calculations is proportional the number of state
variables. Therefore, the cell transmission model needs more calculations, and the
calculation demand increases when we decrease ∆x.

Therefore we can see that the link queue model is much more efficient than both cell
transmission and link transmission models.

5.2 Comparison with the kinematic wave model

In this subsection, we further compare the link queue model with the cell transmission and
link transmission models by numerical examples. Here all links share the following triangular
fundamental diagram (Munjal et al., 1971; Haberman, 1977; Newell, 1993):

Qa(ka) = min{Vaka,Wa(nakj − ka)} = min{65ka, 2925na − 16.25ka)},
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State variables Memory usage Calculations per time step
Cell Transmission ρa(xa, t)

La
∆x

La
∆x

Link Transmission fa(t), ga(t)
La

Wa∆t
2

Link Queue ka(t) 1 1

Table 1: Comparison of the computational efficiency per link among Cell Transmission, Link
Transmission, and Link Queue models

where na is the number of lanes, the free-flow speed Va = 65 mph, the jam density kj = 180
vpmpl, and the shock wave speed in congested traffic Wa = 16.25 mph. Therefore, the critical
density ka,c = 36na, and

da = min{65ka, 2340na},
sa = min{2925na − 16.25ka, 2340na}.

5.2.1 Shock and rarefaction waves on one link

We consider a one-lane open road of one mile, La = 1, which is initially empty. The upstream
demand is d−a = 2340 vph, and the downstream supply is s+

a = 1170 vph. In the kinematic
wave model, either the cell transmission or link transmission model, the problem is solved by
the following: first, a rarefaction wave propagates the link with the critical density, 36 vpm,
at the free flow speed, 65 mph. When the wave reached the downstream boundary at 1

65
hr

or 55 s, a shock wave forms and travels upstream at the speed, Wa = 16.25. When the shock
wave reaches the upstream at 1

65
+ 1

16.25
= 5

65
hr or 277 s, the link reaches a stationary state

at ka = 108 vpm. Therefore the in- and out-fluxes are given by

fKWa (t) =


0, t < 0
2340, 0 ≤ t < 277 s,
1170, t ≥ 277 s

gKWa (t) =

{
0, t < 55 s
1170, t ≥ 277 s

In the link queue model, we have

dka
dt

= min{sa, 2340} −min{da, 1170} = min{2925− 16.25ka, 2340} −min{65ka, 1170},

where ka(0) = 0. At t = 0, we have dka
dt

= 2340, and ka increases. Until ka reaches 18 vpm, the

link queue model is equivalent to dka
dt

= 2340−65ka, from which we have ka(t) = 36(1−e−65t)

for t ≤ t1 ≡ ln 2
65

. After t1 until ka reaches 36 vpm, the link queue model is equivalent to
dka
dt

= 1170, and ka = 18 + 1170(t− t1) for t ≤ t2 ≡ t1 + 1
65

= ln 2+1
65

. After t2, the link queue
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Figure 3: Comparison of out-fluxes from the link queue and kinematic wave models for a
simple example: Blue curves from the link queue model, and red curves with plus signs from
the kinematic wave model

model is equivalent to dka
dt

= 1755−16.25ka, from which we have ka(t) = 108−72e
ln 2+1

4
−16.25t.

Further from fLQa (t) = min{2925 − 16.25ka, 2340} and gLQa (t) = min{65ka, 1170}, we can
calculate the in- and out-fluxes correspondingly.

In Figure 3, we compare the solutions of the in- and out-fluxes from the link queue
and the kinematic wave models. We can clearly see that the link queue model and the
kinematic wave model are different for this simple example: the fluxes are discontinuous
in the kinematic wave model, but continuous in the link queue model. However, from the
curves of the out-fluxes, we can see that, even though the link queue model does not capture
the discontinuouse rarefaction wave exactly, it does approximate a transition from 0 to 1170
vph, which can be considered as a continuous rarefaction wave. Similarly, from the curves
of the in-fluxes, we can see that, even though the link queue model does not capture the
discontinuouse shock wave wave exactly, it does approximate a transition from 2340 to 1170
vph, which can be considered as a continuous shock wave. Therefore, this example confirms
that the link queue model is a continuous average of the kinematic wave model.

5.2.2 A signalized ring road

In this subsection, we use an example to illustrate the analytical advantage of the link queue
model over the kinematic wave model for a ring road with a length of La controlled by one
traffic signal. We assume that the average density is ka, and the traffic system is closed. We
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introduce the signal function as

π(t) =

{
1 signal is green at t
0 signal is red at t

(19)

If we consider the yellow signal, then π(t) can be a continuous function in t. But here we
consider effective green and effective red times. Usually π(t) is periodical; i.e., π(t+T ) = π(t).
Assuming π̂ is the green ratio. That is π̂ is the average of π(t).

π̂ =

∫ T
0
π(t)dt

T
.

With the link queue model, we have

fa(t) = ga(t) = min{da(t), sa(t)π̇(t)} = π(t) min{da(t), sa(t)} = π(t)Qa(ka),

which is also periodical with period T . If we define the average flow-rate as f̂a =
∫ T
0 fa(t)dt

T
,

then

f̂a = π̂Qa(ka), (20)

which is a function of ka. This relationship is the macroscopic fundamental diagram for a
signalized urban network (Godfrey, 1969; Daganzo and Geroliminis, 2008; Geroliminis and
Daganzo, 2008). Note that this relationship is independent of the link length La and the
signal cycle length Π.

However, with the kinematic wave model, either the cell transmission or link transmission
model, the boundary fluxes cannot be easily calculated. In the following example, we consider
a ring road, whose length is 65

60
miles. Thus the free-flow travel time on the link is 1 min.

At x = 0, we introduce a signal, whose cycle length is Π. We assume that the light is green
during the first half of the signal, and red during the second half. When the ring road carries
a uniform initial density of 18 vpm, we apply the cell transmission model to simulate traffic
dynamics for half an hour and demonstrate the solutions of fa(t) and ρa(x, t) for the last
four cycles in Figure 4. In figures (a) and (b), the cycle length is 1 min; in figures (c) and
(d), the cycle length is 2 min. Since the free-flow travel time is 1 min, when the cycle length
is 1 min, the final traffic pattern alternates between zero density and critical density, as
shown in Figure 4(b), and the boundary flux alternates between 0 and the capacity, as shown
as shown in Figure 4(a). In this case, the average flux, f̂a, is about a half of the capacity.
However, when the cycle length is 2 min, vehicles have to stop at the intersection as shown
by the red regions in Figure 4(d), and the average flux, f̂a, is about a quarter of the capacity.
With different densities and cycle lengths, then we are able to find the relationship between
f̂a and ka, i.e., the macroscopic fundamental diagram for the cell transmission model.

In Figure 5, we demonstrate the macroscopic fundamental diagram, f̂a(ka), on a signalized
ring road. In the figure, the green dashed curve is for the triangular fundamental diagram
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Figure 4: Solutions of the cell transmission model for different cycle lengths: The dashed
lines show the average fluxes in figures (a) and (c)
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Figure 5: The macroscopic fundamental diagram of a signalized ring road

4 5

0 1

2

3

Figure 6: A diverge-merge network with one O-D pair and two intermediate links

without signal control, the red solid curve is the macroscopic fundamental diagram calculated
from the link queue model, (20), and the shaded region represents the macroscopic fundamental
diagram calculated from the cell transmission model with different cycle lengths. This example
again confirms that the link queue model is a reasonable approximation of the kinematic
wave model. In addition, this example also highlights the analytical simplicity of the link
queue model, as the macroscopic fundamental diagram can be directly derived with this
model.

6 The stability property of the link queue model

In this section, we apply the link queue model (15) to study traffic dynamics in a diverge-
merge network with two intermediate links, referred to as the DM2 network, shown in Figure
6. In the network, there are two commodities: vehicles of commodity 1 use link 1; and those
of commodity 2 use link 2. We denote the dummy link at the origin by 4 and that at the
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destination by 5. In this example, we do not consider the origin queue. Initially, the network
is empty: ka = 0 for a = 0, · · · , 3. Link lengths are La = 1, 1, 2, 1 miles for a = 0, · · · , 3,
respectively; the number of lanes are na =3, 1, 2, 2, respectively. Here we assume that
vehicles follow the FIFO principle at the diverge and the fair merging rule at the merge.

6.1 Numerical results

We solve the link queue model with the numerical method in Section 4.2. The simulation
time duration is T = 1.05 hrs, and ∆t = 1.75 × 10−4 hrs, for which the CFL condition
is satisfied. To compare the results with those of the kinematic wave model (3), we also
solve the commodity-based CTM with the same fundamental diagrams, demand and supply
functions, and merge and diverge models. For CTM, the cell size ∆x = 0.0125 miles, and the
corresponding CFL number vf

∆t
∆x

= 0.91 < 1.
We first compare the link queue model and the kinematic wave model with constant

loading patterns. Here the boundary conditions are constant: the origin demand is constant
d4(t) = C0 = 7020 vph; the destination supply is also constant s5(t) = C3 = 4680 vph; and
the proportion of commodity 1 at the origin is ξ4,1 = ξ, where ξ is constant but can take
three different values: 0.3, 0.45, and 0.7. In (Jin, 2009), it was shown that the DM2 network
reaches damped periodic oscillatory, persistent periodic oscillatory, and stationary solutions
respectively in these three cases. Since traffic dynamics are dictated by those on links 1 and
2 in the network, in the following we only present link densities3, in- and out-fluxes on these
two links.

In Figure 7, we demonstrate the results from the link queue model and the kinematic
wave model when ξ = 0.7 in the DM2 network. These figures confirm that, when ξ = 0.7,
traffic reaches stationary states on links 1 and 2 eventually, since traffic densities reach
constant, and the in- and out-fluxes become equal on both links. We can observe the following
similarities between the two models:

• The two models have the same stationary states.

• On average the two models share the same dynamical patterns in densities, in- and
out-fluxes.

• It takes a longer time for traffic to converge to stationary states on link 2 than on link
1, since the former is longer.

We can also observe the following significant differences between the two models:

• Results from the link queue model converge in an exponential fashion, but those from
the kinematic wave model converge in a finite time.

3In CTM, the link density equals the average value of all cell densities.
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Figure 7: Comparison between the link queue and kinematic wave models when ξ = 0.7: In
all figures, the solid lines are results for the link queue model, and the dashed lines for the
kinematic wave model; In figures (c) and (d), blue lines are for in-fluxes, and red lines for
out-fluxes
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Figure 8: Comparison between the link queue and kinematic wave models when ξ = 0.3: In
all figures, the solid lines are results for the link queue model, and the dashed lines for the
kinematic wave model; In figures (c) and (d), blue lines are for in-fluxes, and red lines for
out-fluxes

• In the link queue model, traffic densities and fluxes on both links become positive
immediately after traffic is loaded at t > 0; but in the kinematic wave model, it takes
some time for traffic densities and fluxes on both links to become positive, since it takes
time for vehicles to travel from the origin to the diverging junction.

In Figure 8, we demonstrate the results from the two models when ξ = 0.3. The dashed
curves in figures (c) and (d) confirm that damped periodic oscillations occur on both links.
But results from the link queue still converge to stationary states exponentially. In Figure
9, we demonstrate the results from the two models when ξ = 0.45. The dashed curves in
all figures confirm that persistent periodic oscillations occur on both links. The period is
about 0.2 hours or 12 minutes. 4 In both cases, results from the link queue still exponentially
converge to stationary states, but the results from the link queue model are still consistent
with those from the kinematic wave model on average.

We then compare the link queue model and the kinematic wave model with a varying

4In (Jin, 2009), it was shown that the period is determined by the lengths of links 1 and 2 as well as the
corresponding fundamental diagrams.
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Figure 9: Comparison between the link queue and kinematic wave models when ξ = 0.45: In
all figures, the solid lines are results for the link queue model, and the dashed lines for the
kinematic wave model; In figures (c) and (d), blue lines are for in-fluxes, and red lines for
out-fluxes

27



Figure 10: Comparison between the link queue and kinematic wave models with varying
demand patterns when ξ = 0.45: In all figures, the solid lines are results for the link queue
model, and the dashed lines for the kinematic wave model; In figures (c) and (d), blue lines
are for in-fluxes, and red lines for out-fluxes

loading pattern: the origin demand is periodic d4(t) = 1
2
C0(sin(4πt/T ) + 1) vph, where

T = 1.05 hrs; the destination supply is still constant s5(t) = C3 = 4680 vph; and the
proportion of commodity 1 at the origin is ξ4,1 = 0.45, which leads to persistent periodic
oscillations with constant demands in the preceding subsection. Still, we only compare link
densities, in- and out-fluxes on the two intermediate links.

In Figure 10, we demonstrate the results from the two models. We can see that traffic
dynamics on the network are dominated by the varying demand pattern. The dashed curve
in all figures show that persistent periodic oscillations occur on both links when the traffic
demand is higher than a certain level, and the period is still about 12 minutes. Clearly, even
with varying demand patterns, the link queue model is still consistent with the kinematic
wave model in the simulation results.

6.2 Theoretical analysis of the stability property

In (Jin, 2013), it was shown that the kinematic wave model for the diverge-merge network
can be unstable when one intermediate link is congested, but the other not. Based on the
observation of circular information propagation, a Poincaré map was derived and used to
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characterize the stability and bifurcation property of the kinematic wave model. In particular,
for the network shown in Figure 6 with constant loading patterns as in the preceding
subsection and ξ ∈ (1

3
, 1

2
), links 1 and 2 can be stationary at SUC and SOC, respectively, but

the stationary state is unstable, and persistent periodic oscillatory traffic patterns can occur,
as shown in Figure 9.

In this subsection, we analytically prove that the link queue model is always stable for
ξ ∈ (1

3
, 1

2
). Since in the stationary state links 1 and 2 are stationary at SUC and SOC,

respectively, from (12) we have f1(t) = ξ
1−ξs2(t), and f2(t) = s2(t); from (10) we have

g1(t) = d1(t), and g2(t) = C3 − d1(t). Note that d1(t) is an increasing function in k1(t) in
free-flow traffic, and s2(t) is a decreasing function in k2(t) in congested traffic. Then the link
queue model can be simplified as

dk1(t)

dt
=

1

L1

(
ξ

1− ξ
s2(t)− d1(t)) ≡ F1(k1, k2), (21a)

dk2(t)

dt
=

1

L2

(s2(t) + d1(t)− C3) ≡ F2(k1, k2). (21b)

Then the Jacobian matrix of the nonlinear system of ordinary differential equations is

∇F =

[ ∂F1

∂k1

∂F1

∂k2
∂F2

∂k1

∂F2

∂k2

]
=

[
−a ξ

1−ξ b

a b

]
,

where a = dd1
dk1

> 0 and b = ds2
dk2

< 0. We denote the eigenvalue by λ. Then the characteristic

equation is λ2+(a−b)λ− 1
1−ξab = 0. Since λ1+λ2 = −(a−b) < 0 and λ1λ2 = − 1

1−ξab > 0, the

real parts of both eigenvalues are negative, and the link queue model, (21), is asymptotically
stable at the stationary states.

This analysis can be easily extended to demonstrate the stability of the link queue
model for (DM)n networks studied in (Jin, 2013). Therefore the link queue model, (15), is
always stable for network traffic flow, and the stability property of the link queue model is
fundamentally different from that of the kinematic wave model.

7 Conclusions

In this paper, we presented a link queue model of network traffic flow, in which the evolution
of congestion levels on a road link is described by changes in the link density. With link
demands and supplies, it can capture basic characteristics of link traffic flow, including
capacity, free-flow speed, jam density, and so on. In addition, with appropriate junction flux
functions, it can describe the initiation, propagation, and dissipation of traffic queues in a
road network caused by merging, diverging, and other network bottlenecks.

Compared with existing link-based models, the link queue model rigorously describe
interactions among different links by using link demands, supplies, and junction models
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consistent with macroscopic merging and diverging behaviors. Therefore, the link queue
model is physically more meaningful.

Compared with the kinematic wave model, including its cell transmission and link
transmission formulations, the link queue model has the following properties:

1. As a system of ordinary differential equations, the link queue model is finite-dimensional,
but the kinematic wave model are infinite-dimensional, either as partial differential
equations (cell transmission) or delay differential equations (link transmission).

2. The link queue model is always stable, but the kinematic wave model may not be, as
demonstrated in Section 6 both analytically and numerically.

3. The link queue model is computationally more efficient than the cell transmission and
link transmission models, as shown in Table 1.

4. The boundary fluxes in the link queue model are continuous in time, but those in the
kinematic wave model can be discontinuous with shock waves, as demonstrated in
Section 5.2.1 and Section 6.1.

5. The link queue model is analytically more tractable, as demonstrated in Section 5.2.2
for a signalized ring road.

6. The link queue model has the same stationary states as the kinematic wave model, as
they share the same fundamental diagrams for the same links and the same macroscopic
merging and diverging rules. In particular, interactions among link flows at a junction,
including queue spillbacks, are described in both models.

7. The dynamic solutions of the link queue model approximate those of the kinematic
wave model for different networks with constant or variable demand patterns, as
demonstrated in Sections 5.2 and 6.1.

Therefore, the link queue model is fundamentally different from the kinematic wave model,
including the cell transmission and link transmission formulations, even though the link
queue model is extended from the latter. However, the link queue model captures the most
important two characteristics of network traffic flow, namely static fundamental diagrams
and dynamic junction models, and is a continuous and stable approximation of the kinematic
wave model in a large-scale road network during a time period in the order of 10 minutes.

From this study, we can see that the link queue model indeed fills the gap between
the kinematic wave model and traditional link-based models, as it is not as detailed as the
kinematic wave model but is still physically meanginful in a large spatial-temporal domain,
but the new model is more mathematically tractable than the more detailed kinematic wave
model. Therefore, the link queue model is a useful addition to the multiscale modeling
framework of network traffic flow. In applications, we may first apply the link queue model
to obtain analytical insights of network congestion patterns under different demand levels,
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control strategies, route choice behaviors, or other conditions and then apply the kinematic
wave model as well as microscopic models to further study the propagation of traffic queues
and other details before drawing any conclusions or making any policy recommendations.

In the future we will be interested in developing link queue models of other traffic flow
systems, which are consistent with kinematic wave models:

• If commodity flows are not explicitly tracked, but the turning proportions ξa→b(t) at
all junctions can be detected through loop detectors or other devices, we can obtain a
link queue model of implicit multi-commodity traffic. In this case, only one equation,
(1a), is needed for the evolution of total traffic on a link; (14b,c,e) can still be used to
calculate in- and out-fluxes at a junction; and fb,ω(t) and ga,ω(t) are not available in
(14d). This model is suitable for traffic operations when route choice behaviors are not
explicitly accounted for.

• If a network is closed without any origin or destination links, the link queue model can
still be applied. In this case, turning proportions at all junctions can be exogeneous
or endogenous, and the model becomes an autonomous system without boundary
conditions in origin demands or destination supplies.

• The model can be extended for multi-class, multi-lane-group traffic systems with lane-
changing traffic, HOV lanes, traffic signals, capacity drops, ramp metering, etc. The
major challenge is to define traffic demands and supplies in (6) and extend the junction
flux functions in (14) for such scenarios.

With the link queue model, we will also be interested in studying the following problems
pertaining to network traffic flow: (i) stationary states, or equilibria, of the link queue
model in open or closed networks (Jin, 2012c); (ii) hybrid link queue, kinematic wave, and
car-following models; (iii) analyses and simulations of traffic dynamics in a large-scale road
network with data input. In addition, the link queue model, (15), can be viewed as a control
system, in which u are control variables. From the viewpoint of control systems, we can
analyze the system’s responses to control signals, and many transportation applications can
be studied as control problems. Furthermore, since the link queue model is always stable and
has continuous arrival and departure flows, it could be encapsulated to more mathematically
tractable and numerically efficient formulations of the dynamic traffic assignment problem
(Lo, 1999).
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