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Abstract of the Thesis

Mining Spatial and Spatio-Temporal ROIs for

Action Recognition

by

Xiaochen Lian

Master of Science in Statistics

University of California, Los Angeles, 2016

Professor Alan Loddon Yuille, Chair

In this paper, we propose an approach to classify action sequences. We observe

that in action sequences the critical features for discriminating between actions

occur only within sub-regions of the image. Hence deep network approaches will

address the entire image are at a disadvantage. This motivates our strategy which

uses static and spatio-temporal visual cues to isolate static and spatio-temporal

regions of interest (ROIs). We then use weakly supervised learning to train deep

network classifiers using the ROIs as input. More specifically, we combine multi-

ple instance learning (MIL) with convolutional neural networks (CNNs) to select

discriminative action cues. This yields classifiers for static images, using the static

ROIs, as well as classifiers for short image sequences (16 frames), using spatio-

temporal ROIs. Extensive experiments performed on the UCF101 and HMDB51

benchmarks show that both these types of classifiers perform well individually

and achieve state of the art performance when combined together. We also show

qualitatively that our ROIs (selected by the algorithms) capture the most relevant

parts of the image sequences.
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CHAPTER 1

Introduction

Recognition of human actions in realistic videos is a challenging problem [2],

due to its complex content, cluttered background, and large intra-class variations

caused by scale and location variations and viewpoint changes

Humans appear to tackle this challenge using two abilities: (i) The ability

to rapidly detect static and spatio-temporal regions of interest (ROIs), instead

of processing the entire image (e.g., bottom-up attention). (ii) The ability to

determine which ROIs are useful for detecting specific actions and to extract

the relevant visual cues for action discrimination. These ROIs contain the key

information about the action. For example, static ROIs can include not only the

people doing the action but also objects that people interact with (e.g. bicycles in

B iking) or which often co-occur with the actions (e.g. basketboard in Basketball),

and background context (e.g. swimming pool in swimming actions). Similarly,

the spatio-temporal ROIs could be whole human body motion, the motion of body

parts (e.g. hands in Push Ups), movements of objects (e.g. barbell in C lean and

Jerk), and even background motion (e.g. sea waves in Surfing).

These considerations motivate us to propose a video action recognition method

that attends to regions of the videos, instead of the entire video. Fig. ?? illustrates

the pipeline of our method, which consists of two models: the Static Model and

the Motion Model. Both models mine ROIs in the video to obtain discriminative

action cues: The Static Model takes image frames as input and uses low-level cues

to propose static ROIs, e.g., 2D bounding boxes. More specifially, we use generic
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object proposal methods [3, 4, 5]. The Motion Model works on video clips (i.e. a

short sequence of frames), and mines spatio-temporal ROIs, which we call v ideo

tubes. These are obtained using low-level cues followed by temporal grouping

(details are given later).

Mining the ROIs is challenging because we do not know which ROIs are helpful

for discriminating the actions. It would be helpful if the ROIs were annotated

by action class, but this has only been done for humans (e.g. UCF101 [6], J-

HMDB [7]). This means we cannot use fully supervised methods for mining the

ROIs and must instead use weak supervision. More specially, we use multiple

instance learning (MIL), where a video frame or a video clip is a “bag” and the

ROIs are its “instances”. We combine ML with deep convolutional neural networks

(CNNs) to mine deep features from the ROIs. This enables both the Static and

the Motion Models to classify image frames and video clips respectively. Our final

system combines these classifiers.

The main contribution of this work is an action recognition model using spatial

and spatio-temporal ROIs rather than the whole visual scene. In particular we

improve upon existing methods in the following ways:

1. We generate ROIs to make proposals for video regions which contain dis-

criminative cues for action recognition..

2. We formulate the ROI mining as an MIL problem and incorporate it into

CNN structure, which enables unified learning of deep features and MIL.

3. Our model achieves state of the art performance on two action recognition

datasets: UCF 101 [6] and HMDB51 [8]. We also show that the ROIs

selected by the models capture the most relevant parts of the videos.

The rest of the thesis is organized as following: In Chapter ?? we briefly

review the literature and related work. Then we describe the proposed method in

2



Chapter 3. Evaluation are given in Chapter 4 followed by conclusions and future

work in Chapter 5.
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CHAPTER 2

Related Work

?? Action recognition on videos has been extensively studied in computer vision

community, and it is beyond the scope to review the entire literature. We refer

readers to [2, 9] for a detailed survey .

Hand-crafted representations have been widely used, including low-level, mid-

level and high-level features. Low-level ones extract representations [10, 11, 12]

around interesting points [13] or trajectories [14, 15, 16] with Bag-of-Word

(BOW) descriptors [17, 18, 19, 20, 21, 22]. Low-leve features suffer from their

limited representation ability and discriminative capacity. To overcome this issue,

several mid-level representations (e.g. Dynamic-Poselet [23], Motionlets [24], Ac-

tons [25] and [26]) and high-level representations (e.g. Action Bank [27]) have been

proposed. The idea lies in discovering and mining representative visual/motion

patterns or select discriminative elements in the action videos.

Recently, there have been attempts to learn deep representations for video

action recognition [28, 29, 30, 31], motivated by the great success of deep learning

techniques in image-based tasks [32, 33, 34, 35]. However, these deep models did

not perform as well as the current best hand-crafted shallow representation [15].

The first deep learning framework with matching performance is Two-Stream

network [36, 1], which uses two separate CNNs to model color and motion with a

final fusion. Different from their model where features are extracted on the whole

spatial extent, our model utilizes local regions (in the Static Model) and flexible

video tubes (in the Motion Model). Wang et al. [37] applied the trajectory-based
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pooling on the convolutional descriptors output by the Two-Stream network and

encoded them using Fisher vector. Their pooling strategy shares some similarities

with our motion tubes. CNNs with 3D convolution operations [38, 39] have been

proposed to preserve the temporal information of the input signals and enable

shift-invariance in the temporal domain.

Deep representations to encode long-term temporal structure have also been

attracted some attention [40, 41, 42, 43]. Recurrent Neural Networks have been

used to model a sequence of transformation across frames [44, 45, 46, 47, 48, 49,

50]. Our model processes videos at the level of short clips and can be readily

plugged into these systems as a feature representation component.

The proposals in our method can be interpreted as “parts” (of videos), the

concept which is originated from image understanding [51, 52], and has been in-

troduced to video classification [24, 25, 26]. Our method is different from these

methods in that it incorporates the deep representation of “parts” (i.e. the pro-

posals) in the model and provides a joint learning framework, as in [53] but with

a “deeper” network architecture.

Visual attention have been largely explored in image and video classification

tasks [54, 55], either implicitly [56, 57]. or explicitly [58, 59, 60, 61]. Sharma et al.

[57] adopted the implicit way to action recognition, by ensembling features from

different spatial/temporal structure by a soft weighted voting. It turned out to

be not the best choice in terms of performance. Our proposal based method [62,

63, 64] adopt the explicit strategy, by generating spatial and spatio-temporal

proposals as candidate action-related elements.

Multiple instance learning (MIL) has been largely used to combine proposals

in computer vision tasks [65, 66, 67, 68, 25]. It has been recently unified within

deep learning frameworks [69, 70, 71, 64, 50]. The one most related to our work is

[64], where some regions in the proximity of the query region of an image are were

chosen as instances. In this paper, we do not have query regions nor corresponding
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annotations. We extend their effort to video data by considering all possibly useful

spatial-temporal constituents of videos.
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CHAPTER 3

Approach

In this section, we describe in details the Static Model and the Motion Model.

Both models have three components: ROI proposal generation, computation of

deep features within ROIs, and training the deep network using MIL (after en-

coding and aggregation of the ROI deep features).

The ROI proposal algorithms are low-level and class-agnostic, since learning

proposals would require annotated ROIs. We use an ROI ranking mechanism, so

that our models only need to process a few, top scored, ROIs. This saves compu-

tation time and simplifies learning discriminative classifiers. Deep convolutional

features are computed for ROIs, which are then encoded and aggregated using

MIL.

3.1 Static Model

Fig. 3.1 shows the pipeline of the Static Model. Given an image frame I from a

video, the first step is generating a set of candidate regions, which will be used as

instances in the MIL framework. We use video labels as bag labels and the labels

of instances (i.e. of the ROIs) are unknown and treated as latent variables. The

deep convolutional features of the candidate regions are instance-level features.

Next, the MIL component of the Static Model encodes the instance features, and

learns the action classification model using the video class label.
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Figure 3.1: The network architecture of the proposed Static Model. Given an

image frame I, a set of 2D bounding boxes (indicated by colors) are selected

as candidate ROIs. The deep convolutional feature map of I are computed and

pooled over each ROI. The pooled features are then passed to the MIL com-

ponent, which is composed of three fully connected layers encoding features, an

aggregation layer mapping encoded instance features into one bag-level feature,

and a softmax layer that transforms the learned bag-level feature into final scores

of actions.

3.1.1 Spatial ROI Proposals

To obtain a list of K regions of interest (ROIs) R(I) = {r1, . . . , rK} from frame

I, we use the formulation of Edge Boxes [5]1, which estimates estimates bounding

boxes for objects based on the amount of contours wholly within the box, together

with an “objectiveness” score. After obtaining ROIs from Edge Boxes, we remove

small boxes (i.e. with shorter side less than 50 pixels), and keep K boxes with

highest “objectiveness” scores. We also include the whole frame region in case the

full background context is needed. Fig. 3.2 shows some examples. In Section 4, we

will see that with K as small as 20 our model can achieve very good performance.

3.1.2 Deep Instance Features

For each ROI rk in R(I), we compute the deep instance features f(rk, I;wf )

within it where wf are the parameters of the CNN (initially pre-trained and then

1In fact, any object proposal methods that has a ranking mechanism among proposals can
be used in our model, e.g. [4].
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Figure 3.2: Four examples of our region proposals for Static Model. For each

example, the left is the original frame image, the middle is the edge map, the

right shows top 10 bounding box ROIs.

learnt by MIL). To compute the features efficiently, we perform convolutions at

the frame level, and feed the convolutional feature map and R(I) into the ROI

Pooling layer [72]. This converts the features inside rk into a feature map with a

fixed spatial extent of H×W (e.g. 7× 7 in our experiments).

3.1.3 Multiple Instance Learning

The instance features of the regions in R(I) are then passed to the MIL component

shown in Fig. 3.1, which has three steps: First, the instance features are encoded

through three fully connected layers FC6, FC7 and FC8, which is formulated as

sk = e(f(rk, I;wf );we), k = 1, . . . , K (3.1)

where e represents the encoding with parameters we, sk ∈ RD is the encoded

features. Second, {sk}Kk=1 are mapped to one bag-level feature by the aggregation

function g:

h(W ) = g(s1, . . . , sk;wg) (3.2)

where wg is the parameters of g(·), h ∈ RC is the bag-level feature, W =

{wf , we, wg} is the parameters of the whole network, and C is the number of

classes. The aggregation function g(·;wg) can be any function that maps multi-

ple features into one feature and that can be blended into the gradient descent

9
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Figure 3.3: The network architecture of the proposed Motion Model. Given a

video clip, a set of video tubes (indicated by colors) are selected as candidates

spatio-temporal ROIs. A 3D Convolutional network is used to compute the fea-

tures of these tubes and the outputs are input into the MIL component, which is

composed of three fully connected layers encoding features, an aggregation layer

mapping instance-level features into one bag-level feature, and a softmax layer

that transforms the learned bag-level feature into final scores of actions.

optimization mechanism. In this paper, we compare two simple functions: max

pooling and average pooling, and therefore the dimension of sk is equal to C.

Thirdly, the bag feature h is transformed into the action scores of C classes,

pc =
exp (hc)∑C
i=1 exp (hi)

, c = 1, . . . , C (3.3)

and the loss we use is the cross-entropy classification loss i.e. − log (pĉ) where ĉ

is the ground truth class label of I.

3.2 Motion Model

Fig. 3.3 shows the pipeline of our Motion Model, which is composed of low-level

proposals to obtain spatio-temporal ROIs (video tubes for short) followed by the

multiple instance learning of action classification. The basis structure is almost

identical to the Static Model.

The objective of the local motion proposal step is to generate a set of spatio-

temporal ROIs of videos, which may contain cues for the action. Unlike previous
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Frame t+1

Frame t

Motion boxes for frame t

Figure 3.4: Left: Motion box generation on a single frame: two consecutive frames

are used to estimation the motion boundaries which is then used as edge map input

for Edge Boxes to produce motion boxes (red bounding boxes). Right: Two video

tubes proposals on the first four and last four frames of a 16-frame video clips.

Boxes with same color belong to the same video tube. The red tubes localizes the

diver and the yellow one finds the diving board.

works on action detection [63, 73, 74] and action proposals [75] which focus only

on human motions, we also consider the movements of objects and even some

backgrounds. These types of background movement are often very useful to help

identify actions (e.g. the motion of a road as a biker cycles down it). We propose

an approach for video tube generation which provides tight spatio-temporal local-

ization of the motions in videos. Afterwards, we formulate the learning of deep

representation of video tubes and MIL component in a unified network enabling

joint learning.

3.2.1 Video Tubes

Given a video clip of L frames V = (I1, . . . , IL), the goal of this step is to propose

a set of K spatio-temporal ROIs, or video tubes T = {t1, . . . , tK}, where each tube

tk = (r1k, . . . , r
L
k ) is a temporal series of 2D bounding boxes that localize motions.

We call these 2D bounding boxes “motion boxes”. Our algorithm build up a video

tube from a single image frame, by generating motion boxes on individual image

frames and then linking the boxes across frames to form video tubes.

11



The left part of Fig. 3.4 illustrates motion box generation on a single frame

I. Unlike the object boxes in the Static Model, motion boxes are intended to

capture moving parts in the video. We apply Edge Boxes again, but use the

motion boundaries [76] detected based on two consecutive image frames as edge

map. In this case, the objectiveness score estimated by Edge Boxes actually

reflects the amount of motion contours within in a motion box b, which we call

the “motionness” score m(b).

Once we have motion boxes on individual frames, we produce a set of video

tubes by linking boxes across frames. A good video tube proposal tk should have a

high motionness score, i.e. m(tk) =
∑L

l=1m(rlk) is large, and have spatio-temporal

smoothness:

IOU(rlk, r
l+1
k ) ≥ σo, l = 1, . . . , L− 1 (3.4)

and have consistent appearance along the tube, i.e.

‖ A(rlk)− A(rl+1
k ) ‖2≤ σa, l = 1, . . . , L− 1 (3.5)

where σo and σa are thresholds, A(·) compute the color histogram within a box.

In this paper, we use σo = 0.5, σa = 0.2 and divide R, G and B channels into 16

bins when computing color histogram.

Now for each motion box bLi in the last frame IL of V , we compute the best

tube ending at bLi , using dynamic programming,

f(bli) = max
bl−1
j ∈Il−1

f(bl−1j ) +m(bli) + d(bli, b
l−1
j ) (3.6)

where d(bli, b
l−1
j ) is −∞ if bli and bl−1i do not satisfy the constraints in Eq. 3.4

and Eq. 3.5, and is equal to 0 otherwise. Then we can back-trace from every

bLi ∈M(IL) to recover a video tube. This yields a large amount of tubes. Finally,

we apply non-maximum suppress to prune out highly overlapping video tubes,

according to their motionness scores.

12



For each remaining video tube, say tk, we first crop from l-th frame a square

patch plk with its center at the center of rlk and size

a = max
(
median(h(r1k), . . . , h(rlk)),median(w(r1k), . . . , w(rlk)

)
(3.7)

where h(·) and w(·) returns the height and the width of a bounding box respec-

tively. We then update tk by replacing rlk with plk and obtain the final video tube

tk. The right part of Fig. 3.4 shows two example video tubes.

3.2.2 Deep Instance Features

There are several options for computing the deep features of a video clip, e.g.

[31, 36, 38, 44, 45]. We choose the 3D convolutional network (C3D) in [38], due

to its good performance and the convenience of joint end-to-end training. In

C3D, traditional 2D convolution and 2D pooling operations are replaced with the

3D version, i.e. with an additional temporal dimension, to prevent the temporal

information from being collapsed. We use the output of the last convolution layer

as the instance feature, whose temporal dimension of the outputs becomes 1.

3.2.3 Multiple Instance Learning

The instance features in V are passed through the MIL component in Fig. 3.3,

which is essentially the same as the MIL component in the Static Model: the

instance features are encoded through three fully connected layers, and then are

mapped to one bag-level feature, which is transformed into the action scores of C

classes. The parameters of the network are trained using cross-entropy loss.
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CHAPTER 4

Experiments

In this section, we first introduce the details of our experimental settings. Then

we provide quantitative and qualitative results.

4.1 Datasets

The evaluation is performed on UCF101 [6] and HMDB51 [8] benchmarks. UCF101

contains 13, 320 videos of 101 action classes; HMDB51 includes 6, 766 videos of

51 actions. In both datasets, the videos of the same action class are grouped into

several groups; The videos from the same group may share some common features,

such as similar background, similar viewpoint, etc. . Both datasets provide three

official splits into training and test data. All the partitions satisfy that the videos

belonging to the same group are kept separated in training and testing. The

performance is measure by the average classification accuracy across the splits.

We begin by conducting diagnostic experiments on the first split of UCF101

dataset (UCF split1). For comparison with the state of the art, we follow the

standard evaluation protocol on both UCF101 and HMDB51.

14



4.2 Implementation Details

4.2.1 Static Model

For UCF101 dataset, we initialize the parameters of the Static Model (i.e. 13

convolutional layers and the first two feature encoding layers) with VGG-16 [33]

pre-trained on ImageNet dataset. The last encoding layer FC8 is initizlied with

random weights. For HMDB51 dataset, as the number of training videos are

relativel small (around 3.7K), we fine-tune the Static Model tarined on all videos

of UCF101 datasets. The learning rate starts with 0.001, decreases to its 1/10

every 4, 000 iterations and stops at 10, 000 iterations. The dropout ratios for

the encoding layers are set to be 0.5, as we observed performance degradation

with higher dropout ratios. The corner cropping and the multi-scale cropping

suggested in [1] are used on video frames of size 256× 340 to get cropped frames

of size 224× 224, which are later horizonatally flipped with probability 50%. The

ROIs in the images are transformed accordingly. At the test time, we sample

25 frame images. From each of these selected frames, we obtain 10 regions, i.e.

4 corners, 1 center, and their horizontal flippings. The final prediction score is

obtained by averaging across the sampled frames and their cropped regions.

4.2.2 Motion Model

For UCF101 dataset, we initialize the parameters of the Motion Model (i.e. 8

3D convolutional layers and the first two feature encoding layers) with C3D [38]

pre-trained on Sports-1M dataset [31]. The last encoding layer FC8 is initialized

with random weights. For HMDB51 dataset, we again fine-tune the Motion Model

trained on UCF101 datasets due to the smaller size of the dataset. The learning

rate starts with 0.0001, decreases to its 1/10 every 10, 000 iterations and stops at

20, 000 iterations. The dropout ratios for the encoding layers are set to be 0.5.

We use horizontal flipping as data augmentation. The videos are split into non-
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Table 4.1: Average accuracy of the variants of the proposed Static Model on UCF

split1.

max avg

ROIs=5 76.6% 76.3%

ROIs=10 78.3% 78.0%

ROIs=20 81.0% 80.4%

ROIs=40 79.2% 77.1%

overlapped 16-frame clips. For each clip, the video tube proposals are generated

and resized to 112×112 (the input size used in [38]), and then are used as the input

to the Model Motion. At the test time, 10 clips of 16 frame long are sampled, and

the final prediction score is obtained by averaging across all the clips.

4.2.3 Model Fusion

We perform the inference with the two models separately. For each video, we use a

weighted linear combination of the prediction scores produced by the two models.

Note that there is no official way of tuning hyper-parameters (fusion weights in

our case) on either UCF101 or HMDB51. We randomly choose two groups of

videos from the training partition of UCF101 split1 as validation set and repeat

the process three times. The weight is determined as 1 for the Static Model and

2 for the Motion Model.

In Section 4.4, we also combine our model (Static Model+Motion Model) with

the Two-Stream Model in [1]. We simply put equal weights on the scores.

4.3 Diagnostic Experiments

All the experiments in this sub-section are conducted on UCF split1.
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Table 4.2: Comparison between the Static Model and baselines on UCF101 split1.

methods avg. accuracy

SPNet-CC-avg 79.8%

SPNet-CC-max 79.8%

SPNet-FC-avg 79.9%

SPNet-FC-max 79.6%

SPNet-ROI(20)-max 75.0%

S-ROI(20)-max 81.0%

4.3.1 Static Model

We first experiment with two aggregation functions, max and avg, and different

number of ROIs (i.e. 5, 10, 20 and 40). The results are shown in Table 4.1. We

can see that in all cases, max(·) performs better than avg. Using 5 or 10 ROIs per

frame performs slightly worse than using 20 ROIs. The reason may be that fewer

ROIs are not enough to cover all useful regions. However, using more ROIs does

not necessarily bring better results, as more unrelated regions are brought in and

we need more training data to handle that. In the following experiments, we will

use max as the aggregation function and 20 ROIs per frame, which is denoted by

I-max-ROI(20).

Next, we compare I-max-ROI(20) with the spatial net trained in [1], denoted

by SPNet. In the paper, the final prediction score of a frame is obtained by

averaging across the 10 regions generated by corner cropping (CC) and horizontal

flipping. We call this approach SPNet-CC-avg. An alternative is doing max

pooling across the 10 regions, i.e. SPNet-CC-max. We experiment with another

two baselines using the spatial net of [1]: SPNet-FC-max and SPNet-ROI(20)-

max. For SPNet-FC-max, we use the spatial net in the fully convolutional (FC)

manner [77] on the whole video frame (of size 256× 340) and apply max pooling

across locations of the final score map of size 2 × 5, which can be considered
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Figure 4.1: Visualization of the top two regions selected by S-ROI(20)-max. Each

row corresponds to a video from the test partition of UCF101 split1. Red box

corresponds to the top score one, and the yellow is the second best one. For each

video we display five frames with equal temporal intervals.

as using dense and fixed-size proposals. The last one is SPNet-ROI(20)-max,

where we combine SPNet with our proposal strategy. From the results shown in

Table 4.2, we can see that S-ROI(20)-max outperforms SPNet-CC-{avg,max} and

SPNet-FC-max, which proves that our proposal strategy is better than the fixed

and the dense region proposal strategies. S-ROI(20)-max also performs better

than SPNet-ROI(20)-max, which indicates the importance of the unified learning

in our model.

In Figure 4.1, we show qualitatively that the Static Model can capture the

relevant parts of the video, by visualizing the top scored spatial ROIs selected by

S-ROI(20)-max, using videos from the test partition of UCF101 split1. From the

figure we can see that the Static Model is able to find objects related to actions.
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Table 4.3: Average accuracy of the variants of the proposed Motion Model on

UCF split1.

max avg

ROIs=5 81.8% 81.7%

ROIs=10 84.4% 84.1%

ROIs=20 84.2% 84.0%

4.3.2 Motion Model

We first experiment with two aggregation functions, max and avg, and different

number of video tube proposals (i.e. 5, 10 and 20). For convenience, we also call

the proposed video tubes ROIs. The results are shown in Table 4.3. We can see

that max(·) performs better than avg consistently. Using 5 ROIs per video clip

performs worse than using 10 ROIs, which may be also due to the lack of enough

ROIs to cover all useful regions. Using 20 ROIs does not give better performance

either but demands more computational time. In the following experiments, we

will use max as the aggregation function and 10 ROIs per video clip, which is

denoted by M-max-ROI(10).

Next, we compare M-ROI(10)-max with the C3D network in [38], which is

fine-tuned on UCF101 split1 from a C3D network pre-trained on Sports-1M. In

[38], C3D used a single center crop per clip to make the prediction. Predictions

of 10 clips randomly extracted from the video are averaged to give the video

prediciton. We call this approach C3D-C rand10. We also experiment with the

corner croping (CC) and the fully convolutional (FC) schemes paired with max

and average poolings, as we did for SPNet. These approaches can be seen as

using 3D bounding boxes at fixed locations as proposals. The results are shown in

Table 4.4, from which We can see that M-ROI(10)-max outperforms them, showing

the advantage of adopting video tubes that track motions as proposals. We also

combine C3D with our proposal strategy, i.e. C3D-ROI(10)-max. Without unified
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Table 4.4: Comparison between the Motion Model and baselines on UCF101

split1.

methods avg. accuracy

C3D-C rand10 81.9%

C3D-CC-avg 82.2%

C3D-CC-max 82.1%

C3D-FC-avg 82.1%

C3D-FC-max 82.1%

C3D-ROI(10)-max 77.5%

M-ROI(10)-max 84.4%

learning of feature representation and MIL encoding, the performance drops.

In Figure 4.2, we visualize the top two scored spatio-temporal ROIs selected

by M-ROI(10)-max, from which we can see that the Motion Model is able to find

action-related spatio-temporal ROIs.

4.4 Comparison with The State of The Art

In this section, we first evaluate the Static Model and the Motion Model on all

three splits of UCF101 and HMDB51. Then we compare with the state of the arts

results. We also evaluate the fusion of the two models. Please refer to Section 4.2

for how to determine the fusion weights.

Table 4.5 and Table 4.6 show comparison between our models and the Two-

Stream model in [1] on UCF101 and HMDB51. [1] used VGG-16 network [33] to

boost the performance of the original Two-Stream model [36]. Note that [1] did not

report experiments on HMDB51. We fine-tune the Two-Stream model pre-trained

on UCF101, and denote this model as “Two-Stream by us”. Our Static Model

outperforms the spatial net (i.e. the network operating on individual frames) of
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Figure 4.2: Visualization of the top two scored regions selected by

M-ROI(10)-max. Each row corresponds to a video clip from the test partition

of UCF101 split1. For each video clip we display first three and last three frames

and omit the between. The red boxes correspond to the video tube with best

action score, and the yellow is the one with second best score.
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[1] in the static stream. In the motion stream, our Motion Model performs worse

than the temporal net on UCF101. We argue that the temporal net uses 5 more

convolution layers than us, we expect the Motion Model to get better results when

fine-tuning from a deeper CNN. While on HMDB51, our Motion Model is better

than the temporal net. The reason maybe HMDB51 has less training data; By

attending to ROIs, our model suffers less from over fitting problem.

Table 4.7 presents action recognition accuracy of our method compared with

current best methods. On UCF101, our method (Static Model + Motion Model)

does not perform as well as [43, 1, 46]. However, when fused with the Two-

Stream model [1], our method got a 2.3% performance gain and achieve the best

performance. This shows that our models and the Two-Stream model are com-

plementary to each other. In fact, the temporal net of Two-Stream uses stacked

optical flow displacement fields as the input, while our Motion Model directly

operates on RGB domain. On HMDB51, our method got the state of the art

result on its own, and when combined with the Two-Stream model, the accuracy

increases 2.2%.
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Table 4.5: Comparison to the

Two-Stream model [1].

UCF101 Two-Stream [1] Ours

split 1 79.8% 81.0%

split 2 77.3% 78.4%

split 3 77.8% 78.8%
Static

average 78.4% 79.4%

split 1 85.7% 84.4%

split 2 88.2% 87.7%

split 3 87.4% 86.5%
Motion

average 87.0% 86.2%

split 1 90.9% 89.8%

split 2 91.6% 91.3%

split 3 91.6% 90.3%
Fusion

average 91.4% 90.5%

Table 4.6: Comparison to the

Two-Stream model from us.

HMDB51 Two-Stream by us Ours

split 1 54.3% 57.0%

split 2 50.3% 52.6%

split 3 50.1% 52.6%
Static

average 51.6% 53.9%

split 1 65.6% 66.8%

split 2 62.4% 64.3%

split 3 62.0% 64.0%
Motion

average 63.3% 65.0%

split 1 70.1% 72.0%

split 2 67.2% 68.2%

split 3 66.8% 68.4%
Fusion

average 68.0% 69.5%

Table 4.7: Comparison with the state of the art results.

HMDB51 UCF101

IDT+FV [15] 57.2% IDT+FV [15] 85.9%

Two-Stream [36] 59.4% Hybrid [20] 87.9%

H-VLAD [22] 59.8% Two-Stream [36] 88.0%

Hybrid [20] 61.1% LSTM+Two-Stream [44] 88.6%

TDD+FV [37] 63.2% C3D+iDT+SVM [38] 90.4%

Two Stream Siamese [43] 63.4% Hybrid LSTM [46] 91.3%

SFV [21] 66.8% Two Stream [1] 91.4%

Two-Stream by us 68.4% Two-Stream Siamese [43] 92.4%

Ours 69.5% Ours 90.5%

Ours+Two-Stream by us 71.7% Ours+Two-Stream [1] 92.8%
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CHAPTER 5

Conclusion and Future Work

In this work, we introduce a novel deep action recognition method with ROIs.

By exploiting video benchmarks, we find that critical representations occur with

in sub-regions of videos. Based on this observation, we extract static and spatio-

temporal regions of interest (ROI) to enhance the performance of deep network.

Features from different instances are naturally integrated into our MIL framework

to adaptively select the most discriminative ROIs to enable end-to-end learning.

Extensive experiments on UCF 101 and HMDB51 benchmarks demonstrate that

our algorithm not only outperform existing methods quantitatively, but also cap-

ture the most relevant part qualitatively.

In the future, we will try deeper network structure for further improvement.

Also, to exploit more aggregation functions in MIL other than average and max

pooling is also desirable. Furthermore, to construct detailed annotation on the

benchmark, i.e., high-quality hand-labeled regions, may be helpful to study the

influence of different ROI generation schemes. One straightforward future work

is to make our Motion Model deeper, i.e. using VGG-16 network as the starting

point. The second possible future work is to exploit more aggregation functions

for our MIL components. Another direction is constructing detailed annotation on

widely used action recognition benchmark, i.e. annotating action-related regions

and motions, with which we can explicitly model the proposals selection, and

which motivates the study of action detection to consider non-human regions.
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