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Abstract

Improving Public Transit Resilience by Leveraging Smartcard Data for Rapid
Decision-Making under Highly Dynamic Conditions

by

Juan David Caicedo Castro

Doctor of Philosophy in Engineering - Civil and Environmental Engineering

and the Designated Emphasis in

Global Metropolitan Studies

University of California, Berkeley

Professor Joan Walker, Chair

The COVID-19 pandemic presented an unprecedented challenge to public transit systems
worldwide, testing the ability of transit agencies to make swift and difficult decisions. Balanc-
ing the need to provide essential workers with reliable transportation options while dealing
with suddenly reduced revenue and increased operational costs forced many agencies to re-
duce transit services, making life difficult for countless commuters relying on transit. While
the pandemic spotlighted the importance of decisive action during times of crisis, disruptions
to public transit systems are a regular occurrence. Disruptions vary significantly in time,
duration, location, scope, frequency, and impact. Terrorist attacks, the aftermath of violent
protests, and natural disasters are a few examples that can drastically change the transit
system and our travel needs. Responding quickly and effectively to these disruptions by
making informed decisions is crucial not only for minimizing the impact of the disruption,
but also for maintaining the reliability of public transit systems for those who depend on
them, ensuring they remain available and accessible when needed most.

In recent years, transit agencies have increasingly begun to adopt automated fare collections
(AFC) systems, also known as smartcards, to collect fares, making valuable data readily
available for analysis. In response, the research community has proposed a number of infer-
ential methods and predictive models to analyze transit patterns. More than 300 research
papers have been published on short-term ridership prediction models in the last decade. De-
spite the abundance of literature, we, the research community, have yet to generate practical
knowledge for decision-making. Lack of reproducibility due to inadequate documentation,
inaccessible tools and resources, and code and data-sharing issues are prevalent; hindering
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our ability to create collective wisdom. The problem is further compounded by the lack of
rigorous statistical analysis in many studies, making it difficult to identify relevant research,
particularly when metrics across studies are incomparable.

Adding to this chaos, there is also a significant gap in inference methods and predictive
models to account for disruptions in general. Current inference methods, which are mostly
used to enrich transaction data with other data sources, are designed for stable periods and
do not capture the changing transit behaviors of transit users during disruptions, such as
those caused by the COVID-19 pandemic. Beyond the pandemic, station closures, a common
cause of disruptions, are not accounted for in any predictive model. This further hinders the
ability of transit agencies to utilize such models for decision-making during disruptions.

This dissertation demonstrates how to use readily available smartcard data to quickly support
decision-making in highly dynamic conditions. The objectives of the dissertation are to:

1. Enhance the value of smartcard data by integrating it with other data sources to
provide more comprehensive, near-real-time insights during disruptions.

2. Create an open-source repository for short-term ridership prediction models to facilitate
accurate and reliable comparisons, and to accelerate advancements of the models.

3. Compare and assess the performance of state-of-the-art methods for short-term rider-
ship prediction in a highly dynamic condition.

4. Improve the accuracy and reliability of short-term ridership prediction models during
disruptions by integrating station closure information.

All work is done using the transaction data of 147 stations in the Bus Rapid Transit (BRT)
system in Bogotá, Colombia, from August 2015 to May 2021. This dataset includes two
highly dynamic conditions: a month-long protest that occurred in November-December 2019
and the COVID-19 pandemic that began in March 2020. Both conditions drastically changed
the travel needs of the users and the transit system. Additionally, the dataset covers several
station closures, which are not necessarily associated with these two primary events.

In the study described in Chapter 2, I examined the changes in demand for the BRT system
in Bogotá during the COVID-19 pandemic. Despite the disruptions caused by the pan-
demic, transit agencies had to continue providing services as it was a crucial transportation
option for many essential workers. However, a comprehensive understanding of the remain-
ing transit users, as well as how the demand adjusted during the recovery period across
different population segments, was lacking, despite being critical information to inform the
prioritization of service changes, station cleanings, and the effective implementation of safety
measures. I enriched smartcard data transactions with block-level demographic data from
the 2018 census to infer the socio-economic strata of BRT users, a variable that can be
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used as a proxy for income. I present a methodology that combines behavioral modeling
techniques with well-established inference methods to capture the dynamic heterogeneity
of transit use by strata at different points in time, and use this information to estimate a
probability vector that assigns frequent transit users to a stratum. At the beginning of the
pandemic, the reduction in transit use for all strata was similar, at around 85 to 90%, but
members of lower strata returned to transit at a pace five times faster than members of
higher strata. The proposed method had the advantage of providing near real-time insights
into the evolution of the COVID-19 pandemic using existing and available data.

Chapter 3 describes a study in which I explored predictive models to anticipate ridership
and enable proactive resource allocation ahead of time. It was difficult to reliably compare
and test models, even under stable conditions, let alone during highly dynamic conditions.
Therefore, I built an open-source infrastructure with running code for five major methodolo-
gies commonly used in the literature, including econometric and deep learning approaches.
The open-source code also provides the Bogotá BRT smartcard dataset for the five-year
period for other researches to reproduce and replicate results.

While the literature on short-term ridership prediction focuses on relatively stable condi-
tion, I systematically compared their performance with two highly dynamic conditions, a
one-month-long labour protest, and the COVID-19 pandemic. In stable conditions, most
tested models performed relatively similarly, with forecasting errors varying from 8.5 to 12%.
However, all models performed significantly worse in both highly dynamic conditions relative
to stable conditions. In the protest condition, increases in prediction error ranged from 14 to
24%. During the COVID-19 pandemic, increases in prediction error ranged from 12 to 82%.
Notably, in the COVID-19 pandemic scenario, a Recurrent Neural Network (RNN) model,
with a long-short term memory (LSTM) cell stood out by outperforming other models and
adapting faster to disruptions. The prediction error stabilized within about 1.5 months,
while other models had higher error rates even a year after the start of the pandemic.

In Chapter 4, I noted that some disruptions resulted in temporary station closures, causing
an increase in demand at nearby transit stations. But station closure information was not
incorporated into any short-term predictive models. To improve predictions for stations
affected by closures, I proposed a new model that uses graph theory and the attention
mechanism. The model aimed to capture spatiotemporal correlations, so that the prediction
at one station is sensitive to what happens in another station in a previous time step. By
incorporating station closure information into the proposed model, I reduced the prediction
errors by 3.3 to 23.5% for station closures compared to existing models in the open-source
codebase infrastructure developed in Chapter 3. These improvements were observed across
multiple metrics and modeling strategies.

In summary, the contributions of this dissertation are to:

1. Develop a method to enrich smartcard data with socio-economic information for highly
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dynamic conditions.

2. Expand the understanding of the change in transit use by different socio-demographic
groups during the COVID-19 pandemic in Bogotá.

3. Create an open-source codebase infrastructure to consolidate short-term ridership pre-
diction research to perform systematic, reliable and statistically rigorous benchmarks
tests to accelerate the advancements of the models.

4. Systematically compare the performance of state-of-the-art methods for short-term
ridership prediction during both stable and highly dynamic conditions.

5. Demonstrate the importance of including station closures to improve the prediction
accuracy for nearby stations.

6. Propose a novel modeling framework that captures spatiotemporal correlations of the
transit network, improving overall performance and the prediction accuracy for stations
impacted by other station closures.

7. Integrate the new modeling framework in the open-source codebase infrastructure for
other researchers to replicate, reproduce, compare, improve, and build upon our model.

Smartcard data provides timely information about transit demand that can inform opera-
tional and tactical decisions of transit agencies. While not as rich in demographic information
as surveys, these data provide timely and relevant information that is critical during disrup-
tions. This information can help transit agencies understand how users adjust travel during
disruptions and prioritize populations that may be disproportionately affected. Accurate
forecasting can also give transit agencies additional time to plan resource reallocation and
take appropriate actions. The creation of an open-source codebase infrastructure lowers
the barrier to reproducibility. It allows for reliable and systematic comparisons of model
performance, identifying relevant research and ultimately generating knowledge to improve
decision-making.

Thorough this dissertation, I empirically demonstrate the contributions by leveraging pub-
licly available smartcard data from the BRT system in Bogotá spanning more than five years,
including multiple highly dynamic periods of time affecting transit ridership. I showcased
the power of smartcard data in understanding the evolution of the impact of the COVID-
19 pandemic on frequent transit users from different population segments. In the spirit of
collaboration, I built an open-source codebase to foster more innovative solutions, enabling
researchers, practitioners, and transit agencies to generate collective wisdom that advances
scientific knowledge. I proposed a new modeling framework that leverages station closure
information to improve overall short-term ridership forecast. In conclusion, my work demon-
strates the potential of utilizing smartcard data to support time-sensitive decision-making
and policies, particularly in the context of disruptions. Moreover, I developed an open-source
infrastructure to expedite innovation in this space.
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Chapter 1

Introduction

Public transit has always been an integral part of my life. In fact, I only learned to drive a
car at the age of 27 when I moved to the United States. Before that, public transit enabled
me to move around as needed. Initially, I relied on transit because my parents’ schedules
did not align with mine, and it was the only viable alternative to walking. Growing up in
Colombia, my story is far from unique. Hundred of millions of people around the world
rely on public transit every day for commuting to work and school, socializing with friends,
attending events, and accessing healthcare services.

Throughout my nearly 20-year experience utilizing public transit, I have faced many
challenges, such as overcrowded buses, lengthy commutes, extended waiting periods, aging
vehicles, and safety issues. These frustrations have often led to wasted time that could
have been spent with family and friends. The COVID-19 pandemic only emphasized the
importance of developing a resilient transit system that can provide an effective service,
even in times of uncertainty. I couldn’t help but wonder who is in charge of making transit
better and if, in some way, I could contribute to it in a meaningful way.

While working at the Secretaria Distrital de Movilidad, the agency responsible for man-
aging Bogotá’s transportation infrastructure, there was much talk about data – especially
the ”big data” revolution that many believed could solve numerous transportation issues,
including public transit. However, there was a clear gap between collecting new data and
being able to use it for actionable policies, as the agency lacked the resources, skills, and
knowledge to do so.

On the other hand, my experience in research showed a completely different picture.
Over the last decade, there has been a significant increase in publications covering a wide
range of topics on transit, using various datasets, and employing numerous methods. This
highlighted a noticeable divide between the valuable insights generated by academic research
and the ability of practitioners to apply that knowledge effectively in real-world situations,
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especially in the global south context. This disconnect, combined with my passion for public
transit, inspired the contributions made throughout this dissertation.

1.1 Motivation

Public transit is critical in providing access to opportunities, generating economic benefits,
promoting sustainable transportation, and improving public health, particularly for low-
income populations. In numerous cities across the Global South, employment prospects
and opportunities are predominantly concentrated in downtown areas, while low-income
populations tend to reside in the city’s periphery [40, 17]. This spatial mismatch between
housing and employment opportunities results in greater travel distances, rendering walking
and cycling trips less viable options. Private motorized transportation is often beyond the
reach of low-income individuals and even more in the global south context [88], leaving
many people reliant on public transit as their sole affordable means of accessing various
destinations, including jobs and opportunities. Public transit is also a more environmentally
sustainable option than private modes of transportation, with buses emitting a maximum of
33 CO2-equivalent grams per passenger per kilometer compared to 263 CO2-equivalent grams
for private vehicles [95]. Additionally, public transit can improve public health outcomes by
encouraging physical activity, such as increased walking and cycling to access and egress
public transit services [12, 86, 71].

However, public transit systems are vulnerable to various anticipated and unforeseen dis-
ruptions, including maintenance operations, construction activities, accidents, natural dis-
asters, technical malfunctions, security threats, protests, and public health emergencies [36].
The size and scope of these disruptions may fluctuate over time and space, occur with dif-
ferent frequencies, and have varying degrees of impact, but all can alter the travel needs and
circumstances of commuters. Disruptions to public transit cause prolonged waiting times,
service suspensions, and station closures, leading to trip cancellations or mode changes[111],
consequently causing user dissatisfaction [21]. This shift can further increase the dependence
on private vehicles, leading to a decline in the overall market share of public transit [111,
75]. Such consequences could undermine the advantages of public transit during disruptions,
particularly for individuals who cannot drive due to physical limitations or those with low
incomes who cannot afford a car.

To mitigate and reduce the impact of the disruption, transit agencies need to make
informed decisions fast. Figure 1.1, based on studies by [36] and [114], depicts a resilient
system’s time-variant performance. The system operates stably during the pre-disturbance
period, with its resilience relying on its reliability. Once there is a disturbance in the system,
the performance level decrease until a reaction/response decision is made to start the recovery
period. The sooner an action plan is implemented, the faster the system will return to
planned operations.
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Figure 1.1: A diagram illustrating the system performance during a risk event. Taken
from[36, 114]

During these disturbances, public transit agencies can make several decisions, including
modification of vehicle scheduling, fleet size per type of vehicle, driver schedules, and driver
roster [50]. For instance, there exist methods to implement new vehicle scheduling that can
be put in place to minimizing waiting times [119], travel time [16], as well as operational
and user costs [123], and even incorporating fueling constraints [61]. However, one critical
input for these methods is transit demand. Therefore, an accurate forecast can inform
transit operations in advance, providing them with additional time to allocate their resources
efficiently where and when needed.

In recent years, transit agencies have increasingly adopted smart cards to collect fares,
making valuable data readily available for analysis, and can potentially be used to inform de-
cisions during disruptions. In response, the research community has proposed many inference
methods and predictive models to unravel transit patterns and behaviors.For instance, over
the last decade, there has been a steady growth in the number of publications on short-term
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ridership prediction models, with over 300 methodological research papers published on this
topic during this time period, as illustrated in Figure 1.2. Despite the abundance of literature,
we, the research community, have yet to generate practical knowledge for decision-making.
Lack of reproducibility due to inadequate documentation, inaccessible tools and resources,
and code and data-sharing issues are prevalent, hindering our ability to create collective
wisdom. The difficulty in identifying relevant research, particularly when metrics across
studies are incomparable, further compounds the problem. Adding to this chaos, there is
a significant gap in inference methods and predictive models to account for highly dynamic
conditions. One example is station closures, a common consequence of disruptions, which
are not accounted for in any predictive model. This further hinders the ability of transit
agencies to utilize such models for decision-making during disruptions.
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Figure 1.2: Number of Publications on Short-Term Ridership Prediction by Year. Query
performed on 11/18/22 with the search term ‘short-term passenger flow prediction’. Only
methodological papers related to short-term ridership prediction are included in this plot

1.2 Research Objectives

Therefore, the objective of this dissertation is to use already available data to rapidly inform
the decision-making process in the face of disruptions in the public transit system. More
specifically, the research objectives are:
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1. Enhance the value of smartcard data by integrating it with other data sources to
provide a more comprehensive, near-real-time insights during disruptions.

2. Create an open-source repository for short-term ridership prediction models to facilitate
accurate and reliable comparisons and to accelerate advancements of the models.

3. Compare and assess the performance of state-of-the-art methods for short-term rider-
ship prediction in a highly dynamic condition.

4. Improve the accuracy and reliability of short-term ridership prediction models during
disruptions by integrating station closure information.

For this dissertation, we use the smartcard data for 147 stations of the Bus Rapid Transit
(BRT) system in Bogotá, Colombia, spanning from August 2015 to May 2021. The dataset
is publicly available at the transit agency’s open data portal, and daily transactions are
updated daily. Additionally, the time frame contains two highly dynamic conditions. First,
a month-long protest in November-December 2019, and the COVID-19 pandemic started in
March 2020.

1.3 Inference Methods During Disruptions

The COVID-19 pandemic-induced lockdown resulted in a drastic change in the travel needs
of the population, leading to a significant reduction in transit demand in many cities world-
wide, with some cities experiencing a decline of up to 90% [51, 105, 52]. This situation
presented new challenges for transit agencies, as they had to maintain a reliable and efficient
transportation option while dealing with decreased revenue and increased operational costs.
In response, many transit agencies reduced their service offerings, impacting those still rely-
ing on transit. However, understanding who continued to use transit and for what reasons
was unclear yet important for informing strategies to adapt service changes, prioritize safety
measures, and reduce operational costs.

Particularly in Bogotá, measures to contain the spread of COVID-19 led to significant
changes in public transit operations. To comply with social distancing requirements, public
transit services were reduced to 35% capacity. In addition, peak-and-plate measures, a strat-
egy that imposes restricted use of private vehicles, were temporarily lifted to disincentivize
the use of public transit. A few months after the start of the pandemic, construction and
manufacturing jobs were allowed to reopen with differentiated shifts to avoid crowds, further
changing the dynamics and needs of the transit demand. The significant changes in pub-
lic transit demand brought about by the ongoing impacts of the pandemic underscore the
critical need to acquire knowledge of the changing patterns of transit demand under highly
dynamic conditions, particularly for those who are disproportionately affected.
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One approach to gaining a better understanding of these changing patterns of transit
demand is through the collection of survey data [5, 106]. Surveys can provide a wide range
of socio-demographic and economic data, but they are costly and time-consuming to collect
and analyze. In addition, surveys only provide cross-sectional data and do not track the
evolution of travel patterns unless multiple and frequent surveys are collected. During the
COVID-19 pandemic, prolonged contact with people outside the household was limited,
adding an extra layer of complexity to collecting survey data.

Smartcards, on the other hand, provide rich panel data on transit use for almost the entire
system but lack social, demographic, and economic variables. While some research combines
transit data with other sources to infer population variables, such as socio-demographic and
economic characteristics [27, 31, 4, 45, 34, 18, 65, 18, 65, 76, 42], these methods typically rely
on the frequency and regularity of transit use, making them unsuitable for highly dynamic
conditions. As a result, current inferential methods cannot be used to accurately infer
population variables for highly dynamic conditions, limiting their potential usefulness in
such circumstances.

These limitations highlight the need for innovative methods to capture the new dynam-
ics of transit usage during highly dynamic conditions and infer social, demographic, and
economic variables that can inform the development of effective strategies for maintaining
reliable and efficient transportation options.

In Chapter 2, I present a methodology that integrates behavioral modeling techniques
with advanced inference methods to capture the dynamic heterogeneity of transit use by
different population segments at different points in time. Using this approach, I leverage
the time-variant heterogeneity in transit usage to estimate a probability vector that assigns
frequent transit users to the different population segments. I showcase my methodology
with the strata variable, a socio-economic classification that can serve as a proxy for income,
as an example. I show that lower-strata individuals return to transit at a pace five times
greater than middle- and high-strata individuals. This finding highlights the importance of
enriching smartcard data with other data sources to gain nearly real-time insights into how
different population segments adjust their use of public transit in response to highly dynamic
conditions, ultimately improving the ability of transit agencies to make quick and informed
decisions.

1.4 Short-term ridership prediction benchmarking

under highly dynamic conditions

Highly dynamic conditions, defined as both unexpected and uncertain, can drastically change
our travel needs and, in general, the transportation system. For public transit agencies,
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responding effectively and fast to these disruptions is crucial to maintaining the reliability
and accessibility of essential activities, especially for those who rely exclusively on public
transit. One strategy to respond to changes in demand during highly dynamic conditions
is to adapt vehicle schedules, fleet size, driver schedules, and rosters accordingly. However,
to effectively make these adaptations, it is necessary to understand how demand adjusts to
these conditions. Short-term ridership prediction models have the potential to inform these
decisions in advance, thus allowing for better planning and more effective resource allocation.
However, the implementation of these models has been limited to short, stable time frames
and a small number of stations. How these models perform in highly dynamic environments
has not been studied, nor has their performance been systematically compared.

Despite the development of multiple models for predicting short-term ridership demand
using complex methods, a common platform for testing the performance of state-of-the-art
methods does not exist. Consequently, a reliable benchmark process for systematically com-
paring and identifying relevant literature, even under stable conditions, is lacking. In many
cases, code sharing and data are unavailable, which hinders the ability of other researchers
to replicate results, reproduce methods for other regions, and compare model performances
reliably. Moreover, the metrics used for analysis are often not comparable across studies,
making it challenging to identify relevant research. As a result, current benchmark practices
only use a subset of models that researchers have the capacity to implement, resulting in
increased research time and unreliable comparisons, which limits the ability of the research
community to build collective wisdom and advance science.

To reduce barriers to implementing state-of-the-art methods, I make available an open-
source codebase infrastructure, creating a collaborative space that enables collective efforts
and accelerates advancements in the models. The infrastructure includes five commonly used
methods in the literature, ranging from traditional ARIMA and SARIMA models to deep
learning approaches such as Multilayer Perceptron (MLP), Convolutional Neural Networks
(CNN), and Recurrent Neural Networks (RNN) with a Long-Short Term Memory (LSTM)
cell for the latter. By developing a comprehensive open-source codebase infrastructure, I
eliminate some of the challenges of limited code and data availability for replicating and
reproducing results, facilitating more reliable comparisons and facilitate innovation.

In Chapter 3, I make use of the open-source codebase infrastructure to compare model
performance for stable conditions and two highly dynamic conditions, namely, a month-long
protest and the COVID-19 pandemic. I show that most tested models perform similarly in
stable conditions, with forecasting errors ranging from 8.5 to 12%. However, in both highly
dynamic conditions, all models performed significantly worse compared to stable conditions.
Specifically, during the protest condition, prediction errors increased for all models, ranging
from 14 to 24%. Similarly, during the COVID-19 pandemic, the prediction error increased
by an average of 12 to 82%.
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Through this comparison, I also explore the advances of adaptive learning systems, in
which models are constantly learning new patterns as new information becomes available.
I demonstrate that the combination of the LSTM model and adaptive learning not only
outperformed other models but also adapted faster during the COVID-19 pandemic. While
the other models employing adaptive learning techniques continued to exhibit higher error
rates even a year after the start of the pandemic, the prediction error of the LSTM model
stabilized within approximately 1.5 months. In conclusion, I highlight the effectiveness of
employing adaptive learning systems, specifically the LSTM model, in improving short-term
ridership prediction and enabling the models to adapt quickly to highly dynamic conditions
such as the COVID-19 pandemic.

1.5 Incorporating Station Closure Information

Public transit systems are vulnerable to planned or unplanned disruptions that can lead to
temporary closures of transit stations. Such closures can have a significant impact on travel
demand patterns, as travelers may be forced to alter their travel plans or use alternative
transportation modes[99, 125, 84]. For instance, in Bogotá alone, over a five-year period,
there were more than 10,000 closures lasting more than two hours, highlighting the need to
incorporate station closure information in short-term ridership prediction models. Smartcard
transaction data from Bogotá also revealed that station closures led to increased demand at
nearby stations. However, to effectively optimize resource allocation, transit agencies require
precise knowledge of when, where, and to what extent the demand of neighboring stations
will be affected by the closures.

Despite the importance of station closures, current model implementations ignore their
impact, resulting in non-zero demand predictions when stations are closed. Furthermore, it
remains unclear how these models perform under station closures, limiting their ability to
inform decisions under these circumstances.

In Chapter 4, I quantify the impact of station closures on the prediction accuracy of
nearby stations. I show that the prediction error of neighboring stations increases by a
factor of two using the deep learning models available the open-source codebase. This finding
supports the idea that station closures have a substantial impact on the accuracy of model
predictions. However, existing short-term ridership prediction models do not account for
this information.

To close this gap, I present a new modeling framework that draws on recent advancements
in graphical neural networks and transformer models for time series analysis. The proposed
framework utilizes the attention mechanism of the transformer model to focus on the most
important information [6]. Using a graph representation of the transit network, I constrained
the attention mechanism to the neighboring stations, allowing the model to capture spatial
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correlations. The attention mechanism is also applied in the temporal component to capture
complex spatiotemporal correlations simultaneously.

Using the open-source codebase, I demonstrate that the proposed framework, combined
with station closure information, outperforms other state-of-the-art models. For instance,
I show that the prediction error of nearby stations impacted by a station closure improves
between 3.0 to 23.47% across multiple metrics and modeling decisions compared to the
second-best performing model. Finally, in the spirit of collaboration and sharing, I have
made the code implementation for this model publicly available in the open-source codebase.
This allows other researchers to replicate, reproduce, compare, improve, and build upon the
proposed model to advance the field of short-term ridership prediction.

1.6 Contributions

Overall, this dissertation contributes to the systematic use of existing and available data
sources, mostly smartcard data, to understand, analyze, infer, and provide tools to support
and improve the decision-making processes under highly dynamic conditions.

Inference methods to enrich smartcard data with demographic information typically relied
on stable conditions and frequent and regular use of transit, making them unsuitable for
highly dynamic conditions. In this dissertation I develop a method to enrich smartcard data
with socio-demographic information that adapts to highly dynamic conditions. The method
uses individual smartcard data to build a database of frequent uses from whom I infer the
Bus Rapid Transit (BRT) station closest to home (home location) using well-established
inference methods. I combine block-level census and land use data to infer a probability
distribution of a user belonging to a stratum at any given point in time. Lastly, I showcase
the method to track the change of transit patterns of frequent transit users by strata in
Bogotá, during the first seven first months the COVID-19 pandemic.

Despite the vast number of existing literature on short-term ridership prediction models,
there is a lack of a collaborative effort to compare their performances. To address this is-
sue, I develop an open-source codebase infrastructure with five models, including parametric
and deep learning approaches, to consolidate short-term ridership prediction implementa-
tions and improve benchmark practices. The main goal of this infrastructure is to enable
systematic, reliable and statistically rigorous comparisons of models, while also promoting
collaboration to accelerate innovation and the advancement of the field.

Moreover, the literature on short-term ridership prediction methods has been limited
to short, stable time frames and a small number of stations. However, how these models
perform under highly dynamic conditions had not been systematically compared. I use the
open-sourced codebase to compare the performance of state-of-the-art methods for short-
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term ridership prediction during stable and two highly dynamic conditions, including the
COVID-19 pandemic and a month-long protest in Bogotá, Colombia. The benchmark also
evaluates two modeling design strategies: multi-output models and adaptive learning, which
aim to improve existing models in highly dynamic conditions.

I demonstrate that station closure impact the demand of neighbouring stations, however
existing short-term ridership existing models did not make use of this information increased
the prediction error of nearby station. In this dissertation, I demonstrate the importance of
station closures to improve the prediction accuracy of nearby stations of a station closure for
existing methodologies. Additionally, I proposed a new modeling framework that uses the
station closure information and the attention mechanism to capture complex spatiotemporal
correlations, which further improves the prediction accuracy of stations impacted by station
closures. Finally, I make the code implementation of this new model available, enabling
other researchers to reproduce, compare, improve, and build upon the model.

We propose a modeling framework that captures spatiotemporal correlations for the tran-
sit network, improving overall performance and the prediction accuracy of stations impacted
by other station closures. The proposed model includes a graph representation of the transit
network and the attention mechanism to simultaneously capture spatiotemporal correlations,
especially during station closures. The model is made available in the open-source codebase
to allow other researchers to reproduce, compare, improve, and build upon.

1.7 Dissertation Outline

This dissertation is structured as follows:

Chapter 2 presents the methodology used to enrich smartcard data during highly dynamic
conditions, along with empirical evidence of its use to track changes in transit demand in
Bogotá, Colombia during the COVID-19 pandemic.

Chapter 3 introduces the five selected methodologies used to implement the open-source
codebase platform, along with the results of the meta-analysis conducted for stable condi-
tions, the one-month-long protest, and the COVID-19 pandemic.

Chapter 4 centers around the integration of station closure information in short-term
ridership prediction models, introducing a new model that utilizes a transformer-based ar-
chitecture with graph information to improve prediction accuracy in the event of station
closures.

Chapter 5 concludes with this dissertation with the main key finding, contributions, and
future research directions.
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Chapter 2

Influence of socioeconomic factors on
transit demand during the COVID-19
pandemic: A case study of Bogotá’s
BRT system

ABSTRACT1

The COVID-19 pandemic restricted most economic and social activities, impact-
ing travel demand for all transportation modes and especially for transit. We
hypothesize that the shifts in travel demand varied by socioeconomic status, and
we assess the differential impact of COVID-19 on the Bus Rapid Transit (BRT)
patronage across various socioeconomic groups in Bogotá. We built a database of
frequent transit users with data collected by smartcards in Bogotá’s BRT system
between January and October 2020. For each user in the database, we labeled
their home and work stations. Transactions at other stations are classified as
“other.” The stratum (a government socioeconomic classification of residential
units in Colombia) of a BRT station’s service area was assigned using an esti-
mated probability vector for each user belonging to a specific stratum; this data
is validated with aggregate strata distributions in the 2019 household travel sur-
vey. Our study found that the reduction in transactions for lower-strata users
is significantly less than that of the middle and high strata. The magnitude
of this difference varies over time but stabilizes after the end of the lockdown.
The growth rate of “other” transactions per thousand people is greater than
the growth for home and work locations, especially for the lowest strata. Other
studies have shown that the radius of gyration (Rg) (a measure of how far indi-

1This Chapter is adapted from [13] and has been reproduced with the permission of my co-authors Joan
L. Walker, and Marta C. González.
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viduals travel away from home) has decreased by about 50% after the lockdowns.
Our study shows that when measuring Rg only for users that continued using
BRT, the Rg slightly decreased for lower and medium strata but increased for
high strata. The contribution of this study is to build a method to classify BRT
transactions of frequent users by strata and to describe their trends to expand
our understanding of the COVID-19 lockdowns impacts in the Global South con-
text. These results are a starting point to inform policy and decision-makers to
guide the recovery efforts to improve transit accessibility and level of service for
captive users such as low-stratum users.

2.1 Introduction

One of the major effects of the COVID-19 outbreak and the lockdowns is the drastic reduction
of transit demand. In China, mode share for metro dropped from 26% to 14% [51]. In Europe
and North America, transit ridership declined by as much as 90% during the first weeks of the
lockdown measures [105]. Likewise, the Inter-America Development Bank shows a ridership
reduction of 60% to 90% in major cities across Latin America [52].

Since the beginning of the outbreak, many studies have shown a differential impact of
the lockdowns on minorities and vulnerable groups, such as gender [3], poverty [98], and
small businesses [33]. However, in transportation, most of the analyses have focused on un-
derstanding the general behavioral change in travel patterns and mode shares. For instance,
[48] used passive data from a routing app to analyze travel times by modes, type of vis-
ited locations, and preference of origins and destinations. An ongoing study in Switzerland,
using GPS data of 250 participants, shows that train and tram use remains constant at a
60% reduction compared to the baseline, but daily bike distance increased 100% on average
[73]. Similarly, [103] found that the average trip time for the bike-sharing system in New
York increased from 13 to 19 minutes in dock stations nearby metro stations. In terms of
public transit, [77] found a more significant demand reduction in transit stops near schools,
universities, and supermarkets.

There is a growing literature that explores the impact on transportation demand by so-
cioeconomic group. For example, [5], using a convenient sample survey of 4395 individuals
in Chile, found that 77% of workers from low-income households do not telecommute. A sur-
vey of more than 25,000 transit users in North America showed that pandemic-era riders are
primarily low-income essential workers with no private vehicle access [106]. Using smartcard
data, researchers have found a correlation between socioeconomics and transit use reduction.
These studies infer socioeconomic variables , such as income, by different fare values [11] or
by matching census data and with home boarding stations [121, 2]. [30] used smartcard data
in Bogotá to explore the relationship between transit and strata, informality, and poverty.
The study found that lower strata, higher informality, and higher poverty correlated with
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more transit reduction use. However, this study linked a transaction to the characteristics
of the area rather than the individual. Therefore, a transaction of a low-strata user in a
high-income area may have counted as a high-strata transaction.

While the literature suggests that travel shifts during COVID-19 have varied by socioe-
conomic group, little is known about what changes will persist and how the evolution will
vary by group. [115] showed that behavioral inertia caused by the pandemic might result in
public transit demand of only 73% compared to pre-pandemic levels in New York, but they
do not investigate who they are. The governments’ role is to provide a safe and efficient
transit system [122]. As transit has proven to provide a transportation option to essential
services, transit service should accommodate their operation to serve the population that
most depend on it [110]. Therefore, it is critical to assess and understand the evolution of
the transit demand disaggregated by different socioeconomic groups. An assessment of this
kind is necessary to plan transit operations with a vertical equity objective in mind (i.e.,
allocating services to where they are most needed) rather than horizontal equity (i.e., allo-
cating services proportionally to everyone) [14]. While surveys provide an opportunity to
explore the differences in transit demand with rich socioeconomic variables, they are costly
and time-consuming. Actions and decisions need to be taken nearly in real-time.

This study assesses and describes the change and evolution of the transit demand by
different socioeconomic groups during the COVID-19 pandemic in Bogotá. We leveraged
smartcard data from Bogotá’s Bus Rapid Transit (BRT) system to assess the differential
impact of the COVID-19 pandemic restrictions by socioeconomic groups. Although the
data does not contain any socioeconomic variables, we use inference methods [78, 80] to
obtain a probability distribution for one socioeconomic variable in the context of Bogotá.
Our research objectives are (i) to infer socioeconomic characteristics of BRT frequent users
based on smartcard data, and (ii) to use this information to expand our understanding of
the COVID-19 lockdowns impacts and trends on transit demand by different strata. While
changes in the supply may causes changes in the demand, and changes in demand may also
cause changes in supply, this two-way causality is not possible to address with the available
data. Therefore, this is not an objective of our study.

The remainder of this paper is organized as follows. Section 2 provides the background
information on Bogotá, its transit system, and the COVID-19 timeline. Section 3 summarizes
the methodology we used to build a transit users’ database of frequent users. Section 4
introduces the three main findings of this research related to transit use change by strata.
In Section 5, we conduct an extensive discussion of the results. Section 6 presents the study
limitations and future research. Finally, in Section 7, we state the conclusion of this study.
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2.2 Background

Bogotá is the largest city in Colombia; according to the 2018 census, it has a population of
7.2 million. The Household Travel Survey (HTS), 2019 estimated that 30% of the trips, or
about 4.5 million trips, are made daily in the public transit system. Bogotá’s transit system
has two main components, the BRT and the Integrated Public Transit System (SITP, for
its acronym in Spanish). The BRT system has 152 stations, three cable car stations, and it
records 2.5 million transactions a day [108]. Passengers use a contactless card to validate at
entry points only; there is no need to validate the exit point as the system uses a flat fare.

Bogotá has a stratum classification, which is an official socioeconomic variable assigned
to every residential unit in Colombia. Stratum ranges from one to six depending on physical
characteristics of the building (such as construction materials, built squared meters, type and
quality of finishes), the environment (such as dominant topography, dominant constructive
typification, dominant densities, and public utilities accessibility and coverage), and the
urban context (land use, and characteristics and access to the road network) [24]. According
to Law 142 of 1994, the purpose of this classification is to provide a differential charge for
public utilities, apportion subsidies, and charge extra contributions. Note that the stratum
is attached to a psychical living dwelling but not to a specific individual. While strata do
not consider the household income, [15] concluded that it is justifiable to understand it as
a proxy for income - Low-strata correlates with lower-income and high-strata with higher-
income. Many studies in transportation have used strata as a predictor variable in travel
behavior [74, 26, 8].

Like many cities and countries, Bogotá and Colombia declared a lockdown in March
2020 aiming to reduce the spread of the COVID-19 virus, which halted most of the region’s
economic activities. Contrary to the US, Europe, and China, the lockdown measure in
Bogotá and Colombia was preventive. The early lockdown allowed time to prepare the
health system for a future wave of COVID-19 patients [72]. Bogotá’s mayor decreed a drill
lockdown on March 20, and then the national government declared a mandatory lockdown on
March 24 that lasted until September 1. In April, the government required transit systems
to operate at 35% capacity in an effort to stop the spread of the virus. The peak-and-plate
measure, a policy that restricts private vehicle use on certain days depending on the last
digit of the vehicle’s plate, was lifted to avoid public transit use. On April 27, the national
government allowed construction and manufacturing jobs to reopen. In Bogotá, a differential
shift was imposed to avoid crowds in the public system starting May 11. Construction work
was allowed from 10 a.m. to 7 p.m., manufacturing from 10 a.m. to 5 p.m., and retail from
noon to midnight. On May 30, Bogotá’s “Kennedy” neighborhood had a contagious rate
significantly higher than any other, which forced the city to declare a lockdown specific to
just that neighborhood. However, the BRT stations within Kennedy were still in operation.
Given an increase of COVID-19 cases and intensive-care beds’ saturation, the city decided
to impose a new lockdown plan. This new plan divided Bogotá’s neighborhoods into three
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groups, which would go on lockdown for 14 days each, starting on July 13, 23, and 31,
respectively. It was later announced that the lockdowns would be applied to the fourth
group of neighborhoods from August 16 until August 30. On August 25, the city increased
transit effective capacity to 50%. On September 1, the national government ended the
mandatory lockdown and moved to a new plan of selective isolation for individuals with
symptoms or recent exposure. On September 22, the peak-and-plate measure was reinstated
as traffic level recovered to a pre-lockdown situation, although these new measures would
not apply to vehicles with more than three occupants or health care workers.

2.3 Methodology

The BRT smartcard data is a longitudinal observation of transit users in Bogotá. However,
socioeconomic variables and characteristics of the trips are not included. In this section, we
describe our framework (Figure 2.1) to infer the trip origin and stratum to complement the
data. Our objective was to create a longitudinal data set of frequent transit users (before
the lockdown) with inferred stratum and trip origin information.

Stratum

Trip origin

BRT Smartcard 
transactions

Frequent 
User

Population by 
Stratum and block

Frequent transit user's 
dataset

BRT Stations

Catchment
Area

Input data

Figure 2.1: Frequent transit users database development framework.

2.3.1 Data input and pre-processing

We used Bogotá’s BRT smartcard data of individual transactions from January 1, 2020, to
October 12, 2020. A transaction is automatically recorded when a smartcard approaches
a reader device at the BRT station entrance. A transaction record contains the date and
time, station name, entry point (for stations with multiple entry points), the fare, card type,
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and a unique identifying number. The unique identifying number links subsequent transac-
tions made by the same card. In total, the dataset has more than 247 million transactions
representing about 7.5 million unique smartcards [107]. We also used the official strata
classification dataset, a shapefile containing more than 45,000 blocks with the stratum clas-
sification [91] and the block-level population extracted from the official census website [23].

We pre-processed smartcard data to obtain an individual’s transit travel sequence. We
defined a transit travel sequence as all transactions registered by the same card ID. However,
a travel sequences may have double tap-ins or internal transfers within the system that need
to be removed from the analysis. Consecutive transactions made in the same station by the
same card within 30 minutes is assumed to be only one transaction. We also eliminated
internal transfers. For example, some feeder stops are not located in the station but a
nearby location. In these cases, users need to tap-in when they exit the feeder route stop
and tap-in again when they enter the main station; however, this is only one transaction.
We also eliminated transactions in “Virtual Stations” as they do not correspond to any
physical location. One user may use multiple smartcards, or multiple users may use a
unique smartcard, however the data set does not distinguish between the two. Therefore,
we assumed that one card represents a unique user. Similar assumptions have been made in
similar smartcard data studies [134].

We used the boarding stations and entry points to differentiate transactions of multiple
services. Stations with feeder or intercity connections have designated entry points to ensure
payment when entering a BRT station. Therefore, a BRT station can have walking, feeder,
and intercity entry points, and each transaction is classified accordingly.

2.3.2 Frequent users

The objective of separating frequent and non-frequent users is to distinguish transit travel
sequences with enough information to infer their transit travel behavior. Users who do not
have enough information may be sporadic users or visitors who use the system for a short
amount of time. To compare individuals before and after the lockdowns, the selection of
frequent users considered the transactions between January 1, 2020, and March 8, 2020.

To determine frequent users, we characterized each transit travel sequence with three
variables: (1) Total number of transactions, (2) Number of active days, and (3) average
transactions per active day. A distribution density plot for each variable is shown in Figure
2.2. As expected, the number of transactions decreases exponentially (Figure 2.2A). The
distribution of the number of active days suggests that most unique transit users are sporadic
(Figure 2.2B). Additionally, the distribution of the number of transactions per active day
tails off after five, suggesting that most people have fewer than five transactions a day on
average (Figure 2.2C). To better understand the relationship among these variables, we
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plotted a joint distribution of the number of transactions versus the active days (Figure
2.2D). The plots show a linear relationship between the variables. However, there is a high
concentration of sequences with fewer transactions and days of use that are more likely to
be non-frequent users. We selected the cutoff point with the following rules: (i) the cutoff
point should increase the variance of the joint distribution, and (ii) the average values of
the resulting distribution should be greater than the cutoff points. Figure 2.2E shows the
joint distribution of the number of transactions and the active days with a cutoff point of 15
transactions and ten active days of use. The density distribution spreads along a line with
slope one, suggesting an increased variance. The average values were higher than the cutoff
points, suggesting that most infrequent transactions were filtered.

A B C

ED

Figure 2.2: Transit travel sequence distributions. (A) Distribution of the number of trans-
actions. (B)Distribution number of active days. (C) Distribution of the number of trans-
actions per day. (D) non-filtered joint distribution number of transaction and active days.
(D) Filter joint distribution number of transaction and active days. Orange line represent
the cutoff filter points at 10 active days, and 15 number of transaction.

Frequent transit users were classified as those unique identifier numbers that had transit
travel sequences with more than 15 transactions, ten active days of use, fewer than 200
transactions, and average daily transactions fewer than five. After this filtering process, we
remained with approximately 2 million users representing 70% of the total transactions. We
only used these frequent users in our analysis.

Note that this process may have captured users who may not use transit every day or use
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transit frequently during a short period. While the inference of these users may be limited
(e.g., we may not be able to infer a work location), these users tend to use the system in a
certain way. For instance, someone who uses BRT for personal appointments or shopping
will have the origin of their transactions most likely be linked to a regular location. There-
fore, our study focuses not only on people who use transit frequently for commuting but also
who use transit frequently for other activities.

2.3.3 Trip origin - Home, work and other location inference

Transit travel sequences of frequent users reveal important information about each individ-
ual’s activity locations. The literature suggests a ruled-based approach that leverages the
regularity of the transit travel sequence to infer locations such as home and work [27, 31,
4]. For example, the most frequent station is classified as the home station [45, 34]; or,
if the time between two consecutive transactions is greater than a regular working session
(e.g., 8 hours), then it is a commuting trip [18, 65]. These studies may also add external
variables such as land use and household travel surveys to enrich the inference method [18,
65, 76]. [42] also suggests using continuous hidden Markov models to identify clusters in
the smartcard data population and use this information to infer home and work locations.
However, they tested their methodology with two days of observation.

The purpose of this section is to describe the methods used in this study to infer home and
work locations. We also classified transactions at other locations as “other.” For simplicity,
we used a similar set of rules as [65]. We adjusted some of the rules to reflect that our
data set only contains tap-in information. We used the following rules to infer the activity
locations:

• Home: Most common first transaction of the day before noon.

• Work: Most common transaction such that difference between consecutive transaction
in the same day is greater than 6 hours.

• Other: Transactions in any other station that are not classified as home or work.

Note that some transit sequences may have only one transaction a day or consecutive
trips in the same day with less than 6 hours difference. For these users, a work location
was not inferred. They could potentially be less frequent riders that use the BRT for discre-
tionary activities, and therefore these transactions were classified as other.
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2.3.4 Catchment areas

The catchment area of a BRT station is its area of influence. We assumed that each frequent
transit rider in our processed database lives within the catchment area of their inferred home
station. From the HTS, we estimated that 89% of the transit users live within the catchment
areas and 87% access the BRT by walking. Only 5.9% and 3.8% access the station by other
bus services and informal transit, respectively. Additionally, from the smartcard data, only
7.7% of the home location transactions are identified as transfers from other bus services that
are not the feeder routes. These percentages validate that our assumption is a reasonable
approximation of the reality.

To estimate a catchment area, we followed these principles:

• The area of influence is a buffer with the maximum walking distance a person is willing
to walk to access mass public transit.

• Catchment areas of different stations do not overlap.

• Only feeder routes will add to the catchment area outside the maximum walking dis-
tance.

The maximum walking distance to a BRT station is estimated from the 2019 HTS.
From the survey, we filtered respondents that mention BRT as the transportation mode.
We extracted the walking access and egress time from home to BRT station. From the
distributions, 90% of the respondents reported access walking time less than 20 minutes. We
assumed an average walking speed of 4.5 km/h, representing a maximum walking distance
of 1500m. This distance is more likely to correspond to a Manhattan distance. However,
we created the buffer with a Euclidean distance. To convert the Manhattan distance to a
Euclidean distance, we used the fact that the sum of the squared legs for any right triangle
corresponds to the hypotenuse squared. To simplify the conversion, we assumed an isosceles
triangle; therefore, the corresponding Euclidean distance is 2c, where c is the triangle’s leg.
From the Pythagoras theorem, we also know that for any isosceles triangle, the hypotenuse
is

√
2 ∗ c. Finally, the conversion coefficient is

√
2/2. Therefore, the distance to create the

catchment area buffers is 1000m. A similar radial distance for BRT stations catchment areas
is suggested in [54]. If two catchment areas covered the same point, we assigned it to the
closest station.

Feeder routes are a free service that amplify the catchment area of the station. Because
it is a free service, users are not required to tap-in when they board a feeder bus, and thus,
it is not possible to know the exact location of the boarding. However, stations have special
entry points for feeder routes that are easy to identify. To account for these services, we
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defined the catchment area of a feeder route as a buffer of 500 meters along the route, and
considered it a different unit of analysis. Feeder route information did not include feeder
services at “Portal 20 de Julio”; therefore, transactions from feeder lines at this station were
excluded from the analysis. Figure 2.3 shows the catchment areas for both the stations and
the feeder routes.

Figure 2.3: BRT stations, feeder routes and catchment areas

2.3.5 Stratum

To infer the stratum of a user, we estimated an s-dimensional probability vector Pn(s) that
reflects, for each station n, the probability that a frequent transit rider classified as living in
that station’s catchment area belongs to a particular stratum s. The probability of station n
having stratum s (Pn(S = s)) depends on the population of stratum s within the catchment
area of station n and the rate at which a strata s uses the BRT (rates). The importance of
the rate is that it capture strata strata heterogeneity in BRT use, which is critical for this
study’s objective.

Pn(S = s) =
Popn,s ∗ rates∑

j⊆S Popn,j ∗ ratej
(2.1)
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To estimate rates, we regressed the transactions per station for those users where that
station was classified as their home-station with respect to the population by stratum within
the catchment area of a station. The form of this regression can be any generalized linear
model for continuous or count variables as shown in Eq. 2.2. The rate is the average marginal
effect, which can be understood as the change in the number of home-transactions for one
increase in a given stratum population (Eq. 2.3).

transactions = f(z, θ) (2.2)

rates =
∂transactions

∂θs
(2.3)

To estimate BRT use rates by strata, we used ordinary least square (OLS). Using OLS es-
timates, we obtained a similar stratum shares distribution as the negative binomial estimates
and the 2019 HTS for a week in February. While the negative binomial model performs bet-
ter in terms of the AIC, it resulted in two outlier stations (large catchment area and a small
number of transactions), which disproportionately increased the error measures such as the
root mean squared error (RMSE). By the central limit theorem, a normal distribution ap-
proximates a negative binomial distribution for large mean values [25], which is the case for
this study (the average number of home transactions in the BRT system is 3556 transactions
per station/day). One advantage of OLS estimation is that it provides straightforward inter-
pretability of the coefficients (e.g., the average marginal effect of a variable is its estimated
coefficient). The implication of using this approximation is that we could potentially get
negative prediction or fractional number; however, the objective of performing a regression
is not to predict ridership but to capture the heterogeneity in the use of BRT by strata.
Since we obtain a similar result with both regressions, we preferred the OLS estimate for its
interpretability.

Eq. 2.4 is the regression used to estimate the rates for each stratum. The dependent
variable was the number of transactions per station corresponding to users where that sta-
tion was classified as a home-station. The independent variables were the population by
stratum in the catchment area. The estimated coefficients represent the average number of
transactions per inhabitant of a given stratum, which we called the stratum transaction rate.
Since strata five and six are just 5.3% of the population, we estimated a unique coefficient
for this combined population segment.

transactions = θ0 + rate1 ∗ popstratum1 + ...+ rate56 ∗ popstratum56 (2.4)
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Table 2.1: Sample OLS estimation for strata inference. Samples days are Mondays, Wednes-
day, Saturday and Sunday

Home Home Home Home
transactions transactions transactions transactions
2020-02-17 2020-02-19 2020-02-22 2020-02-23

stratum1 0.126*** 0.113*** 0.088*** 0.028***
(0.019) (0.020) (0.011) (0.004)

stratum2 0.069*** 0.069*** 0.047*** 0.016***
(0.006) (0.007) (0.004) (0.001)

stratum3 0.068*** 0.072*** 0.031*** 0.011***
(0.012) (0.012) (0.006) (0.002)

stratum4 0.084** 0.085** 0.038* 0.020***
(0.039) (0.039) (0.022) (0.007)

strata 5 & 6 0.150** 0.154** 0.063 0.024*
(0.068) (0.069) (0.038) (0.013)

R-squared 0.786 0.777 0.821 0.828
Adj. R-squared 0.793 0.784 0.826 0.833
N 163.0000 163.0000 163.0000 162.0000

* p < .1, ** p < .05, ***p < .01

In stable conditions, the stratum’s transaction rate would only vary for weekdays and
weekends and during seasonal holidays. However, under highly dynamic conditions, this
rate is likely to change daily. Thus, to estimate the impact of COVID-19 lockdowns in BRT
use, we estimated the stratum’s transaction rate daily. Inter-city trips, including the trips
from Soacha, are excluded from the analysis because strata information at the block level
is only available in Bogotá. Table 2.1 shows an example of the results for four different
days (Monday, Wednesday, Saturday, and Sunday). We noticed that coefficients for higher
strata tend to be smaller in magnitude compared to lower strata. These results suggest that
individuals from higher strata are less likely to use BRT, especially during the weekends.
Note that these results do not include an intercept because it was statistically insignificant
for all regressions

2.3.6 Validation

As with most inference methods and passive data, ground truth data is rarely available.
Therefore it is not possible to validate these results from a statistical point of view. However,
we can compare our results with the aggregate distributions from other data sets such as the
household travel surveys and the census. This validation process also ensures that expected
transit behavior can be observed, such as the bi-modal distribution of trips during a day,
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and that most inferred home locations are in residential areas.

To validate the proposed inference methods, we compared the results with expected dis-
tributions and distributions from other data sources. Figure 2.4A shows the distribution
of the inferred home, work, and other locations for every frequent transit sequence. As
expected, the distribution of home locations is mostly concentrated in the residential areas
of the city perimeter. Similarly, work locations have a higher concentration in the down-
town and the extended downtown of Bogotá, where most jobs and universities are located.
Lastly, locations classified as “other” are primarily distributed in both the downtown and
residential areas, suggesting that “other” are potentially related to discretionary activities.
To verify and strengthen our assumptions, we also plotted the transaction time for each lo-
cation classification as shown in Figure 2.4B. As expected, the transaction time distribution
for home locations peaks in the morning, which corresponds with the beginning of typical
working/school hours. Likewise, the transaction time distribution for work locations peaks
in the afternoon and coincides with the end of the typical working/school schedule. Transac-
tion times for “other” locations are evenly distributed throughout the day, with some peak
in the morning, midday and afternoon. Notice that we only constrained transactions before
12 P.M. to infer home locations; once inferred, every transaction in the home location is
counted in the transaction distribution.

To validate the strata inference, we compared the strata distribution of BRT users with
the strata distribution of the population [23](Figure 2.4C), and the 2019 HTS [90] (Figure
2.4D). Our results show that the strata share closely matches the strata distribution as
estimated from the 2019 HTS. From the HTS, we traced BRT trips with access modes
different than walking. We found that they are more likely to be low-strata users, which
may explain the underestimation of the share for strata one and overestimation of strata
two.

Finally, with the methodology proposed in the study, we built a frequent transit users
database with 2,011,067 unique users. Each user has a home and work location (when pos-
sible) and a strata probability distribution.

2.4 Results

This section presents the main findings and the statistical analysis to support them. We
analysed the trends by strata for the transaction reduction (%), the transactions per 1000
people, and the radius of gyration (Rg). To calculate the transactions reduction on a given
day, we compared it to the same day in the base week. For instance, any Tuesday is compared
to the transactions of the Tuesday in the base week. We selected the week of February 17,
2020, as the base for these calculations as it is a typical week. We avoided using weeks
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Figure 2.4: Home, work and other location inference validation. (A) Density distribution
of home, work and other locations. (B) Transactions time distribution for home, work and
other locations. (C) Distribution of population by strata (census, 2018) and BRT user by
strata by proposed methodology. (D) Distribution of BRT users by strata (HTS, 2019) and
proposed methodology.

in January because travel demand is usually atypical. We also avoided the first week of
February as, by decree, the first Thursday of February is the day with no car or motorbike.
Therefore, we expected transit demand to be higher than usual. Lastly, we defined the
radius of gyration (Rg) as the average distances in kilometers reached by a person using
BRT during a day, using the home station as an anchor, as shown in Eq. 2.5

Rgn(t) =

√√√√ 1

Sn,t

Sn,t∑
i=1

d(shome,n, si)2 (2.5)

Where Rgn(t) is the radius of gyration of individual n in the time t, Sn,t is the number
of stations visited by individual n in time period t, and d(sa, sb) is a function that measures
the euclidean distance between station sa and station sb. Notice that shome,n is the inferred
home station of individual n.
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For each of these variables (transaction reduction, transactions per 1000 people, and the
Rg), we fitted a line using Ordinary Least Squares (OLS), where the dependent variable is
a linear function of time, and the slope represents the trend. This analysis’s main objective
is to have a statistical tool to test hypothesized significant differences in trends by strata.
The z test for the difference in two estimated slopes is the one suggested in [79], and we
used a 95% confidence level. For each stratum, we fit a line in a defined period after the
lockdowns and compared their slopes. If all slopes are statistically similar to each other,
we conclude that the strata do not influence BRT demand during the COVID-19 pandemic.
For the time variable, we added an indicator to differentiate between weekdays and weekends.

2.4.1 Transactions of lower strata returned to transit at a faster
speed

The reduction in the number of transactions by stratum is shown in Figure 2.5. The plot
shows the last 7-day transaction reduction to attenuate the weekend effect. We would expect
a slight variation during the year under normal circumstances, except for the holiday season
in December - January and Easter. At the beginning of the lockdown, there is an initial
sharp reduction of transactions of nearly 90% for middle and high strata, while for lower
strata, the reduction is 85%. From the beginning of the general lockdown to the start of
the sectorized lockdowns, there is a steady growth of transit use for all strata; however, the
gap between lower and middle/higher strata increases to 15%, suggesting a more significant
transit use growth rate for lower strata. A month after the end of the lockdown restrictions,
this difference is approximately 20%. In Figure 2.5 we also see a drastic drop in demand
after the sectorized lockdown that affected strata 1 and 2, but not other strata.

To test the difference in the slopes in Figure 2.5, we fit a line to each trend. To capture
the difference between weekdays and weekends, we considered the daily reduction instead
of the last 7-days average reduction. We modeled two periods, the first between March 20
and July 13 and the second between September 01 and October 12. We did not model the
period between the sectorized lockdowns as the trends for strata one and two are not linear.
Table 2.2 shows the results for the first period. The slopes for all strata are positive and
significantly different from zero. The small standard errors also suggest that these estimates
are significantly different from each other. The slope can be interpreted as the daily return
to transit rate. For strata one, this rate is 0.24%/day, which is five times higher than the
rate for strata five and six. We also show that the reduction of transactions on the weekends
is less severe than for weekdays. For instance, for strata five and six, the reductions of
transactions on the weekends is 77.5% (100% - 7.568% - 14.939%), but for weekdays, the
reduction is 92% (100% - 7.568% ).

The results for second period are shown in Table 2.3. The slope estimates are all positive
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Figure 2.5: 7-days rolling average reduction of transactions (%) by strata. Reference is the
week of February 17, 2020. Red dotted lines mark the start of the lockdown (Mar/20), the
sectorized lockdown (Jul/13) and the end of the lockdown (Sep/01).

Table 2.2: OLS estimation before sectorized lockdownn. Dependent variable is the transac-
tions reduction (%). Estimation period: Mar/20 to Jul/13 (99 days).

Stratum 1 Stratum 2 Stratum 3 Stratum 4 Strata 5 & 6

constant 12.110*** 12.118*** 3.054*** 6.691*** 7.568***
(0.654) (0.479) (0.419) (0.454) (0.674)

slope 0.248*** 0.195*** 0.135*** 0.044*** 0.054***
(0.010) (0.007) (0.006) (0.007) (0.010)

weekend 3.607*** 4.933*** 3.845*** 11.296*** 14.939***
(0.688) (0.503) (0.440) (0.477) (0.709)

R-squared 0.877 0.900 0.852 0.862 0.831
Adj. R-squared 0.879 0.902 0.855 0.865 0.834
N 99 99 99 99 99

* p < .1, ** p < .05, ***p < .01

and significant but not significantly different from each other. The constant estimate shows
the difference in the transaction reductions between low strata (1-2) versus middle and high
strata (4-6) is between 15% and 25%. Since the slopes grow at the same rate, the disparity
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between low and middle/high strata remains stable in this period.

Table 2.3: OLS estimation after sectorized lockdown. Dependent variable is the transactions
reduction(%). Estimation period:Sep/01 to Oct/12 (41 days).

Stratum 1 Stratum 2 Stratum 3 Stratum 4 Strata 5 & 6

constant 34.091*** 32.154*** 14.545*** 8.740*** 12.994***
(0.998) (0.792) (0.708) (0.935) (0.880)

slope 0.095** 0.137*** 0.118*** 0.073* 0.089**
(0.041) (0.032) (0.029) (0.038) (0.036)

weekend 7.783*** 9.243*** 11.247*** 15.625*** 17.134***
(1.058) (0.839) (0.750) (0.991) (0.933)

R-squared 0.608 0.789 0.865 0.867 0.899
Adj. R-squared 0.628 0.799 0.872 0.873 0.904
N 41 41 41 41 41

* p < .1, ** p < .05, ***p < .01

2.4.2 Transactions at “Other” locations are growing faster than
home and work locations.

This section focuses on how the COVID-19 lockdowns have affected the transactions by the
location classification (home, work, and others). In Figure 2.6 we plotted the number of
transactions per 1000 people by transaction location and strata. This variable was selected
to compare the behavioral change of transit use during the recovery period. As expected,
strata 4 to 6 have low values for transactions x 1000 people, and they are relatively constant
until the end of the lockdowns. For strata one to three, the plot shows a drastic reduction
at the beginning of the sectorized lockdowns for all transaction type. However, other strata
only show a slight decrease. After the end of the lockdown restrictions, the plot suggests
that transactions at “other” locations are growing faster than home and work trips for all
strata, but it is steeper for strata one to three.

To test this last hypothesis, we fit these trends with a line to compare the value of the
slopes. For this test, we only selected the data from September 1, until October 12. The
results are shown in Table 2.4. The slopes are all positive and significant at the 95% level,
except for work in strata one. For all strata, the slope for “other” transactions is greater
than home and work. However, for strata one to three, it is significantly steeper than any
other strata. Notice that for strata one, the slope for “other” is more than double the home
transactions slope.
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Figure 2.6: Transactions per thousand people by strata and location type in the recovery
period. Red dotted lines mark the start of the lockdown (Mar/20), the sectorized lockdown
(Jul/13) and the end of the lockdown (Sep/01).

2.4.3 The radius of gyration slightly decreases for lower strata
but increases for higher strata

While other studies have shown that the Rg has decreased about 50% after the lock-
downs [59], our study shows that when measuring Rg only for users that continue using
BRT in Bogotá, their Rg slightly decreased for lower and medium strata and increased for
higher strata, as shown in Figure 2.7 and Figure 2.8. Typically, the Rg is calculated with
GPS tracks collected even if an individual stays at home. For the GPS case, it is possible to
accurately measure an Rg of zero if a person stays at home, and therefore their observation
is usually included in the average Rg estimation. As for public transit, the average Rg on
a given day can only be calculated if an individual rides transit on a particular day, as it
is mode-specific. Therefore, after the lockdown, our measure of Rg represents the average
distance reached in public transit by users who remain using transit after the lockdowns.
The average Rg slight decreases for strata one to three but significantly increases in other
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Table 2.4: OLS estimation. Dependent variable is the transactions per 1000 population. For
the categorical variable activity origin type, category home is the base. Estimation period:
Sep/01 to Oct/12 (41 days), excluding weekends.

Stratum 1: Stratum 2: Stratum 3: Stratum 4: Strata 5 & 6:
Trans x Trans x Trans x Trans x Trans x

1000 people 1000 people 1000 people 1000 people 1000 people

constant 24.747*** 20.752*** 11.151*** 7.264*** 9.874***
(0.155) (0.120) (0.088) (0.072) (0.057)

work -8.430*** -7.069*** -3.518*** -2.279*** -2.604***
(0.220) (0.169) (0.124) (0.102) (0.080)

other -6.831*** -5.864*** -1.928*** -0.683*** -0.714***
(0.220) (0.169) (0.124) (0.102) (0.080)

slope 0.049*** 0.080*** 0.071*** 0.034*** 0.052***
(0.006) (0.005) (0.004) (0.003) (0.002)

slope * work -0.037*** -0.053*** -0.034*** -0.018*** -0.020***
(0.009) (0.007) (0.005) (0.004) (0.003)

slope * other 0.069*** 0.040*** 0.035*** 0.029*** 0.037***
(0.009) (0.007) (0.005) (0.004) (0.003)

R-squared 0.985 0.989 0.982 0.972 0.988
Adj. R-squared 0.985 0.989 0.982 0.973 0.989
N 123 123 123 123 123

* p < .1, ** p < .05, ***p < .01

strata. The average Rg seems unaffected by the sectorized lockdowns, but strata five and
six have a decreasing trend.

Unlike the previous two analyses, the Rg is more stable for most strata, therefore fitting
a line to the trend may not be appropriate because the slope is very likely to be zero. For
this reason, we performed a two-sample t-test for mean comparison to test if Rg before and
after the lockdown are significantly different. The null hypothesis is that the average Rg
difference before and after the pandemic is equal to zero, and the alternative hypothesis is
that it is different from zero. The after-lockdown data represents the days after the first day
of economy re-opening. We calculated the Welsh t-test and used the Satterthwaite formula
for the degrees of freedom approximation; this procedure assumes that each sample variance
is unequal. The results show that for strata two, we fail to reject the null hypothesis, and
therefore, there is no significant difference in the average Rg before and after the lockdowns.
For strata one and three, there is a slight but significant decrease of the Rg. For strata four
to six, we reject the null hypothesis in favor of the alternative hypothesis and conclude that
the average Rg is higher after the lockdown for this population. The results are shown in
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Figure 2.7: Average Radius of Gyration (Rg) in km by strata. Red dotted lines mark
the start of the lockdown (Mar/20), the first economy re-opening (Apr/27), the sectorized
lockdown (Jul/13) and the end of the lockdown (Sep/01).

Table 2.5.

Table 2.5: Average Radius of Gyration in KM mean difference t-test. Before time period is
Jan/01 - Mar/20. After period is Apr/27 - Oct/12.

Average Rg(Km)
Before After

µ σ n µ σ n t df

Stratum 1 11.19 0.42 79 11.04 0.36 155 2.58** 140.31
Stratum 2 10.32 0.21 79 10.28 0.18 155 1.37 136.86
Stratum 3 8.77 0.16 79 8.71 0.11 155 3.48*** 116.68
Stratum 4 8.65 0.44 79 9.04 0.42 155 -6.38*** 147.55
Strata 5 & 6 8.95 0.91 79 10.05 0.69 155 -9.39*** 124.82
* p < .1, ** p < .05, ***p < .01
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Figure 2.8: Distributions of Average Radius of Gyration (Rg) in km. Blue is the distribution
before the lockdown. Green is the distribution after the first economy re-opening.

2.5 Discussion

The results show that strata one and two have different behavior than other strata and that
middle and high strata behaved very similarly during the pandemic. Lower strata had the
least reduction of public transit use after the lockdowns and returned to transit faster. These
results may show that low strata have a more significant proportion of captive users who
need public transportation to access jobs. In the context of Bogotá, public transit captivity
can be understood in two ways. First, lower strata have a low rate of vehicle ownership.
Therefore, the availability of other transportation modes is limited. According to the HTS
(2019), strata one and two have 95.5 and 137.7 vehicles per 1.000 people, respectively, while
the same rate is 593.3 for strata six. Second, the spatial distribution of the strata in Bogotá
makes it challenging to switch to alternative modes such as walk or bike because low-income
neighborhoods are further away from the downtown. Therefore, bike or walk may not be
a viable alternative. Even bike ownership for lower-strata is lower than higher-strata, with
111 bikes per 1.000 people for strata one and 319 bikes per 1.000 for strata six (HST, 2019).
On the contrary, middle and high strata have higher rates for personal and private vehicle
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ownership and are closer to job areas, and therefore it is easier to switch to sustainable
modes such as walking and biking. These results could also be influenced by the fact that
new bike lines are highly concentrated in the middle and higher stratum; these bike lanes
were implemented to give transit users better and safer options to commute during the
COVID-19 pandemic.

The sectorized lockdowns also had different impacts. The first set of neighborhoods
affected by the lockdown were dense job areas and low strata neighborhoods, explaining
the higher drop in strata one and two. During this first phase, reduction rates for stratum
one were similar to middle and higher strata. However, as the restrictions eased for those
neighborhoods, stratum one quickly returned to similar levels right before the sectorized
lockdowns, while middle and higher strata remained equally low. Lockdowns in other phases
seem to have had little effect on the BRT demand. As the economy re-opens, the number of
transactions at home and work locations follows a similar trend. However, the growth rate
for “other” transactions increased for every stratum. The increase of transactions in “other”
locations could be influenced by the eased restrictions and the fact that the public transit
remains with low capacity, yet it is still operating with 100% of the fleet. As the BRT has
good connectivity and accessibility, the population may be using it more for other activities
outside work.

As for the Rg, lower and middle strata had a slightly decreased before and after the
lockdowns. This result shows that those users that remain in transit are reaching similar
destinations pre- and post-the lockdowns. These trends do not seem to be affected by the
sectorized schema. However, for higher strata, the Rg increases during the lockdowns. This
result may show that most of the low-distance high strata BRT trips were replaced by other
modes, and only long distances remain, consistent with findings in (João Filipe Teixeira,
Miguel Lopes, 2020). strata five and six also showed a decline in the average Rg, which might
have been influenced by the increased transactions in “other” locations. One contribution
of this study is the calculation of the Rg specific to a transportation mode, in this case,
the BRT. Other studies calculate the Rg based on the visited locations regardless of the
transportation mode used to access those locations. These studies showed a significant drop
in the Rg, but they did not compare it for the individuals who remained traveling during
the COVID-19 pandemic. For transit operation and even for other transportation services,
this information is vital to adapt the supply to current demand needs.

Our study highlighted that the reduction of the BRT system’s demand does not dis-
tribute equally among strata. Therefore, the operations of the fleet should not remain equal
to the pre-lockdown schedules. To promote equity in the transit services, transit agencies
need to move the resources to where they are more needed, such as vulnerable populations
that solely depend on transit. A more in-depth analysis of the BRT origin-destination pairs
may help identify which pairs to prioritize considering the strata, the transaction volume,
and the activity type. While our results show a differential impact based on strata, the
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methodology only captures frequent users before the pandemic and analyzes their trends
after the pandemic. We did not account for frequent users that have become frequent after
the lockdowns as we did not have a reference point for them. Additionally, while we assumed
that different strata have different rates of taking transit, we did not consider that longer
distances to BRT stations may reduce the probability to take BRT. As a result, the current
methodology may be overestimating the representation of BRT use in the edges of BRT
stations’ catchment areas. However, these results provide a general understanding of how
transit demand is shifting during the COVID-19 pandemic for different groups.

2.6 Limitations and Future Work

The current methodological approach to infer home and work location did not consider work
instability. We defined work instability as a worker with varying working locations such
as construction workers or people in the informal job market, which is likely to affect the
results for low strata. For instance, one user can have a home, work, and study location,
but the methodology will only capture one or the other. Further research in this area may
help us understand and classify more complex tours. We did not consider home or work
change. This assumption is particularly important because the COVID-19 lockdowns may
have also impacted the relocation rates. However, data on home and work re-locations before
the 2020 is not available as a baseline. Additionally, we assumed that probability vector of
a transaction belonging to one stratum depends only on the strata distribution within the
catchment area, and the rates of transit for each stratum. We did not consider other factors
such as distance, which may give greater weight to blocks closer to the stations. Lastly,
frequent users were estimated using data pre-lockdowns only, and our results showed the
trends of such users, however we did not account for new frequent users that may have
become frequent and active after the lockdowns. We also assumed that catchment areas
are the only source of variations, however it is possible that some home transaction may
fall outside the catchment area given some informal services that are used as feeder routes.
For instance, bicitaxis, and cars may help collect users for areas that may fall outside the
catchment area. Information on informal transit was not available, and therefore was not
accounted for this study.

2.7 Conclusion

We classified transactions of frequent users by strata using a probability vector, which is a
function of the rate of BRT use and the population in the catchment area of the station. This
classification showed a similar aggregate strata distribution compared to the 2019 HTS, which
validated our inference methodology. The results from this study showed a differential impact
of the COVID-19 pandemic in BRT use by strata. Lower strata showed the least reduction of
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transit use comparing to middle and higher strata. At the beginning of the lockdown period,
lower strata returned to transit faster than any other stratum. By the end of the lockdown
restrictions, the number of trips for “other” locations was significantly higher than those of
work trips, which adds extra challenges to transit operators. This study also showed that
transit users in lower strata were reaching similar destinations as before the lockdown as
measured by Rg. However, for higher strata, the average Rg increased during the lockdown,
suggesting that those that keep using transit after the lockdown needed it for longer trips.
This study’s results can help transit agencies better allocate resources to improve the level
of service and accessibility to both home and work for vulnerable populations.
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Chapter 3

Public Transit Demand Prediction
during Highly Dynamic Conditions:
A Meta-analysis of state-of-the-art
models and open-source
benchmarking Infrastructure.

ABSTRACT1

Near real-time demand prediction is an important input for dynamic bus routing.
While many researchers have developed a myriad of complex methods to predict
short-term transit demand, the applications have been limited to short, stable
time frames and a small number of stations in one geography. How these meth-
ods perform in highly dynamic environments has not been studied, nor has their
performance been systematically compared. We built an open-source infrastruc-
ture with five common methodologies, including econometric and deep learning
approaches, and assess their performance under stable and highly dynamic con-
ditions. Given the sudden demand changes of highly dynamic conditions and the
complex spatiotemporal correlation of transit demand, we also implemented and
tested the performance of the models with an “adaptive training” and “multi-
output” model design, in contrast to traditional training and single-output mod-
els. We use time series from smartcard data to predict demand for the following
day for the Bus Rapid Transit (BRT) system in Bogotá, Colombia. The dynamic
conditions in our time series include a month-long protest and the COVID-19
pandemic. Both conditions have triggered unexpected and uncertain closures of

1This chapter has been reproduced with the permission of my co-authors Marta C. González, and Joan
L. Walker
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multiple transit stations and drastic shifts in demand. The results show that
most tested models perform relatively similarly in stable conditions, with fore-
casting errors varying from 8.5 to 12%. The benchmark showed that all models
performed significantly worse in both dynamic conditions relative to stable con-
ditions. In the month-long protest, the increased prediction error ranged between
14 to 24%. Similarly, during the COVID-19 pandemic, the increased prediction
error ranged from 12 to 82%. Notably, in the COVID-19 pandemic condition,
a long-short-term memory (LSTM) model with an adaptive training and multi-
output design stood out by outperforming other models and adapting faster to
disruptions. The prediction error stabilized within approximately 1.5 months,
whereas other models continued to exhibit higher error rates even a year after
the start of the pandemic. With our open-source codebase infrastructure, our
aim is to lower the barrier for other researchers to replicate and reproduce mod-
els, facilitate a collective effort within the research community to improve the
benchmarking process, and accelerate the advancement of short-term ridership
prediction models.

3.1 Introduction

The motivation behind dynamic routing is to be responsive to real-time demand and improve
transit services and reliability. Short-term demand prediction supports the decision-making
process in dynamic routing by providing ridership forecasts to allow the allocation of re-
sources ahead of time. In a highly dynamic condition, a situation that is both unexpected
and uncertain, these decisions become more relevant. As the demand changes drastically,
public transit services need to adjust their fleet operation to meet the new needs. Exam-
ples of highly dynamic conditions are the COVID-19 pandemic and the impacts of long-term
protests. The induced lockdowns during the COVID-19 pandemic resulted in drastic changes
in travel demand, and the duration of these changes was (and still is) uncertain because of the
novelty of the virus. As a result, many transit agencies responded by reducing and modifying
transit services. Furthermore, while most protests might be foreseeable in the short term,
the aftermath is not; protests might last for weeks or months and result in damages to the
public transit infrastructure, forcing temporary station closures and transit services modifi-
cations. However, the literature on short-term ridership prediction methods has been limited
to short, stable time frames and a small number of stations in one geography. How they
perform in highly dynamic environments has not been studied, nor has their performance
been systematically compared.

The literature on short-term ridership prediction has had exponential growth of proposed
methods over the last decade, including statistical models [70, 29, 101], machine learning
[102, 62, 28, 104, 22, 19], deep learning [109, 120, 64, 63, 92, 10, 20, 46, 43, 130, 7], Bayesian
approaches [87], optimization [37, 124, 126], and various other methods such as grey theory
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[53, 118], gravity models [93], Kalman filtering [127, 55] and combinations of two or more
of this approaches [56, 68, 131, 128]. This large number of available methods presents an
increasing challenge to researchers in comprehending, implementing, and comparing their
performance. This growing pool of models makes it increasingly difficult to conduct reliable
comparisons, leading to benchmarks that typically include only a small subset of models.
Moreover, the heterogeneity of these subsets across the literature hinders the ability of the
research community to identify relevant literature, even for stable conditions. This scenario
highlights the need for a standardized framework for implementing and benchmarking the
various models, facilitating collaborative efforts towards advancing the field.

The objectives of this research are twofold: first, to provide an open-source codebase
infrastructure that uses a publicly available dataset to create standard, reliable, and statis-
tically rigorous benchmarks, and second, to use this infrastructure to compare the perfor-
mances of state-of-the-art models in highly dynamic conditions. To achieve these objectives,
we propose an open-source codebase containing five widely used models, including two sta-
tistical models – ARIMA and SARIMA) – and three Deep Learning Models – Multilayer
Perceptron (MLP), Convolutional Neural Networks (CNN), and the Long-Short-term mem-
ory network (LSTM) – which are frequently used in the literature on short-term ridership
prediction. These methods are substantially different in how they structure and process data
series data and are widely used for short-term ridership prediction models and other time
series applications.

We use more than five years of data of the Bus Rapid Transit (BRT) system in Bogotá,
Colombia, which is publicly available and can be used by other researchers. This dataset
contains two highly dynamic conditions, a month-long protest in November and December
2019 and the COVID-19 pandemic since March 2020. Given the sudden demand changes of
highly dynamic conditions and the complex spatiotemporal correlation of transit demand,
we also test the performance of the models with an “adaptive training” and “multi-output”
model design. The adaptive training model re-trains the model as new information be-
comes available, which might improve model performance in highly dynamic conditions.
The multi-output model aims to consolidate the prediction of individual stations in one
model, capturing possible spatial and temporal correlations across stations.

The remainder of the paper is organized as follows. Section 2 summarizes the relevant
literature for short-term public transit demand forecasting. Section 3 explains the meta-
analysis’s methodology, including appropriate research methods and modeling strategies.
Section 4 presents the results of the meta-analysis, and section 5 concludes with a discussion
and conclusion.
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3.2 Literature Review

This section focuses on the five methodological approaches to predicting short-term transit
ridership and the two modeling designs. In the context of highly dynamic conditions, we also
reference literature pertaining to demand prediction under special events such as holidays,
concerts, and sports events. We focus primarily on aggregate prediction, which aggregates
demand at the station or bus route level.

Parametric models, such as ARIMA and SARIMA, have been traditionally used to model
time series data. The aim is to model a stationary process where the mean is zero and the
variance is constant. The models are composed of an auto-regressive part (AR) and a moving
average part (MA) to capture historical data and past prediction errors. The ”I” and ”S”
stand for integrated and seasonality, which tries to account for trends and seasonal patterns.
The main advantages of these models are the solid statistical background and the default cal-
culation of confidence interval. Additionally, [32, 9] proposed an Autoregressive Conditional
Heteroskedasticity (ARCH) and Generalized Autoregressive Conditional Heteroskedasticity
(GARCH) model to relax the constant variance assumption of the stationary process, which
allows to model heteroskedasticity in time series analysis. A SARIMA model was used by
[70] to forecast monthly demand using ten years of training data. [29] use an ARIMA +
GARCH model to model demand volatility, using 15-minute aggregation for one month of
data and three transit stations with high passenger demand.

Deep Learning models have also been widely used for time series analysis in the last
decade. For short-term transit demand, there have been three main deep learning archi-
tectures: Multilayer perceptron (MLP) [109, 120], Convolutional Neural Networks (CNN)
[64], and Recurrent Neural Networks (RNN) [63, 92]. The MLP model is a fully connected
feed-forward neural network with at least three layers, the input layer, the hidden layer(s),
and the output layer. For time series, the input layer is composed of the past observation;
however, given that it is a fully connected network, there is no explicit time dependency.
Inspired by image classification, the CNN model connects inputs with predefined temporal
dependency (e.g., observations within the same week) [10]. RNN allows outputs of some
nodes to affect subsequent inputs to the same nodes, which is a more realistic representation
of time. In RNN, the most common cells are the Long-short term memory (LSTM) [46]
and the Gated Recurrent Unit (GRU) [20], which maintain hidden states to filter relevant
information and store long-term dependencies.

There are two main model designs to predict short-term ridership. Single versus mul-
tioutput models and the adaptive training strategy. Single-output models train individual
transit stations, and multi-output models train one model to predict the output of all stations
at once. Parametric and machine learning models have developed multi-output models; the
main objective is to find the correlation of one variable in multiple outputs. In the paramet-
ric case, they are known as Vector Autoregressive Models (VAR) [58]. Multi-output models
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have been used in other fields, such as the energy forecast prediction [89] and the air quality
prediction [135]. The main advantages of these models are that they capture the spatial
and temporal correlation, and the modeler only needs to train one model instead of multiple
individual models for each time series. In transportation research, multi-output models have
been recently used for the bike-sharing system demand [69], bus travel time prediction [81],
and public transit passenger prediction [117].

Static models maintain the estimated parameters for prediction, while adaptive training
models (also known as online models or continuous learning) modify the parameters when
new information becomes available. In this paper, we refer to adaptive training as ”online
training”. The online training idea comes from the problem that artificial neural networks
forget past information when trained for a new task, known as catastrophic forgetting [41].
In practice, ARIMA and SARIMA models update the model parameters when new informa-
tion is available, as suggested by the default settings of multiple implementations [94, 66].
However, this aspect is not underscored in the short-term ridership prediction. In machine
learning, this modeling strategy has been explored in other fields, such as energy consump-
tion [1], medical research [60], recommendation systems [83], and spam detection [100], but it
has not been applied to the short-term demand prediction problem of public transit. One of
the advantages of online training is the adaptability to unpredictable and uncertain changes
and the ability of these models to support real-time decision-making, which is relevant for
highly dynamic conditions.

Previous methods focus mainly on short-term demand prediction under stable conditions.
However, demand prediction during big events has received some attention. [116] develops
an early warning system that detects abnormal passenger outflows to predict abnormal
passenger inflow in the future and cross reference they’re finding with large-scale events.
Similarly, [47] proposed a clustering mechanism and a dynamic time wrapping to account
for multiple social events such as holidays and sporting events. Lastly, [133] implemented a
näıve Bayesian-based transition model to forecast demand under unplanned events. These
methods, however, have two main shortcomings. First, they were only validated during
known periods of disruption, such as holidays and large-scale events, but not under highly
dynamic conditions. Second, these methods do not take full advantage of multi-output
models, as they only consider specific stations where special events are likely to happen.

The contributions of this research are twofold. First, we create an open-source codebase
that implements major model architectures and establish a common benchmarking platform
to compare model implementations reliably and accurately. Second, we use this codebase
to perform a meta-analysis of state-of-the-art models and common modeling strategies to
compare their performance in terms of model accuracy during stable and highly dynamic
conditions in a data set that spans multiple years and stations.
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3.3 Methods and Data

The research objective is to compare the prediction accuracy of multiple model implementa-
tions currently proposed in the literature for stable and dynamic conditions. In this section,
we describe the selection of methods that encompass most of the state-of-the-art method-
ologies for the short-term transit demand prediction problem. Then we describe the data
set we use in our experiments and its two highly dynamic conditions. We also describe the
experiments, metrics of analysis, and preprocessing steps.

3.3.1 Method selection

We have included at least one reference for each major methodology in Table 4.1, which has
been used to inspire our implementation. We prioritized papers with high citation counts,
clear explanations of the model, and relatively canonical model implementations for each
category. This approach ensured that we were building upon well-established and rigorously
tested methodologies with proven effectiveness with short-term ridership prediction. To
ensure the comparability of the models, we applied the same preprocessing and feature
engineering techniques across all implementations, even if it meant deviating from the exact
methodology described in some of the selected papers. This was necessary to ensure that the
methods were appropriately adapted to our specific data, while maintaining consistency in
the evaluation process. For instance, [63] implements three LSTM networks to model same
day, daily, and weekly demand. In our implementation, demand is aggregated to the day,
so we only use one LSTM network. While some studies have found that external data such
as weather, land use, and social data improve accuracy, we avoid using them because this
research objective is not to test the accuracy of external data but the performance of the
methods themselves.

In [70], the authors used the SARIMA model to account for yearly seasonality pat-
terns. [29] proposed a GARCH in addition to the ARIMA model to account for the demand
volatility. For this research, we only train the model with the ARIMA part since the GARCH
component only affects the estimation of the demand volatility but not the point estimate.
These two papers selected a model based on an information criterion. [29] used the Akaike
Information Criterion (AIC) score and [70] used the Bayesian Information Criterion (BIC)
score for some pre-defined models. Since model selection is a time-consuming task, especially
when training a model for an individual station, we use a stepwise algorithm [49] to expedite
the model selection using the AIC score.

Reference [120] used a three-layer neural network. The input layer contains as many nodes
as input variables, and the output layer size is the forecast window. The hidden layer size
was taken from the default implementation of NeuroShell 2, which is the average of the input
layer and the output layer size. Our implementation of the MLP model uses the same model
structure. [63] proposed many data sources and feature engineering procedures. However,
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Table 3.1: Short-term ridership prediction selected References for the open-source codebase
infrastructure implementation - Attributes as reported in references

Study Methods
Number of
Stations Time Frame Aggregation Accuracy Preprocessing

[29] ARIMA 3
1 Month

October 2012 15 mins
MAPE:
3.39%

Log
Transformation

[70] SARIMA Full System
10 years
2004-2014 Monthly

MAPE:
7.13%

Log
Transformation

[120] MLP 1 Line
1 Month
May 2008 15 mins

MAPE:
5.04%

Empirical Mode
Decomposition

[64] CNN 1091 Lines
8 Months

Mar-Oct 2016 Hourly
SMAPE:
20.98% Unclear

[63] LSTM 3 5 Months 10 mins

SMAPE
(DL-N)

16.91% Min-Max

for the purpose of this research, we select the implementation of their Deep-Learning Nearest
Part Architecture (DL-N) model, which only takes the information of previous timesteps.
However, as the focus of our research is on daily demand forecasting based on a full week
demand, our implementation takes into account daily and weekly cycles. The implementation
used a unique LSTM layer with 32 units, which is maintained in our implementation. The
CNN architecture consists of one convolutional layer with 256 filters and a dilatation factor
of 7 to represent the weekly cycle.

3.3.2 Experiments

To evaluate and compare the performance of the selected models, we conduct four sets of
experiments varying the model designs in two dimensions.

To compare the models, we conduct four sets of experiments varying two critical design
dimensions that can affect the performance of the models under highly dynamic conditions.
The first dimension pertains to the adaptive learning strategy, which we refer to as ”online
training”. In this approach, the model is re-trained as new information becomes available.
re this approach with static training, which estimates a model using only the test data, and
generates predictions using the latest available information. However, the model is not re-
estimated with new data. In the second design dimension, we compare a single-output model
to a multi-output model. With the single-output strategy, we train each transit station’s
time series data individually. In the multi-output strategy, we use the time series data of all
stations as input to predict the demand for all transit stations simultaneously.
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The set of experiments is summarized in Table 3.2. To train ARIMA and SARIMA
models, we use [94] python implementation. However, the implementation is restricted
to univariate time series, and always requires updating the model parameters with new
information. Given these constraints, we only test the ARIMA and SARIMA models for the
single output and online training experiment.

Table 3.2: Experiments

Model Design
Single
output Multioutput

Static
Training

MLP
CNN
LSTM

MLP
CNN
LSTM

Online
Training

MLP
CNN
LSTM
ARIMA
SARIMA

MLP
CNN
LSTM

3.3.3 Data

The data encompasses the daily transactions of 147 stations over five years (August 2015
to May 2021) in the BRT system of Bogotá, Colombia, as shown in Figure 3.1. The BRT
system is the city’s main mass public transportation system, with over 2.5 million daily
transactions during stable conditions (pre-COVID-19). There were two highly dynamic
conditions during this period—a major national protest in November and December 2019 and
the ongoing COVID-19 pandemic since March 2020. Both events have triggered unexpected
and uncertain closures of multiple transit stations. This dataset is publicly available at:
https://datosabiertos-transmilenio.hub.arcgis.com.

For the four sets of experiments, we train a baseline model with data from April 2015
to August 2018. The test period starts in September 2018 and until April 2021. We use
the baseline mode for the online training strategy and update it every timestep. For all
the experiments, we normalize the data using the min-max approach because it normal-
izes elements that will fall between zero and one and maintains the meaning of zero (zero
transactions). Given the data considerations, we use daily aggregation to fit ARIMA and
SARIMA. For every experiment, we use the information from the past 21 days to predict
the daily demand of the following week. We include common temporal variables to account
for cyclical patterns. We use a dummy variable to signal Saturdays and Holidays and a sine
and cosine function to encode yearly and weekly trends.
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Training Test

Protest

COVID-19

Figure 3.1: BRT daily aggregated demand training period from August 2015 to May 2021.
Training Period: Aug 2015 - Jul 2018. Test Period: Aug 2018 - May 2021. Protest: Nov
and Dec 2019. COVID-19: March 2020 to May 2021

3.3.4 Metric of Analysis

Most of the performance indicators currently used in the literature for short-term demand
forecasting are the Root Mean Squared Error (RMSE), Mean Absolute Value (MAE), and
Mean Absolute Percentual Error (MAPE). We will instead use the Mean Arctangent Abso-
lute Percentual Error (MAAPE) [57]. RMSE and MAE measures depend on the magnitude
of the observations, making them useful to compare different methods on the same dataset
but not as effective when comparing one method across multiple datasets. The MAPE solves
that problem by estimating a percentage error instead of an error. In the MAPE, the error
can be considered a slope |̂y−y|/|y|, and its limit when y approaches zero is positive infinity.
Therefore, the error is bounded from 0 to +∞. The MAAPE limits the bounds of the error
by considering the error as an angle. The limit of the angle as y tends to 0 is π/2. Consid-
ering target values of zero is relevant to our problem because a transit station might not be
open at all time intervals, especially when bus stations are forced to close due to external
forces. Additionally, because not all transit routes/stations are open at the same time, when
we train a unique multi-output model, we need to standardize the hours of operations of all
stations, which may also result in zero target values.

In this research, we proposed a system-wide level that tests the performance of the entire
transit system at every time step. Unlike current trends in the literature that test accuracy
at the individual level, this metric serves as a summary metric to test a model’s performance.
The advantage of having a system-wide metric is that it captures the performance in a wider
range of transit behaviors, making the metric more generalizable. Therefore, it can also use
to compare performances in multiple geographies. In this research, the average error of the
entire transportation system is given by:
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MAAPEt =
1

s ∗ w

s∑
j

w∑
i

arctan(
ŷs,w,t − ys,w,t

ys,t,w
) (3.1)

Where t is the aggregation period, s is the number of stations, and w is the forecast
window. Therefore ŷs,w,t represents the predicted value of station s, for w forecast windows
in the time period t.

3.4 Results

In this section, we summarize the main results from the experiments. First, we include the
system-level results and focus on the models’ performance during stable and highly dynamic
conditions. Additionally, we include an analysis of the temporal variation of the MAAPE for
all models. The statistical analysis results for each experiment can be found in the appendix.

To understand the evolution of the error metric, we estimate a daily system-wide MAAPE
for all experiments, as shown in Figure 3.2. The plot is smoothed using the rolling MAAPE
for the last seven days. During stable conditions, most models perform similarly in all four
sets of experiments, although the CNN and ARIMA models showed consistent underperfor-
mance. During stable conditions, some peaks in the MAAPE metric correspond to the end
of the year holidays, eastern, and long weekends. These results also show that all models and
all experiments experience a sharp increase in the accuracy metric for two highly dynamic
conditions, but the initial shock is lower in the month-long protest condition. The online
training experiments reveal a faster decrease in the MAAPE during the COVID-19 pandemic;
however, there is a noticeable difference in the expected time for the MAAPE to stabilize.
On average, models in the single-output and online training experiment take 3 months, while
the LSTM model in the multi-output and online training takes 1.5 months. Lastly, while
the CNN model usually underperforms in most experiments during stable conditions, this is
not true in the COVID-19 condition.

To evaluate the statistical performance of the models and experiments, we regress the
MAAPEn,t with respect to the COVID and Protest conditions. These are dummy variables
where one represents that the period t belongs to the given condition and zero otherwise.
Since some temporal variables are not well captured in the models, we also control for
Saturdays and holiday effects.

MAAPEn,t = αn + β1,n (covidt) + β2,n (strikest) + β3,n (temporalt) + εn (3.2)
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Figure 3.2: Daily System-Wide MAAPE evolution for Test Period. A. Single-Output and
Static Training. B. Multioutput and Static Training. C. Single-output and Online Training.
D. Multioutput and Online Training

Where n represents the experiment, and t is the aggregation period. The parameter αn

represents the average accuracy of the model during stable conditions, β1,n is the added error
associated with the COVID-19 pandemic, and β2,n is the added error associated with the
strikes. The advantage of linear regression is the standard error estimation, which allows
comparing if the difference in the MAAPE metric of the two models is statistically significant.
The results of this estimated can be found in the appendix.

3.4.1 Stable Condition

For stable conditions, the single-output and online-training LSTM model is the best system
performance (benchmark results shown in Figure 3.3). This model outperformed six out of
the 12 experiments and has no statistical difference from the other 5. The daily MAAPE is
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0.080, which can be interpreted as an 8.1% error, and its standard deviation is 0.007. Other
models performed relatively similarly, for example, the single-output and online-training
DENSE model. However, the LSTM version is preferred because of the lower magnitude of its
standard error. The multi-output version of the online-training LSTM model also performed
well with a 9% accuracy. The worse performing model in the CNN model, with the higher
error (16%). For eight out of the 12 experiments, this model performed significantly worse.

Figure 3.3: MAAPE Performance Benchmark in stable conditions

3.4.2 COVID-19 Condition

For the COVID-19 highly dynamic condition, the best performing model was the multi-
output, online training LSTM model, as shown in Figure 3.4. This model outperformed 9 out
of the 12 experiments and has no statistically significant difference only with the single-online-
LSTM and the multi-static CNN models. The marginal increase in the MAAPE during the
COVID-19 pandemic is 11.9%, and a standard error of 0.012. The worse-performing models
were the single-output and static training models, with an average MAAPE increase of
75%. From the plots, the online models tend to have a higher spike at the beginning of the
COVID-19 condition but leveled up relatively fast after a few months.

3.4.3 Protest Condition

The performance during the one-month-long protest in November-December 2019 are pre-
sented in Figure 3.5. The single-output, online-training CNN model performs best, with
a MAAPE of 17.5%. However, this accuracy is only significantly better than multi-output
LSTM for both static- and online training. The multi-output, online-training LSTM model
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Figure 3.4: MAAPE Performance Benchmark during COVID-19 condition

performs significantly worse than three of the other experiments, and the marginal MAAPE
for the protest condition is 24.4%.

Figure 3.5: MAAPE Performance Benchmark during protest condition
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3.4.4 Other temporal Variables

Figure 3.6 shows that the MAAPE is higher during Sundays Holidays, even though these
variables are added in the explanatory variables to account for the differentiated behavior.
The single-output static-training dense model seems to outperform the predictions. The
average MAAPE increase for this model is 12.1%, and the difference is statistically significant
for 10 out of the 12 experiments. The only model that performs similarly is its online version,
with an increased MAAPE of 12.4%. However, the MAAPE is better for the static-training
experiments than the weekdays during the COVID-19 condition. This difference is less
obvious in the online-training models.

Figure 3.6: MAAPE Performance Benchmark - Sundays

3.4.5 Running times

An important metric to consider is running times, especially as aggregation periods become
smaller. While there is no direct comparison for running time within the strategies tested
in this research, we try to estimate the average training and prediction time, as shown in
Figure 3.7. We plot the average time to train and predict an individual transit station for
single-output models. For multi-output models, the result is the time it took to estimate a
unique model with all transit stations. From the plot, training times for multioutput models
are almost negligible. However, for single-output models, the total training would need to
be multiplied by the number of transit stations. We did not plot training times for ARIMA
and SARIMA models because they are one order of magnitude different. The LSTM model
is almost 5 times slower than the rest of the models; however, this result is expected because
the model is a recurrent neural network that is not possible to parallelize. For all models
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and experiments simulation, running times are 1.0 seconds or less. Multioutput models can
take 5 times longer than single-output models, but the extra running time is overweighted
by the fact that multioutput models predict the demand of the entire transit system at once.

A B

Figure 3.7: Average training and simulation running times A). Training B). Simulation

In summary, multi-output and online training models perform better than single-output
static-training models. For stable conditions, LSTM, MLP, and SARIMA outperform other
models. Single-output models have better performance; however, there is no statistically
significant difference with multi-output models. Similarly, online models perform slightly
better than static models, but the difference is not statistically significant. Given that the
running times for multi-output models are more convenient, we select multi-output, online
LSTM as state-of-the-art performance for stable conditions.

The multi-output, online LSTM model achieves state-of-the-art performance for stable
conditions. The multioutput model is more convenient for training times and performs
similarly to single-output models (no statistically significant difference). The online strategy,
while not significantly different from the static strategy, is preferred because it performs
better in one highly dynamic condition. The LSTM model is chosen because its performance
is slightly better than the MLP model. For the COVID-19 condition, the best-performing
model is the multi-output, online LSTM model. Online models perform significantly better
than static models, and the LSTM performs slightly better in the multi-output strategy than
in the single-output strategy. Additionally, the LSTM model learns new patterns faster than
other models. For the long-month protest, none of the models perform significantly better
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Table 3.3: State-of-the-art performances.

Condition Output Training Model
Training Running

Time MAAPE (C.I)

Stable Multiple Online LSTM 27 sec 0.09(±0.016)
COVID-19 Multiple Online LSTM 27 sec 0.12(±0.023)
Protest Multiple Online CNN 4 sec 0.20(±0.078)

than the others; however, we select the CNN model, as it tends to perform slightly better
than other models. State-of-the-art performances are summarized in Table 3.3.

3.5 Discussion and Conclusion

This paper performed a meta-analysis to compare and critique the performance of main
modeling strategies and state-of-the-art model architectures, including both econometric
and deep learning approaches, during stable and highly dynamic conditions. The dynamic
conditions in our time series included the COVID-19 pandemic and a month-long protest.
Both conditions triggered unexpected and uncertain closures of multiple transit stations
and shifts in demand that forced changes in service operations. We showed that all models
and modeling strategies in this analysis perform significantly worse during highly dynamic
conditions, as shown in Figure 3B and Figure 3C. The multioutput online LSTM model not
only performs best during COVID-19 conditions, but it also is the model that most rapidly
adapts to highly dynamic demand. While the performance of any of the implementations
during the month-long protest is significantly better than the others, the multioutput online
CNN model performed slightly better.

Our results show that online models improve model accuracies faster, but it takes at least
1.5 months to learn new demand patterns. This result is significant because the duration of
a highly dynamic condition is uncertain, yet decisions to modify transit operations need to
be fast and made in timely manner. In this research, we show the potential of the online
training strategy to learn new patterns and improve model accuracy; however, more research
is needed to learn these patterns faster. While models for stable conditions do not necessarily
benefit from online training, the unexpected nature of highly dynamic conditions makes a
static strategy insufficient. Waiting to implement new models when these conditions happen
is usually time-consuming and might not support time-critical decisions.

The research on short-term demand prediction has grown exponentially in the last few
years, making selecting state-of-the-art models more difficult for researchers and practition-
ers. As a result, the benchmarking process sample a few models with no certainty that these
implementations produce state-of-the-art performances. In this research, we have selected
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five common methodologies and modeling strategies to compare and critique state-of-the-art
models, but we need a collective effort as a research community to build a common platform
to share and benchmark implementations. Our research shows that some implementations
have similar performances, and other factors, such as running time, might be more relevant
to determine a model strategy and implementation. A common benchmarking infrastructure
also allows researchers to identify shortcomings in model implementation and propose new
strategies to solve them. For instance, our results also show that predictions during holidays
are significantly worse, even if exogenous variables are added to account for these effects.
Additionally, when stations are closed, models still predict a non-zero demand. Therefore,
a common and systematic benchmark process has the potential to expand the field of short-
term ridership prediction faster and more reliably.

This research is an initial step to explore online training strategies, not only in the
context of highly dynamic conditions but also in stable conditions. Additionally, we have
created an open-source codebase to benchmark models systematically and reliably. Our aim
is that future researchers use and contribute so that we can collectively improve the short-
term ridership prediction problem. Future research can focus on model implementations or
strategies that improve the average time to learn new patterns and improve predictions in
highly dynamic conditions. More research is also needed to account for station closures and
their effect on surrounding stations. Current implementations assume all stations are open
and non-zero values are predicted, even when a station is closed.

The open-source codebase to replicate the results of this research is available at:

https://github.com/jdcaicedo251/transit_demand_prediction.

https://github.com/jdcaicedo251/transit_demand_prediction.
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Figure 3.8: Daily System-Wide VAAPE evolution for Test Period. A. Single-Output and
Static Training. B. Multioutput and Static Training. C. Single-output and Online Training.
D. Multioutput and Online Training
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Figure 3.9: MAAPE Stable vs. COVID-19 Condition. Each observation represents a BRT
station
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Figure 3.10: MAAPE Stable vs. Protest Condition. Each observation represents a BRT
station
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Figure 3.11: Temporary Closed Stations examples. Light-gray: Static Models. Dark-gray:
Online Models
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Table 3.4: Statistical Analysis - Single-output and Static Training

CNN LSTM MLP
Intercept 0.135*** 0.092*** 0.084***

(0.011) (0.009) (0.010)
covid 0.702*** 0.734*** 0.819***

(0.018) (0.015) (0.016)
protest 0.204*** 0.239*** 0.213***

(0.040) (0.034) (0.036)
saturday 0.004 0.007 0.012

(0.026) (0.022) (0.024)
holidays 0.282*** 0.206*** 0.121***

(0.024) (0.020) (0.021)
covid:saturday -0.110*** -0.134*** -0.214***

(0.042) (0.035) (0.038)
covid:holidays -0.347*** -0.310*** -0.379***

(0.037) (0.031) (0.034)
R-squared 0.667 0.752 0.761
R-squared Adj. 0.665 0.751 0.760
N 997.0000 997.0000 997.0000
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Table 3.5: Statistical Analysis - Multioutput and static Training

CNN LSTM MLP
Intercept 0.160*** 0.102*** 0.131***

(0.010) (0.010) (0.010)
covid 0.315*** 0.518*** 0.574***

(0.016) (0.016) (0.016)
protest 0.150*** 0.247*** 0.203***

(0.036) (0.035) (0.037)
saturday 0.047** 0.019 0.081***

(0.024) (0.023) (0.024)
holidays 0.782*** 0.311*** 0.258***

(0.021) (0.021) (0.022)
covid:saturday -0.053 -0.055 -0.330***

(0.037) (0.037) (0.039)
covid:holidays -0.360*** -0.136*** -0.141***

(0.033) (0.033) (0.034)
R-squared 0.669 0.634 0.623
R-squared Adj. 0.667 0.632 0.621
N 997.0000 997.0000 997.0000
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Table 3.6: Statistical Analysis - Single-output and Online training

ARIMA SARIMA CNN LSTM MLP
Intercept 0.152*** 0.109*** 0.135*** 0.080*** 0.081***

(0.009) (0.013) (0.011) (0.007) (0.010)
covid 0.139*** 0.193*** 0.170*** 0.141*** 0.438***

(0.014) (0.020) (0.017) (0.012) (0.016)
protest 0.183*** 0.233*** 0.175*** 0.215*** 0.212***

(0.032) (0.045) (0.038) (0.026) (0.037)
saturday 0.022 0.023 0.007 0.009 0.013

(0.021) (0.030) (0.025) (0.017) (0.024)
holidays 0.547*** 0.348*** 0.280*** 0.200*** 0.124***

(0.019) (0.027) (0.023) (0.016) (0.022)
covid:saturday 0.059* -0.037 0.021 0.065** -0.139***

(0.034) (0.048) (0.040) (0.028) (0.039)
covid:holidays 0.045 -0.009 -0.019 0.045* -0.110***

(0.030) (0.042) (0.036) (0.025) (0.034)
R-squared 0.630 0.302 0.289 0.398 0.487
R-squared Adj. 0.628 0.297 0.285 0.394 0.484
N 990.0000 990.0000 990.0000 990.0000 990.0000
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Table 3.7: Statistical Analysis - Multioutput and Online training

CNN LSTM MLP
Intercept 0.180*** 0.090*** 0.111***

(0.011) (0.008) (0.011)
covid 0.149*** 0.119*** 0.256***

(0.018) (0.012) (0.017)
protest 0.146*** 0.244*** 0.214***

(0.040) (0.027) (0.037)
saturday -0.010 0.014 0.023

(0.026) (0.018) (0.025)
holidays 0.359*** 0.267*** 0.223***

(0.024) (0.016) (0.022)
covid:saturday 0.053 0.065** 0.029

(0.042) (0.028) (0.040)
covid:holidays 0.064* 0.001 0.191***

(0.037) (0.025) (0.035)
R-squared 0.379 0.412 0.453
R-squared Adj. 0.375 0.409 0.450
N 990.0000 990.0000 990.0000
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Chapter 4

A Novel Modeling Framework for
Short-term Ridership Prediction
During Station Closures

ABSTRACT1

Temporary station closures create challenges for predicting ridership accurately,
as they can suddenly increase demand at other locations. Yet, current short-term
ridership prediction models fail to account for these closures, yielding inaccurate
forecasts. This research uses station closure information to improve short-term
ridership prediction in neighboring stations of a station closure. We propose a
novel modeling strategy combining Graph Information and the attention mech-
anism to capture the spatiotemporal correlation among stations and time si-
multaneously. We compare the performance with state-of-the-art models in an
open-source benchmark codebase using five years of Bus Rapid Transit (BRT)
boarding transactions in Bogotá, Colombia. Our analysis includes more than
10,000 station closures lasting longer than two hours. Compared to other state-
of-the-art models, the proposed model demonstrates a reduction in prediction
error ranging from 3.3 to 23.5% across multiple metrics and modeling strate-
gies when predicting ridership in the nearby stations of a station closure. This
research makes three key contributions: recognizing the importance of station
closures in short-term ridership prediction models, proposing a new modeling
architecture that uses this information to improve overall model accuracy, and
adding the model architecture to the open-source benchmark platform for future
comparisons. This study offers practical implications for transit agencies in mak-
ing faster and better decisions during temporary station closures by providing
more accurate forecasts, which contributes to developing a resilient public transit

1This chapter has been reproduced with the permission of my co-author Joan L. Walker
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system capable of adapting quickly to disruptions.

4.1 Introduction

Public transit systems are vulnerable to planned or unplanned disruptions that can lead to
temporary closures of transit stations. Such closures can have a significant impact on travel
demand patterns, as travelers may be forced to alter their travel plans or use alternative
transportation modes[99, 125, 84]. For instance, in Bogotá alone, over a five-year period,
there were more than 10,000 closures lasting more than two hours, highlighting the need
to account for this factor in short-term demand prediction models. Smartcard transaction
data from Bogotá also revealed that station closures led to increased demand at nearby
stations. However, to effectively optimize resource allocation, transit agencies require precise
knowledge of when, where, and to what extent the demand of neighboring stations will be
affected by the closures.

Despite the impact and frequency of station closures on nearby stations, current short-
term ridership prediction models do not incorporate this information, resulting in non-zero
demand predictions even when stations are closed. Furthermore, it remains unclear whether
station closures have an impact on the prediction error of state-of-the-art models in nearby
stations, limiting the use of these models to inform decisions during station closures.

This research aims to close this gap by quantify the impact of station closures on the
prediction accuracy of nearby stations of state-of-the-art-model and incorporate station infor-
mation closure to improve the prediction accuracy. We propose a combination of Graphical
Neural Networks (GNNs) and the Transformer architecture to improve information transfer
between neighboring stations, particularly in the event of station closures. A GNN model
is a type of neural network that can process and analyze graph data structures by learning
representations of nodes and edges and performing computations on them [38]. The atten-
tion mechanism is a technique that assigns weights to different parts of input data to enable
a model to focus on the most important information [6]. Given that the transit network
has complex spatiotemporal correlations, we use the graph structure to encode spatial rela-
tionships and enhance it with the attention mechanism to simultaneously pay attention to
the closure of another station for a given time duration. In this research, we also test the
efficiency of different model strategies to incorporate station closure information and analyze
different data processing techniques that might improve overall model accuracy. We demon-
strate the superiority of our model using the Bus Rapid Transit (BRT) boarding transaction
data from Bogotá, Colombia, covering almost five years, and comparing the performance
with models implemented in an open-source codebase for short-term ridership prediction.

We hypothesize that the short-term ridership predictions for neighboring stations will
be significantly worse in these circumstances. Additionally, we hypothesize that the graph
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structure and the attention mechanism can enhance the temporal and spatial communication
between stations and improve the forecasting accuracy of neighboring stations in the event
of station closures. To test our hypothesis, we use Bus Rapid Transit (BRT) boarding
transaction data from Bogotá, Colombia, covering almost five years.

The contributions of this research are three-fold. Firstly, we highlight the importance
of accounting for station closures and suggest modeling strategies to integrate this infor-
mation into short-term ridership prediction models. Secondly, we develop a novel modeling
framework that incorporates station closure information and improves the prediction accu-
racy of neighbouring stations impacted by a station closure. Thirdly, we implement our
modeling approach on an open-source benchmark platform, making it possible for future
researchers to reproduce, compare, improve, and build upon our model. The results of this
research have the potential to support rapid decision-making processes for transit agencies
during station closures, increasing service resilience and enhancing user satisfaction. Specif-
ically, our proposed modeling framework and strategies enable transit agencies to allocate
resources proactively and respond promptly to unexpected closures, enhancing system re-
silience. Additionally, the improved short-term ridership predictions for neighboring stations
increase users’ confidence in the reliability of the transit system, further enhancing service
satisfaction.

The remainder of this paper is organized as follows. Section 2 provides an overview of
the relevant literature on short-term ridership prediction. Section 3 describes our proposed
modeling framework, including the modeling strategies used to account for station closures
and the experimental setup designed to evaluate the performance. In Section 4, we present
the results of our research. Finally, in Section 5, we summarize and discuss the research
findings and implications.

4.2 Literature Review

Short-term ridership prediction has traditionally been approached as a time series problem,
with modeling techniques including statistical methods [29, 70], machine learning [19, 102,
28], and deep learning models [109, 120, 64, 63, 92]. However, these implementations have
typically focused on a single or few stations without considering the spatial correlations
between adjacent stations.

To address this gap, a combination of Graphical Neural Networks (GNN) and Recurrent
Neural Networks (RNN) has been proposed to capture spatial and temporal correlations
among transit stations [43]. In this context, the attention mechanism is utilized to assign
weights to relevant information for each model component, starting with the temporal com-
ponent and subsequently with the spatial component, in a sequential rather than a single
step manner. [129, 136]. For short-term demand prediction, a sequential approach may not
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adequately capture the complex interdependence between spatial and temporal correlations
of transit demand.By simultaneously applying the attention mechanism to both spatial and
temporal components, our approach is able to capture more complex relationships and de-
pendencies between these factors, ultimately leading to improved model accuracy. However,
this approach has not been proposed in the context of short-term ridership prediction.

The attention mechanism has also been used to estimate the importance of different model
components in the modeling framework. For instance, [67] developed a multigraph model
and used an attention mechanism to capture the importance of each graph, and [44] used
the attention mechanism to model the importance of multiple temporal bi-LSTM encoders.

Although most studies focus on relatively stable conditions, only a few have attempted
to capture irregularities in transit demand. [62] utilized a radial function network to predict
non-regular demand 30 minutes prior to special events, such as concerts or holidays. They
also found that their model performs well for unplanned events, such as train signal failures,
to predict the out-demand of the stations. [39] developed a model to capture abnormal
passenger flow but did not explore the causes of these abnormalities. Additionally, [35]
focused on failures that caused people to be stuck in transit stations and require evacuation
services. While these papers investigate the effects of planned and unplanned disruptions,
they focus on the affected station, mostly in alighting predictions, and do not consider the
impact on surrounding stations. Furthermore, none of these studies offer modeling strategies
to address the possibility that some transit stations might be closed during a certain period.

In summary, GNNs have been effectively employed to capture spatial correlations between
transit stations, while RNN-based architectures have been utilized to capture temporal cor-
relations. Attention mechanisms have been introduced to filter relevant information in either
one or both components, with the sequential application used when employed in both. De-
spite the extensive research in this area, current state-of-the-art models fail to account for the
possibility of transit stations being closed due to planned or unplanned events, nor have these
models sufficiently explored the impact of station closures on neighboring stations. These
limitations hinder our understanding of the effects of such disruptions on transit demand,
indicating a need for further research in this area.

4.3 Methods

In this section we present the problem statement, a new modeling framework to capture
spatiotemproal relationships, modeling strategies to process station closure information, data
processing tecniques and the experiments and metrics of analysis that are used to draw the
conclusions of this research.
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4.3.1 Problem Statement

The objective of the short-term ridership prediction model is to forecast the transit demand
for the following time step as a function of historical data, exogenous variables, and metadata
if available. In this research we focus in the one-step-ahead model of the following form:

yi,t+1 = f(yi,t−k:t, Xi,t−k:t, ui,t−k:t+1, si) (4.1)

Where yi,t+1 is transit demand at the period t + 1 for station i. yi,t−k:t is the historical
observations of station i, and look back period k. Xi,t−k:t are exogenous historical observa-
tions, which is this case correspond to observations in other transit stations in the look back
period k. ui,t−k:t+1 is know past a future data such as date information. Lastly, si represents
metadata of the station such as the location. Notice that we can also express equation 1 in
matrix form, where the dependent variable is a vector of shape (N) representing the ridership
of all stations N in t + 1.Additionally, yi,t−k:t and Xi,t−k:t can be concatenated to represent
the historical observations for all stations.

4.3.2 Modeling Framework

The objective of the modeling framework is to be able to simultaneously capture relevant
spatial and temporal correlations to improve the prediction accuracy during station closures.
Inspired in [112], we adopt a similar modeling framework with modifications to incorporate
graph data information and to estimate attention scores in two dimensions - the spatial and
temporal dimension - as shown in Figure 4.1.

Given the problem statement and the nature of the time series data, we only used the
decoder part in [112]. Encoder-decoder architectures are usually used in case where the
target and input sequence are of varying lengths, such as language translation tasks, where
a sentence in one language can have a different length in another language. In this case, the
look back window k, and the step prediction t+1 is the same for every prediction target, as
defined in the problem statement. Therefore, this approach is appropriate for our problem
statement.

The main components for the framework are the positional encoding, the input hidden
representation, the 2D Graph masked multi-head cross attention, and the station closure
information.

Positional Encoding

In [112], the authors recognized that the attention-based architecture does not naturally
encode the sequential nature of the data, therefore they proposed a positional encoding
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Figure 4.1: G-2DT Modeling Framework. Inspired in [112]

using sine and cosines functions. In this work, we use a similar approach using the date
and time information for the temporal encoding, and the coordinates of the stations as the
spatial encoding.

The temporal component represents the cycles present in the data, and other time de-
pendent variables. In this research, we consider the annual, weekly and daily cycles. For
each cycle we create a sine and cosine function, whose frequency depends on the length of
the cycle. Additionally, we include dummy variables for different demand patterns such as
weekdays, Saturdays, and Sundays/Holidays. The shape of the temporal positional encoding
is (k, ptemporal), where k is the look back period, and ptemporal are the number of temporal
positional encoding variables.

The spatial encoding aims to account for spatial differences between stations. For the
purpose of this paper, we only include the latitude and longitude coordinates, but more
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spatial representation can also be added. Given the variation of the coordinates is relatively
low (e.g. For BRT station in Bogotá, latitude vary from 4.53 to 4.76, and longitude vary from
-74.04 to 74.21), we increase the variation by scaling them to a user-defined min and max
value. Multiple experiments showed that re-scaling coordinate data played significant role in
the model convergence during training. The shape of spatial encoding tensor is (N,Pspatial),
where N is the number of stations, and Pspatial is the number of spatial positional encoding.

To encode this information to the input data, we combine the temporal and spatial
positional encoding in one tensor. For each timestamp, the temporal encoding for all stations
is the same, therefore we repeat the temporal encoding in the N dimension. Similarly, the
spatial temporal for each station is the same for all timestamps, then we repeat the temporal
encoding in the K dimension. Lastly, we concatenate the resulting tensors, and obtain the
positional encoding tensor of shape (N, k, P ), where P is the sum of the number of temporal
and spatial encoding.

Notice that the information to build the positional encoding tensor is also known for the
prediction target. Therefore, we build an output positional encoding tensor that functions
as the query in the attention-mechanism (see section 4.3.2).

Input Hidden Representation

To incorporate the positional encoding information to the input data, we transform the
input data to a hidden higher-level abstraction using a fully connected neural network. The
number of hidden units is P , which is the same number of positional encoding variables.
After the transformation, the shape of high-level abstraction representation of the input
data is (N, k, P ), where N is the number of stations, k is the look back window, and P is
the number of positional encoding variables.

Graph Representation

To capture demand fluctuation during station closure, the graph represents physically close
neighboring stations, where riders are likely to walk. The nodes of the graph are the BRT
stations, and the links connecting these nodes represent stations that are within a walkable
distance (less than 800 meters), and that at least share one service line that connects them.
The resulting network representation for the BRT system is shown in Figure 4.2. Figure 4.2
also shows, for instance, that the network connects the stations in along the Eje Ambiental,
but not with station in Calle 10. While these stations are at a walkable distance, there is
no service that connects them. Therefore, it is very unlike that riders will walk to stations
in Calle 10 if any of the stations in is Eje Ambiental closed. The graph representation is
encoded in an adjacency matrix of shape (N,N), where one represents a connection between
two stations, and zero otherwise.
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Eje Ambiental

Calle 10

Figure 4.2: BRT Network in Bogotá A) Entire BRT netwrok B) Example Eje Ambiental and
Calle 10

2D Graph Masked multi-head cross-Attention

The attention mechanism is a function with three main components: the query (q), the key
(k), and the value vector(v), as shown in eq2:attention (also knows as dot-product attention).
The output is a transformation of the value vector by the weights define be the query and
the key. This weights represent the importance of the input to predict the output.

Attention(q, k, v) = softmax(
qk⊤
√
dk

)v (4.2)

For the purpose of this research, the query is the positional embedding of the target
prediction, and the key and value are the input data and the positional encoding information.
This type of attention is known as crossed-attention because the query and the key are two
different tensors. Additionally, we can pack the vector information to any N-dimensional
matrix. In our case, the key and value are 3-dimensional matrices of shape (N, k, P ) as
mentioned in 4.3.2, where N represents the number of stations (e.g: spatial dimension),
and k represents the look back window (e.g.: temporal dimension). To better represent the
complex spatiotemporal correlations of the transit demand, we apply the attention function
to the first and second dimension simultaneously, therefore the the name ”2D attention”.
Multi-head attention involves running multiple attention layers. The shape of the resulting
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attention tensor is (h,N, k,N), where h is the number of attention heads (in case of multihead
attention), and the sum of the attention coefficient in each (k,N) slice is one.

The resulting attention matrix is fully defined for all stations and look back windows,
representing a fully connected graph in time and space. As we are interested in capturing the
effect of closures in nearby stations, we mask the attention mechanism to only neighbouring
stations, using the adjacency matrix the graph representation.

Other components

As suggested in [112] we maintain the residual connection and the layer normalization, which
is a common practice to avoid exploding gradients as more attention layers are added. We
also maintain the feed forward layer. The last layer has a linear activation function to predict
the demand for all transit stations at once.

4.3.3 Station Closure Modeling Strategies

One of the objectives of this research is to identify some modeling strategies that can read
the status of the station to zero out the demand for a given station and time, and use the
information to improve ridership prediction in neighbouring stations.

There are multiple ways to process and input station closure information. For this re-
search , we select and test two modeling strategies (1) station state as a dummy variable,
and (2) as a masked function layer in the final prediction.

An straightforward signal to include station closures can be adding the information as a
dummy variable and treat it as an explanatory variable. To test this model strategy, in the
proposed framework, we include this dummy variable in the positional encoding information,
as shown in Figure 4.1. Notice that the the station status information varies both in the
spatial and temporal dimension (e.g. station A and B are closed in the fifth and sixth time-
step). Therefore, the tensor that encodes this information has a shape of (N, k, 1) and can
be concatenated with the positional encoding tensor. When we test this model strategy
for other model architectures (see 4.3.5), we include station closure dummy variable in the
covariates matrix.

A masked function is typically used to prevent overfitting or to disregard non-relevant
information while estimating errors. For instance, in [96], some hidden neurons are randomly
reduced to zero to avoid overfitting. In language processing, padding is usually masked
because it does not add any relevant information to the prediction task. In this research,
we test a mask function to explicitly zero out the predicted demand when the stations are
closed, also shown in Figure 4.1 with a dotted line. While the mask function can be applied
before or after estimating the loss function during training, we apply it before the loss
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function estimation. Therefore, we expect that the mask serves as a regularization technique
to generalize in the case of station closures.

4.3.4 Data Preparation

Data preparation techniques are rarely mention, or briefly discuss. Data Most relevant
literature uses the min-max transformation to scale transaction data form zero to one (cite
at least 4 papers with more citations).

Data preparation is often overlooked and briefly mentioned in discussions, with papers
tending to rely on min-max normalization without sufficient justification [7, 63, 44]. However,
the impact of other transformation techniques have not been studied. In this research, we test
two data processing techniques: (1) The min-max normalization, and (2) the logarithmic
transformation. These two transformations because they maintain the meaning of zero,
which is relevant to model station closures, and compress large ranges of data. The min-
max normalization scales the data between 0 and 1 while preserving the shape of the original
distribution, while the logarithmic transformation convert non-normally distributed data into
a more normal distribution, which can improve the accuracy and performance of statistical
models.

Figure 4.3 shows the 15-mins transaction distributions for the original data, the min-max
normalization, and the logarithmic transformation. The original data distribution shows
that the majority of 15-minute intervals have less than 2500 transactions, and the maximum
transaction in the 15-mins period is 8138. The min-max normalization scales the data in
the range of 0 to 1, maintaining the shape of the original distribution. The logarithmic
transformation transforms the data to a more normal distribution and seems to create a gap
between zero transactions and non-zero transactions. The range of this transformation is
from zero to nine.

4.3.5 Experiments

In order to test the ability of the proposed model framework to improve forecasting predic-
tion in the neighbouring stations when a given station is close, we conducted a total of 30
experiments by testing 5 different modeling architectures, each with 3 closure modes and 2
data transformation techniques, as presented in Table 4.1. The model architectures selected
are deep learning models available in an open-source benchmark codebase. We evaluated the
effectiveness of the graph information by testing the 2D Transformer (2DT) without graph
information, which represents a fully connected graph, and with the graph representation
(G-2DT), as described in section 4.3.2.
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Figure 4.3: 15-mins boarding distribution - Original Values, Min-max normalization and
Logarithmic transformation

Table 4.1: Experiment Setting.

Model Closure Mode Data Transformation

MLP None Min-max
CNN Masked Function Logarithmic
LSTM Dummy Variable
2DT
G-2DT

4.3.6 Metrics of Analysis

We used three metrics of analysis to compare our results. These metrics were chosen for
their ability to compare performances between models and stations and handle circumstances
where the target value is zero.

Since the modeling framework predicts the demand for each transit station, it is important
to compare the performance across stations. However, metrics such as the Root Mean
Squared Error (RMSE) depend on the magnitude of the data, therefore not adequate for this
analysis. Additionally, since we are comparing the performance in the case when stations
are close, many target values are likely to be zero. Metrics such as the Mean Absolute
Square Error would be undefined for this conditions. Therefore, we select the Weighted
Mean Absolute Percentage error (wMAPE), the symmetric Mean Absolute Percentage Error
(sMAPE) and the Mean Arctangent Absolute Error (MAAPE), as follows:
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wMAPEt = 100% ∗
∑n

i |ŷi − yi|∑n
i |yi|

(4.3)

sMAPEt = 100% ∗ 1

n

n∑
i

(
|ŷi − yi|
|ŷi|+ |yi|

) (4.4)

MAAPEt = 100% ∗ 1

n

n∑
i

arctan(| ŷi − yi
yi

|) (4.5)

Where yi is the observed value, ŷi is the predicted value, and n is the number of obser-
vations.

For all experiments, we compared the prediction error in the j neighbouring stations of
station i (Ni) when station i is open and stations j are open for all stations i in the set of
stations N (Equation 4.6), and when station i is closed, stations j are open for all stations
i in the set of stations N (Equation 4.7). For simplicity, we refer to these scenarios as open
scenario, and close scenario, respectively.

OpenScenarioError = errorj∈Ni,i=1,j=1 ∀i ∈ N (4.6)

CloseScenarioError = errorj∈Ni,i=0,j=1 ∀i ∈ N (4.7)

To ensure accurate comparisons of errors, we re-scaled the prediction and evaluated the
error using the original, untransformed target data.

4.4 Results

4.4.1 Data and Station Closures

We used boarding transactions data transactions every 15 minutes of 147 stations of the BRT
system in Bogotá, between August 2015 and May 2021. The BRT system is the city’s main
mass public transportation system, with over 2.5 daily transactions during the study time
frame. We train the models with data from August 2015 to August 2018, and test the per-
formance for the remaining period. New stations that start operating after the training date
are not considered in the study (e.g. Transmicable stations started operations in Dec 2018).
The data set is publicly available at: https://datosabiertos-transmilenio.hub.arcgis.com.
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For the purpose of this research, we defined a station closure as a period of at least two
consecutive hours with zero transactions in one BRT station. The BRT system operates
from 4:30 am to 11:00 p.m., however operation hours vary by stations. To avoid incorrectly
labeling a station as ‘closed’ outside of operating hours, we limited our closure analysis to
the time period between 5 a.m. and 10:00 p.m., during which all stations are typically
operating. In total, our analysis includes more than 10,000 station closures lasting longer
than two hours. Figure 4.4, shows the distribution of the duration of station closures for the
five years of transactions.

0h 2h 4h 6h 8h 10h 12h 14h 16h
Duration of Closure
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Figure 4.4: Distribution of station closure duration

Based on our definition of station closure, it is not possible to determine the nature of
the closure. Therefore, station closures includes both expected and unexpected. However,
both types of closures affect the demand in neighboring stations, as shown in the examples
in Figure 4.5. The first plot displays the impact of a planned closure for maintenance of
Museo del Oro station in September 2016. During this period, the demand for the station
appears to have been redistributed to its neighboring stations, Avenida Jimenez and Las
Aguas. In the second plot, an unexpected one-week closure of Calle 19 station on November
24, 2019 resulted in a redistribution of demand to Calle 22 station.

4.4.2 Effect of Station Closures on Prediction Accuracy

One of this research is to demonstrate the impact of station closures on the prediction accu-
racy of neighboring stations and to evaluate the effectiveness of different modeling strategies
in improving prediction accuracy under such circumstances. The findings demonstrate that
the close scenario tends to yield higher prediction errors than the open scenario, as evidenced
by the increasing slope of the lines from open to close in Figure 4.6. However, the extent
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A B

Figure 4.5: Examples of station closures. A) Station Museo del Oro was closed for planned
maintenance in September 2016. Neighboring stations Avenida Jimenez and Las Aguas
appeared to capture the lost demand. B) Station Calle 19 unexpectedly closed for one week,
and demand was redistributed to the neighboring station Calle 22

to which this increase happens significantly varies when considering models, closure modes,
and data transformation techniques.

Failure to account for station closures results in a twofold increase in the prediction
error between open and closed scenarios. The best-performing models achieved a wMAPE
ranging from 14.63% to 15.09% for the open scenario. However, for the closed scenario, the
prediction error of surrounding stations increases to at least 31.12%, more than double the
error observed in the open scenario.

Likewise, the sMAPE demonstrates a stark increase from 11.29% for the best-performing
model in the open scenario to 25.86% in the closed scenario, representing a difference of
14.57%. In addition, for the best-performing model, the MAAPE increases from 21.12% in
the open scenario to 36.64% in the closed scenario, revealing a difference of 15.52 points and
an increase factor of 1.73.

Moreover, our findings suggest that failing to consider station closures results in no
clear trend regarding the data transformation technique that performs best, except for the
MAAPE, where logarithmic transformation models outperform min-max normalization mod-
els.

The results indicate that the logarithmic transformation outperforms the min-max nor-
malization for almost all models and metrics when station closure information is incorpo-
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Figure 4.6: Neighbouring stations prediction error by station status (open vs close), by
closure mode and data transformations techniques.
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rated, as shown in Figure 4.6. For instance, wMAPE for the open scenarios in the G-2DT
model with logarithmic transformation is approximately 13.5%, compared to around 17% for
the min-max transformation. In the close scenario, the wMAPE also increases from roughly
24% in the log transformation to approximately 45% in the min-max normalization. The
sMAPE for the same model increases from about 9.7% to 16% in the close scenario and from
14% to 30% in the close scenario. Similarly, the MAAPE increases from 19.6% in the log
transformation to 32% in the min-max transformation for the close scenario and from 28%
to roughly 65% in the open scenario.

Regarding the CNN and LSTM models, the wMAPE performs relatively similarly for
the open scenario when comparing the data transformation techniques. However, there is
a notable reduction in prediction error for the closed scenario. Overall, the logarithmic
transformation seems to reduce the prediction error when considering station closure for
most models and most metrics of analysis.

When incorporating station closure information, the log version of our proposed model is
the best-performing model, regardless of the strategy used to process station closure infor-
mation. For the wMAPE, our model with the masked function outperforms the best second
model by 5.52% and 17.62% for the open and close scenarios, respectively. Similarly, our
model shows 7.02% and 23.47% improvements for the dummy variable strategy compared to
the second-best performing model for the open and close scenarios.

For other metrics, our model also shows improvements ranging from 3.69% to 9.37% for
the open scenario and from 0.21% to 12.37% for the close scenario. These findings highlight
the robustness and effectiveness of our proposed model, which consistently outperforms other
models across a range of metrics and scenarios.

Considering station closures also decreases prediction error for both open and closed sce-
narios, but the reduction is greater for the closed scenario. The masked function and dummy
variable strategies decrease the wMAPE by 10.34% and 8.75% for the open scenario, respec-
tively, whereas for the close scenario, the reduction is 24.58% and 29.04%, respectively.
Similarly, the sMAPE error in the open scenario decreases by 13.11% and 13.55% for the
masked function and dummy variable strategies, respectively. Still, the improvement in the
close scenario is more significant at 43.89% and 45.20%, respectively. Finally, the MAAPE
for the open scenario shows an improvement of approximately 7%, while the close scenario
improves by 23%. Overall, including station closure information significantly reduces pre-
diction error for both open and close scenarios, with greater improvements observed in the
close scenario.

In addition, for the best-performing model, the difference in wMAPE between the close
and open scenarios was initially 16.49 when station closures were not considered. However,
the masked function and the dummy variable strategy reduced the difference to 11.29 and
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9.58, respectively, indicating an average reduction of 36%. Similarly, for sMAPE, the dif-
ference decreased from 14.57 to 4.70 and 4.41 for the masked function and dummy variable
strategies, respectively. For the MAAPE, the difference decreased from 15.52 to 8.77 and
8.55, indicating an approximate reduction of 44%. These results suggest that incorporating
station closure information can effectively reduce the prediction error, particularly for the
close scenario, and that the masked function and the dummy variable strategy are effective
approaches to consider station closures in the proposed model.

4.5 Conclusion and Discussion

In this study, we reduced prediction errors in neighboring stations when a station closure oc-
curs by incorporating station closure information. We present a novel modeling framework
that utilizes the graph structure information and a two-dimensional multi-head attention
mechanism to capture spatiotemporal correlations simultaneously, improving overall perfor-
mance compared to other state-of-the-art models. Our approach has also been implemented
on an open-source benchmark platform, facilitating reproducibility and enabling future re-
searchers to compare, refine, and extend our model.

Furthermore, the results suggest that the logarithmic transformation yields better results
compared to min-max normalization when station closure information is added, despite the
latter being commonly used in deep learning implementations of short-term ridership pre-
diction models. In Figure 4.7, we present an example of the closure of station Ciudad
Universitaria with a duration of 3.5 hours, and plot the predicted demand by closure mode,
and data transformation techniques. When incorporating station closure information as a
dummy variable, the min-max normalization can lead to non-zero predictions, which does
not reflect the demand patterns during a closure. On the other hand, the log-transformation
approach can effectively reduce the demand to zero, thereby reducing noise and improving
model performance. As observed in Figure 4.3, the log normalization method produces a
distinct gap in the histogram for zero transactions, which may aid in the detection of sta-
tion closures. In contrast, the min-max normalization method results in most values being
relatively small and closer to zero, potentially making it more difficult for the model to accu-
rately distinguish a station closure. The results suggest that a log-transform normalization
method may be preferred over the commonly used min-max normalization method in the
literature.

Regarding the strategy to include information on station closures, our results show that
the dummy variable and masked function yield similar results. The masked function serves as
a form of regularization by reducing noise and irrelevant data. This regularization technique
may be preferred over the use of station closure information as a dummy variable, as the
masked function does not require prior knowledge of station closures for prediction. As a
result, the use of the masked function may lead to more robust and generalizable models for
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short-term transit demand prediction.

The attention mechanism has the potential to provide valuable information through its
ability to estimate attention scores. Using the same station closure example shown in Figure
4.7, Figure 4.8 illustrates a sample of the attention scores of a masked function strategy
estimated for a 15-minute period at station Av. El Dorado, which is a neighboring station
of Ciudad Universitaria. The temporal dimension is represented in rows, while the three
neighboring stations (Ciudad Universitaria, Universidad Nacional, and CAD), as well as
the station itself, are represented in columns. During this period, the attention scores for
the nearby closed station (Ciudad Universitaria) exhibited significant reductions across all
attention heads, providing further evidence that the masked function helps to reduce noise
and eliminate irrelevant data.

In Figure 4.9, we present the evolution of attention scores for each closure mode and
time period. We observe that for the masking strategy, the same day attention score of
the close station decreases to almost zero, indicating that the model correctly disregards its
influence during the closure period. Intriguingly, the attention score for station Universidad
Nacional increases for the same day, as well as the daily and weekly periods during the
closure, indicating the ability of the model to capture long-range temporal and spatial inter-
dependence. These findings provides additional evidence of the concurrent spatiotemporal
correlations that exist in transit demand and underscores the significance of incorporating
such correlations to enhance model performance during station closures. Nevertheless, fur-
ther investigation is required to fully understand the interpretability and practical utility of
the attention scores.

By addressing the challenge of predicting neighboring station performance during a sta-
tion closure, our work contributes to the advancement of transportation system resilience and
user satisfaction. [82] suggest that improving the ability of transit agencies to make rapid
decisions during disruptions is an effective strategy for enhancing the resilience of public
transit systems. Our short-term prediction approach facilitates transit agencies to antici-
pate the impact of station closures in advance and take appropriate actions to mitigate the
impact, thereby improving their decision-making abilities during temporary station closures.
Transit disruptions can also significantly impact user satisfaction [21, 85]. Mitigating the
impact of these disruptions can help improve overall user confidence in the system, which in
turn may help reduce the negative effects of disruptions on user satisfaction.

Despite evidence of a correlation between the built environment and transit ridership
in various regions [132, 57, 97, 113], current short-term ridership models often do not ac-
count for this information. Our research only incorporated latitude and longitude data, but
our modeling framework can easily incorporate additional built environmental variables to
improve model performance.
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In summary, our research demonstrates the relevance of including station closure infor-
mation in short-term ridership prediction models, as it can effectively reduce the prediction
error of neighboring stations impacted by a closure. By incorporating this information,
transit agencies can better anticipate and mitigate the effects of closures, and improve their
overall response to disruptions.

The open-source codebase to replicate the results of this research is available at:

https://github.com/jdcaicedo251/transit_demand_prediction.

https://github.com/jdcaicedo251/transit_demand_prediction.
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Figure 4.7: Example prediction by closure mode and data processing techniques during a
3.5h closure for Station Ciudad Universitaria. Closure on August 15, 2018 at 11:45 a.m.
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Figure 4.8: Example of Spatiotemporal Attention scores (in %) for station Av. El Dorado
during unexpected closure of Station Ciudad Universitaria. Timestamp: 2018-08-15 13:00
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Chapter 5

Conclusions

“I compare open source to science. Science took this whole notion of developing
ideas in the open and improving on other peoples’ ideas. It made science what it
is today and made the incredible advances that we have had possible.”

– Linus Torvalds.

5.1 Summary

We motivated this dissertation by stating the critical role of public transit in providing access
to opportunities, generating economic benefits, promoting sustainable transportation, and
improving public health, particularly for low-income populations. However, public transit
systems are vulnerable to various anticipated and unforeseen disruptions, including mainte-
nance operations, construction activities, accidents, natural disasters, technical malfunctions,
security threats, protests, and public health emergencies, which can drastically change the
travel needs of the population, and jeopardize the benefits of public transit. To mitigate and
reduce the impact of the disruption, transit agencies need to make informed decisions fast,
including vehicle scheduling, fleet size per type of vehicle, driver schedules, and driver roster.

In recent years, transit agencies have increasingly adopted smart cards to collect fares,
making valuable data readily available for analysis, and can potentially be used to inform de-
cisions during disruptions. In response, the research community has proposed many inference
methods and predictive models to unravel transit patterns and behaviors, information that
supports the decisions mentioned above. Despite the abundance of literature, we identified
that the research community has yet to generate practical knowledge for decision-making,
and the use of current methodologies needs to account for the possibility of disruptions.
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In this dissertation, we used inference methods and prediction models to empirically
show the potential of smartcard data to inform decision-making during disruptions. We
perform a systematic and rigorous statistical benchmark of the most common methods to
compare current model strategies. We made it available for other researchers to reduce
research barriers, improve benchmarking practices and create collective wisdom. We used
this benchmark to propose a new model framework that accounts for station closure and
improves short-term ridership prediction under these circumstances.

Using smartcard data, and publicly available datasets such as census and land use data,
we infer the strata of frequent transit users and track the evolution during the COVID-19
pandemic. We showed that the transaction reduction for all strata at the beginning of the
pandemic was relatively similar, at around 85 to 90%, but lower strata were returning to
transit at a pace five times faster than higher strata.

We compare common model architecture for short-term ridership prediction in stable
conditions. The results show that most tested models perform relatively similarly in stable
conditions, with forecasting errors varying from 8.5 to 12%. However, for highly dynamic
conditions, it was shown that all models performed significantly worse. In the protest con-
dition, the prediction error increases for all models in ranges from 14 to 24%., and in the
COVID-19 pandemic, the prediction error increases from 12 to 82%, on average. Notably, in
the COVID-19 pandemic scenario, the LSTM model stood out by outperforming other mod-
els and adapting faster. The prediction error stabilized within approximately 1.5 months,
whereas other models continued to exhibit higher error rates even a year after the start of
the pandemic.

By incorporating station closure information into our proposed model, we reduced pre-
diction errors by 3.3 to 23.5% under temporary closures compared to existing models in
the open-source codebase infrastructure. These improvements were observed across multiple
metrics and modeling strategies.

5.2 Contributions

The contributions of this research are summarized as follows:

1. Develop a method to enrich smartcard data with socio-economic information for highly
dynamic conditions.

2. Expand the understanding of the change in transit use by different socio-demographic
groups during the COVID-19 pandemic in Bogotá.
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3. Create an open-source codebase infrastructure to consolidate short-term ridership pre-
diction research to perform systematic, reliable and statistically rigorous benchmarks
tests to accelerate the advancements of the models.

4. Systematically compare the performance of state-of-the-art methods for short-term
ridership prediction during both stable and highly dynamic conditions.

5. Demonstrate the importance of including station closures to improve the prediction
accuracy for nearby stations.

6. Propose a novel modeling framework that captures spatiotemporal correlations of the
transit network, improving overall performance and the prediction accuracy for stations
impacted by other station closures.

7. Integrate the new modeling framework in the open-source codebase infrastructure for
other researchers to replicate, reproduce, compare, improve, and build upon our model.

5.3 Recommendations for Future Research

In terms of inference methods, future research could build upon the limitations of the present
study by exploring the impact of home and work relocation on the estimation of the transit
usage rate. During the COVID-19 pandemic, changes in the home location were very likely
given the stay-at-home orders and the option to telecommute, which might affect the estimate
of transit usage rate. Moreover, the estimation of the probability vector could be enhanced
by incorporating additional factors, such as the distance to the BRT station and the spatial
correlation among stations. Furthermore, future studies may benefit from a more aggregated
level of validation, such as at the station level, using other publicly available datasets.

Future research could conduct a more extensive analysis of the metrics used for perfor-
mance evaluation to ensure that they are aligned with the objectives of the transit agency.
While the metrics used in this study were chosen to enable comparisons across stations and
potentially across regions, it is important to note that the primary objective may vary de-
pending on the needs of the transit agency. Therefore, future studies could examine other
performance indicators and evaluate their relevance to specific transit agency goals.

Future research could aim to better align short-term ridership prediction algorithms
with the needs of bus scheduling methods. While current research has focused on predicting
ridership up to four steps ahead and every 15 minutes, it is unclear how well these predictions
align with the data requirements of bus scheduling methods. Therefore, future studies could
investigate the data needs of bus scheduling methods and evaluate how ridership prediction
algorithms can be tailored to meet those needs. This could help to improve the applicability
of short-term ridership prediction models for practical transportation operations. In the same
line of thought, there needs to be more empirical evidence that combines short-term ridership
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prediction, and bus scheduling methods, even in stable conditions. Further exploration
combining these methods can help to identify potential challenges and opportunities for
improving transportation system performance and enhancing overall resilience.

Future research could investigate the potential applications and benefits of the attention
mechanism scores used in short-term ridership prediction. While this research has shown an
example of the attention scores for one station closure and their evolution over time frames,
it is unclear how these scores can be interpreted and applied in practice. Therefore, further
research could focus on validating the usefulness of these scores and identifying potential
areas for analysis and interpretation. This could provide a deeper understanding of the
underlying factors that drive ridership patterns, especially under disruptions.

5.4 Conclusion

Overall, this dissertation highlights the immense potential of readily available smartcard
data to support decision-making processes rapidly and reliably during transit disruptions,
thereby enhancing the overall resilience of transportation systems. While the methods and
models presented here are demonstrated empirically with the BRT system in Bogotá, they
have broad applicability to other regions. Additionally, developing an open-source codebase
for short-term ridership prediction models is a significant step toward standardizing and
enhancing the efficiency of future research. We believe that this collaborative effort will
foster increased transparency and contribute to collective wisdom that will drive needed
improvements in our public transit systems. I am excited to see what innovations lie ahead!
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