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ABSTRACT OF THE DISSERTATION 

 

 

Quantitative methods to characterize  

viral infection dynamics inside hosts 

 

by 

 

Celine Elisa Snedden 

Doctor of Philosophy in Biology 

University of California, Los Angeles, 2024 

Professor James O. Lloyd-Smith, Chair 

 

The pathogenicity and transmissibility of a virus are strongly governed by spatial patterns 

of viral growth and spread across the internal tissue landscape of the host individual. These ‘within-

host dynamics’ can differ widely among pathogens, and even among individuals infected with the 

same pathogen. Epidemiologists and microbiologists have long understood that many factors 

contribute to this observed heterogeneity, including the dose and route of exposure, host 

demographic and health factors, the cellular properties of different tissues (e.g., receptor 

expression), viral sensitivity to within-host abiotic conditions (e.g., temperature, pH), and physical 

connectivity between tissues (e.g., via blood). However, the relative effects of these governing 

processes on realized infection patterns inside hosts are difficult to disentangle and remain poorly 

understood, largely due to sampling constraints and data limitations. For humans, natural exposure 
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events are inherently unobservable, and available data can be biased towards individuals with more 

severe disease that seek treatment. Animal challenge experiments can control the relevant 

dimensions, but they either have limited clinical relevance due to crucial physiological differences 

from humans (e.g., for small animal models), or their small sample sizes cannot support robust 

statistical inferences under the standard approach of analyzing data only within the study that 

generated them (e.g., for non-human primate models). 

Modern, data-driven computational models offer a powerful but underutilized toolkit to 

overcome these observational and analytical limitations. By using Bayesian statistical approaches 

to integrate quantitative modeling techniques with experimental data, it is possible to extract 

underlying patterns and putative mechanisms from limited empirical observations and to enhance 

these insights by jointly analyzing disparate datasets. In this dissertation, I develop and apply such 

methods to characterize the effects of exposure route, exposure dose, tissue connectivity, tissue 

traits, and host demographic factors on within-host SARS-CoV-2 dynamics. These analyses are 

supported by a large database of 107 studies that I have constructed, which includes 22,183 viral 

measurements from 721 non-human primates that were experimentally challenged with SARS-

CoV-2 by various routes and with various doses. 

In chapter 1, I address the fundamental question of when (if ever) RT-qPCR measurements 

of viral RNA load can reliably indicate the presence of infectious virus in a sampled tissue. This 

work constitutes the largest analysis of this question using in vivo infection data from individuals 

with known exposure conditions, and it lays crucial groundwork for the application of my 

customized statistical approach to public health contexts. I demonstrate that total RNA 

measurements can indeed predict culture positivity with a remarkable 85% accuracy on out-of-
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sample data as long as predictions also account for other factors, including exposure conditions, 

host demographics, and assay protocols. 

In chapter 2, I conduct the first large-scale quantitative analysis of respiratory virus 

challenge experiments in non-human primates to characterize the relative impacts of exposure 

route, exposure dose, age, sex, and species on within-host dynamics. I show that exposure route 

more strongly modulates the probability, onset, peak, and conclusion of SARS-CoV-2 infection 

across the respiratory and gastrointestinal tracts than exposure dose or demographic factors. I also 

show that infection patterns following aerosol inhalation are clearly distinct from any other 

exposure route, including intranasal or combined intranasal/intratracheal inoculation. This work 

provides the most comprehensive and quantitative evidence to date that exposure conditions shape 

infection patterns inside hosts, in ways that affect disease risk and shedding potential.  

In chapter 3, I develop a novel modeling framework that formally investigates how tissue 

traits (e.g., receptor expression, protease availability) and connectivity structure interact to 

determine spatiotemporal infection patterns inside hosts, which I fit to the data from nine challenge 

studies. This model shows that SARS-CoV-2 infection patterns across the respiratory and 

gastrointestinal tracts are shaped by high rates of within-host viral dissemination. I also show that 

infections are overall more successful in the nose and throat than in the lung and lower GI, which 

is consistent with an estimated increase in the local infection rates at the lower ambient temperature 

of the upper respiratory tract. 

Together, these chapters demonstrate that meta-analysis of the data from in vivo challenge 

experiments can overcome the difficulties arising from limited sample sizes in crucial but costly 

animal models and that they can yield robust insights beyond those attainable from individual 

studies, all while reducing overall animal use in infectious disease research. This dissertation 
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focuses on characterizing SARS-CoV-2 infections in non-human primates, but the methods 

developed here can be readily adapted to any other pathogen-host system, and they present 

generalizable, quantitative approaches to answer questions at the frontier of virology.  
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Chapter 1. Predicting the presence of infectious virus  

from PCR data: A meta-analysis of SARS-CoV-2 

 in non-human primates 

Abstract 

Researchers and clinicians often rely on molecular assays like PCR to identify and monitor 

viral infections, instead of the resource-prohibitive gold standard of viral culture. However, it 

remains unclear when (if ever) PCR measurements of viral load are reliable indicators of 

replicating or infectious virus. The recent popularity of PCR protocols targeting subgenomic RNA 

for SARS-CoV-2 has caused further confusion, as the relationships between subgenomic RNA and 

standard total RNA assays are incompletely characterized and opinions differ on which RNA type 

better predicts culture outcomes. Here, we explore these issues by comparing total RNA, 

subgenomic RNA, and viral culture results from 24 studies of SARS-CoV-2 in non-human 

primates (including 2167 samples from 174 individuals) using custom-developed Bayesian 

statistical models. On out-of-sample data, our best models predict subgenomic RNA positivity 

from total RNA data with 91% accuracy, and they predict culture positivity with 85% accuracy. 

Further analyses of individual time series indicate that many apparent prediction errors may arise 

from issues with assay sensitivity or sample processing, suggesting true accuracy may be higher 

than these estimates. Total RNA and subgenomic RNA showed equivalent performance as 

predictors of culture positivity. Multiple cofactors (including exposure conditions, host traits, and 

assay protocols) influence culture predictions, yielding insights into biological and methodological 

sources of variation in assay outcomes–and indicating that no single threshold value applies across 
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study designs. We also show that our model can accurately predict when an individual is no longer 

infectious, illustrating the potential for future models trained on human data to guide clinical 

decisions on case isolation. Our work shows that meta-analysis of in vivo data can overcome 

longstanding challenges arising from limited sample sizes and can yield robust insights beyond 

those attainable from individual studies. Our analytical pipeline offers a framework to develop 

similar predictive tools in other virus-host systems, including models trained on human data, which 

could support laboratory analyses, medical decisions, and public health guidelines. 

Author Summary 

Although viral culture is the gold-standard method to detect replicating and infectious 

virus, decisions in virology research, clinical diagnostics, and public health often must rely on 

faster, cheaper PCR assays that detect viral genetic material. Substantial scientific effort has 

focused on assessing whether PCR assays (and what kind of PCR assays) can accurately predict 

culture outcomes, often finding conflicting results. In our study, we address this long-standing 

question by developing a customized statistical approach to analyze a large database of non-human 

primates experimentally infected with SARS-CoV-2. We demonstrate that two common PCR 

protocols can predict viral culture results with similarly high accuracy, as long as interpretations 

account for other factors such as exposure conditions, demographics, and assay protocols. For 

example, we show that inoculated tissues are more likely to be culture-positive (for a given PCR 

result) on the first day post infection than all later days post infection or non-inoculated tissue on 

any day–a finding that will clarify interpretation of results in experimental studies. Beyond these 

biological findings, we also showed that our framework can accurately identify when an individual 
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is no longer infectious, showing the potential for future versions (trained on human data) to offer 

an individualized approach to ending isolation. Overall, our work presents a standardized 

framework to quantitatively predict viral culture outcomes based on faster and cheaper assays, 

which can be readily adapted to any other pathogen-host system with relevant data. Our work also 

demonstrates the power of (Bayesian) meta-analysis, which will be essential for the new era of 

data sharing in virology. 
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Introduction 

Assays that detect and quantify the presence of viral genetic material are invaluable tools 

for clinicians, virologists, and epidemiologists, since they are used to identify infections, monitor 

individual infection trajectories, and track population-wide disease trends. The global reliance on 

quantitative reverse transcription-polymerase chain reaction (RT-qPCR) during the COVID-19 

pandemic underscores its importance as a fast, sensitive, and relatively inexpensive mainstay of 

research and public health. Yet positive RT-qPCR results do not necessarily indicate active 

infection or viral shedding because these assays only target and quantify viral genomic material 

(Kralik & Ricchi, 2017; Yang & Rothman, 2004). Viral culture is the gold-standard method to 

detect infectious virus, but it is slow, labor-intensive, and requires niche resources like permissive 

cells and biosafety facilities. This precludes its use as a primary diagnostic in public health crises 

or even in standard clinical and research practices where speed and accessibility matter. The 

development of alternate methods to accurately characterize infectiousness is an active priority.  

Seeking a culture-free method to identify replicating virus, many studies on SARS-CoV-2 

developed alternative RT-qPCR assays based on coronavirus transcription mechanisms. Within 

host cells, coronaviruses transcribe not only full-length genomic RNA (gRNA) but also multiple 

subgenomic RNAs (sgRNA), which are a nested set of RNA segments that function as mRNA for 

translation of some structural and accessory proteins (Fehr & Perlman, 2015). Standard RT-qPCR 

protocols (X. Lu et al., 2020) typically amplify both gRNA and sgRNA simultaneously (henceforth 

termed a total RNA assay and abbreviated to ‘totRNA’). Since sgRNAs are only transcribed after 

cellular entry and are generally not packaged into mature virions (Escors et al., 2003), sgRNA-

specific assays for SARS-CoV-2 were developed as a proxy for replicating virus (Wölfel et al., 
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2020), and they have been used in various contexts, including to distinguish between replicating 

virus and residual inoculum in animal challenge experiments (Dagotto et al., 2021; Speranza et al., 

2021). Many studies have also retrospectively analyzed clinical samples with sgRNA assays to 

gauge evidence of local replication (Bhatnagar et al., 2021; Bravo et al., 2022; Perera et al., 2020; 

Rodríguez-Grande et al., 2021; Wölfel et al., 2020), but reports of using sgRNA for point-of-care 

clinical decisions are exceptionally rare (Osborn et al., 2023).  

Despite the popularity of sgRNA assays, their diagnostic utility relative to totRNA or 

gRNA assays is debated. Based on evidence that sgRNA may degrade faster than gRNA (Speranza 

et al., 2021), is not found in virions (Escors et al., 2003), and correlates better with viral culture 

results (Bonenfant et al., 2022; Bravo et al., 2022; Ford et al., 2021; Perera et al., 2020), some 

consider sgRNA a better indicator of recent replication and infectiousness (Rodríguez-Grande et 

al., 2021; Wölfel et al., 2020). Others dispute these claims based on contrary findings, including 

evidence of similar degradation rates between sgRNA and gRNA (Alexandersen et al., 2020; 

Dimcheff et al., 2021; Verma et al., 2021), the discovery of membrane-associated and nuclease-

resistant sgRNA (Alexandersen et al., 2020), and analyses showing that sgRNA does not correlate 

better with culture outcomes (van Kampen et al., 2021). Studies finding that sgRNA quantities 

scale linearly with totRNA prompted further claims that sgRNA quantification offers no additional 

value relative to totRNA (Dimcheff et al., 2021; van Kampen et al., 2021; Verma et al., 2021), and 

skeptics have argued that any improved correlation between sgRNA and culture likely reflects the 

assay’s lower sensitivity rather than true biological signal (Alexandersen et al., 2020; Dimcheff et 

al., 2021; Verma et al., 2021). Meanwhile, samples with large quantities of totRNA but 

undetectable sgRNA or unculturable virus are widely evident in the literature, especially in animal 

challenge experiments, but they go largely unexplained (Salguero et al., 2021; Speranza et al., 
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2021). These patterns highlight the complexity of the relationships among PCR assays and viral 

culture, and they underscore that our understanding of their relative trajectories during infection 

remains incomplete. Given their foundational importance for research and potentially for 

healthcare, many studies have called for better methods to interpret these assays and their 

interrelationships (Bruce et al., 2022; Bullard et al., 2020; Gniazdowski et al., 2021; La Scola et 

al., 2020). 

Data limitations are central to these unresolved debates on how well PCR predicts culture 

and whether that varies by RNA type since the generalizability of observed patterns remains 

unclear. Each study’s sample size is typically quite small (e.g., often less than 100 RNA-positive 

samples), protocols differ between studies (e.g., PCR target genes, cell lines), patient 

demographics vary (e.g., hospitalized patients versus routine screening of university students), and 

analytical methods differ (e.g., descriptive statistics, logistic or linear regressions). Further 

unexplained variation may depend on patients’ age, sex, and comorbidities, which can affect 

infection outcomes (Bajaj et al., 2021; Fajnzylber et al., 2020; Gadi et al., 2020; T. C. Jones et al., 

2021) but are often unaccounted for in assay comparisons. Exposure route and dose are also 

unknown for clinical infections, and because the true infection time is unknown, analyses of 

clinical data must rely on metrics like time since symptom onset (Bullard et al., 2020; Dimcheff et 

al., 2021; M.-C. Kim et al., 2021; Salvatore et al., 2021; Wölfel et al., 2020), for which individual 

heterogeneity and recall bias can introduce substantial noise. Despite considerable effort to 

correlate RNA presence with culture outcomes, no study yet has jointly evaluated these various 

cofactors to identify and quantify their effects, and thus no method exists to integrate all of this 

information to quantitatively predict an individual’s infectiousness on a per-sample basis. Instead, 

public health agencies have recommended isolating until obtaining two consecutive negative tests 
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or until ten days after an individual’s first positive test, where the latter was later revised to only 

five days depending on symptom severity and other risk factors (CDC, 2020). However, some 

individuals experience prolonged shedding, and many individuals cease to be infectious well 

before testing PCR or antigen negative (Ford et al., 2021; Liu et al., 2020; van Kampen et al., 

2021; Wölfel et al., 2020). An individualized, evidence-based method to ending isolation (i.e., a 

precision medicine approach) could improve these practices substantially, by alleviating personal 

and economic burdens imposed by unnecessarily long isolation while also reducing the number of 

days individuals may still be infectious after release under static guidelines.  

In this study, we compiled and jointly analyzed a database of non-human primate (NHP) 

experiments, including 24 articles that reported per-sample measurements of at least two of the 

following assays: totRNA, sgRNA, and viral culture. This meta-analytic design enabled larger 

sample sizes and knowledge of variables that are unknowable with clinical data (i.e., exposure 

time, dose, and route), all for a gold-standard animal model of human disease (Estes et al., 2018). 

We developed a Bayesian hurdle model to predict the results from these disparate assays and to 

evaluate the effects of NHP species, demographic characteristics (age, sex), exposure conditions 

(dose and route), time since infection, and study protocols (sample type, target gene, cell line, 

culture assay) on the relationships among assay outcomes. We first applied this method to predict 

sgRNA results from totRNA results, which enabled us to reconstruct their relative trajectories for 

all included individuals. Then, we tested the ability of both PCR assays to predict viral culture 

results. We characterized model performance on withheld data to evaluate predictive accuracy and 

generalizability, and we analyzed apparent prediction errors in the context of individual time 

courses to diagnose possible sources of these errors. Finally, we assessed our model’s ability to 

identify when an individual is no longer infectious, which we benchmarked against standard public 
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health guidelines implemented for humans. With this work, we aimed to: (i) uncover the 

fundamental relationships among SARS-CoV-2 PCR assays and the presence of infectious virus, 

in the most human-relevant experimental model, (ii) provide a quantitative tool that can directly 

support the analysis, interpretation, and comparison of SARS-CoV-2 studies conducted in NHPs, 

and (iii) offer a standardized framework that future models can adapt to analyze relationships 

among disparate assays in other pathogen-host systems.  
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Methods 

Database compilation 

Following many of the PRISMA guidelines for systematic literature searches (Moher et 

al., 2009), we constructed a comprehensive database of SARS-CoV-2 viral load and infectious 

virus data from non-human primate experiments (Figure S1.1). To be included, articles were 

required to: (i) experimentally infect rhesus macaques (Macaca mulatta), cynomolgus macaques 

(Macaca fascicularis), or African green monkeys (Chlorocebus sabaeus) with SARS-CoV-2 

(restricted to basal strains, excluding those reported with the D614G mutation or other named 

variant), and (ii) report quantitative or qualitative measurements of viral load (measured by RT-

qPCR) or infectious virus (measured by plaque assay or endpoint titration) from at least one 

biological specimen for at least one individual and at least one sample time post infection. Only 

individuals receiving no or placebo treatments were recorded.  

Of 86 studies meeting these criteria, we used the 24 articles that reported at least two of the 

following assays: totRNA PCR, sgRNA PCR, or viral culture (Table S1.1, Figure S1.1) (Baum et 

al., 2020; Chandrashekar et al., 2020; Corbett et al., 2020; Cross et al., 2020; Dagotto et al., 2021; 

Deng et al., 2020; Gabitzsch et al., 2021; Ishigaki et al., 2021; Jiao et al., 2021; Johnston et al., 

2021; B. E. Jones et al., 2021; Kobiyama et al., 2021; Li et al., 2021; Munster et al., 2020; Nagata 

et al., 2021; Patel et al., 2021; Salguero et al., 2021; Shan et al., 2020; Singh et al., 2021; Speranza 

et al., 2021; van Doremalen et al., 2020; Williamson et al., 2020; Woolsey et al., 2021; Yu et al., 

2020). Raw data were used when available (published or obtained via email correspondence); 

otherwise, one author (CES) extracted data from published figures using the package ‘digitize’ 
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(Poisot, 2011) in R (R Core Team, 2022). Additional details of data acquisition and standardization 

are described in the Supplementary Methods. 

Bayesian hurdle model framework 

To compare disparate assays, we developed a Bayesian hurdle model with two 

components: (i) a logistic regression that predicts whether assay Y will fall above the limit of 

detection (Y>LOD) based on assay X, and (ii) a linear regression that describes the quantitative 

relationship between X and Y when both are measurable (Yvalue) (Figure S1.2). Each component 

may include distinct sets of additional predictor variables (Ai and Bj, respectively). For the linear 

component, we incorporated hierarchical errors such that the model estimates article-specific error 

distributions (sa) based on distributions of population average errors (σ") and error standard 

deviations (ssd). This captures potential differences in experimental noise among studies and 

protocols. The basic form of this model is as follows, where d and b are regression coefficients 

associated with the predictors noted in the subscript: 

 

Logistic 

𝑌!"#$~	𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) 

𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝛾 +	𝛿%𝑋 +	8𝛿&!𝐴' 	
'

 

Linear 

𝑌()*+,~	𝑁(𝑦, 𝜎)) 

𝑦 = 𝛼 +	𝛽%𝑋 +	8𝛽-"𝐵.
.

 

𝜎)~	𝑁(𝜎," 𝜎/0) 
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We evaluated the predictive performance of multiple models with different combinations 

of candidate predictors, and so the ∑dAiAi and ∑bBjBj terms varied for each considered model. 

Categorical predictors with more than two classifications were treated as unordered index 

variables, while binary predictors were treated as indicator variables. For instances of unknown 

age or sex, we marginalized over all possibilities. Unless otherwise stated, we used a threshold of 

50% for the logistic components when classifying a sample as predicted positive or negative. 

We first applied this framework to predict sgRNA from totRNA results (termed the 

‘sgRNA model’). All totRNA-negative samples are predicted to be sgRNA-negative, by definition. 

We then predicted viral culture results from PCR data using a parallel framework (termed the 

‘culture model’), with the following minor modifications: (i) we considered models depending on 

totRNA, sgRNA, or both as predictors, and (ii) we restricted analyses to the logistic component, 

given scarcity of quantitative culture results. The model predicts all RNA-negative samples are 

culture negative.  

Candidate predictor selection and prior sensitivity analyses 

All candidate predictors were included because of hypothesized effects on the relationships 

among assay results, as summarized below. We chose informative priors to rule out implausible 

parameter values and to reflect existing knowledge on the expected direction of individual effects 

(outlined in the Supplementary Methods), where appropriate. Notably, prior predictive simulations 

confirmed variable but reasonable a priori expectations for these informative priors, with 

substantial improvement over non-informative priors that do not reflect existing knowledge 

(Figure S1.13). Parameter estimates for the best models were qualitatively similar between 

informative and non-informative priors (Figure S1.13).  
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All considered models included totRNA, sgRNA, or both as the primary predictor(s). For 

all models, we considered multiple demographic factors including age class, sex, and non-human 

primate species, given hypothesized effects on SARS-CoV-2 infection (Bajaj et al., 2021; Blair et 

al., 2021; Fajnzylber et al., 2020; Gadi et al., 2020; Johnston et al., 2021; S. Lu et al., 2020). 

Because exposure conditions can affect initial virion and totRNA quantities, we included 

inoculation dose (in log10 pfu) and day post infection as candidate predictors. For day post 

infection, we distinguished between inoculated tissues sampled on the first day versus all other 

days post infection, and non-inoculated tissues on any day post infection (see Table S1.11 for 

tissue-specific categorization). Because sample content and processing may vary between non-

invasive (e.g., swabs) and invasive samples (e.g., whole tissues obtained at necropsy), we 

considered sample type as a binary predictor.  

We also included predictors to account for assay-specific variation. For sgRNA models, 

we derived a target gene predictor based on the expected number of transcripts available for 

amplification during each PCR protocol, given that sgRNA abundance varies by gene (D. Kim et 

al., 2020) and totRNA assays can amplify both genomic and subgenomic RNA. We distinguished 

between totRNA assays that amplify most (‘totRNA-high’; targeting the N gene) or few sgRNA 

species (‘totRNA-low’; E gene) and sgRNA assays that target highly expressed (‘sgRNA-high’; 

sgN) or less expressed sgRNA species (‘sgRNA-low’; sgE, sg7), resulting in four possible protocol 

combinations. For culture models, we used the totRNA target gene as the predictor, except for the 

models including only sgRNA as the primary predictor. Since viral infectivity varies among cell 

lines (Bruce et al., 2022; Hoffmann et al., 2020; Matsuyama et al., 2020) and culture sensitivity 

differs between endpoint dilution and plaque assays (Smither et al., 2013), we included cell line 

and culture assay as additional predictors for culture.  
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Evaluating and comparing model performance  

To find the highest performing model for each investigation, we first used a forward search 

to identify the model with the best performance for each possible number of predictors. We used 

10-fold cross-validation to evaluate each model’s predictive performance on withheld data, and 

for each stage we selected the predictor that most increased the expected log pointwise predictive 

density (ELPD) (Sivula et al., 2022).  Following convention, we considered an ELPD difference 

of less than 4 to be small when comparing two models (Sivula et al., 2022). Of those models 

identified by the forward search, we selected the ‘best model’ as the one with fewest predictors 

that achieved similar or better performance compared to the ‘full model’ (containing all predictors) 

on out-of-sample (test) data for three relevant statistics: (i) ELPD, (ii) prediction accuracy (i.e., the 

percent of correctly classified samples for the logistic component, or the percent of samples where 

the observed value fell within the 50% prediction interval for the linear component), and (iii) 

Matthew’s correlation coefficient (Chicco & Jurman, 2020) (MCC; logistic components) or 

median absolute error on the posterior predictive medians (MAE; linear component). 

Comprehensive descriptions of model evaluation and selection are provided in the Supplementary 

Methods. 

Accounting for lab effects 

Since there are other possible sources of methodological variation among articles besides 

target genes, cell lines, and culture assays (e.g., RNA extraction methods, sample storage 

conditions), we also fit all of our best models with an additional categorical predictor to account 

for lab effects. To reduce the risk of overfitting, when possible, we grouped labs based on where 

they conducted their primate experiments to account for common elements in lab protocols (e.g., 
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many studies that analyzed sgRNA housed their primates at BIOQUAL, Inc.). Out of all articles, 

we identified eight groups of labs for the sgRNA analyses and ten groups of labs for the culture 

analyses (Table S1.8). We incorporated the lab effect as another linear predictor to the logit 

probability term for the logistic components or to the mean of the normal distribution for the linear 

component. The error term for the linear component remained article- (not lab-) specific. We fit 

each of these models with the same informative priors used in the models without lab effects, and 

we added non-informative priors for the lab effects.  

Analyzing isolation end times 

To assess performance on clinically relevant metrics, we evaluated how well our simple 

and best culture models can identify when an individual is no longer infectious (i.e., no longer 

culture positive). We restricted these analyses to individuals with at least two samples from the 

respiratory tract after their first positive test from the same location and sample type. For each 

individual, we estimated the end of their infectious period as the midpoint between their last true 

observed culture positive and their next observed culture negative (Figure S1.18). When this 

resulted in the infectious period ending on a half day, we rounded up to the nearest day, such that 

all individuals are assumed to be infectious from the day of their first positive test up to (but not 

including) the day on which they reach their calculated midpoint.  

We then determined their model-specific isolation end time as the earliest day on which 

the associated model predicted a second consecutive culture negative, to mirror the public health 

guideline about two consecutive negative test results. Unless otherwise stated, we used our 

standard threshold of 50% to classify samples as predicted negative or predicted positive. We 

excluded the individuals for which neither model predicted a second consecutive negative, 
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resulting in 77 total trajectories for this analysis. When only one of the two models was unable to 

identify such a time, we conservatively assumed that, under that model, the individual would 

isolate until day 10 after their first positive. We benchmarked our analyses against standard 

guidelines developed for COVID-19 patients, where individuals are released from isolation (i.e., 

assumed to no longer be infectious) on days five or ten after their first positive test (CDC, 2020). 

To compare the performance of these isolation methods, we calculated: (i) the number of days 

each individual spent unnecessarily isolated when they were no longer infectious (‘unnecessary 

isolation days’), and (ii) the number of days they were still infectious while no longer isolating 

(‘non-isolated infectious days’). 

Computational methods and software 

All data preparation, analysis, and plotting were completed with R version 4.2.0 (R Core 

Team, 2022). Posterior sampling of the Bayesian model was performed with No-U-Turn Sampling 

(NUTS) via the probabilistic programming language Stan (Stan Development Team, 2022) using 

the interface CmdStanR version 0.5.2. All model fits were generated by running six replicate 

chains with 4000 iterations each, of which the first 2000 iterations were treated as the warmup 

period and the final 2000 iterations were used to generate parameter estimates. Model convergence 

was assessed by the sampling software using 𝑅A, effective sample sizes, and other diagnostic 

measures employed by CmdStan by default. No issues were detected. 
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Results 

The compiled dataset includes 2167 samples from 174 individual non-human primates 

A comprehensive literature search for studies that challenged non-human primates with 

SARS-CoV-2 identified 24 articles that reported per-sample measurements of at least two of the 

following assays: totRNA RT-qPCR, sgRNA RT-qPCR, and viral culture (Figure S1.1, Table 1.1, 

Table S1.1). Of those, 14 articles reported totRNA and sgRNA for 116 individuals and 1194 

samples, and 15 articles reported viral culture and either RNA type for 90 individuals and 1315 

samples. Five articles reported results for all three assays, totaling 342 such samples. 

The dataset includes various demographic groups, including both sexes, ages ranging from 

1 to 22 years old, and three non-human primate species (rhesus macaque, cynomolgus macaque, 

African green monkey) (Tables 1.1 and S1.1). The included articles span multiple study protocols, 

including different target genes, cell lines, exposure conditions, sample types, and sampling times. 

Only studies using early SARS-CoV-2 strains (i.e., excluding those reporting the D614G mutation 

or named variants) were included, to minimize underlying strain-specific variation. Sampling 

locations include the upper and lower respiratory tracts, gastrointestinal tract, and other regions. 

Total RNA quantity does not solely explain sgRNA and culture results 

Across individuals and samples in the database, totRNA, sgRNA, and culture trajectories 

exhibit patterns and challenges consistent with previous reports, including unexpected instances 

of sgRNA negativity and culture positivity (Figure 1.1A, Figures S1.3-S1.10). Comparing PCR 

results, totRNA copy numbers are larger than sgRNA copy numbers when both are detectable 

(median difference: 1.45 log10 units) (Figure S1.11A), and totRNA becomes undetectable 

simultaneously or later in infection than sgRNA (Figure S1.11D), with rare exceptions for both 
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patterns likely due to assay noise or processing errors. When both totRNA and sgRNA are 

detectable for a given individual, their trajectories are typically highly correlated (median Pearson 

correlation coefficient: 0.92; Figure S1.11C). However, as is particularly common in animal 

challenge experiments but also reported in clinical data, totRNA-positive samples in this database 

are often sgRNA-negative (30.0%), and totRNA quantities for these samples can be curiously 

large, ranging from 0.15 up to 6.38 log10 copy numbers (Figure S1.11B).  

TotRNA and culture positivity results are also often discordant, disagreeing for 39.3% of 

all available samples and 61.3% of all totRNA-positive samples. Up to 11.02 log10 totRNA copy 

numbers were quantified in a culture-negative sample, which is only 1 log10 smaller than the 

maximum copy numbers observed in a culture-positive sample (12.09 log10) (Figures S1.11E, 

S1.11F). As few as 2.06 log10 totRNA copy numbers (when detectable) were noted in a culture-

positive sample. As expected, totRNA typically becomes detectable earlier and remains detectable 

later than infectious virus, although for six individuals culture positivity preceded RNA positivity 

and one culture-positive individual was never totRNA-positive (Figures S1.11G, S1.11H). 

Considerably fewer samples with culture data also had sgRNA results (Figure 1.1B), so 

comparisons are limited, but patterns broadly parallel those for totRNA. Together, these patterns 

highlight that totRNA quantity cannot entirely explain sgRNA and culture outcomes. Statistical 

models may uncover cofactors underlying the discrepancies among these essential assays.  
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sgRNA &  
total RNA 

Culture & 
either RNA All data 

D
em

og
ra

ph
ic

s 
Species 

   

Rhesus macaque 640 / 78 / 11 476 / 46 / 9 1071 / 112 / 17 
Cynomolgus macaque 371 / 28 / 3 412 / 21 / 5 601 / 37 / 6 
African green monkey 183 / 10 / 1 427 / 23 / 4 495 / 25 / 4 

Age class 
   

Juvenile 430 / 48 / 7 290 / 33 / 7 678 / 67 / 11 
Adult 667 / 56 / 10 993 / 50 / 9 1362 / 89 / 16 
Geriatric 54 / 8 / 1 2 / 1 / 1 54 / 8 / 1 
Unknown 154 / 23 / 3 72 / 6 / 1 226 / 29 / 4 

Sex    
Female 673 / 57 / 11 803 / 47 / 12 1213 / 84 / 18 
Male 367 / 36 / 9 440 / 37 / 10 728 / 61 / 16 
Unknown 43 / 4 / 1 30 / 6 / 1 73 / 10 / 2 

Sa
m

pl
in

g 
&

 e
xp

os
ur

e 
co

nd
iti

on
s Exposure dose 

  

104 - <106 521 / 61 / 9 311 / 19 / 3 832 / 80 / 12 
≥106 673 / 55 / 7 1004 / 71 / 12 1335 / 94 / 14 

Exposure route 
  

Single 0 / 0 / 0 441 / 31 / 5 441 / 31 / 5 
Multi 1194 / 116 / 14 874 / 59 / 10 1726 / 143 / 19 

Sample type 
  

Invasive 311 / 45 / 6 229 / 36 / 8 432 / 65 / 10 
Non-invasive 883 / 96 / 12 1086 / 76 / 12 1735 / 146 / 21 

Sample time   
Inoc, 1 dpi 136 / 72 / 11 89 / 36 / 8 187 / 94 / 17 
Inoc, 2+ dpi 724 / 99 / 13 595 / 72 / 12 1160 / 145 / 21 
Non-Inoc, 1+ dpi 334 / 54 / 7 631 / 72 / 13 820 / 106 / 16 

As
sa

y 
pr

ot
oc

ol
s  

PCR target genes 
  

N 814 / 86 / 11 824 / 54 / 9 1435 / 120 / 17 
E 380 / 34 / 4 383 / 30 / 5 624 / 52 / 7 
S 0 / 0 / 0 108 / 6 / 1 108 / 6 / 1 

Culture assay    
TCID50 --- 856 / 53 / 10 856 / 53 / 10 
Plaque --- 459 / 37 / 5 459 / 37 / 5 

Cell line    
Vero E6 --- 959 / 71 / 12 959 / 71 / 12 
Vero E6/TMPRSS2 --- 191 / 8 / 2 191 / 8 / 2 
Vero 76 --- 165 / 11 / 1 165 / 11 / 1 

 Total 1194 / 116 / 14 1315 / 90 / 15 2167 / 174 / 24 
 
Table 1.1 | Dataset summary. 
Columns stratify by assay availability, including samples with results for sgRNA and totRNA, 
culture and either RNA type, and any combination of two or more included assays. Entries indicate 
sample sizes for the corresponding cofactor, formatted as: the number of samples / individuals / 
articles. Doses are grouped by total plaque forming units (though they are analyzed as a continuous 
variable). Target gene corresponds with the totRNA assay when available, otherwise the sgRNA 
assay. The full article-specific data distribution is shown in Table S1.1.  
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Figure 1.1 | Example trajectories and distribution of samples across assay types. 
(A) Each column presents the totRNA (circle) and sgRNA (diamond) trajectories for the labelled 
individual. When available, culture results (square) are plotted above the yellow line, with yellow 
and grey fill indicating positive or negative culture, respectively. Samples from the upper 
respiratory tract (URT) are plotted above the lower respiratory tract (LRT). Dashed lines indicate 
reported limits of detection (plotted at 0 when unavailable). Samples with undetectable RNA are 
plotted below 0. Representative individuals were chosen from the full dataset. All individual 
trajectories are shown in Figures S1.3-1.10. (B) Number of samples available in our database for 
the corresponding assay(s). 

Predictive performance on withheld data clearly identifies the best statistical models  

To compare disparate assays, we developed a Bayesian hurdle model that predicts whether 

an assay of interest will fall above the limit of detection (the ‘logistic component’) and, if so, 

predicts a quantitative value for that assay (the ‘linear component’) (Figure S1.2). We used 

stepwise forward regression with 10-fold cross-validation to evaluate predictive performance on 

withheld data for variable numbers of predictors. This allowed us to identify the most parsimonious 

model with similar or better performance on three key metrics compared to the model containing 

all predictors (the ‘best’ and ‘full’ models, respectively). To benchmark our analysis against prior 

work, we also evaluated the ‘simple model,’ for which the logistic and linear components contain 
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PCR results as the sole predictor (i.e., it is a hurdle model comprised of a simple logistic regression 

and a simple linear regression).  

We first applied this method to predict sgRNA from totRNA assays (the ‘sgRNA model’), 

for which we considered species, age class, sex, exposure dose, day post infection, PCR target 

gene, and sample type (invasive vs. non-invasive) as candidate predictors. We then applied the 

logistic model framework to relate PCR results to culture positivity (the ‘culture model’), including 

cell line and culture assay as additional candidate predictors (see Methods for justifications). 

For both model types, the selection procedure clearly identified the best models (Figure 

1.2), where each component included a unique set of predictors. These results were robust to 

alternate cross-validation procedures and prior distributions. Each selected model is generalizable, 

as shown by comparable prediction accuracy between training and test sets. See the Supplementary 

Methods for further details on model evaluation and selection. 

Exposure dose, species, and PCR target gene improve predictions of sgRNA positivity  

totRNA levels clearly correlate with sgRNA positivity, but the substantial overlap in 

totRNA quantities measured for both sgRNA-positive and sgRNA-negative samples emphasize 

that other factors must influence sgRNA outcomes (Figure 1.3A). The best sgRNA logistic model 

identified exposure dose, species, and PCR target gene as key additional predictors of sgRNA 

positivity (Figure 1.2, Table S1.2). This model is highly accurate, correctly classifying 91.1% of 

withheld samples. It outperforms the simple model both by increasing prediction accuracy and by 

assigning higher probabilities to correct classifications for more samples (Figure 1.3B). For 

intermediate quantities of totRNA (2-6 log10 copies), sgRNA positivity predictions differ between  
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Figure 1.2 | Model selection criteria identify the best models. 
The highest performing models for each predictor number and modeling component are shown, 
ordered by increasing predictor numbers. Purple horizontal lines depict performance of the full 
model. Green vertical lines indicate the best model, chosen according to the displayed metrics. 
These include estimated log pointwise predictive density (ELPD), prediction accuracy, percent of 
samples within the 50% prediction interval, Matthews correlation coefficient (MCC), and median 
absolute error around the median (MAE). These were generated using test data during 10-fold 
cross validation. For the culture logistic component, the model with seven predictors was not 
chosen because, although it outperformed the full model on MCC and prediction accuracy, it 
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underperformed on ELPD. This is because the ELPD for the full model was larger than the ELPD 
for this model by more than our threshold of 4 units. Please see the Methods for more details about 
our selection criteria and the Supplementary Methods for a full description of the selection 
procedure. Acronyms are: T, totRNA; DPI, day post infection; SP, species; TG, target gene; ST, 
sample type; CELL, cell line; ASSAY, culture assay. All tested models are shown in Tables S1.2-
S1.5.  

the simple and best models (Figure 1.3C), emphasizing the particular importance of accounting 

for cofactors in this range. The best and full models perform similarly (Figure 1.2). 

Our best model reveals insights into the three additional predictors of sgRNA outcomes: 

exposure dose, species, and PCR target gene. The following trends hold for model predictions 

across any cofactor combination when holding totRNA quantity constant: (i) individuals 

inoculated with larger doses have smaller chances of detecting sgRNA, (ii) African green monkeys 

have the smallest chance of sgRNA detection, while rhesus and cynomolgus macaques have 

similar predictions, and (iii) assays targeting highly-expressed sgRNA species (‘sgRNA-high’ 

assays) have higher chances of sgRNA detection than those targeting less-expressed sgRNA 

species (‘sgRNA-low’). We refer the reader to Figure 1.3C for quantitative median predicted 

chances of sgRNA detection for a select cofactor combination, Figure 1.3D for qualitative 

variability in those predictions, and Table S1.6 for the associated 90% prediction intervals. In 

Table S1.7, we also provide the 90% credible intervals for all parameters to facilitate predictions 

of other cofactor combinations. Columns within row groups in Figures 1.3C with a strong color 

gradient indicate substantial impacts of the associated cofactor on sgRNA predictions, and grey 

boxes highlight totRNA ranges where final classifications of sgRNA positivity differ within that 

cofactor group (for the standardized cofactor set).  
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Figure 1.3 | The best sgRNA model captures key sources of underlying variation in PCR 
outcomes.  
(A), All available sgRNA data plotted against totRNA results (with vertical jitter), with all 
totRNA-negative samples plotted in the grey region (with horizontal and vertical jitter). One 
totRNA- and sgRNA-positive sample with -1.18 log10 totRNA copies is not visible. (B), 
Distribution of median model-predicted chances of sgRNA detection for all available totRNA-
positive samples, stratified by model type and observed outcomes. Samples right of the dashed 
line are correct predictions. (C),  Median predicted chances of sgRNA detection for the simple 
model (top row) and all cofactor groups for the best model (other rows), evaluated for specific 
totRNA levels. Predictions were generated using the following ‘standardized cofactor set’ (which 
are highlighted in bold text): rhesus macaques inoculated with 5.5 log10 pfu and sampled at least 
two days post infection from inoculated tissues, which were processed with a totRNA-
high/sgRNA-low assay. For the simple model, the grey box encloses totRNA copies where 
classifications differ among the simple model and any possible combination of cofactors in the 
best model, based on our standard prediction threshold of 50%. For all other rows, grey boxes 
enclose regions where classifications differ within the displayed cofactor group for the 
standardized cofactor set. For example, 5 log10 totRNA copies / sample is enclosed for ‘Species’ 
because African green monkeys are predicted to be negative while both other species are predicted 
to be positive. The rows for the other cofactor groups (e.g., target gene) do not influence the grey 
boxes for ‘Species’. (D), 300 posterior draws from the best logistic model for the standardized 
cofactor set, with colored lines as indicated in panel-specific legends. The dark blue line presents 
the simple model’s mean fit. (E), All available sgRNA data for totRNA-positive samples, where 
sgRNA-negative samples are plotted below 0 (with vertical jitter). (F), Distribution of median 
absolute errors for all sgRNA-positive samples, stratified by model type. (G), As in (D) but for the 
best linear component. (H), As in (C) but reporting median sgRNA copy number predictions. Grey 
boxes enclose regions where predicted sample quantities within the displayed cofactor group fall 
both above and below a common limit of detection (1.69 log10), and otherwise follow the same 
rules as in panel (C). Acronyms are as follows: ‘RM’, rhesus macaque; ‘CM’: cynomolgus 
macaque; ‘AGM’: African green monkey; ‘Non-Inv’: non-invasive; ‘Inv.’: invasive; ‘DPI’: day 
post infection; ‘I, 1’: inoculated tissues sampled on day 1 post infection; ‘I, 2+’: inoculated tissues 
sampled any other day post infection; ‘NI, 1+’; non-inoculated tissues on any day post infection; 
“T↑SG↑”: totRNA-high/sgRNA-high; “T↓SG↑”: totRNA-low/sgRNA-high; “T↑SG↓”: totRNA-
high/sgRNA-low; “T↓SG↓”: totRNA-high/sgRNA-low. 

To determine whether any of the observed patterns could stem from lab-level 

methodological variation, we tested whether the findings of our best model were altered by 

including an additional predictor for lab effects. Some lab groups were predicted to have higher 

chances of sgRNA detection per totRNA quantity (Figure S1.12A), but performance was similar 

to the model without an explicit lab effect (Figure S1.12B). Crucially, the predicted differences 
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among doses, species, and target genes were qualitatively unchanged between these models 

(Figures S1.12C, S1.12D), offering confidence in the robustness of our results.  

Exposure conditions, species, and PCR target gene impact expected RNA ratios  

sgRNA quantities scale positively with totRNA quantities, but with considerable 

unexplained variation (Figure 1.3E). Our best sgRNA linear model identified exposure dose, 

species, PCR target gene, and day post infection as key predictors of sgRNA quantity (note these 

are the same predictors as for the sgRNA logistic model, but with day post infection also included). 

This model performs well on withheld data, with 55.0% of observed sample values falling within 

the model-generated 50% prediction interval (Figure 1.2, Table S1.3). The best model clearly 

outperforms the simple model, decreasing the median absolute prediction error from 0.58 to 0.43 

log10 copies (Figures 1.3F) and increasing the correlation between observed and median predicted 

values (from an adjusted R2 of 0.68 to 0.77). The best model performs marginally better than the 

full model, with small improvements in prediction accuracy (Figure 1.2).  

Below, we explore the effects of each selected cofactor on predicted sgRNA copy numbers. 

We report qualitative trends that hold across all cofactor combinations, and we refer the reader to 

Figures 1.3H for median (quantitative) predicted sgRNA copy numbers for a select cofactor 

combination (our ‘standardized cofactor set’, see figure legend). Variability in these predictions 

are presented qualitatively in Figure 1.3G and quantitatively (as 90% prediction intervals) in Table 

S1.6. Credible intervals for all parameters are included in Table S1.7. Similar to the logistic 

component, we also fit the best model with an additional predictor for lab group, which identified 

some modest differences in the expected sgRNA quantities among articles (Figure S1.12E) and 

had similar prediction accuracy to the model without lab effects (Figure S1.12F). We describe any 
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other qualitative differences in our results between these models below, which are also visualized 

in Figure S1.12.  

The best model predicts that exposure conditions and sampling time impact RNA ratios. 

Samples obtained from individuals inoculated with larger doses must have higher total RNA copy 

numbers to expect the same sgRNA quantity. Results for day post infection parallel these 

exposure-dependent patterns. To expect a given sgRNA quantity, totRNA copies must be highest 

for inoculated tissues on the first day post infection, intermediate for inoculated tissues on all later 

days post infection, and lowest for non-inoculated tissues on any day post infection. When we 

added a predictor for lab group, the effects of day post infection were qualitatively unchanged 

while the dose effect weakened and reversed (Figure S1.12G, Figure S1.12H), although a 

substantial portion of the parameter density allowed for the original dose effect.  

PCR target genes also affect predictions. Conditional on totRNA quantity, totRNA-

low/sgRNA-high assays have the largest predicted median sgRNA quantities, followed by 

totRNA-low/sgRNA-low and totRNA-high/sgRNA-low assays. Quantitative sgRNA outcomes 

were unavailable for totRNA-high/sgRNA-high assays, so estimates were not possible for those 

protocols. These effects were qualitatively similar in our model with lab effects (Figure S1.12G, 

S1.12H). 

The best model also predicted that sgRNA quantities vary by species. Regardless of 

whether a lab effect was included, rhesus macaques and African green monkeys had highly similar 

predictions. Cynomolgus macaques were predicted to have lower median sgRNA quantities for 

any given totRNA quantity, though this effect was substantially reduced when lab effects were  
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Figure 1.4 | The best sgRNA model reconstructs individual trajectories with high accuracy. 
Each panel includes the data for one randomly selected individual sampled from either the upper 
respiratory (URT) or lower respiratory tract (LRT), including observed totRNA (circle), observed 
sgRNA (diamond), and median predicted sgRNA (triangle) quantities. Detection limits are plotted 
as dashed lines in the corresponding color when available, otherwise grey lines are plotted at zero. 
All undetectable samples are plotted below zero. See Figures S1.3-S1.5 for all individuals. 

included. Given that only one lab group had data from both cynomolgus macaques and another 

species (rhesus macaques), we view this species effect as an intriguing but tentative finding that 

warrants further investigation. 

The sgRNA model accurately reconstructs individual viral load trajectories  

To further analyze performance, we reconstructed individual viral load trajectories using 

the best sgRNA model (Figures 1.4, S1.3-S1.5). The model correctly predicted the timing of the 

first and last observed sgRNA positive for 90.1% (n=219/243) and 72.8% (n=177/243) of all 

individual- and (non-invasive) sample-specific trajectories with at least two sampling times, 

respectively (Figure S1.14). Notably, 70.0% (n=170/243) of those trajectories were predicted 

without a single misclassification. The distribution of predicted sgRNA quantities was highly 
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similar to the distribution of observed sgRNA quantities (median differences of estimated means: 

-0.04 log10 units; 90% Credible Interval [CI]: -0.18, 0.08; Supplementary Methods) but highly 

dissimilar to observed totRNA values (-0.79; 90%CrI: -0.92, -0.66), offering further confidence in 

the model’s excellent performance. 

Total RNA and sgRNA are both suitable predictors of viral culture  

To determine which PCR assay best predicts viral culture, we compared models including 

totRNA, sgRNA, or both as predictors of culture positivity. We first evaluated performance only 

on samples with quantitative results for both assays and for models with no additional cofactors, 

for which totRNA, sgRNA, and both had similar prediction accuracy (Table S1.9). Because few 

samples had both sgRNA and culture outcomes (Figures 1.1B), we imputed median sgRNA 

predictions where needed, using the best performing sgRNA model. On this full dataset, all three 

models also performed similarly well, though totRNA showed some evidence of better predicting 

culture positive samples. We then ran our model selection procedure on totRNA and sgRNA 

separately for all available data, which resulted in highly similar prediction accuracy for both best 

models, though the model using totRNA was more parsimonious, with two fewer predictors 

(Tables S1.4, S1.5). Given this parsimony and the lack of reliance on imputed sgRNA values, plus 

the lack of evidence that sgRNA is a superior predictor, we based further analyses solely on 

totRNA.  

Demography, exposure conditions, and assay protocols resolve disparities in culture results  

We next sought to predict culture positivity from totRNA results using the logistic model 

framework. The best model contained day post infection, inoculation dose, age class, species, 

culture assay, cell line, and PCR target gene as predictors, and it correctly classifies 84.7% of 



29 

 

withheld data (Figure 1.2; Tables S1.4, S1.9). It outperforms the simple model by correctly 

predicting an additional 7.0% of culture positive samples and by assigning higher probabilities for 

true classifications (Figure 1.5B; Figure S15A). The difference in performance is especially 

pronounced at intermediate totRNA quantities (6-8 log10), which often occur during the critical 

transition between culture positive and negative states (i.e., in clinical terms, at the end of the 

infectious period). For these samples, the best model correctly predicts an additional 23.3% of 

culture positives (Figure S1.15B) and often with much higher confidence (Figure S1.15C). 

Strikingly, culture predictions can differ between the simple and best models for all considered 

quantities of totRNA (0-12 log10 copies) (Figure 1.5C), highlighting the benefit of accounting for 

cofactors when predicting culture outcomes across all totRNA quantities. The best model performs 

similarly to the full model (Figure 1.2; Table S1.4). 

In the text below, we explore the effects of each selected cofactor on culture outcomes. 

Given the high dimensionality of these predictions, we report qualitative trends that hold across 

cofactor combinations, and we refer the reader to Figures 1.5C for median predicted chances of 

positive culture for a select combination of cofactors (i.e., our ‘standardized cofactor set’, see 

figure legend). Columns in Figure 1.5C with a strong color gradient indicate dramatic impacts of 

the associated cofactor on culture predictions, and grey boxes highlight totRNA ranges where final 

classifications differ within that cofactor group (for the standardized cofactor set). These ranges 

differ for other cofactor combinations. We present the variability of our results (for the 

standardized cofactor set) qualitatively in Figure 1.5D and quantitatively (as 90% prediction 

intervals) in Table S1.10. In Table S1.7, we provide the medians and 90% credible intervals for all 

parameters to facilitate predictions of other cofactor combinations.  
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Figure 1.5 | The best culture model captures key sources of underlying variation in culture 
outcomes. 
(A) All available culture data plotted against totRNA results (with vertical jitter), with all totRNA-
negative samples plotted in the grey region (with horizontal and vertical jitter). (B) Distribution of 
median model-predicted chances of positive culture for all totRNA-positive samples, stratified by 
model type and observed outcomes. Samples right of the dashed vertical line are correct 
predictions. (C) Median predicted chance of positive culture for the simple model (top row) and 



31 

 

all cofactor groups included in the best model (other rows) for totRNA copies (evaluated at integer 
values, starting at 0). Predictions were generated using the following ‘standardized cofactor set’ 
(which are highlighted in bold text): adult rhesus macaques inoculated with 5.5 log10 pfu and 
sampled at least two days post infection from inoculated tissues, where PCR targets the 
Nucleocapsid gene and culture uses plaque assays with VeroE6 cells. Grey boxes enclose regions 
where classifications differ within the cofactor group for the standardized cofactor set, as described 
for Figure 1.3C. For the simple model, it encloses regions where classifications differ between the 
simple model and any possible combination of cofactors. (D) 300 posterior draws from the best 
model for the standardized cofactor set, with colored lines as indicated in panel-specific legends. 
The dark blue line presents the simple model’s mean fit. Acronyms are as described in Figure 1.3, 
plus the following: E6, VeroE6; E6-SS2, VeroE6-TMPRSS2; and 76, Vero76 cells. 

To determine whether unmodelled differences among labs could explain any of the 

observed patterns, we fit our best culture model with an additional term for lab effects. Some 

groups of labs were predicted to have higher overall chances of culture positivity per totRNA 

quantity (Figure S1.16A), but overall prediction accuracy was similar to the model without a lab 

effect (Figure S1.16B). There was some additional variation in the parameter estimates for the 

model with a lab effect, but the qualitative findings for all cofactors were consistent across both 

models (Figure S1.16C, S1.16D).  

Exposure conditions had substantial impacts on culture predictions. Individuals inoculated 

with larger doses have smaller probabilities of obtaining successful culture for any given totRNA 

quantity. Interestingly, in contrast with results predicting lower sgRNA (per totRNA quantity) in 

inoculated tissues (Figure 1.3G, 1.3H), the culture model predicts that inoculated tissues sampled 

on the first day post infection have the highest probabilities of being culture positive per totRNA 

quantity. Inoculated tissues on later days post infection and all non-inoculated tissues are much 

less likely to be culture positive, with substantial overlap in the predicted probabilities of those 

two groups. 
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Multiple demographic factors also affect culture outcomes. Predictions for juvenile and 

adult age classes largely overlap, but geriatric individuals have substantially higher predicted 

chances of successful culture for the same viral load. This difference was reduced, though still 

clearly apparent, when including a lab effect. However, few samples from geriatric individuals 

were available (Table 1.1), and so these results should be interpreted cautiously. Predictions also 

vary based on species: the chances of successful culture for some viral load are smallest for 

cynomolgus macaques compared to rhesus macaques and African green monkeys, where the latter 

two species have highly similar predictions.  

Assay conditions also influence culture outcomes, as expected. The model predicts that 

VeroE6-TMPRSS2 cells have the highest chance of positive culture, followed by VeroE6 and 

Vero76 cells. TCID50 assays are predicted to have higher sensitivity than plaque assays, and the 

chances of culture positivity (for a given viral load) are higher for PCR protocols targeting Spike 

(S) than for those targeting the Nucleocapsid (N) or Envelope (E) genes. 

Individual trajectories uncover sources of culture prediction errors 

Although our best culture model exhibits remarkable 84.7% accuracy on withheld data, we 

analyzed our predictions further to identify potential causes and implications of existing errors. 

64.1% (n=116/181) of all incorrect predictions were false negatives, of which a curious 11.2% 

(n=13/116) were PCR negative. Even excluding these totRNA-negative samples, totRNA copies 

for false negative samples were substantially smaller than for true positives (median difference of 

estimated population means: -2.83 log10 units; 90%CrI: -3.13, -2.53) but more similar to true 

negatives (median difference: 0.57; 90%CrI: 0.27, 0.87). These RNA-low but culture-positive 

samples could be explained by PCR or sample processing issues resulting in the amplification of 
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less RNA (e.g., sample degradation), or by culture contamination. Similarly, totRNA copy 

numbers for false positive predictions were substantially larger than for true negatives (median 

difference: 3.05; 90%CrI: 2.74, 3.36) but were similar to true positives (median difference: -0.35, 

90%CrI: -0.66, -0.04). Culture insensitivity could explain these RNA-high but culture-negative 

samples.  

We further characterized errors by analyzing performance in the context of individual 

trajectories for (non-invasive) samples with at least two sampling times (Figures 1.6, S1.7-S1.9, 

S1.17). Overall, the best model correctly predicted 58.3% (n=120/206) of these trajectories without 

a single culture misclassification, compared to only 47.6% (n=98/206) by the simple model. 

Within all trajectories, the best model made a total of 131 errors in predicting culture status of 

individual samples, while the simple model made 171 errors. We categorized these errors into four 

types: (i) samples obtained on the first or last sampling day (termed an ‘edge’), (ii) samples 

obtained as culture results transition between positive and negative states (‘transition’), (iii) 

samples where observed culture results change for one sampling time despite surrounding 

instances of the opposite classification (‘data blip’), and (iv) samples where culture predictions 

change for one sampling time despite surrounding instances of the opposite classification 

(‘prediction blip’). Notably, while edge errors are difficult to analyze, given limited information 

from surrounding time points, transitions may reflect sample quality and assay sensitivity 

interacting to drive noisy outcomes for samples with intermediate RNA or virion quantities. 

When considering all prediction errors, we find that edge errors are the most common for 

both the best (n=51/131; 38.9%) and simple (n=78/171; 45.6%) models. Transition errors, 

however, are of particular interest, given that the shift from positive to negative states determines 

the end of infectivity. The best model made 44 transition errors (n=44/131; 33.6%), while the 



34 

 

simple model made 49 transition errors (n=49/171; 28.7%). We then calculated how many edge 

errors could also be considered transition errors, and once again we found that the best model made 

fewer such errors (23 vs. 34). Thus, model accuracy at this critical point during infection is 

improved by accounting for key covariates. 

For the best model, data blips are less common (n=19/131; 14.5%) than edge and transition 

errors, and all except one data blip are observed culture positives surrounded by culture negatives 

(leading to false-negative prediction errors) (Figures 1.6B, S1.17A). Eight of these samples co-

occur with increases in totRNA quantities from the previous sampling time, suggesting they may 

reflect true local replication (e.g., as in rebound cases). The remaining instances accompany 

decreases in totRNA quantities, where sample contamination could drive spurious culture 

positivity or PCR processing issues could result in RNA underestimates. Prediction blips are the 

least common (n=17/131; 13.0%), of which 70.6% (n=12/17) are false negatives that often have 

lower totRNA quantities than the previous sampling time (Figures 1.6B, S1.17B). These could be 

explained by sample quality or PCR processing issues resulting in RNA underestimates, which is 

particularly plausible for instances where totRNA levels increase in the next sampling time. In 

contrast, false positive prediction blips primarily occur after sharp increases and high quantities of 

totRNA, and all occur for plaque assays. Given our model predicts lower sensitivity for plaque 

assays, these errors could reflect failed culture, though RNA overestimates could also explain this 

pattern. 
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Figure 1.6 | Error analysis reveals potential causes of culture prediction errors. 
(A) Each row shows culture results for one individual-sample trajectory that contains at least one 
instance of the panel-specific error type. Trajectories may appear in multiple panels if they contain 
multiple error types, though trajectory ordering is inconsistent. Red outlines highlight samples with 
the denoted error type. (B) TotRNA values over time for each error type, all invasive samples, and 
all correctly classified non-invasive samples (‘no error’). In (A) and (B), yellow squares indicate 
culture positives and grey indicates culture negatives. Squares with black outline are correctly 
classified, while those with no or red outline are incorrectly classified. The data blip individual on 
day 21 post infection has another sample available at a later timepoint, so it is not considered an 
‘edge.’ 
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The best culture model shows potential for accurate, individualized isolation practices 

Although our model is trained on NHP data and cannot be applied directly to humans, we 

sought to illustrate the potential clinical utility of such a framework. To do so, we assessed the 

simple and best models’ ability to identify when an individual is no longer infectious (i.e., no 

longer culture positive). For all available individuals (n=77), we determined their (model-specific) 

isolation end times as the earliest day on which the associated model predicted a second 

consecutive culture negative (Figure S1.18). Because the time between consecutive tests increases 

over the course of infection (Figure S1.19), there is an implicit bias towards longer isolation times 

for individuals that test positive longer and hence are observed less frequently during the period 

that they lose infectiousness. To account for this bias, we also ran analyses for a hypothetical 

‘perfect’ model that identifies culture status correctly for every sample, and so it always releases 

individuals from isolation on the day of their true second consecutive culture negative. For further 

comparison, we included two standard public health guidelines for SARS-CoV-2, which release 

all individuals from isolation on days five or ten after their first positive (CDC 2020).  

We found that, across all procedures, the best model resulted in the smallest number of 

days that individuals were unnecessarily isolating while no longer infectious (Figure 1.7A), with 

an especially large reduction compared to the ten-day protocol (126 vs. 510 days). We then 

considered the number of days on which individuals were not isolating but still infectious. If no 

isolation practices were used, there would be 260 such days. No individual was infectious up to 

day ten after the first positive test, and so the ten-day protocol was the only one with zero non-

isolated infectious days (Figure 1.7B). The simple model had the largest number of non-isolated 

infectious days (65 days), followed by the best model (60 days), the five-day procedure (37 days), 

and the perfect model (34 days). Upon further investigation, many of these non-isolated infectious 
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days arose from 16 individuals that showed evidence of rebound infection, which we defined as at 

least one known culture negative occurring between two known culture positives (Figure S1.18). 

Of these 16 individuals, many of them (n=6/16; 37.5%) had their final culture positive before day 

5 (“early rebound”), which thus did not affect the performance of the five-day protocol but did 

penalize the best and simple models despite them accurately identifying many intermittent culture 

negatives. All protocols (except for the ten day procedure) were also affected by the 10 individuals 

that had their final culture positive on or after day 5 (“late rebound”; n=10/16; 62.5%). When we 

excluded any rebound individuals, the best model and the five-day procedure differed by only 

three non-isolated infectious day (20 vs. 17 days).  

To further compare the protocols, we also evaluated their ability to identify the first time 

that individuals experienced a true (observed) second consecutive culture negative. For these 

analyses, we excluded the 12 individuals where this never occurred. We classified the protocols 

based on whether they accurately identified this time (‘Correct’) or whether the predicted time 

occurred before (‘Early’) or after (‘Late’) the known time. The best model was correct for the most 

individuals (n=30/65; 46.2%; Figure 1.7E; Figure S1.18), with the exception of the perfect model 

that by definition classifies all individuals correctly. The simple model only classified 30.8% 

(n=20/65) of individuals correctly, which is 15.4% (n=10/65) fewer individuals than the best 

model. The best model also generated 10.8% (n=7/65) fewer early predictions, which is a 

particularly important improvement given the public health cost of premature release from 

isolation. We also analyzed the confidence with which the two models identified the first two 

consecutive true negatives. The best model misclassified fewer of these samples as culture positive 
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Figure 1.7 | The best culture model captures the end of infectiousness better than existing 
approaches. 
(A) The cumulative days unnecessarily isolated by all individuals (histogram, left axis) and the 
distribution of individual days unnecessarily isolated (points, right axis) for the ten-day, five-day, 
simple, best, and perfect protocols. Individuals that were isolated for too few or the exact number 
of days are not shown. (B) The cumulative days that individuals were still infectious after the end 
of isolation (histogram, left axis) and the distribution of days that individuals were still infectious 
(points, right axis) for all the protocols in panel A. Transparency shows the classification of 
individual trajectories as either showing no indication of a rebound (darkest), indication of a late 
rebound (medium, day 5 after the first positive test or later), or indication of an early rebound 
(lightest, before day 5 after the first positive test). Rebound individuals are indicated by red points. 
Individuals that were not still infectious are not displayed. (C) Performance of each protocol on 
identifying the true (observed) time of the second consecutive culture negative for all individuals 
where this occurred. ‘Correct’ (darkest, bottom) includes all individuals for which the protocol 
exactly identified the second consecutive negative. ‘Early’ (medium, middle) includes all 
individuals where the prediction occurred before the true time, while ‘Late’ (lightest, top) includes 
all individuals where the prediction occurred after the true time. The perfect model is not shown, 
as by definition it is 100% correct. (D) Comparison of the culture positive probabilities predicted 
for the simple and best models on both samples from the first true instance of consecutive 
negatives. The right panel shows the raw predicted probabilities for each model. The left panel 
shows the per-sample difference between those probabilities for the simple and the best model, 
where the best model is more confident in the upper region (i.e., it has smaller predicted 
probabilities of being culture positive) and the simple model is more confident in the lower region. 
(E) The cumulative days unnecessarily isolated by all individuals (green histogram, left axis) and 
the distribution of individual days unnecessarily isolated (green points, right axis) for five different 
threshold probabilities at which a sample is considered culture positive. The best model results are 
displayed in the green bars (cumulative) and by the green points (individuals). The horizontal lines 
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show the results for the five- and ten-day procedures, with the same colors as in (A). The blue 
points and connecting lines show the cumulative days for the simple model. (F) As in panel E, 
except displaying the number of days individuals were still infectious after the end of isolation. 
Red points are rebound individuals. 

(difference: n=7/130; 5.4%), and it was equally or more confident (by up to 36.4%) in the correct 

prediction for 80.0% of the samples (n=104/130; Figure 1.7D). 

Finally, we investigated the sensitivity of our results to the threshold probability at which 

samples are predicted to be culture positive. We sequentially decreased this probability from 50% 

(our standard threshold) to a more conservative 10%, which increased the number of samples 

predicted to be culture positive. Because the five- and ten-day protocols are discrete rules, varying 

thresholds do not affect their metrics. For the best and simple models (Figure 1.7E; green bars and 

blue dots, respectively), lower thresholds increased the number of unnecessary isolation days, 

though notably the best model always had fewer days than the simple model. Lower thresholds 

also resulted in substantially fewer non-isolated infectious days, and both the simple and best 

models can outperform the five-day protocol (Figure 1.7F). Notably, lowering this threshold 

reduced the number of rebound individuals that are prematurely released from isolation. Although 

the simple model appeared to outperform the best model on the number of infectious days, this 

reduction actually resulted from the simple model failing to identify a second consecutive negative 

more often than the best model for all threshold values (e.g., 64.6% vs. 51.9% of individuals for a 

10% threshold). This causes more individuals to default (by our assumption) to the ten-day 

procedure, thus also decreasing the number of non-isolated infectious days. Overall, the best model 

provides the most accurate and customizable approach – offering the potential to tune predictions 

to minimize non-isolated infectious days or to minimize unnecessary isolation days, depending on 

context and local priorities.  
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Discussion 

In this study, we developed a generalizable model to infer the results of one virological 

assay from another. By applying this framework to our compiled database of non-human primate 

experiments on SARS-CoV-2, we generated highly accurate predictions of sgRNA and culture 

results from standard PCR protocols. These analyses allowed us to answer foundational questions 

about whether totRNA and sgRNA assays are fundamentally interchangeable and what factors 

drive the complicated relationships between PCR and culture outcomes. Our best models identify 

key sources of biological and methodological variation (including exposure conditions, 

demographics, and assay protocols), across which predictions varied widely. We showed that 

because standard, single regression models (like our ‘simple models’) ignore this variation, they 

could incorrectly infer culture outcomes for samples with totRNA copy numbers spanning twelve 

orders of magnitude; our biologically-informed multiple regression models showed substantial 

gains in accuracy and precision. Our findings highlight the importance of accounting for the 

influence of cofactors on viral load and culture positivity – no single threshold value applies across 

study designs.  

We addressed the unresolved debate about the relative merit of sgRNA to predict culture 

outcomes by conducting the first comprehensive analysis of a large dataset of controlled 

exposures. We found no clear evidence that sgRNA outperforms totRNA, and instead we found 

that both infer culture outcomes with high accuracy when accounting for key biological covariates. 

Given these results and that we can reconstruct sgRNA trajectories from totRNA outcomes with 

high accuracy, underlying cofactors may explain previously observed differences in the relative 

predictive capacity of totRNA and sgRNA (Ford et al., 2021; Perera et al., 2020). Future studies 
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could prospectively measure all three assays (ideally with quantitative culture) to confirm and 

extend our findings, though notably our model achieved a remarkable 85% accuracy in predicting 

culture outcomes and our error analysis showed that many prediction errors may have arisen from 

upstream data issues (see below).  

Our models characterize many biological patterns hypothesized (or known) based on 

previous experimental work on SARS-CoV-2, including the effects of exposure conditions on 

sgRNA and culture outcomes. In particular, we find that larger exposure doses increase the totRNA 

copy numbers associated with predicting culture positivity and detectable sgRNA. This suggests 

that the amplification of residual (inoculum-derived) genomic RNA may explain curious instances 

of sgRNA- or culture-negative samples with large totRNA copies, substantiating concerns in the 

animal challenge literature that inoculation procedures can directly influence viral detection and 

quantification (Dagotto et al., 2021). Interestingly, when we included a lab effect, our best sgRNA 

model predicted that (for any given totRNA quantity) larger doses would increase or have no effect 

on sgRNA quantities. This pattern could arise from two dueling effects of the inoculation 

procedure, whereby larger doses may increase (at least initial) sgRNA production, but inoculum-

derived and newly produced gRNA could mask this effect. Future experimental work could test 

this hypothesis by directly comparing a range of doses.  

The amplification of residual inoculum may also explain differences predicted between 

inoculated and non-inoculated tissues, where exposed tissues tend to have larger totRNA quantities 

than non-exposed tissues for any given sgRNA value, particularly on the first day post infection. 

Inoculum effects on totRNA quantity appear to linger throughout infection, given that sgRNA 

predictions for exposed tissues on later days post infection fall between predictions for exposed 

tissues on the first day and non-exposed tissues on all days. Interestingly, the chance of positive 
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culture (for a given totRNA value) is highest for exposed tissues sampled on the first day post 

infection, which is consistent with detection of lingering inoculum-derived virions. In contrast to 

sgRNA, culture predictions for exposed tissues on all later days post infection are highly similar 

to non-exposed tissues. These patterns are consistent with most inoculated virions having infected 

cells, dispersed to other tissues, or been cleared by the immune system within the first two days of 

infection, whereas the high stability of RNA (at least in human respiratory fluids monitored ex 

vivo; Matson et al., 2020) could enable its prolonged detection.  

Our work showed that the relationships between virological assays were also shaped by 

host demographic factors. Primate species affected all relationships we considered, where 

cynomolgus macaques were predicted to have the lowest sgRNA:totRNA ratio and the smallest 

chance of positive culture per totRNA quantity. African green monkeys and rhesus macaques have 

highly similar predictions for sgRNA:totRNA ratios and chances of positive culture. Curiously, 

African green monkeys also have the smallest chance of sgRNA detection per totRNA quantity, 

but only one study (Speranza et al., 2021) reported totRNA and sgRNA outcomes for this species. 

Our models did not identify age-mediated effects on sgRNA outcomes but did predict that geriatric 

animals have the highest chances of positive culture per totRNA quantity. Sex did not influence 

either sgRNA or culture outcomes. While these results may reflect differing susceptibility, disease 

severity, or infection kinetics among non-human primate species and age classes, as has been 

previously suggested (Bajaj et al., 2021; Blair et al., 2021; Johnston et al., 2021; T. C. Jones et al., 

2021; S. Lu et al., 2020; Yuan et al., 2021), sample sizes were limited for African green monkeys 

and geriatrics, so these patterns should be interpreted cautiously. Also, given the complexity of 

viral fitness, cellular processes, and immune responses, inference on the cause of demographic-

specific differences is difficult without mechanistic theory. Mathematical models of the cellular 
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life cycle (Grebennikov et al., 2021) may uncover processes that explain the stoichiometric 

differences we observed among RNA types and virions. 

Assay protocols had clear impacts on model predictions. PCR target gene was a consistent 

factor in our best models, with effects aligned with known differences in RNA quantities. We find 

that totRNA protocols targeting the Spike (S) gene must amplify less totRNA than those targeting 

the Envelope (E) or Nucleocapsid (N) genes to predict the same chance of positive culture. This 

likely reflects that totRNA assays targeting S will amplify only sgS and no other sgRNA species 

(because it is the most upstream sgRNA), whereas the others amplify multiple sgRNA species and 

thus will have inherently higher per-sample totRNA copy numbers. Notably, this result does not 

imply that spike assays better predict infectivity. Different genes simply require different RNA 

quantities to expect the same chance of culture positivity, and so other considerations should 

motivate choice of target gene (e.g., selecting target sequences that are conserved across variants). 

Similar reasoning can explain observed differences in sgRNA outcomes, where sgRNA protocols 

amplifying the highly-expressed sgN have higher chances of detecting sgRNA (per totRNA 

quantity) and also larger sgRNA:totRNA ratios than protocols amplifying the less-expressed sgE 

and sg7 species. For viral culture, our model predicts VeroE6-TMPRSS2 cells have the highest 

chance of detecting infectious virus (per totRNA quantity), which is concordant with the 

importance of TMPRSS2 for SARS-CoV-2 cellular entry (Hoffmann et al., 2020) and agrees with 

experiments showing VeroE6-TMPRSS2 cells are more permissive to infection than VeroE6 cells 

(Bruce et al., 2022; Matsuyama et al., 2020). In accordance with our results, prior work has also 

shown that VeroE6 cells are more sensitive than Vero76 cells, which is likely related to increased 

TMPRSS2 expression in VeroE6 cells (Amarilla et al., 2021). Our model also predicts that 

TCID50 assays are more likely to detect infectious SARS-CoV-2 than plaque assays, agreeing 
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with standard assay conversions (Carter & Saunders, 2007) and prior experimental work (Smither 

et al., 2013).  

Although we developed this model to analyze SARS-CoV-2 in non-human primates, our 

results showed many similarities with patterns previously noted in humans. Multiple studies have 

found that, depending on the dataset, human-derived samples with around 5-9 log10 RNA copies 

had a 50% chance of being culture positive (T. C. Jones et al., 2021; Ke et al., 2021; van Kampen 

et al., 2021; Wölfel et al., 2020). The prediction from our analogous model without cofactors falls 

within this range (7 log10 totRNA copies). Other work has found evidence of age-dependent 

increases in infectious virus shedding (Ke et al., 2022) or in culture probability on any day rescaled 

to the time since peak viral load (T. C. Jones et al., 2021). Both of these findings are consistent 

with, although not directly comparable to, our result that geriatric NHPs have higher probabilities 

of culture positivity per totRNA quantity. Another study also discovered that the ratios of RNA to 

culturable virus differed substantially throughout infection (Porter et al., 2023). We unfortunately 

did not have sufficient quantitative culture information to obtain a similar ratio, but their findings 

agree with our observation that (for any given totRNA quantity) sgRNA copy numbers and culture 

probability vary by day post infection. Finally, we observed no culture positive (non-invasive) 

samples from the respiratory tract more than seven days after an individual’s first positive test, and 

so the public health guidelines of isolating for five or ten days (CDC, 2020) performed remarkably 

well on our dataset, despite being designed for an entirely different host species. Collectively, these 

concordances further underscore that non-human primates are an excellent model system for 

human SARS-CoV-2 infection.  

By analyzing our culture predictions for individual trajectories, we identified potential 

causes of prediction errors. Many occurred during transition periods when viral replication slows 
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or begins (i.e., when infectivity changes). During this crucial phase, our best culture model clearly 

outperformed the simple model by making fewer mistakes. In any case, during these periods, assay 

readouts will depend strongly on sample quality and assay sensitivity, so additional caution in 

interpreting culture outcomes is warranted. Beyond this, while we expect some errors due to 

complex and non-stationary biological effects, many errors are also consistent with PCR or culture 

processing issues. Sample quality, preservation methods, and storage conditions can substantially 

impact the quantification of RNA copy numbers and the detection of infectious virus (Ørpetveit et 

al., 2010; Puhach et al., 2023). PCR issues resulting in the amplification of less RNA may explain 

curious culture-positive samples with low or no detectable RNA (generating false negative 

predictions), while culture insensitivity may explain some culture-negative samples with 

especially large RNA quantities (i.e., false positives). Alternatively, sample contamination or 

sample swapping could cause elevated RNA levels or spurious culture positivity, where the latter 

is particularly plausible for ‘data blips’ of a single culture positive surrounded by a series of culture 

negatives, although these could reflect brief, intermittent replication. In any case, if we assume our 

model predictions were correct for at least some of these suspect samples (or else if we exclude 

them from accuracy calculations entirely), our culture model’s true accuracy would be higher than 

85%. 

With this study, we demonstrated the utility and feasibility of meta-analyses and Bayesian 

statistical techniques for virological studies, which will become increasingly important tools under 

new data sharing mandates (Kozlov, 2022). Multiple factors enabled us to rigorously analyze our 

aggregate database: (i) PCR results were reported as RNA copy numbers, which are internally 

standardized (as opposed to unstandardized Ct values) (Puhach et al., 2023), (ii) processing 

techniques and viral concentrations per reported sample volume are consistent within each study, 
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(iii) many articles reported results for multiple cofactors, and (iv) we accounted for any additional 

between-study variation by including article-level hierarchical error rates when possible. To 

evaluate whether any of the observed patterns could be explained by unmodelled methodological 

differences among articles, we also ran our best models with an additional predictor for lab effects. 

Reassuringly, we found that all of our results were qualitatively unchanged between the models 

with and without lab effects (with one minor exception, discussed above), offering confidence in 

the robustness of our results. Under typical analytical approaches, our investigations would have 

required one study to generate the data for all protocols, samples, and demographics of interest, 

which would be time and resource prohibitive. Crucially, our approach did not require the 

generation of new data, which is especially important for non-human primate models where ethical 

principles (Prescott, 2010; Russell & Burch, 1959) and constrained supply (National Primate 

Research Center, 2020; Subbaraman, 2021) demand principled data reuse whenever possible.  

Although the concordances noted between prior work and our results offer confidence in 

our models’ performance, our study has limitations. Multiple source articles did not report age 

class or sex, requiring our model fits to marginalize over all possibilities. Consequently, parameter 

estimates for age and sex may underestimate their effects. This underscores the importance of 

comprehensive reporting, especially for animal challenge experiments where using previously 

collected data would increase adherence to the 3R principles (Russell & Burch, 1959). Also, few 

articles reported results for both sgRNA and culture, so some of our investigations relied on 

imputed sgRNA values. Prospective data on all three assays and more comprehensive data panels 

across cofactors would enable deeper exploration of the predictive capacity of totRNA and sgRNA 

for viral culture. Finally, while some cofactors were not selected for inclusion in our best models, 

we cannot exclude the possibility that their effects exist but were not evident or were masked by 
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other predictors. Because covariate coverage relied on different studies in different labs, it remains 

possible that lab or study effects impacted our results even though we found no evidence of this 

when including lab-specific predictor variables. Some covariate effects may have also been 

absorbed into our article-level error or lab effect terms. Despite these limitations, our analysis (and 

similar analyses) can help prioritize resource allocation, so future experiments can more easily 

adopt the gold-standard approach of testing model-based findings in head-to-head comparisons 

under fixed conditions.  

While the quantitative results of our models should not be used directly to predict culture 

results for any host-pathogen system besides non-human primates and SARS-CoV-2, the general 

framework could be adapted easily to generate similar predictions for other host species, other 

viruses, or other assays. For example, our model could be modified to robustly compare the 

relationships among antigen tests, PCR, and viral culture, which has recently garnered interest 

(Bonenfant et al., 2022; Ford et al., 2021; Kirby et al., 2023; Zhang et al., 2022) and would benefit 

from the increased sample size and cofactor coverage possible with meta-analytical treatment. 

Notably, when applying the framework to other scenarios, careful model development is still 

necessary, especially given that different viruses and assays may have other defining 

characteristics that could affect their relationships, which should influence the choice of candidate 

cofactors.  

We believe our framework also shows particular promise for future development to support 

clinical diagnostics. Beyond the fact that our model trained on NHP data recapitulated many 

patterns previously observed in humans, we also demonstrated its excellent performance on 

clinically relevant metrics. Relative to the five- or ten-day isolation protocols outlined by public 

health agencies (CDC, 2020), our best model substantially reduced unnecessary isolation time 
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(relative to the ten-day rule), and it reduced the risk of releasing individuals while still infectious 

(relative to the 5-day rule). Our best model also clearly outperformed the simple model on both of 

these metrics, in addition to correctly classifying more sequential culture negative samples and 

with markedly higher confidence, all of which could be crucial improvements in public health 

settings. In fact, because sampling frequency decreased over the course of infection in our data, 

our results likely underestimate the potential improvements achievable in humans where sampling 

can be more frequent. To realize the clinical potential of this approach, however, the model 

framework must be trained on human data. This would involve some model modifications, 

including the consideration of other cofactors such as viral variant, prior infection, vaccination 

history, disease severity, and co-morbidities. Outside the very rare context of human challenge 

trials, the model will also need to function without knowledge of exposure dose, route, or exact 

timing (requiring the use of a proxy such as time since symptom onset or first positive test). If such 

a model performs well, then it would offer a straightforward, standardized pipeline to predict 

whether an individual is infectious based on SARS-CoV-2 PCR results, which is a clear need 

(Bravo et al., 2022; Bruce et al., 2022; Bullard et al., 2020; Dimcheff et al., 2021; Gniazdowski et 

al., 2021; La Scola et al., 2020; van Kampen et al., 2021). To further increase prediction accuracy, 

future work could also modify the framework to capitalize on individual-specific trajectories for 

patients undergoing regular screening (e.g., by incorporating a mechanistic modeling component 

(Ke et al., 2022)). Once the modeling pipeline is established, it could be readily tailored to any 

other pathogen with sufficient clinical data, either to improve management strategies of existing 

viruses or even to help characterize and contain an emerging one. With these tools, public health 

officials and clinicians would be better-equipped to weigh transmission risk with medical resource 
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availability and economic burden to designate evidence-based (and pathogen-specific) hospital 

discharge criteria and public health guidelines.  

By assembling and analyzing a large database that captures infection patterns described in 

the clinical and animal challenge literature, we demonstrated that highly accurate RNA-based 

culture predictions are possible with our statistical framework. By using non-human primate data, 

we were able to identify underlying effects of exposure conditions, which would be impossible for 

humans without experimental challenge trials (of which only one exists for SARS-CoV-2, to date; 

Killingley et al., 2022). Consequently, our model offers the first set of explicit quantitative 

guidelines on interpreting SARS-CoV-2 assay outcomes in light of exposure conditions, which 

has direct implications for analyzing non-human primate experiments and thus could affect human 

health by improving interpretations of crucial preclinical trials for human vaccines and 

therapeutics. We propose our method as a standardized framework to conduct assay comparisons, 

whether for individual virology experiments, clinical diagnostic settings, qualitative literature 

syntheses, or quantitative meta-analyses. Such approaches for data aggregation and (meta-) 

analysis are vital and powerful tools for an era of increasing data-sharing, with untapped potential 

to develop translational applications and to guide further research into fundamental mechanisms. 
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Supplementary Methods 

Comprehensive literature search  

To construct our database, we conducted comprehensive literature searches on 11 March 

2021, which was the chosen cutoff date for inclusion in the database. One author (CS) screened 

the Web of Science (Core Collection) and PubMed for articles published in English with the 

following search string: (SARS-CoV-2 OR COVID-19) AND (primate* OR macaque* OR 

monkey* OR "macaca" OR "chlorocebus"). On the same day, CS also jointly screened bioRxiv 

and medRxiv, with two separate search strings: (i) (SARS-CoV-2 OR COVID-19) AND (primate* 

OR macaque* OR monkey*), and (ii) (SARS-CoV-2 OR COVID-19) AND ("macaca" OR 

"chlorocebus"). These searches returned 163 records from Web of Science, 761 from PubMed, and 

259 from bioRxiv and medRxiv. An additional 60 records were obtained from Google Scholar 

searches and citation trackers (before 11 March 2021) using the following search terms: SARS-

CoV-2, COVID-19, macaque, monkey, non-human primate (Figure S1.1). In total, this returned 

1,243 results, with 866 unique records after removing duplicates. Of those, the following were 

immediately excluded: (i) articles published before 2020, (ii) article types that do not generate 

primary data (e.g., opinions, reviews), and (iii) articles with clearly irrelevant titles based on our 

predefined eligibility/inclusion criteria (described in the Methods). CS inspected the abstracts of 

the remaining 275 studies and the full texts of 122 records, according to the same eligibility criteria. 

Data collection process 

For each included article and every infected individual, the following study design details 

were obtained from the text, figures, supplementary files, or the corresponding authors, when 

available: primate species, rhesus macaque origin (Chinese or Indian), ID, sex, age (years or 
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months), age class, treatment group, viral inoculum strain, inoculation route(s), and route specific 

inoculation dose(s). For every sample, the following information was recorded when available: 

sample value (converted to log10, when quantitative and reported otherwise), sample time (day 

post infection, starting at 0), sample type (e.g., swab, tissue), sample location (e.g., liver), sample 

units (e.g., viral RNA copies/mL), method of quantification (e.g., RT-qPCR, plaque assay), target 

gene (for PCR), cell line (e.g., VeroE6, for viral culture), and limit of detection and/or 

quantification. We standardized all ID names as follows: [the first and last initial of the study’s 

first author] _ [the ID name as assigned in the original study, if available].  

When raw data was not published or methodological/biological details were missing or 

inconsistently reported, we contacted the corresponding author(s) using a standardized email 

template (paired with study-specific questions) to resolve discrepancies and/or request raw data. 

When clarification and/or raw data were obtained, the details were updated accordingly. In 

instances where clarification was not obtained but conflicting information existed in the article, 

we recorded the information most consistent with the methods section. Unclarified information 

that was missing entirely from the article materials is considered unknown. 

Standardizing age class and inoculation doses 

We developed a consistent method to assign age classes for all studies, following methods 

used in prior studies (Cramer et al., 2018; Darusman et al., 2014; Koo et al., 2019; Lee et al., 2020; 

Simmons, 2016). When age was reported in months and years, juvenile rhesus and cynomolgus 

macaques include individuals with ages <5 years, adults include 5-19 years, and geriatrics include 

≥20 years. Juvenile African green monkeys include ages <5 years, adults include 5-14 years, and 
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geriatrics include ≥15 years. When reported age ranges spanned multiple assignments, we used the 

reported age class if available, otherwise we considered it unknown.   

Since inoculation doses are frequently reported as either plaque forming units (pfu) or 

tissue culture infectious dose 50 (TCID50), we converted all inoculation doses reported in TCID50 

to pfu using a standard conversion factor (1 TCID50=0.69 pfu) (Carter & Saunders, 2007). 

Confirming RNA types 

To confirm whether articles quantified full-length genomic RNA, subgenomic RNA, or 

total RNA (since reporting practices varied across studies), all relevant primer and probe sequences 

were extracted from each study or from referenced articles. We used SnapGene software (from 

Insightful Science; available at snapgene.com) to map all sequences to the SARS-CoV-

2/human/CHN/Wu-1 reference genome. Any assays with both forward and reverse primers located 

within the ORF1ab gene were considered to amplify full-length genomic RNA, as this gene is not 

located on any canonical subgenomic RNAs. Assays with both forward and reverse primers 

located within any individual gene downstream of ORF1ab were considered to amplify total RNA, 

as these sequences can be found on both subgenomic and full-length genomic RNA. Assays where 

the forward primer was located in the 5’ UTR but the reverse primer was located within a gene 

downstream of ORF1ab were classified as amplifying subgenomic RNA.  

Justification and prior description for candidate predictors 

Below, we provide further justification for the selection of all candidate predictors, 

including descriptions of all assigned priors. For the sgRNA models (that predict sgRNA results 

from totRNA), we use g/d to signify parameters for the logistic component and a/b for the linear 
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component. For the culture model (that predicts culture positivity from totRNA quantities), we use 

g/y to signify the relevant parameters.  

Primary predictors: We required all sgRNA models to include total RNA copy number (T) 

as a predictor, given this is the primary effect of interest. We expect the probability of detecting 

sgRNA to increase as total RNA copy numbers increase, which is supported by studies that find 

more sgRNA positive samples for those with large quantities of total RNA (Dimcheff et al., 2021; 

Perera et al., 2020). Given that we expect this relationship to be positive, we assign the following 

prior: dT~N(2,1). We also expect sgRNA copy numbers to increase with total RNA copy numbers, 

as observed in other studies that find positive linear relationships between them (Dimcheff et al., 

2021; van Kampen et al., 2021; Verma et al., 2021). We assign the following prior: 

bT~Gamma(2,0.5). We evaluated culture models including total RNA, sgRNA (SG), or both as 

primary predictors. We expect the likelihood of detecting infectious virus to increase with 

increasing quantities of either RNA type, so we set the priors to be:	ΨT,ΨSG~N(2, 1). 

Age, sex, and non-human primate species: As with other viruses, age (AGE) and sex (SEX) 

are hypothesized to affect individual responses to SARS-CoV-2 infection, including within-host 

infection kinetics and disease severity. Inter-species variability in infection dynamics has also been 

noted among non-human primate species (SP) and other animal models (Chu et al., 2022). These 

differences may affect observed relationships between assays. However, given the complexity of 

these biological interactions, we do not assign a priori expectations about the direction of these 

effects, and we set all associated priors to be N(0,1). 

Inoculation dose: Since sgRNA is not typically packaged into virions (Escors et al., 2003) 

and thus should not meaningfully exist in viral stocks, we expect to find detectable levels of total 

RNA earlier than sgRNA after inoculation (i.e., lower probabilities of sgRNA detection per total 



55 

 

RNA quantity for higher doses; dDOSE~N(-1,0.5)). Larger inoculum doses could also result in (at 

least initially) higher levels of total RNA relative to sgRNA (bDOSE~N(-0.25,1)). Exposure dose 

affects virion quantity and hence also total RNA quantity, which in turn may affect the probability 

of culture positivity through the presence of residual inoculum or other effects on infection 

kinetics. We make no a priori predictions on the direction of this effect (ΨDOSE~N(0,1)).  

Day post infection: sgRNA levels likely remain low for some time in recently infected 

tissues. They may rise as virions infect local cells and replicate, and the ratio between total RNA 

and sgRNA may stabilize (Dimcheff et al., 2021). These dynamic changes may be especially 

pronounced when large quantities of virions (and thus also genomic RNA) are introduced 

simultaneously, as in animal infection experiments. Consequently, we expect newly infected 

tissues to contain small, likely undetectable quantities of sgRNA, whereas tissues infected one or 

more days prior, which have experienced sufficient replication, likely contain more sgRNA copies. 

For infectious virus, residual inoculum-derived virus may actually increase the probability of 

culture positivity in infected tissues relative to non-inoculated tissues (where virions must be 

produced). We derived a categorical predictor with three levels: DPI[1], DPI[2], and DPI[3]. For 

inoculated tissues, we distinguish between the first day (DPI[1]) and all other days post infection 

(DPI[2]). Since infection timing is unknown for non-inoculated tissues, we group all days into one 

level (DPI[3]). Table S1.3 lists which tissues were considered inoculated for each exposure 

procedure. We used the following priors: dDPI[1]~N(-1,1), dDPI[2]~N(1,1), dDPI[3]~N(0,1), bDPI[1]~ N(-

0.5,1) bDPI[2]~N(0.5,1), bDPI[3]~N(0,1), ΨDPI[1]~N(1,1), ΨDPI[2]~N(0.5,1), ΨDPI[3]~N(0,1). 

Sample type: Differences in the processing and content of non-invasive (e.g., swabs, 

biofluids) and invasive (e.g., whole tissues obtained at necropsy) samples may affect assay 
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readouts, and so we include sample type as a candidate predictor. We make no a priori predictions 

on their differences, and instead we assign non-informative priors (dST,bST,ΨST~N(0,1)).  

Target gene: The RT-qPCR target gene affects quantification of SARS-CoV-2 copy 

numbers (Dimcheff et al., 2021; Lieberman et al., 2020; Moreira et al., 2021; Verma et al., 2021), 

which stems from the nature of PCR in addition to the organizational structure and transcription 

mechanisms of the coronavirus genome. The production and abundance of sgRNA species varies 

by gene (e.g., sgRNA N > sgRNA E; Kim et al., 2020), and sgRNA assays only amplify gene-

specific sgRNA transcripts. In contrast, total RNA assays can amplify not only full-length genomic 

RNA and gene-specific sgRNA, but also other, larger sgRNAs that contain the target sequence. 

Given the many possible combinations of target gene pairs for total RNA and sgRNA assays, in 

our pooled dataset, we derived a generalizable predictor based on the number of transcripts 

available for amplification for each protocol. We distinguished between totRNA assays that 

amplify most (i.e., targets the Nucleocapsid gene; termed ‘totRNA-high’) or few sgRNA species 

(i.e., targets the Envelope gene; ‘totRNA-low’). We also distinguish between sgRNA assays that 

target highly expressed (i.e., sgN; ‘sgRNA-high’) or less expressed sgRNA species (i.e., sgE, sg7; 

‘sgRNA-low’). This predictor thus has the following four levels: (1) totRNA-high/sgRNA-high, 

(2) totRNA-low/sgRNA-high, (3) totRNA-high/sgRNA-low, and (4) totRNA-low/sgRNA-low. 

We expect sgRNA-high assays to have higher probabilities of sgRNA detection and higher 

quantities of sgRNA per totRNA quantity (dTG[1], dTG[2]~N(1,1); bTG[1], bTG[2]~N(0.5,1)) than 

sgRNA-low assays (dTG[3], dTG[4]~N(-1,1); bTG[3], bTG[4]~N(-0.5,1)). For all culture models 

containing total RNA, we simply used the total RNA target gene as the predictor. When predicting 

culture from sgRNA, we used the sgRNA target gene as the predictor. Given SARS-CoV-2’s 

genomic structure, we expect decreasing per-sample viral loads for totRNA protocols targeting the 
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Nucleocapsid (ΨTG[1]~N(-1,1)), Envelope (ΨTG[2]~N(0,1)), and Spike (ΨTG[3]~N(1,1)) genes, 

respectively. Since these stoichiometric ratios apply in any infected cell, we expect the relative 

probability of culture positivity to be higher for target genes with lower expression, such that the 

probability is highest for Spike (ΨTG[3]~N(1,1)), intermediate for Envelope (ΨTG[2]~N(0,1)), and 

lowest for Nucleocapsid (ΨTG[1]~N(-1,1)).  

Cell line: Viral infectivity can vary by cell line, which can influence the likelihood of 

detecting infectious virus in a sample. Our data includes three distinct cell lines (VeroE6, Vero76, 

VeroE6-TMPRSS2) which we group into a three-level categorical predictor (CELL) for the culture 

model only. Given evidence of increased SARS-CoV-2 entry in cells expressing TMPRSS2 

(Hoffmann et al., 2020; Matsuyama et al., 2020), we expect the probability of detection to be 

highest for VeroE6-TMPRSS2 cells (ΨCELL[3]~N(1,1)). We use the same non-informative prior for 

the other two (ΨCELL[1]~N(0,1), ΨCELL[2]~N(0,1)). 

Culture assay: The sensitivity of endpoint dilution (TCID50) and plaque assays can also 

vary, with plaque assays typically having lower sensitivity (Smither et al., 2013). We distinguish 

between these protocols in a binary predictor (ASSAY), with endpoint dilution treated as the 

reference. We assign the following prior (ΨASSAY ~N(-0.5,1)).  

Article and lab effects: We assigned the same non-informative priors for the mean and 

standard deviation of each article’s error term in the linear component (σ" ~ N(0, 1); ssd ~ Exp(1)). 

We also assigned the same non-informative priors for all lab effect terms (N(0, 0.5)).  

Approximate leave-one-out cross-validation  

Beyond standard 10-fold cross-validation used in our main analyses, we also evaluated 

model performance and conducted model selection using Pareto-Smoothed Importance Sampling 
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Approximate Leave-One-Out cross-validation (PSIS-LOO) via the ‘loo’ R package (Vehtari et al., 

2017). We ran this method for the linear component of the sgRNA model using RStan version 

2.21.0 to use additional functionality of the LOO software (Vehtari et al., 2022). All other models 

were run using CmdStan, as described in the main Methods. 

Pareto-k values indicate the accuracy of PSIS-LOO approximations, where values below 

0.7 indicate sufficiently reliable estimates. We use the moment-matching functionality offered by 

the ‘loo’ package to correct Pareto-k values exceeding 0.7, after which all PSIS-LOO estimates 

generated in this study were reliable (adjusted Pareto-k < 0.7).  

Cross-validation methods and model evaluation metrics  

For 10-fold cross-validation, we assigned folds randomly, although we required each fold 

to contain similar quantities of data from each article. This allowed us to distribute protocols, 

demographics, and sampling types more evenly across folds. All statistics for this method were 

calculated separately for training and test sets to evaluate performance on out-of-sample data and 

assess potential bias or overfitting, with the exception of ELPD and MCC which were only 

calculated for test sets.  

As outlined in the model description of the main Methods, the linear component of the 

sgRNA models contained article-specific hierarchical error rates. We used the estimates of each 

article’s specific error distribution to generate ELPD values. However, when we calculated median 

absolute error and the percent of samples falling within given prediction intervals, we did not 

incorporate article-specific errors. Instead, for each iteration, we sampled the full range of 

estimated errors by sampling the error distribution of a random included article (uniformly 
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distributed), so these statistics better correspond to performance on new data (e.g., new studies) 

where prior information on error distributions is unavailable. 

Selection procedure and results for the best sgRNA model 

In the paragraphs below, we describe our model selection procedure for the sgRNA model, 

which relied on various performance metrics for each component. Overall, this procedure clearly 

identified the best model for both the logistic and linear components of the sgRNA model (Figure 

1.2). Parallel analyses conducted with Pareto-Smoothed Importance Sampling approximate leave-

one-out cross-validation resulted in qualitatively similar outcomes and selection of the same model 

(Tables S1.2, S1.3). Sensitivity analyses confirmed qualitatively similar results between 

informative and non-informative priors for the model selection procedure and for the parameter 

estimates of the best model (Figure S1.12). Prediction accuracy and median absolute error (MAE) 

showed minimal differences between training and test datasets, for all PCR models considered, 

offering confidence in the models’ generalizability (Table S1.2, S1.3).  

For the logistic component, the best model performed substantially better than the simple 

model for all three statistics considered. The best model had considerably higher ELPD 

(difference: 67.3; Figure 1.2, Table S1.2). Prediction accuracy on test data increased overall by 3.4 

percent, and MCC increased from 0.75 to 0.82 (Figures 1.2, 1.3C; Table S1.2). The best model 

also correctly predicted sgRNA detectability with higher probability for more samples and had a 

substantially higher ELPD, both of which reflect higher certainty for true classifications (Figures 

1.2, 1.3C). Prediction accuracy and Matthews correlation coefficient (MCC) indicate nearly 

identical performance of the best and full models (Figure 1.2, Table S1.2). The difference between 

the estimated log pointwise predictive density (ELPD) for the best and full models falls within two 
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standard errors of the difference (difference: 1.60; standard error: 3.50), again indicating similar 

model performance (Sivula et al., 2022). 

When predicting copy numbers for all sgRNA positive samples with the linear component, 

the best model showed better performance than the full and simple models on all three statistics 

considered. Predictive performance of the best model is substantially better than the simple model, 

with 55.0 versus 48.0 percent of samples falling within the 50 percent prediction interval (Figure 

1.2, Table S1.3) and a decrease in median prediction error from 0.58 to 0.44 (Figure 1.3F). The 

ELPD difference is also substantial (-186.2). Posterior predictive checks show a strong correlation 

between observed and median predicted sgRNA values for the best model (adjusted R2=0.77), 

which further supports superior performance of the multiple regression model compared to the 

simple single regression model (adjusted R2=0.68). Relative to the full model, the best model has 

higher ELPD (difference: -4.44) and similar prediction error on test data (0.44 vs. 0.45) (Figure 

1.2, Table S1.3). A higher percent of (test) samples fall within the model-generated 50 percent 

prediction interval for the best model (55.0 vs. 54.5).  

Selection procedure and results for the best culture model 

In the paragraphs below, we describe our model selection procedure for the culture model, 

which relied on three primary performance metrics. This procedure clearly identified the best 

culture model. Model selection did not vary between cross-validation methods. Prior choice also 

did not alter model selection nor did it qualitatively affect parameter estimates (Figure S1.12). 

Prediction accuracy between training and test sets was comparable (Table S1.4), again supporting 

model generalizability.  
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The evaluation procedure identified the best model as the one containing all but two 

candidate predictors (Figure 1.2). For all three statistics considered, the best model performed 

better than the simple model. The best model had considerably higher ELPD, for which the 

difference was larger than two standard errors (difference: 55.70; standard error: 13.96; Figure 1.2, 

Table S1.4). For totRNA-positive samples, prediction accuracy on test data increased overall by 

3.1 percent, but notably the best model correctly classified an additional 7.0 percent of culture 

positive samples (Figure 1.4C), both of which are reflected in the improvement of MCC from 0.48 

to 0.57 (Table S1.4). The difference between the ELPD for the best and full models is small 

(difference: 0.76; standard error: 3.42), and their overall prediction accuracy and MCC are nearly 

identical (Figure 1.2, Table S1.4).  

Mathematical form of the best sgRNA model 

The mathematical form of the best sgRNA model is outlined below, where we use g/d to 

signify parameters for the logistic component and a/b for the linear component. Acronyms are as 

follows: SG: sgRNA, T: total RNA, DOSE: inoculation dose (log10 pfu), SP: species, TG: target 

gene (standardized to four levels), and DPI: day post infection.  

 

𝑆𝐺!"#$,'~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝') 

𝑙𝑜𝑔𝑖𝑡(𝑝') = 𝛾 +	𝛿2𝑇' + 𝛿$#34𝐷𝑂𝑆𝐸' + 𝛿25! + 𝛿36!  

𝑆𝐺()*+,,'	~	𝑁(𝑦' , 𝜎)89':*,!	) 

𝑦' = 𝛼 + 𝛽2𝑇' +	𝛽$#34𝐷𝑂𝑆𝐸' +	𝛽25! + 	𝛽$6;! +	𝛽36! 

𝜎)89':*,!~	𝑁(𝜎H, 𝜎/0) 
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Mathematical form of the best culture model 

The mathematical form of the best culture model is outlined below, where we use g/y to 

signify the relevant parameters. Acronyms are as follows: C: culture, T: total RNA, DOSE: 

inoculation dose (log10 pfu), DPI: day post infection, AGE: age class, SP: species, CELL: culture 

cell line, ASSAY: culture assay, and TG: target gene (standardized to three levels).   

 

𝐶!"#$,'~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝') 

𝑙𝑜𝑔𝑖𝑡(𝑝') = 𝛾 +	𝜓2𝑇' + 𝜓$#34𝐷𝑂𝑆𝐸' + 𝜓$6;! + 𝜓&54! + 𝜓36! + 

𝜓<4""! + 𝜓&33&=𝐴𝑆𝑆𝐴𝑌' + 𝜓25! 

 

Prediction intervals and parameter estimates  

 To generate prediction intervals for various statistics, including median probabilities of 

sgRNA or culture positivity and median predicted sgRNA copy numbers, we used all available 

post-warmup parameter samples from the best model. We used the same procedure to generate the 

fit lines shown in Figures 1.3 and 1.5. Each prediction is generated using grouped parameter 

samples (e.g., samples from the same chain and iteration) to preserve correlation structure.  

Estimating differences between predicted and known outcomes 

To compare median predicted sgRNA copies to observed sgRNA or totRNA copies, we 

modeled the distribution of each of these quantities as normally distributed random variables with 

unique means and variances. We also compared totRNA quantities for culture samples with false 

negative, true positive, and true negative predictions by estimating the population means for each 
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group (captured as a normally distributed variable). For both of these investigations, we calculated 

the median and quantiles of the distribution of differences between these populations means, where 

we subtracted estimates only from the same chain and iteration. We fit these Bayesian models 

using the same procedures as described in the Methods.  
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Supplementary Figures 

 
 
Figure S 1.1 | Screening and selection procedure for database compilation. 
We created this figure by adapting the template flowchart provided in Moher et al., 2009, which 
offers guidelines and resources for systematic reviews and meta-analyses. We incorporated all of 
their suggested steps for reporting the results of systematic literature searches, but all of the 
substantive content (e.g., numbers, exclusion reasons) is based entirely on our literature search. 
Additional detail on the screening procedure is provided in the Supplementary Methods. 
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Figure S 1.2 | Schematic diagram of generalizable hurdle model predicting assay Y from a 
more sensitive assay X. 
Predictors are grey, model components are green, and predictions are red (positive) or blue 
(negative). If assay X falls below the limit of detection (< LOD), assay Y is also predicted to fall 
below the limit of detection. (Note that this particular assumption may not hold for all assay 
relationships, and modeling adjustments may need to be made in these scenarios.) If assay X falls 
above the limit of detection (> LOD), then the value of assay X is passed as a predictor to the 
logistic component of the hurdle model, which uses a set of additional covariates Ai to predict 
whether assay Y falls above or below the LOD. If the posterior probability of assay Y falling above 
the limit of detection is less than some assigned threshold C (P(Y > LOD) < C), then the model 
predicts assay Y falls below the LOD. Otherwise, the model predicts assay Y falls above the LOD. 
Note that the probability cut-off value C should be selected to balance false positive and false 
negative rates as appropriate to investigator aims. In this study, we used a standard value of C=0.5. 
For samples predicted to fall above the LOD, the linear model component will generate a predicted 
value of assay Y (Ypredict) based on another set of covariates (Bj). If Ypredict is larger than the 
reported LOD for assay Y, the model will return the predicted value. Created with BioRender.com. 
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Figure S 1.3 | Individual viral load trajectories in the upper respiratory tract, including 
sgRNA predictions generated by the best sgRNA model. 
Each panel corresponds with one individual and one non-invasive sample type, indicated in the 
top right of each panel. Only individuals with both total RNA and sgRNA results for at least two 
days post infection are plotted. Some individuals were sampled from multiple locations in the 
upper respiratory tract, in which case they are plotted as neighboring panels. Each line and the 
accompanying points track the individual’s total RNA (dark blue, circle), observed sgRNA (light 
blue, diamond), and median predicted sgRNA (green, triangle) trajectories. For some individuals 
(e.g., KS_2021C), multiple RT-qPCR assays targeting different genes were run on the same 
sample, which are plotted as distinct panels. All samples observed or predicted to fall below the 
limit of detection are plotted below 0 at set values for visual clarity (totRNA: -0.5, observed 
sgRNA: -0.75, predicted sgRNA: -1). When available, the limits of detection (LOD) or 
quantification (LOQ) for PCR assays are plotted as dotted lines in the assay-specific color. When 
both the LOD and LOQ were available, only the LOD is plotted. In instances where the total RNA 
and sgRNA assay LOD are equal, only the sgRNA line is visible. No instances exist in this dataset 
where the LOD or LOQ is only available for one RNA type. 
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Figure S 1.4 | Individual viral load trajectories in the lower respiratory tract, including 
sgRNA predictions generated by the best sgRNA model. 
Each panel corresponds with one individual and one non-invasive sample type, indicated in the 
top right of each panel (‘BAL’: bronchoalveolar lavage). Only individuals with both total RNA 
and sgRNA results for at least two days post infection are plotted. Each line and the accompanying 
points track the individual’s total RNA (dark red, circle), observed sgRNA (orange, diamond), and 
median predicted sgRNA (yellow, triangle) trajectories. For some individuals (e.g., KS_2021C), 
multiple RT-qPCR assays targeting different genes were run on the same sample, which are plotted 
as distinct panels. All samples observed or predicted to fall below the limit of detection are plotted 
below 0 at set values for visual clarity (totRNA: -0.5, observed sgRNA: -0.75, predicted sgRNA: 
-1). When available, the limits of detection (LOD) or quantification (LOQ) for PCR assays are 
plotted as dotted lines in the assay-specific color. When both the LOD and LOQ were available, 
only the LOD is plotted. In instances where the total RNA and sgRNA assay LOD are equal, only 
the sgRNA line is visible. No instances exist in this dataset where the LOD or LOQ is only 
available for one RNA type.  
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Figure S 1.5 | Individual viral load trajectories in the gastrointestinal and other systems, 
including sgRNA predictions generated by the best sgRNA model. 
Each panel corresponds with one individual and one non-invasive sample type, indicated in the 
top right of each panel. Only individuals with both total RNA and sgRNA results for at least two 
days post infection are plotted. Each line and the accompanying points track the individual’s total 
RNA (dark purple, circle), observed sgRNA (dark pink, diamond), and median predicted sgRNA 
(light pink, triangle) trajectories. All samples observed or predicted to fall below the limit of 
detection are plotted below 0 at set values for visual clarity (totRNA: -0.5, observed sgRNA: -
0.75, predicted sgRNA: -1). When available, the limits of detection (LOD) or quantification (LOQ) 
for PCR assays are plotted as dotted lines in the assay-specific color. When both the LOD and 
LOQ were available, only the LOD is plotted. In instances where the total RNA and sgRNA assay 
LOD are equal, only the sgRNA line is visible. No instances exist in this dataset where the LOD 
or LOQ is only available for one RNA type. 
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Figure S 1.6 | Individual viral loads for invasive samples, including sgRNA predictions 
generated by the best sgRNA model. 
Each panel corresponds with one individual, indicated with text in the panel (day post infection: 
individual). Each point presents the total RNA (circle), observed sgRNA (diamond), and predicted 
sgRNA (triangle) values. All samples observed or predicted to fall below the limit of detection are 
plotted below 0 at set values for visual clarity (totRNA: -0.5, observed sgRNA: -0.75, predicted 
sgRNA: -1). When available, the limits of detection (LOD) or quantification (LOQ) for PCR 
assays are plotted as dotted lines in the assay-specific color. When both the LOD and LOQ were 
available, only the LOD is plotted. In instances where the total RNA and sgRNA assay LOD are 
equal, only the sgRNA line is visible. No instances exist in this dataset where the LOD or LOQ is 
only available for one RNA type. 
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Figure S 1.7 | Individual culture trajectories in the upper respiratory tract.  
Each panel corresponds with one individual and one non-invasive sample type, indicated in the 
top right of each panel. Only individuals with culture results for at least two days post infection 
are plotted. Culture data are plotted as squares above the yellow line at 10 log10 copies. Yellow 
squares are culture positive samples, while grey squares are culture negative. Squares outlined in 
black are correct predictions, squares with no outline are incorrect predictions. We did not generate 
predictions for the culture samples outlined in blue, as they do not have available totRNA results. 
We also plot observed total RNA values (circle) and observed sgRNA values (diamond), otherwise 
we plot predicted median sgRNA values generated by our best sgRNA model (triangle). Some 
individuals were sampled from multiple locations in the upper respiratory tract, in which case they 
are plotted as neighboring panels. All samples observed or predicted to fall below the limit of 
detection are plotted below 0 at set values for visual clarity (totRNA: 0, sgRNA: -1). When 
available, the limits of detection (LOD) or quantification (LOQ) for PCR assays are plotted as 
dotted lines in the assay-specific color. When both the LOD and LOQ were available, only the 
LOD is plotted. In instances where the total RNA and sgRNA assay LOD are equal, only the 
sgRNA line is visible. No instances exist in this dataset where the LOD or LOQ is only available 
for one RNA type. Individuals from one study cannot be included in this figure due to a data 
sharing agreement. 
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Figure S 1.8 | Individual culture trajectories in the lower respiratory tract. 
Each panel corresponds with one individual and one non-invasive sample type, indicated in the 
top right of each panel. Only individuals with culture results for at least two days post infection 
are plotted. Culture data are plotted as squares above the yellow line at 10 log10 copies. Yellow 
squares are culture positive samples, while grey squares are culture negative. Squares outlined in 
black are correct predictions, squares with no outline are incorrect predictions. We did not generate 
predictions for the culture samples outlined in blue, as they do not have available totRNA results. 
We also plot observed total RNA values (circle) and observed sgRNA values (diamond) when 
available, otherwise we plot predicted median sgRNA values generated by our best sgRNA model 
(triangle). Some individuals were sampled from multiple locations in the lower respiratory tract, 
in which case they are plotted as neighboring panels. All samples observed or predicted to fall 
below the limit of detection are plotted below 0 at set values for visual clarity (totRNA: 0, sgRNA: 
-1). When available, the limits of detection (LOD) or quantification (LOQ) for PCR assays are 
plotted as dotted lines in the assay-specific color. When both the LOD and LOQ were available, 
only the LOD is plotted. In instances where the total RNA and sgRNA assay LOD are equal, only 
the sgRNA line is visible. No instances exist in this dataset where the LOD or LOQ is only 
available for one RNA type. 



75 

 

 

Figure S 1.9 | Individual culture trajectories in the gastrointestinal and other systems. 
Each panel corresponds with one individual and one non-invasive sample type, indicated in the 
top right of each panel. Only individuals with culture results for at least two days post infection 
are plotted. Culture data are plotted as squares above the yellow line at 10 log10 copies. Yellow 
squares are culture positive samples, while grey squares are culture negative. Squares outlined in 
black are correct predictions, squares with no outline are incorrect predictions. We also plot 
observed total RNA values (circle) and observed sgRNA values (diamond) when available, 
otherwise we plot predicted median sgRNA values generated by our best sgRNA model (triangle). 
Some individuals were sampled from multiple locations, in which case they are plotted as 
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neighboring panels. All samples observed or predicted to fall below the limit of detection are 
plotted below 0 at set values for visual clarity (totRNA: 0, sgRNA: -1). When available, the limits 
of detection (LOD) or quantification (LOQ) for PCR assays are plotted as dotted lines in the assay-
specific color. When both the LOD and LOQ were available, only the LOD is plotted. In instances 
where the total RNA and sgRNA assay LOD are equal, only the sgRNA line is visible. No 
instances exist in this dataset where the LOD or LOQ is only available for one RNA type. 
Individuals from one study cannot be included in this figure due to a data sharing agreement. 
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Figure S 1.10 | Individual culture data for invasive samples. 
Each panel corresponds with one individual, indicated with text in the panel (day post infection: 
individual). Culture data are plotted as squares above the yellow line at 10 log10 copies. Yellow 
squares are culture positive samples, while grey squares are culture negative. Squares outlined in 
black are correct predictions, squares with no outline are incorrect predictions. We did not generate 
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predictions for the culture samples outlined in blue, as they do not have available totRNA results. 
We also plot the observed total RNA (circle) and observed sgRNA (diamond) values when 
available, otherwise we plot predicted median sgRNA values generated by our best sgRNA model 
(triangle). Color corresponds to the organ system from which the tissue was obtained (URT, upper 
respiratory tract; LRT, lower respiratory tract; GI & Other, gastrointestinal and other systems). All 
samples observed or predicted to fall below the limit of detection are plotted below 0 at set values 
for visual clarity (totRNA: 0, sgRNA: -1). When available, the limits of detection (LOD) or 
quantification (LOQ) for PCR assays are plotted as dotted lines in the assay-specific color. When 
both the LOD and LOQ were available, only the LOD is plotted. In instances where the total RNA 
and sgRNA assay LOD are equal, only the sgRNA line is visible. No instances exist in this dataset 
where the LOD or LOQ is only available for one RNA type. 
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Figure S 1.11 | Statistics relating PCR and culture results. 
(A) Difference between total RNA and sgRNA copy numbers when both are detectable, stratified 
by target gene predictor with the following acronyms: “T↑SG↑”: totRNA-high/sgRNA-high; 
“T↓SG↑”: totRNA-low/sgRNA-high; “T↑SG↓”: totRNA-high/sgRNA-low; “T↓SG↓”: totRNA-
high/sgRNA-low. No totRNA-high/sgRNA-high data was available for this investigation. (B) 
Total RNA copy numbers for all sgRNA negative samples, stratified by target gene as in (A). (C) 
Pearson correlation coefficients between total RNA and sgRNA copy numbers when both are 
detectable, for all individual-sample trajectories with at least three sampling days where both were 
positive. (D) Comparison of the timing of the first negative results from total RNA and sgRNA 
assays for each available individual-sample trajectory (dpi: day post infection). (E) Total RNA 
copy numbers (when detectable) for all culture positive samples, stratified by culture assay type. 
(F) Total RNA copy numbers (when detectable) for all culture negative samples, stratified by 
culture assay type as in (E). (G) Comparison of the timing of the first negative results from total 
RNA and culture assays for each available individual-sample trajectory. (H) Comparison of the 
timing of the first positive results from total RNA and culture assays for each individual-sample 
trajectory. For panels (A), (B), (C), (E), and (F), the purple dashed line indicates the median for 
the full distribution (i.e., not stratified by assay or target gene). For panels (D), (G), and (H), the 
size of each circle indicates the number of individuals with the indicated observation. Individuals 
in the ‘None’ column were never negative (D, G) or positive (H) for total RNA. Individuals that 
were never sgRNA negative (D), culture negative (G), or culture positive (H) are not plotted. 
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Figure S 1.12 | Results from the best sgRNA model with an additional predictor for lab group. 
(A) The predicted chances of sgRNA detection for three key totRNA quantities (3 log10, blue; 5 
log10, salmon; 7 log10, red), across the eight available lab groups and for the standard cofactor 
set. The article(s) included in each group are provided in S8 Table. Each point is one out of 200 
samples generated for each lab group, with transparency to show the density of points. (B) As in 
Fig 3B, with additional predictions from the model including a lab effect (‘Lab’, grey). (C and D) 
As in Figure 1.3C and 1.3D, except showing the results from the model including a lab effect. (E) 
The predicted quantities of sgRNA for a sample with 5 log10 totRNA copies, across the eight 
available lab groups and for the standard cofactor set. (F) As in Figure 1.3F, with additional 
predictions from the model including a lab effect (‘Lab’, grey). (G and H) As in Figure 1.3G and 
1.3H, except showing the results from the model including a lab effect. In panels C, D, G and H, 
the predictions are not specific to a particular lab group (i.e., we set the lab effect term to zero to 
extract general patterns across all labs).  
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Figure S 1.13 | Sensitivity analyses comparing informative (blue) and non-informative (red) 
priors. 
(A) Each line presents an expected model fit generated by sampling the indicated prior 
distributions. Informative priors are outlined in the Methods and Supplementary Methods. All 
parameters were given a N(0,1) prior for all non-informative investigations. Informative priors 
much better represent a priori understanding of the relationships between total RNA copy numbers 
and both sgRNA and culture outcomes. (B) Each panel compares the final parameter estimates 
obtained for the corresponding best model using the different prior types (red: non-informative; 
blue: informative), where each row is a distinct parameter. Acronyms are as described in Figures 
1.3, 1.4, and 1.5. Note that in many instances parameter estimates are almost perfectly overlapping, 
so only the non-informative (red) priors are visible.  
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Figure S 1.14 | Error analysis for the best sgRNA model. 
(A) Individual-specific sgRNA trajectories, where each row presents one individual. These are 
stratified by whether the model misclassifies any samples for that individual (“Some errors”) or 
whether the model makes no misclassifications (“No errors”). In both (A) and (B), yellow circles 
indicate positive samples and grey indicates negative samples. Circles with a black outline 
correspond with correctly classified samples, while no outline indicates incorrectly classified 
samples. (B) Scatterplot of all samples with sgRNA results, stratified by the elements of a 
confusion matrix and colored as in (A). The x-axis tracks the day post infection and the y-axis 
plots log10 total RNA copy numbers. Samples in the grey shaded region along the bottom present 
all samples where total RNA was undetectable. (C) Histograms of all samples grouped by the 
elements of a confusion matrix, where log10 total RNA copy numbers per sample is plotted on the 



84 

 

y-axis. Bins located in the grey shaded region along the bottom (labelled “<LOD”) include all 
totRNA-negative samples. 
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Figure S 1.15 | Additional performance comparisons between the simple and best culture 
models. 
(A) Distribution of the differences between the predicted probabilities of both models for all 
totRNA-positive samples, stratified by whether the sample was culture positive (yellow) or 
negative (grey). Samples on the right side of the dashed blue line were predicted with higher 
confidence by the best model, while those on the left side were predicted with higher confidence 
by the simple model. (B) Distribution of median model-predicted chances of positive culture for 
intermediate totRNA-positive samples (6-8 log10 copies), stratified by model type and observed 
outcomes. Samples right of the dashed vertical line are correct predictions. The colored text gives 
the percent of samples that are correctly classified by each model. (C) As in panel A, except only 
for intermediate totRNA-positive samples (6-8 log10 copies). 
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Figure S 1.16 | Results from the best culture model with an additional predictor for lab group. 
(A) The predicted chances of culture positivity for three key totRNA quantities (3 log10, blue; 7 
log10, salmon; 11 log10, red), across the ten available lab groups and for the standard cofactor set. 
The article(s) included in each group are listed in Table S1.8. Each point is one out of 200 samples 
generated for each lab group, with transparency to show the density of points. (B) As in Figure 
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1.5B, with additional predictions from the model including a lab effect (‘Lab’, grey). (C and D) 
As in Figure 1.5C and 1.5D, except showing the results from the model including a lab effect. In 
panels C and D, the predictions are not specific to a particular lab group (i.e., we set the lab effect 
term to zero to extract general patterns across all labs). 
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Figure S 1.17 | Viral load and culture trajectories for individuals with data blip (A) or 
prediction blip (B) error types. 
Panel-specific errors are indicated with red outlines. All other samples with prediction errors have 
no outline. Correct predictions are outlined in black. Yellow squares indicate known culture 
positive samples, while grey squares indicate known culture negative samples. Text in the upper 
right corner of each panel indicates the ID name and sample type of the individual from whom the 
data was derived. All totRNA-negative samples are plotted below the grey dashed line at zero. 
Note that individual NN_#5412 has an additional (true negative) sample available on a later day 
post infection, which is not shown for visual clarity. Six trajectories from one study cannot be 
included in this figure due to a data sharing agreement.  
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Figure S 1.18 | Isolation end times predicted by the simple (A) and best (B) culture models. 
Each row is a unique individual, and each panel displays all individuals included in the isolation 
analyses. The results of all samples after every individual’s first positive test (PCR or culture) are 
displayed, where culture positive samples are yellow and negative samples are grey. Each 
individual’s last culture positive and their subsequent culture negative times are plotted with more 
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intensity for better visualization. For each individual, their isolation end time is shown with 
colored, filled diamonds (i.e., the time of their second consecutive predicted culture negative test). 
When isolation end time could not be determined by the model (i.e., the model did not predict a 
second consecutive negative), we conservatively set that individual’s end time to day 10. Each 
individual’s first predicted negative is shown by an empty diamond, and the true (observed) time 
of their second consecutive negative is shown with a small red point. With yellow lines, we show 
the time range that we consider each individual to be infectious, based on the data, which ranges 
from their first total RNA positive day up to the midpoint between their first culture negative test 
after their last observed culture positive test. For individuals with no observed negative after their 
last positive, we conservatively assumed their next observed negative to be day 10. With dashed 
red lines, we also indicate which individuals show evidence of a rebound infection (i.e., the 
individuals with at least one culture negative occurring between two culture positives). Finally, we 
use colored vertical lines to display the days on which the five- and ten-day protocols would release 
individuals from isolation. 
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Figure S 1.19 | Days between consecutive tests relative to the number of days since the first 
positive test. 
The size of the point shows the number of samples at the given coordinate. The marginal 
histograms show the distribution of points along each individual axis. 
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Article (ref.) N Species Sex Age 
class 

Exposure 
route 

Exposure 
dose 

Viral 
isolate 

Sample 
type 

Sample 
time 

Sample 
location 

PCR target gene Culture 
cell line totRNA sgRNA 

Baum et al. 2020 43 (4) RM F, M U IT, IN 6.02 USA/WA1/2020 NI 1, 2, 3 URT, Other N E (3) -- 
48 (6) RM F, M A IT, IN 5.04 USA/WA1/2020 NI 1, 2 URT, LRT N E (3) -- 

Chandrashekar et al. 2020 
12 (3) RM U A IT, IN 6.04 USA/WA1/2020 NI 1, 2 URT N E (3) -- 
12 (3) RM U A IT, IN 5.04 USA/WA1/2020 NI 1, 2 URT N E (3) -- 
12 (3) RM U A IT, IN 4.04 USA/WA1/2020 NI 1, 2 URT N E (3) -- 

Corbett et al. 2020 50 (8) RM F, M J, A IT, IN 5.88 USA/WA1/2020 NI 1, 2 URT, LRT N E (3) -- 
Cross et al. 2020 124 (6) AGM F A IN 6.45 ITA/INMI1/2020 NI 2, 3 URT, LRT, GI, Other N -- Vero E6 
Dagotto et al. 2021 16 (4) RM U A IT, IN 4.04 USA/WA1/2020 NI 1, 2 LRT N, E E (3, 4) -- 
Deng et al. 2020 7 (1) RM M J IT 5.85* CHN/WH-09/2020 I 3 LRT E -- Vero E6† 

7 (1) RM M J OC 5.85* CHN/WH-09/2020 I 3 LRT E -- Vero E6† 
Gabitzsch et al. 2021 24 (2) RM F, M J IT, IN 5.85* USA/WA1/2020 NI 1, 2 URT, LRT N E (3) -- 
Ishigaki et al. 2021 144 (3) CM F, M A IT, IN, OR, OC 6.19* JPN/WK-521/2020 NI 1, 2, 3 URT, LRT, GI, Other N -- Vero E6† 
Jiao et al. 2021 16 (3) RM M U IN 7 CHN/U I 3 GI N -- Vero E6† 

14 (3) RM M U IG 7 CHN/U I 1, 2, 3 GI N -- Vero E6† 

Johnston et al. 2020 
60 (4) RM F, M A AE 4.46 USA/WA1/2020 NI 2, 3 URT, GI N -- Vero 76 
45 (3) AGM F, M A AE 4.58 USA/WA1/2020 NI 2, 3 URT, GI N -- Vero 76 
60 (4) CM F, M J, A AE 4.69 USA/WA1/2020 NI 2, 3 URT, GI N -- Vero 76 

Jones et al. 2021 44 (4) RM F A IT, IN 5.04 USA/WA1/2020 I, NI 1, 2, 3 URT, LRT N E (3) -- 
Kobiyama et al. 2021 26 (2) CM F A IT, IN, OR, OC 7.3 U/U NI 1, 2 URT, LRT, Other N -- Vero E6-

SS2† Li et al. 2021 148 (16) CM F, M J, A IT, IN 5 USA/WA1/2020 NI 2 URT, LRT E E, N (4, 2) -- 
Munster et al. 2020 53 (8) RM F, M J, A IT, IN, OR, OC 6.26* USA/WA1/2020 I, NI 1, 2, 3 LRT, GI, Other E ORF7 (4) Vero E6 
Nagata et al. 2021 165 (6) CM F A IT, IN, OC 7.42* JPN/WK-521/2020 I, NI 1, 2, 3 URT, LRT, GI, Other N N (1) Vero E6-

SS2† Patel et al. 2021 65 (5) RM F, M J IT, IN 4.04 USA/WA1/2020 NI 1, 2 URT, LRT N E (3) -- 
Salguero et al. 2021 63 (6) RM F, M J IT, IN 6.7 AUS/VIC01/2020 I, NI 1, 2, 3 URT, LRT, Other N E (3) Vero E6 

58 (6) CM F, M J IT, IN 6.7 AUS/VIC01/2020 I, NI 1, 2, 3 URT, LRT, Other N E (3) Vero E6 
Shan et al. 2020  108 (6) RM F, M A IT 6.69* CHN/WIV04/2019 NI 3 URT, GI S -- Vero E6† 
Singh et al. 2020  108 (16) RM F, M G, J IT, IN, OC 6.02 USA/WA1/2020 I 3 LRT N E (3) Vero E6 
Speranza et al. 2020 194 (10) AGM F, M A IT, IN, OR, OC 6.26* USA/WA1/2020 I, NI 1, 2, 3 URT, LRT, GI E E (4) Vero E6 
van Doremalen et al. 2020 72 (6) RM U J IT, IN, OR, OC 6.26* USA/WA1/2020 I, NI 1, 2, 3 URT, LRT, GI, Other -- E Vero E6† 
Williamson et al. 2020  135 (6) RM F, M J IT, IN, OR, OC 6.26* USA/WA1/2020 I, NI 1, 2, 3 URT, LRT, GI E -- Vero E6† 
Woolsey et al. 2020 132 (6) AGM F, M A IT, IN 5.66 ITA/INMI1/2020 NI 2, 3 URT, LRT, GI, Other N -- Vero E6 
Yu et al. 2020 102 (10) RM U A IT, IN 4.04 U/U NI 1, 2 URT, LRT N E (3) -- 
 
Table S 1.1 | Summary of articles included in the dataset. 
Multiple rows for an individual article are included when the study involved multiple species and/or multiple exposure doses. In all 
columns, U indicates the detail is unknown. Sample sizes (N) are presented in the following format: number of available datapoints 
(number of individuals). Species abbreviations are as follows: RM, rhesus macaque; CM, cynomolgus macaque; AGM, African green 
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monkey. Age class presents the standardized assignments according to our protocol (Supplementary Methods), and the abbreviations 
are: J, juvenile; A, adult; G, geriatric. Individuals inoculated via multiple routes are indicated by exposure routes joined by commas, 
where the abbreviations are: AE, aerosol; IT, intratracheal; IN, intranasal; IG, intragastric; OC, ocular; OR, oral. Exposure dose is 
presented as log10 plaque forming units, and an adjoining * indicates the dose was originally reported as TCID50, so those values were 
converted using the standard method described in the Supplementary Methods. NI indicates non-invasive sample types (i.e., swabs, 
biofluids, BAL), while I indicates invasive tissue samples obtained at necropsy. Sample location distinguishes between the following 
systems: URT, upper respiratory tract; LRT, lower respiratory tract; GI, gastrointestinal tract; and Other, all other locations. Sample 
time presents the days post infection with available samples according to our DPI predictor, where 1: 1 dpi, inoculated tissues, 2: 2+ 
dpi, inoculated tissues, 3: any dpi, non-inoculated tissue (further categorization information is in Table S1.9). PCR target genes are 
stratified by total RNA (totRNA) and sgRNA. The level of the target gene predictor for the sgRNA model follows the sgRNA gene in 
parentheses: (1) totRNA-high/sgRNA-high, (2) totRNA-low/sgRNA-high, (3) totRNA-high/sgRNA-low, and (4) totRNA-low/sgRNA-
low. The cell lines used for culture are indicated when available, with SS2 as an abbreviation for TMPRSS2. An adjoining † indicates 
the use of a TCID50 assay, while no symbol indicates a plaque assay. 
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  Cross-validation PSIS-LOO Approximation Prediction 

Model   Predictors 
ELPD 

Difference 
(SE) 

ELPD 
(SE) 

ELPD 
Difference 

(SE) 

ELPD 
(SE) MCC 

% correctly 
predicted 

train test 

l1  -73.31 (10.63) -311.56 (17.36) -71.13 (10.76) -311.33 (17.29) 0.75 87.75 87.69 
l2.1 DOSE -60.78 (10.02) -299.03 (19.7) -58.16 (10.15) -298.36 (19.46) 0.78 89.35 89.28 
l2.2 ST -58.37 (9.44) -296.62 (18.51) -56.4 (9.65) -296.6 (18.45) 0.79 89.31 89.45 
l2.3 SP -45.45 (9.79) -283.71 (17.24) -43.66 (9.94) -283.86 (17.26) 0.79 89.93 89.78 
l2.4 AGE -71.06 (10.53) -309.31 (17.43) -69.38 (10.65) -309.58 (17.39) 0.76 88.63 88.27 
l2.5 SEX -72.66 (10.58) -310.91 (17.57) -73.37 (10.75) -313.57 (17.64) 0.75 87.89 87.52 
l2.6 DPI -67.27 (10.05) -305.52 (18.06) -64.8 (10.2) -305 (17.98) 0.76 88.28 88.19 
l2.7 TG -40.19 (9.13) -278.44 (16.42) -37.97 (9.2) -278.17 (16.39) 0.79 89.61 89.61 
l3.1 TG + DOSE -10.98 (4.22) -249.23 (17.36) -8.53 (4.25) -248.73 (17.25) 0.81 91.02 90.79 
l3.2 TG + ST -32.17 (7.81) -270.42 (17.23) -30.17 (7.96) -270.37 (17.15) 0.8 90.27 89.95 
l3.3 TG + SP -24.62 (7.97) -262.87 (16.06) -22.69 (8.03) -262.89 (16.07) 0.79 89.86 89.7 
l3.4 TG + AGE -33.67 (8.07) -271.92 (16.34) -32.3 (8.09) -272.5 (16.33) 0.78 89.61 89.2 
l3.5 TG + SEX -43.33 (9.22) -281.58 (16.7) -43.32 (9.48) -283.52 (16.88) 0.78 89.87 88.86 
l3.6 TG + DPI -37.05 (8.46) -275.3 (16.91) -34.24 (8.52) -274.44 (16.84) 0.79 89.86 89.7 
l4.1 TG + DOSE + ST -9.37 (3.78) -247.62 (17.99) -7.31 (3.84) -247.51 (17.84) 0.82 91.4 90.95 
l4.2 TG + DOSE + SP -5.98 (3.58) -244.23 (17.2) -4.19 (3.61) -244.39 (17.16) 0.82 91.41 91.12 
l4.3 TG + DOSE + AGE -10.94 (3.87) -249.19 (17.45) -9.11 (3.9) -249.31 (17.38) 0.81 91.1 90.79 
l4.4 TG + DOSE + SEX -12.48 (4.26) -250.73 (17.42) -10.3 (4.24) -250.5 (17.35) 0.81 90.91 90.7 
l4.5 TG + DOSE + DPI -12.29 (4.2) -250.54 (17.7) -9.73 (4.21) -249.93 (17.58) 0.82 91.09 91.04 
l5.1 TG + DOSE + SP + ST -4.58 (3) -242.83 (17.74) -3.05 (3.08) -243.25 (17.64) 0.82 91.3 91.12 
l5.2 TG + DOSE + SP + AGE -1.52 (2.02) -239.77 (17.25) -1.15 (1.95) -241.35 (17.28) 0.83 91.62 91.46 
l5.3 TG + DOSE + SP + SEX -7.43 (3.62) -245.68 (17.28) -5.92 (3.62) -246.12 (17.24) 0.82 91.36 91.21 
l5.4 TG + DOSE + SP + DPI -6.66 (3.42) -244.91 (17.51) -4.74 (3.42) -244.94 (17.41) 0.82 91.14 91.12 
l6.1 TG + DOSE + SP + AGE + ST 0 (0) -238.25 (17.79) 0 (0) -240.2 (17.78) 0.83 91.69 91.46 
l6.2 TG + DOSE + SP + AGE + SEX -2.89 (2.02) -241.14 (17.31) -2.32 (1.94) -242.52 (17.36) 0.83 91.69 91.46 
l6.3 TG + DOSE + SP + AGE + DPI -1.51 (1.88) -239.76 (17.61) -1.86 (1.83) -242.05 (17.71) 0.82 91.35 91.04 
l7.1 TG + DOSE + SP + AGE + ST + SEX -1.41 (0.56) -239.66 (17.87) -1.28 (0.41) -241.48 (17.85) 0.83 91.71 91.46 
l7.2 TG + DOSE + SP + AGE + ST + DPI -1.23 (0.99) -239.48 (17.96) -1.7 (1) -241.9 (17.98) 0.82 91.62 91.21 
l8.1 TG + DOSE + SP + AGE + ST + DPI + SEX -2.77 (1.25) -241.02 (18.06) -2.87 (1.13) -243.07 (18.07) 0.82 91.68 91.12 
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Table S 1.2 | Extended sgRNA logistic model performance comparisons. 
Models are ordered by increasing number of predictors, with the simplest (l1), best (l4.2), and full (l8.1) models noted in bold. We report 
expected log pointwise predictive density (ELPD) generated by 10-fold cross validation (cross-validation columns), where larger ELPD 
indicates better performance. ELPD difference indicates the difference between ELPDs of the given model and the model with the 
largest ELPD (in this case model l6.1, though this is not our ‘best model’). The PSIS-LOO approximation columns present statistics 
generated by running Pareto-Smoothed Importance Sampling approximate leave-one-out cross validation, including ELPD and ELPD 
difference as above. The prediction columns indicate the percent of samples (stratified by training and test sets) for which posterior 
predictions generated by 10-fold cross validation correctly classified them as below or above the limit of detection (i.e., where the per-
sample posterior predictive distributions exhibited at least a probability of 0.5 for the true, observed classification). MCC is the Matthews 
correlation coefficient. Note that all models included total RNA as a predictor, even though it is not specified in the predictor column. 
Standard error (SE) is shown in parentheses following all relevant statistics. 
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  Cross-validation PSIS-LOO Approximation Prediction 

Model   Predictors 
ELPD 

Difference 
(SE) 

ELPD 
(SE) 

ELPD 
Difference 

(SE) 

ELPD 
(SE) 

MAE 
(scaled) 

% within 
50% PI 

%within 
95% PI 

train test train test train test 
f1  -186.24 (17.05) -1017.32 (29.41) -196.49 (21.07) -1017.12 (29.35) 0.58 (0.7) 0.58 (0.7) 47.5 48 94.9 94.8 
f2.1 DOSE -114.04 (11.7) -945.12 (32.24) -111.91 (15.27) -932.54 (30.49) 0.6 (0.65) 0.6 (0.65) 46.9 46.6 95.9 95.6 
f2.2 ST -98.38 (10.49) -929.46 (32.38) -95.87 (13.7) -916.5 (30.74) 0.56 (0.63) 0.56 (0.63) 49.9 50.3 96.5 96 
f2.3 SP -109.47 (11.8) -940.55 (32.74) -106.94 (15.43) -927.56 (31.08) 0.56 (0.61) 0.57 (0.62) 50.7 49.4 96.2 95.8 
f2.4 AGE -107.02 (12.6) -938.1 (32.65) -104.67 (16.34) -925.29 (30.91) 0.57 (0.62) 0.57 (0.64) 50.7 49.6 96.9 96.5 
f2.5 SEX -120.9 (12.58) -951.98 (32.98) -129.78 (17.11) -950.41 (32.6) 0.56 (0.62) 0.58 (0.64) 50.6 48.5 96.2 95.8 
f2.6 DPI -82.23 (9.7) -913.31 (31.99) -79.37 (12.66) -900 (30.31) 0.56 (0.65) 0.55 (0.64) 47.9 47.5 96.1 96 
f2.7 TG -94.6 (11.02) -925.68 (33.96) -93.29 (14.53) -913.91 (32.33) 0.55 (0.61) 0.57 (0.63) 50.7 50.4 97.8 97.7 
f3.1 DPI + DOSE -83.66 (9.65) -914.74 (32.05) -81.44 (12.63) -902.06 (30.39) 0.56 (0.65) 0.56 (0.65) 48 48.5 96.4 96 
f3.2 DPI + ST -82.78 (9.59) -913.86 (32.07) -80.27 (12.56) -900.9 (30.46) 0.55 (0.65) 0.55 (0.65) 47.6 47.8 96.1 96 
f3.3 DPI + SP -78.12 (9.53) -909.2 (32.18) -76.32 (12.54) -896.95 (30.58) 0.55 (0.65) 0.55 (0.65) 48.1 48.5 96 95.8 
f3.4 DPI + AGE -74.78 (10.35) -905.86 (32.11) -72.99 (13.5) -893.62 (30.54) 0.54 (0.64) 0.54 (0.65) 49.6 48.9 96.3 96.2 
f3.5 DPI + SEX -87.71 (10.23) -918.79 (32.22) -91.38 (13.37) -912 (30.95) 0.54 (0.64) 0.57 (0.67) 48.9 46.6 95.9 95.5 
f3.6 DPI + TG -48.36 (8.3) -879.44 (34.01) -46.14 (10.88) -866.77 (32.38) 0.51 (0.61) 0.52 (0.6) 50.8 51 97.7 97.7 
f4.1 DPI + TG + DOSE -40.6 (8.79) -871.68 (35.31) -38.35 (11.32) -858.98 (33.91) 0.49 (0.54) 0.49 (0.53) 52.1 52.2 96.6 96.7 
f4.2 DPI + TG + ST -44.28 (7.39) -875.36 (34.38) -42.03 (9.66) -862.65 (32.86) 0.51 (0.6) 0.51 (0.59) 51.3 51.7 97.7 97.6 
f4.3 DPI + TG + SP -2.82 (3.66) -833.9 (34.41) -1.33 (4.81) -821.95 (33.02) 0.46 (0.57) 0.47 (0.57) 53.1 52.7 96.5 97 
f4.4 DPI + TG + AGE -36.03 (7.45) -867.11 (33.05) -34.98 (9.47) -855.6 (31.27) 0.48 (0.56) 0.49 (0.59) 53.8 52.9 97 96.7 
f4.5 DPI + TG + SEX -52.59 (8.54) -883.67 (34.03) -53.68 (11.25) -874.3 (32.66) 0.5 (0.6) 0.52 (0.61) 51.6 50.8 97.6 97.4 
f5.1 DPI + TG + SP + DOSE 0 (0) -831.08 (34.5) 0 (0) -820.63 (33.24) 0.43 (0.53) 0.44 (0.54) 56 55 97 96.9 
f5.2 DPI + TG + SP + ST -3.41 (3.65) -834.49 (34.35) -1.83 (4.82) -822.45 (32.99) 0.46 (0.57) 0.48 (0.58) 52.8 52.7 96.4 96.7 
f5.3 DPI + TG + SP + AGE -4.88 (3.34) -835.96 (34.24) -4.13 (4.51) -824.76 (32.79) 0.46 (0.57) 0.48 (0.58) 53.5 53.1 96.6 96.7 
f5.4 DPI + TG + SP + SEX -4.64 (3.6) -835.72 (34.36) -7.22 (4.65) -827.85 (33.13) 0.45 (0.57) 0.48 (0.59) 53.4 52.4 96.5 96 
f6.1 DPI + TG + SP + DOSE + ST -1.11 (0.32) -832.19 (34.53) -0.68 (0.31) -821.3 (33.14) 0.43 (0.53) 0.44 (0.54) 56 54.5 97 96.7 
f6.2 DPI + TG + SP + DOSE + AGE -1.51 (1.17) -832.59 (34.4) -1.01 (1.9) -821.64 (32.86) 0.43 (0.53) 0.43 (0.53) 56.5 55.3 97 96.7 
f6.3 DPI + TG + SP + DOSE + SEX -1.5 (0.69) -832.58 (34.48) -5.76 (0.85) -826.39 (33.37) 0.43 (0.53) 0.44 (0.54) 56.6 54.5 96.9 96.7 
f7.1 DPI + TG + SP + DOSE + ST + AGE -2.64 (1.22) -833.72 (34.4) -2.56 (1.85) -823.19 (33.01) 0.43 (0.52) 0.43 (0.53) 56.4 55.1 97 96.7 
f7.2 DPI + TG + SP + DOSE + ST + SEX -2.72 (0.76) -833.8 (34.54) -6.76 (0.88) -827.39 (33.4) 0.43 (0.53) 0.44 (0.54) 56.4 54.1 96.9 96.9 

f8.1 DPI + TG + SP + DOSE + ST +  
AGE + SEX -4.44 (2.39) -835.52 (34.2) -9.76 (4.12) -830.38 (33.19) 0.43 (0.53) 0.45 (0.56) 57.2 54.5 96.9 96.7 

 
Table S 1.3 | Extended sgRNA linear model performance comparisons.  
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Models are ordered by increasing number of predictors, with the simplest (f1), best (f5.1), and full (f8.1) models noted in bold. We 
report expected log pointwise predictive density (ELPD) generated by 10-fold cross validation (cross-validation columns), where larger 
ELPD indicates better performance. The top logistic model was run in tandem with all tested linear components, so the ELPD reported 
here reflects the sum of the ELPD for the top logistic and the considered linear components. ELPD difference indicates the difference 
between ELPDs of the given model and the model with the largest ELPD (in this case model l5.1, the ‘best model’). The PSIS-LOO 
approximation columns present statistics generated by running Pareto-Smoothed Importance Sampling approximate leave-one-out cross 
validation, including ELPD and ELPD difference. Standard error (SE) is shown in parentheses following all relevant statistics. We also 
used multiple metrics to assess model predictions, which are all stratified by performance on training versus test data sets and were 
generated by 10-fold cross validation. MAE is the median difference between the observed value and the posterior predictive median 
(i.e., median absolute error around the median) for all samples with sgRNA above the LOD, and this metric was also scaled by one 
standard deviation (Scaled). ‘% within 50% PI’ and ‘% within 95% PI’ columns indicate the percent of sgRNA positive samples where 
the true, observed value fell within the sample-specific 50% and 95% prediction intervals, respectively. Note that all models included 
total RNA as a predictor, even though it is not specified in the predictor column. 
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  Cross-validation PSIS-LOO Approximation Prediction 
Model     Predictors 

ELPD 
Difference 

(SE) 

ELPD 
(SE) 

ELPD 
Difference 

(SE) 

ELPD 
(SE) MCC 

% correctly 
predicted 

train test 
c1 T -57.32 (14.47) -434.28 (12.5) -44.26 (8.66) -434.2 (12.56) 0.48 81.9 81.7 
c2.1 T + CELL -56.61 (14.45) -433.58 (12.83) -42.96 (8.91) -432.9 (12.88) 0.51 82.6 82.5 
c2.2 T + ASSAY -45 (12.78) -421.96 (12.88) -32.05 (7.62) -421.99 (12.95) 0.53 83.3 83.1 
c2.3 T + DOSE -58.54 (14.58) -435.5 (12.63) -45.22 (8.68) -435.16 (12.65) 0.48 81.8 81.7 
c2.4 T + ST -56.44 (13.99) -433.41 (12.34) -42.62 (8.53) -432.56 (12.38) 0.45 81 80.5 
c2.5 T + SP -50.39 (13.4) -427.35 (12.63) -37.65 (8.02) -427.59 (12.69) 0.47 81.2 81 
c2.6 T + AGE -43.81 (12.94) -420.77 (13.36) -44.83 (8.31) -434.77 (14.43) 0.48 81.5 81.6 
c2.7 T + SEX -53.21 (13.65) -430.17 (12.63) -39.79 (8.2) -429.73 (12.69) 0.48 81.6 81.7 
c2.8 T + DPI -38.17 (12.08) -415.14 (13.29) -25.16 (6.99) -415.1 (13.32) 0.49 82.3 82.1 
c2.9 T + TG -54.07 (14.1) -431.03 (13.27) -41.53 (8.26) -431.47 (13.32) 0.52 83 82.9 
c3.1 T + DPI + CELL -39.93 (11.97) -416.89 (13.43) -26.62 (6.94) -416.56 (13.48) 0.49 82.3 81.9 
c3.2 T + DPI + ASSAY -34.81 (11.29) -411.77 (13.46) -21.83 (6.45) -411.77 (13.5) 0.53 83.2 83.3 
c3.3 T + DPI + DOSE -39.4 (12.33) -416.36 (13.58) -26.1 (6.98) -416.04 (13.58) 0.49 82.1 82 
c3.4 T + DPI + ST -36.89 (11.47) -413.85 (13.25) -23.7 (6.75) -413.65 (13.3) 0.48 82 81.7 
c3.5 T + DPI + SP -30.04 (10.37) -407 (13.34) -17.39 (5.84) -407.33 (13.41) 0.52 82.9 82.7 
c3.6 T + DPI + AGE -26.08 (9.99) -403.04 (13.99) -26.6 (6.39) -416.54 (15.01) 0.5 82.2 82.3 
c3.7 T + DPI + SEX -33.16 (10.83) -410.12 (13.38) -19.74 (6.24) -409.68 (13.4) 0.5 82.3 82.1 
c3.8 T + DPI + TG -37.17 (11.6) -414.13 (13.88) -24.37 (6.52) -414.32 (13.93) 0.51 82.9 82.8 
c4.1 T + DPI + AGE + CELL -27.26 (9.94) -404.22 (14.09) -28.6 (6.74) -418.54 (15.27) 0.5 82.4 82.2 
c4.2 T + DPI + AGE + ASSAY -20.97 (8.63) -397.93 (14.24) -23.2 (5.8) -413.14 (15.44) 0.54 84.1 83.7 
c4.3 T + DPI + AGE + DOSE -27.09 (10.2) -404.05 (14.18) -27.87 (6.44) -417.81 (15.24) 0.5 82.4 82.4 
c4.4 T + DPI + AGE + ST -27.07 (10.02) -404.03 (14.04) -27.71 (6.41) -417.65 (15.07) 0.5 82.2 82.3 
c4.5 T + DPI + AGE + SP -20.32 (8.28) -397.28 (14.21) -19.06 (5.05) -409 (15.05) 0.5 82.9 82.3 
c4.6 T + DPI + AGE + SEX -23.74 (9.1) -400.7 (14.11) -21.94 (5.56) -411.88 (14.92) 0.5 82.9 82.3 
c4.7 T + DPI + AGE + TG -19.42 (7.68) -396.38 (14.66) -29.38 (6.66) -419.32 (16.85) 0.54 83.9 83.8 
c5.1 T + DPI + AGE + TG + CELL -20.13 (7.58) -397.09 (14.63) -32.11 (7.53) -422.05 (17.21) 0.54 84.3 83.6 
c5.2 T + DPI + AGE + TG + ASSAY -17.58 (7.13) -394.54 (14.82) -24.06 (5.78) -414 (16.55) 0.56 84.5 84.5 
c5.3 T + DPI + AGE + TG + DOSE -20.39 (7.9) -397.35 (14.85) -30.78 (6.8) -420.73 (17.13) 0.55 83.9 84 
c5.4 T + DPI + AGE + TG + ST -20.11 (7.52) -397.07 (14.77) -28.8 (6.36) -418.74 (16.79) 0.54 83.9 83.7 
c5.5 T + DPI + AGE + TG + SP -18.93 (7.2) -395.89 (14.71) -25.99 (5.7) -415.93 (16.5) 0.56 84 84.2 
c5.6 T + DPI + AGE + TG + SEX -18.29 (6.87) -395.25 (14.79) -25.23 (5.62) -415.17 (16.56) 0.55 84.1 84.1 
c6.1 T + DPI + AGE + TG + ASSAY + CELL -19.07 (7.23) -396.03 (14.83) -27.82 (6.48) -417.76 (16.89) 0.55 84.8 84.1 
c6.2 T + DPI + AGE + TG + ASSAY + DOSE -16.79 (7.13) -393.75 (15.15) -23.08 (5.5) -413.02 (16.85) 0.54 84.3 83.8 
c6.3 T + DPI + AGE + TG + ASSAY + ST -18.54 (7.11) -395.5 (14.9) -24.69 (5.76) -414.63 (16.6) 0.56 84.6 84.2 
c6.4 T + DPI + AGE + TG + ASSAY + SP -7.88 (5.11) -384.84 (14.74) -5.17 (2.87) -395.11 (15.4) 0.57 84.9 84.6 
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c6.5 T + DPI + AGE + TG + ASSAY + SEX -16.07 (6.08) -393.03 (14.93) -19.51 (4.6) -409.45 (16.28) 0.55 84.4 84.1 
c7.1 T + DPI + AGE + TG + ASSAY + SP + CELL -9.5 (5.15) -386.46 (14.69) -8.23 (3.39) -398.18 (15.49) 0.56 85 84.3 
c7.2 T + DPI + AGE + TG + ASSAY + SP + DOSE -5.18 (4.83) -382.14 (15.06) -2.2 (1.65) -392.14 (15.68) 0.58 85.1 85 
c7.3 T + DPI + AGE + TG + ASSAY + SP + ST -8.26 (5.12) -385.22 (14.85) -4.88 (2.83) -394.82 (15.43) 0.56 84.9 84.3 
c7.4 T + DPI + AGE + TG + ASSAY + SP + SEX -5.72 (3.81) -382.68 (14.86) -0.93 (1.58) -390.87 (15.35) 0.57 85.3 84.7 
c8.1 T + DPI + AGE + TG + ASSAY + SP + DOSE + CELL -1.62 (3.25) -378.59 (15.12) -4.38 (4.11) -394.32 (16.45) 0.57 85.4 84.7 
c8.2 T + DPI + AGE + TG + ASSAY + SP + DOSE + ST -5.77 (4.88) -382.73 (15.14) -1.98 (1.62) -391.93 (15.74) 0.58 85.2 85 
c8.3 T + DPI + AGE + TG + ASSAY + SP + DOSE + SEX -4.57 (4.14) -381.54 (15.14) 0 (0) -389.94 (15.63) 0.57 85.1 84.8 
c9.1 T + DPI + AGE + TG + ASSAY + SP + DOSE + CELL + ST -2.33 (3.3) -379.29 (15.2) -4.74 (4.05) -394.69 (16.51) 0.58 85.5 84.9 
c9.2 T + DPI + AGE + TG + ASSAY + SP + DOSE + CELL + SEX 0 (0) -376.96 (15.2) -0.76 (3.27) -390.7 (16.31) 0.57 85.8 84.6 

c10.1 T + DPI + AGE + TG + ASSAY + SP + DOSE + CELL + SEX + 
ST -0.87 (0.81) -377.83 (15.28) -1.67 (3.29) -391.61 (16.39) 0.57 85.8 84.7 

 
Table S 1.4 | Extended culture model performance comparisons with totRNA as the primary predictor.  
Models are ordered by increasing number of predictors, with the simplest (c1), best (c8.1), and full (c10.1) models noted in bold. We 
report expected log pointwise predictive density (ELPD) generated by 10-fold cross validation (cross-validation columns), where larger 
ELPD indicates better performance. ELPD difference indicates the difference between ELPDs of the given model and the model with 
the largest ELPD (in this case model l9.2, though this is not our ‘best model’). The PSIS-LOO approximation columns present statistics 
generated by running Pareto-Smoothed Importance Sampling approximate leave-one-out cross validation, including ELPD and ELPD 
difference. The prediction column indicates the percent of samples (stratified by training and test sets) for which posterior predictions 
generated by 10-fold cross validation correctly classified them as below or above the limit of detection (i.e., where the per-sample 
posterior predictive distributions exhibited at least a probability of 0.5 for the true, observed classification). MCC is the Matthews 
correlation coefficient. Standard error (SE) is shown in parentheses following all relevant statistics. 
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  Cross-validation PSIS-LOO Approximation Prediction 
Model     Predictors 

ELPD 
Difference 

(SE) 

ELPD 
(SE) 

ELPD 
Difference 

(SE) 

ELPD 
(SE) MCC 

% correctly 
predicted 

train test 
c1 SG -48.77 (17.87) -350.19 (7.87) -47.12 (9.22) -350.38 (7.97) 0.43 80.8 80.8 
c2.1 SG + CELL -46.15 (17.66) -347.58 (8.24) -45.15 (9.11) -348.41 (8.36) 0.46 81.5 81.6 
c2.2 SG + ASSAY -43.94 (17.39) -345.37 (8.14) -42.73 (8.97) -345.98 (8.26) 0.44 81.1 80.9 
c2.3 SG + DOSE -49.75 (18.01) -351.18 (8.13) -48.24 (9.27) -351.5 (8.2) 0.42 80.6 80.5 
c2.4 SG + ST -44.12 (16.49) -345.55 (8.51) -42.39 (8.48) -345.64 (8.65) 0.47 82.1 81.9 
c2.5 SG + SP -47.13 (16.95) -348.56 (8.21) -45.76 (8.76) -349.02 (8.31) 0.43 81.1 80.9 
c2.6 SG + AGE -47.52 (17.64) -348.94 (8.27) -46.21 (9.12) -349.47 (8.34) 0.44 80.9 80.9 
c2.7 SG + SEX -48.93 (17.77) -350.35 (8.13) -47.77 (9.19) -351.03 (8.24) 0.44 81.3 81.1 
c2.8 SG + DPI -16.3 (10.84) -317.73 (10.23) -14.63 (5.69) -317.89 (10.32) 0.52 83.5 83.4 
c2.9 SG + TG -49.06 (17.9) -350.49 (8.11) -47.51 (9.23) -350.77 (8.19) 0.43 80.7 80.8 
c3.1 SG + DPI + CELL -15.02 (10.4) -316.44 (10.4) -13.52 (5.47) -316.78 (10.51) 0.54 84 84 
c3.2 SG + DPI + ASSAY -13.09 (9.9) -314.52 (10.36) -11.79 (5.18) -315.05 (10.47) 0.52 83.8 83.6 
c3.3 SG + DPI + DOSE -17.31 (11.11) -318.74 (10.42) -15.68 (5.81) -318.93 (10.47) 0.51 83.6 83.3 
c3.4 SG + DPI + ST -16.67 (10.63) -318.1 (10.31) -15.35 (5.58) -318.61 (10.4) 0.52 83.5 83.5 
c3.5 SG + DPI + SP -17.26 (10.42) -318.68 (10.34) -15.78 (5.46) -319.04 (10.46) 0.51 83.6 83 
c3.6 SG + DPI + AGE -16.06 (10.62) -317.49 (10.56) -14.41 (5.57) -317.67 (10.6) 0.52 83.4 83.6 
c3.7 SG + DPI + SEX -16.15 (10.48) -317.57 (10.45) -14.71 (5.53) -317.97 (10.51) 0.53 83.9 83.7 
c3.8 SG + DPI + TG -15.41 (10.6) -316.83 (10.55) -14 (5.57) -317.26 (10.63) 0.52 83.8 83.5 
c4.1 SG + DPI + ASSAY + CELL -13.64 (9.66) -315.06 (10.51) -12.25 (5.08) -315.5 (10.63) 0.52 84 83.6 
c4.2 SG + DPI + ASSAY + DOSE -14.07 (10.26) -315.49 (10.75) -12.81 (5.33) -316.07 (10.82) 0.53 83.8 83.7 
c4.3 SG + DPI + ASSAY + ST -10.94 (8.41) -312.36 (10.56) -9.72 (4.42) -312.98 (10.7) 0.53 84.4 83.8 
c4.4 SG + DPI + ASSAY + SP -14.16 (9.73) -315.59 (10.53) -13.13 (5.08) -316.39 (10.68) 0.52 83.9 83.5 
c4.5 SG + DPI + ASSAY + AGE -10.83 (8.96) -312.26 (10.81) -9.42 (4.68) -312.67 (10.9) 0.52 84.3 83.7 
c4.6 SG + DPI + ASSAY + SEX -13.32 (9.61) -314.74 (10.58) -12.4 (5.06) -315.66 (10.68) 0.52 83.9 83.4 
c4.7 SG + DPI + ASSAY + TG -12.51 (9.7) -313.93 (10.66) -11.52 (5.09) -314.78 (10.77) 0.53 83.9 83.8 
c5.1 SG + DPI + ASSAY + AGE + CELL -11.65 (8.76) -313.07 (10.92) -10.11 (4.62) -313.36 (11) 0.52 84.2 83.7 
c5.2 SG + DPI + ASSAY + AGE + DOSE -11.86 (9.18) -313.28 (11.06) -10.32 (4.78) -313.58 (11.1) 0.52 84.1 83.5 
c5.3 SG + DPI + ASSAY + AGE + ST -9.45 (7.96) -310.87 (11.01) -8.18 (4.19) -311.43 (11.13) 0.54 84.3 84.2 
c5.4 SG + DPI + ASSAY + AGE + SP -10.83 (8.15) -312.25 (10.94) -9.82 (4.29) -313.08 (11.07) 0.53 84.2 83.8 
c5.5 SG + DPI + ASSAY + AGE + SEX -10.02 (8.18) -311.44 (10.99) -9.01 (4.29) -312.27 (11.07) 0.52 84.5 83.7 
c5.6 SG + DPI + ASSAY + AGE + TG -10.65 (8.79) -312.07 (11.01) -9.56 (4.62) -312.82 (11.13) 0.54 84.3 84.1 
c6.1 SG + DPI + ASSAY + AGE + ST + CELL -10.58 (7.89) -312.01 (11.14) -9.22 (4.17) -312.48 (11.25) 0.53 84.2 83.8 
c6.2 SG + DPI + ASSAY + AGE + ST + DOSE -10.03 (7.98) -311.46 (11.3) -8.65 (4.17) -311.91 (11.39) 0.54 84.6 84.2 
c6.3 SG + DPI + ASSAY + AGE + ST + SP -9.89 (7.24) -311.31 (11.13) -8.99 (3.84) -312.25 (11.31) 0.53 84.5 84 
c6.4 SG + DPI + ASSAY + AGE + ST + SEX -8.37 (6.83) -309.8 (11.19) -7.57 (3.62) -310.83 (11.28) 0.53 84.4 83.9 
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c6.5 SG + DPI + ASSAY + AGE + ST + TG -8.33 (7.55) -309.76 (11.33) -7.31 (4.01) -310.57 (11.48) 0.54 84.5 84.1 
c7.1 SG + DPI + ASSAY + AGE + ST + TG + CELL -9.56 (7.57) -310.99 (11.47) -8.36 (4.02) -311.62 (11.61) 0.53 84.5 83.8 
c7.2 SG + DPI + ASSAY + AGE + ST + TG + DOSE -8.94 (7.49) -310.37 (11.51) -7.84 (3.95) -311.1 (11.61) 0.54 84.7 84.2 
c7.3 SG + DPI + ASSAY + AGE + ST + TG + SP -9.35 (7.08) -310.77 (11.39) -8.76 (3.78) -312.02 (11.61) 0.54 84.7 84.3 
c7.4 SG + DPI + ASSAY + AGE + ST + TG + SEX -7.14 (6.32) -308.56 (11.46) -6.8 (3.39) -310.06 (11.63) 0.54 84.7 84.3 
c8.1 SG + DPI + ASSAY + AGE + ST + TG + SEX + CELL -7.25 (5.87) -308.67 (11.57) -6.67 (3.13) -309.93 (11.69) 0.56 85 84.6 
c8.2 SG + DPI + ASSAY + AGE + ST + TG + SEX + DOSE -7.92 (6.52) -309.35 (11.57) -7.34 (3.45) -310.6 (11.7) 0.55 84.8 84.5 
c8.3 SG + DPI + ASSAY + AGE + ST + TG + SEX + SP -8.19 (5.88) -309.62 (11.54) -8.03 (3.19) -311.29 (11.76) 0.55 84.9 84.4 
c9.1 SG + DPI + ASSAY + AGE + ST + TG + SEX + CELL + DOSE -2.88 (4.95) -304.3 (11.8) -2.43 (2.57) -305.69 (11.95) 0.55 85.2 84.6 
c9.2 SG + DPI + ASSAY + AGE + ST + TG + SEX + CELL + SP -5.56 (3.71) -306.99 (11.64) -5.3 (2.01) -308.56 (11.85) 0.56 85.2 84.8 

c10.1 SG + DPI + ASSAY + AGE + ST + TG + SEX + CELL + DOSE + 
SP 0 (0) -301.42 (11.91) 0 (0) -303.26 (12.15) 0.56 85.7 84.9 

 
Table S 1.5 | Extended culture model performance comparisons with sgRNA as the primary predictor. 
Models are ordered by increasing number of predictors, with the simplest (c1) and best/full (c10.1) models noted in bold. We report 
expected log pointwise predictive density (ELPD) generated by 10-fold cross validation (cross-validation columns), where larger ELPD 
indicates better performance. ELPD difference indicates the difference between ELPDs of the given model and the model with the 
largest ELPD (in this case model c10.1, our ‘best model’). The PSIS-LOO approximation columns present statistics generated by running 
Pareto-Smoothed Importance Sampling approximate leave-one-out cross validation, including ELPD and ELPD difference. The 
prediction column indicates the percent of samples (stratified by training and test sets) for which posterior predictions generated by 10-
fold cross validation correctly classified them as below or above the limit of detection (i.e., where the per-sample posterior predictive 
distributions exhibited at least a probability of 0.5 for the true, observed classification). MCC is the Matthews correlation coefficient. 
Standard error (SE) is shown in parentheses following all relevant statistics. 
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TotRNA  0 1 2 3 4 5 6 7 8 9 10 
sg

R
N

A
 L

og
ist

ic
 D

os
e  4 0, 0 0, 1 1, 4 9, 19 43, 61 84, 92 97, 99 100, 100 100, 100 100, 100 100, 100 

5.5 0, 0 0, 0 0, 1 2, 6 16, 27 6, 72 91, 95 98, 99 100, 100 100, 100 100, 100 
7 0, 0 0, 0 0, 0 0, 2 4, 10 23, 43 69, 84 94, 98 99, 100 100, 100 100, 100 

Sp
e-

ci
es

 RM 0, 0 0, 0 0, 1 2, 6 16, 27 6, 72 91, 95 98, 99 100, 100 100, 100 100, 100 
CM 0, 0 0, 0 0, 1 2, 7 12, 33 5, 77 87, 96 98, 100 100, 100 100, 100 100, 100 

AGM 0, 0 0, 0 0, 0 0, 2 3, 12 17, 49 59, 88 91, 98 98, 100 100, 100 100, 100 

Ta
rg

et
 

G
en

e 

T↑SG↑ 0, 3 3, 17 18, 58 61, 91 91, 99 99, 100 100, 100 100, 100 100, 100 100, 100 100, 100 
T↓SG↑ 0, 1 1, 8 6, 38 3, 81 75, 97 95, 100 99, 100 100, 100 100, 100 100, 100 100, 100 
T↑SG↓ 0, 0 0, 0 0, 1 2, 6 16, 27 60, 72 91, 95 98, 99 100, 100 100, 100 100, 100 
T↓SG↓ 0, 0 0, 0 0, 3 4, 15 24, 55 69, 90 94, 98 99, 100 100, 100 100, 100 100, 100 

sg
R

N
A

 L
in

ea
r 

D
os

e  4 -1.16, -0.5 -0.23, 0.39 0.7, 1.28 1.63, 2.17 2.55, 3.07 3.47, 3.97 4.38, 4.87 5.29, 5.79 6.2, 6.7 7.1, 7.62 8, 8.55 
5.5 -1.4, -0.88 -0.46, 0 0.48, 0.89 1.41, 1.77 2.34, 2.66 3.27, 3.56 4.18, 4.46 5.09, 5.37 5.99, 6.29 6.88, 7.22 7.77, 8.15 
7 -1.76, -1.14 -0.83, -0.25 0.1, 0.64 1.02, 1.53 1.94, 2.43 2.86, 3.33 3.77, 4.24 4.68, 5.15 5.58, 6.06 6.48, 6.98 7.38, 7.91 

D
PI

 I, 1 -1.96, -1.39 -1.02, -0.5 -0.09, 0.38 0.84, 1.28 1.77, 2.17 2.69, 3.06 3.61, 3.97 4.52, 4.88 5.42, 5.79 6.32, 6.71 7.2, 7.64 
I, 2+ -1.4, -0.88 -0.46, 0 0.48, 0.89 1.41, 1.77 2.34, 2.66 3.27, 3.56 4.18, 4.46 5.09, 5.37 5.99, 6.29 6.88, 7.22 7.77, 8.15 

NI, 1+ -1.01, -0.41 -0.08, 0.47 0.86, 1.35 1.79, 2.24 2.72, 3.13 3.65, 4.03 4.57, 4.92 5.48, 5.83 6.38, 6.74 7.28, 7.66 8.18, 8.58 

Ta
rg

et
 

G
en

e T↓SG↑ 0.01, 0.6 0.94, 1.49 1.87, 2.38 2.79, 3.28 3.71, 4.18 4.62, 5.09 5.53, 6 6.43, 6.91 7.33, 7.83 8.22, 8.76 9.11, 9.69 
T↑SG↓ -1.4, -0.88 -0.46, 0 0.48, 0.89 1.41, 1.77 2.34, 2.66 3.27, 3.56 4.18, 4.46 5.09, 5.37 5.99, 6.29 6.88, 7.22 7.77, 8.15 
T↓SG↓ -1.05, -0.48 -0.11, 0.4 0.81, 1.29 1.74, 2.19 2.66, 3.08 3.57, 3.99 4.48, 4.9 5.39, 5.82 6.28, 6.73 7.18, 7.66 8.07, 8.59 

Sp
e -

ci
es

 RM -1.4, -0.88 -0.46, 0 0.48, 0.89 1.41, 1.77 2.34, 2.66 3.27, 3.56 4.18, 4.46 5.09, 5.37 5.99, 6.29 6.88, 7.22 7.77, 8.15 
CM -2.42, -1.74 -1.49, -0.86 -0.55, 0.03 0.38, 0.92 1.3, 1.81 2.23, 2.71 3.14, 3.61 4.05, 4.52 4.96, 5.43 5.86, 6.34 6.76, 7.26 

AGM -1.36, -0.65 -0.43, 0.23 0.5, 1.12 1.43, 2.01 2.35, 2.9 3.28, 3.8 4.2, 4.7 5.11, 5.61 6.02, 6.51 6.92, 7.43 7.82, 8.35 
 
Table S 1.6 | 90% prediction intervals for the best sgRNA model. 
These intervals correspond with the predictions in Figure 1.3C and 1.3H.
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Model Parameter 5% CI Median 95% CI Standard 

Dev. 

PC
R

 L
og

ist
ic

 

intercept -3.8 -2.15 -0.49 1 
T 1.75 1.96 2.19 0.13 
DOSE -1.16 -0.93 -0.71 0.14 
SP [RM] -0.59 0.4 1.41 0.61 
SP [CM] -0.65 0.36 1.36 0.61 
SP [AGM] -2.14 -1.06 -0.04 0.64 
TG [T↑ SG↑] 1.23 2.32 3.41 0.66 
TG [T↓ SG↑] 0.13 1.24 2.35 0.68 
TG [T↑ SG↓] -3.29 -2.32 -1.38 0.58 
TG [T↓ SG↓] -2.46 -1.51 -0.57 0.58 

PC
R

 L
in

ea
r 

intercept -2.48 -1.25 -0.03 0.75 
T 0.88 0.91 0.94 0.02 
DOSE -0.34 -0.21 -0.08 0.08 
DPI [I, 1] -0.81 0.08 0.95 0.54 
DPI [I, 2+] -0.26 0.61 1.5 0.54 
DPI [NI, 1+] 0.14 1.03 1.93 0.54 
SP [RM] -0.05 0.85 1.75 0.55 
SP [CM] -0.99 -0.09 0.8 0.54 
SP [AGM] 0.07 0.98 1.88 0.55 
TG [T↓ SG↑] 0.36 1.25 2.14 0.53 
TG [T↑ SG↓] -1.09 -0.19 0.71 0.54 
TG [T↓ SG↓] -0.71 0.18 1.06 0.54 

C
ul

tu
re

 

intercept -1.56 -0.04 1.47 0.92 
T 0.69 0.8 0.91 0.07 
DOSE -1.19 -0.85 -0.52 0.2 
DPI [I, 1] 0.41 1.39 2.4 0.61 
DPI [I, 2+] -1.09 -0.14 0.83 0.58 
DPI [NI, 1+] -1.26 -0.28 0.69 0.59 
SP [RM] -0.18 0.79 1.77 0.59 
SP [CM] -1.58 -0.55 0.46 0.62 
SP [AGM] -0.28 0.72 1.74 0.61 
AGE [Juvenile] -1.53 -0.48 0.57 0.64 
AGE [Adult] -1.93 -0.94 0.07 0.61 
AGE [Geriatric] 1.2 2.39 3.57 0.72 
TG [N] -0.56 0.51 1.55 0.65 
TG [E] -1.73 -0.69 0.31 0.62 
TG [S] 0.06 1.13 2.23 0.66 
ASSAY -2.56 -1.75 -0.96 0.49 
CELL [76] -0.48 0.54 1.56 0.61 
CELL [E6] -1.81 -0.78 0.27 0.63 
CELL [E6-SS2] 0.49 1.71 2.92 0.73 

 
Table S 1.7 | Parameter estimates for the best models. 
These were generated for the models without a lab effect. 
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Lab 
number 
(C / SG) 

Articles (ref.) Location of primate studies 
(if multiple articles) 

1 / -- Deng et al. 2020  
2 / -- Ishigaki et al. 2021  
3 / -- Johnston et al. 2020  
4 / -- Kobiyama et al. 2021  

5 / 3 Jiao et al. 2021;  
Nagata et al. 2021 Kunming Primate Center 

6 / 5 Salguero et al. 2021  

7 / 6 

Munster et al. 2020;  
Speranza et al. 2020; 
van Doremalen et al. 2020; 
Williamson et al. 2020 

Rocky Mountain Laboratories 

8 / -- Shan et al. 2020  

9 / 7 Singh et al. 2020  

10 / -- Cross et al. 2020; 
Woolsey et al. 2020 

University of Texas Medical 
Branch, Galveston 

-- / 1 Gabitzsch et al. 2021  

-- / 2 

Baum et al. 2020;  
Chandrashekar et al. 2020; 
Corbett et al. 2020;  
Dagotto et al. 2020; 
Jones et al. 2021; 
Patel et al. 2021 

Bioqual 

-- / 4 Li et al. 2021  

-- / 8 Yu et al. 2020  
 
Table S 1.8 | Articles grouped into labs based on where the primate study was conducted. 
The group number used to display lab effects in Figures S1.12A, S1.12E, and S1.16A are provided 
in the first column. The number for culture analyses (C) precedes the one for the sgRNA analyses 
(SG). 
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Predictors 

Prediction Accuracy (%) 
MCC 

Overall Positive Negative 

D
at

a 
su

bs
et

 T 90.4 72.2 94.3 0.67 

SG 90.0 70.4 94.3 0.66 

T + SG 90.0 68.5 94.7 0.65 
A

ll 
da

ta
 

T 81.9 53.7 91.4 0.49 

SG*† 80.8 46.7 91.7 0.43 

T + SG* 81.7 51.8 91.7 0.48 

Best T 84.7 60.7 92.8 0.57 

Best SG*† 84.9 57.7 93.6 0.56 

 
Table S 1.9 | Performance comparison of culture models using totRNA, sgRNA, or both as 
the primary predictor(s). 
Statistics are stratified by predictor(s) and the dataset used for fitting, including the full dataset 
(based on sgRNA predictions; ‘all data’) and the subset containing only samples with known 
sgRNA and totRNA results (‘data subset’). Prediction accuracy reflects aggregate performance on 
test data across the full 10 train-test folds, stratified by all available samples (Overall), only known 
positive samples, and only known negative samples. MCC corresponds to the Matthews 
correlation coefficient. Note that we do not report ELPD because these models were fit with 
different quantities of data and so ELPD is not comparable. * includes imputed data. † includes 
data with observed sgRNA outcomes but no observed totRNA outcomes. 
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TotRNA 0 1 2 3 4 5 6 7 8 9 10 11 12 
D

os
e 4 0, 4 1, 7 2, 14 4, 26 10, 44 19, 63 35, 79 55, 90 72, 95 85, 98 92, 99 96, 100 98, 100 

5.5 0, 1 0, 2 1, 4 2, 7 4, 15 8, 27 17, 44 31, 64 50, 80 68, 90 82, 96 90, 98 95, 99 
7 0, 0 0, 1 0, 1 0, 2 1, 5 2, 10 5, 19 11, 33 21, 52 37, 71 56, 85 73, 93 85, 97 

D
PI

 I, 1 0, 5 1, 9 3, 18 6, 31 13, 49 25, 67 43, 82 63, 91 79, 96 89, 98 95, 99 97, 100 99, 100 
I, 2+ 0, 1 0, 2 1, 4 2, 7 4, 15 8, 27 17, 44 31, 64 50, 80 68, 90 82, 96 90, 98 95, 99 

NI, 1+ 0, 1 0, 2 1, 3 1, 7 3, 13 7, 24 15, 41 28, 61 46, 78 65, 89 80, 95 89, 98 95, 99 

Sp
e-

ci
es

 RM 0, 1 0, 2 1, 4 2, 7 4, 15 8, 27 17, 44 31, 64 50, 80 68, 90 82, 96 90, 98 95, 99 
CM 0, 0 0, 1 0, 1 0, 2 1, 5 2, 9 4, 19 9, 33 19, 53 34, 72 52, 85 70, 93 83, 97 

AGM 0, 1 0, 2 1, 3 2, 6 4, 12 9, 21 20, 36 36, 55 55, 73 73, 87 85, 94 92, 97 96, 99 

A
ge

  
C

la
ss

 Juvenile 0, 1 1, 3 1, 5 3, 10 6, 19 14, 33 27, 52 45, 71 64, 85 79, 93 89, 97 94, 99 97, 99 
Adult 0, 1 0, 2 1, 4 2, 7 4, 15 8, 27 17, 44 31, 64 50, 80 68, 90 82, 96 90, 98 95, 99 

Geriatric 3, 24 6, 40 13, 59 25, 76 42, 87 62, 94 78, 97 89, 99 94, 99 97, 100 99, 100 99, 100 100, 100 

C
el

l 
L

in
e 76 0, 1 0, 2 1, 4 2, 7 4, 15 8, 27 17, 44 31, 64 50, 80 68, 90 82, 96 90, 98 95, 99 

E6 0, 0 0, 1 0, 1 0, 2 1, 4 2, 9 5, 17 11, 31 23, 49 39, 68 59, 83 75, 92 87, 96 
E6-SS2 0, 4 1, 7 2, 14 4, 26 8, 43 16, 62 31, 78 49, 89 68, 95 82, 98 91, 99 95, 100 98, 100 

A
ss

ay
 

TCID50 1, 5 2, 10 4, 18 8, 33 17, 51 32, 70 51, 84 69, 92 83, 96 91, 98 96, 99 98, 100 99, 100 
Plaque 0, 1 0, 2 1, 4 2, 7 4, 15 8, 27 17, 44 31, 64 50, 80 68, 90 82, 96 90, 98 95, 99 

T
ar

ge
t  

G
en

e  N 0, 1 0, 2 1, 4 2, 7 4, 15 8, 27 17, 44 31, 64 50, 80 68, 90 82, 96 90, 98 95, 99 
E 0, 0 0, 1 0, 2 0, 4 1, 7 2, 15 3, 28 8, 46 15, 65 28, 81 47, 91 65, 96 80, 98 
S 0, 2 0, 4 1, 9 2, 17 5, 31 10, 49 20, 68 36, 83 55, 92 72, 96 85, 98 92, 99 96, 100 

 
Table S 1.10 | 90% prediction intervals for the best culture model. 
These intervals correspond with the predictions in Figure 1.5C. 
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Inoculation 
Route(s) Inoculated Locations Non-inoculated Locations 

AE Nose/Nasopharynx, Oropharynx Anus/Rectum 
IT  Anus/Rectum, Lung, Nose/Nasopharynx, 

Oropharynx 
IN Nose/Nasopharynx Anus/Rectum, BAL, Colon, Mouth, 

Small intestine, Stomach 
IG Stomach Anus/Rectum, Colon, Small intestine 
OC  Lung 
IT, IN BAL, Nose/Nasopharynx, Oropharynx, 

Trachea 
Anus/Rectum, Lung, Mouth, Tonsil 

IT, IN, OC Eye, Nose/Nasopharynx, Oropharynx, 
Trachea 

Anus/Rectum, Brain, Cervical LN, 
Colon, Kidney, Liver, Lung, Mesenteric 
LN, Salivary gland, Small intestine, 
Spleen, Tonsil 

IT, IN, OR, 
OC 

BAL, Bronchus, Eye, Mouth, 
Nose/Nasopharynx, Oropharynx, Tonsil, 
Trachea 

Anus/Rectum, Cervical LN, Colon, 
Heart, Lung, Mediastinal LN, Small 
intestine, Stomach 

 
Table S 1.11 | Categorization of inoculated versus non-inoculated sample locations per 
exposure route. 
For every inoculation route, only the tissues with data available for that route are displayed. 
Because fluid is administered in the trachea for intratracheal (IT) inoculations, which is connected 
directly to the bronchioles, we include bronchus as an exposure tissue for IT inoculations. We also 
consider BAL an inoculated tissue for IT exposures since this procedure collects fluid from similar 
areas where the inoculum is administered. Exposure route abbreviations are: AE, aerosol; IT, 
intratracheal; IN, intranasal; IG, intragastric; OC, ocular; OR, oral. 
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Chapter 2. Exposure route and dose shape  

SARS-CoV-2 infection patterns in non-human primates 

Abstract 

Disease severity and shedding kinetics can differ widely among individuals infected with 

the same pathogen, but the biological drivers of this variation remain largely unknown. In this 

study, using an unprecedented database of non-human primate challenge experiments (107 studies; 

721 animals; 22,183 observations), we demonstrate that the route and dose of exposure shape 

within-host SARS-CoV-2 infection patterns in the respiratory and gastrointestinal tracts. Exposed 

tissues exhibited distinct spatiotemporal dynamics from non-exposed tissues, with aerosol 

inoculation resulting in the highest nasal and gastrointestinal shedding but the lowest lung severity 

compared to other routes. Median infectious doses (ID50) ranged from <101 up to >107.4 pfu 

depending on the exposure route, tissue sampled, and detection assay. Dose effects on temporal 

infection patterns were also highly route- and location-specific, with larger doses increasing 

shedding primarily for nasally-challenged animals. Our results provide a foundation and direction 

to uncover the unifying principles that govern the dynamics of respiratory pathogens inside hosts. 
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Introduction 

A pathogen's transmissibility and pathogenicity are both strongly governed by 

spatiotemporal patterns of infection within a host. These ‘within-host dynamics’ can differ widely 

among pathogens (McCall 2021), and even among individuals infected with the same pathogen. 

Epidemiologists and microbiologists have long understood that the dose and route of exposure 

contribute to this individual-level variability, alongside other demographic and health factors. 

Larger doses are generally believed to have higher infection probabilities and lead to enhanced 

disease severity (Bradburne et al., 1967; de Wit et al., 2011; Marois et al., 2012; Memoli et al., 

2015; Tao et al., 2015). This theory is tied to many public health and research practices, including 

the estimation of 50% infectious and lethal doses (ID50, LD50; Mitchell et al., 2020; Watanabe et 

al., 2010), historical variolation procedures (Riedel, 2005), and modern discussions about whether 

masking reduces COVID-19 severity (Gandhi & Rutherford, 2020). The effects of route are 

studied less frequently, but ID50 estimates have varied by route (e.g., influenza A; Couch et al., 

1966; Tellier, 2006) and severity is known to be route-specific for some pathogens (e.g., bubonic 

vs. pneumonic plague; Pechous et al., 2016; skin-scratch vs. inhalational smallpox, which is also 

related to variolation; Riedel, 2005). Animal challenge experiments have found evidence that 

within-host tissue dissemination, temporal patterns of infection, and shedding profiles can be both 

dose- and route-dependent (Althouse et al., 2014; de Wit et al., 2011; Dudley et al., 2017; Port et 

al., 2021; Tao et al., 2015) – all of which is consistent with ecological theory for population 

invasions (Lockwood et al., 2005; Schreiber & Lloyd‐Smith, 2009; Snedden et al., 2021). Yet 

many fundamental questions remain unanswered. How do dose and route of exposure determine 

the extent and timing of within-host dissemination patterns? Do shedding and severity vary with 
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exposure dose, and is this pattern route-specific? Does individual-level variation in infections arise 

chiefly from exposure conditions or host characteristics? 

These knowledge gaps about such important questions arise, at least partially, from 

sampling constraints and data limitations. For humans, natural exposure events are inherently 

unobservable, and available data can be biased towards individuals with more severe disease that 

seek treatment, though rare exceptions exist (e.g., human challenge trials; Killingley et al., 2022; 

prospective testing of focal communities; Mack et al., 2021). Animal challenge experiments can 

control the relevant dimensions, but they either have limited clinical relevance due to crucial 

physiological differences with humans (e.g., for small animal models) or their small sample sizes 

cannot support robust statistical comparisons under the standard approach of analyzing data only 

within the study that generated them (e.g., for non-human primate models). In order to extract 

more insights from costly animal experiments and help improve human health, novel analytical 

methods are needed to overcome these translational and statistical limitations.  

When viewing the literature holistically, animal infection experiments have generated an 

immense amount of data and contributed irreplaceable insights into pathogen-host biology, despite 

small sample sizes per individual study. Although there are many potential benefits of jointly 

analyzing these data (Kieran et al., 2024), such meta-analyses are exceptionally rare due to 

concerns about variable protocols across laboratory groups. However, meta-analytic and Bayesian 

methods that account for study-specific differences have enabled robust advances across scientific 

disciplines, including in ecology (Anton et al., 2019), virological diagnostics (Snedden & Lloyd-

Smith, 2024), and other fields that rely on animal research (e.g., neurobiology; Bonapersona et al., 

2021). These modern statistical tools could resolve standing questions in microbiology that are 
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infeasible to address within individual experiments, including uncovering the determinants of 

within-host kinetics, without requiring any additional use of animal models. 

In this study, to our knowledge, we completed the largest-ever quantitative meta-analysis 

of within-host infection patterns for a respiratory pathogen in non-human primates (NHPs). We 

built a database of SARS-CoV-2 challenge experiments, including 107 published studies, 721 

individual NHPs, and 22,183 observations. We characterized and compared the effects of exposure 

dose, exposure route, and demographic factors (age, sex, species) on the probability, onset, peak, 

and conclusion of detectable infection across the upper respiratory, lower respiratory, and 

gastrointestinal tracts. With these analyses, we identified exposure conditions as the primary 

drivers of variation in within-host SARS-CoV-2 infection patterns in an important animal model 

with similar respiratory physiology and immune responses as humans (Estes et al., 2018). We 

demonstrated that the effects of dose (including ID50 values) are route- and location-specific and 

that aerosol inoculation results in significantly different spatiotemporal kinetics as well as 

disparate shedding profiles than all other tested exposure routes. 
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Methods 

Database compilation 

We have previously described the construction of our core database (Snedden & Lloyd-

Smith, 2024, which is also Chapter 1), which contains SARS-CoV-2 viral load and infectious virus 

data from non-human primate experiments. We expanded the database for this study by conducting 

another systematic literature search with the same keywords. The first search included articles 

from January 1, 2020 through March 11, 2021, and the second search spanned March 12, 2021 

through April 9, 2024 (Figure S2.1). For both searches, we identified articles that met the following 

criteria: (i) they experimentally infected rhesus macaques (Macaca mulatta), cynomolgus 

macaques (Macaca fascicularis), or African green monkeys (Chlorocebus sabaeus) with SARS-

CoV-2 (restricted to basal strains, excluding any studies that reported a named variant), and (ii) 

they published quantitative or qualitative measurements of viral load (measured by RT-qPCR) or 

infectious virus (measured by plaque assay or endpoint titration) from at least one biological 

specimen for at least one individual and at least one sample time post infection.  

Of the studies that met our criteria during the first search, single-route exposures (e.g., 

intranasal only, aerosol) were the least common and had more limited dose ranges. To increase 

sample sizes for these crucial exposures, we only considered studies with single-route exposures 

during our second search. Altogether, our database includes 107 articles (Figure S2.1; Table S2.1). 

For both searches, raw data were used when available (published or obtained via email 

correspondence); otherwise, one author (CES) extracted data from published figures using the 

package ‘digitize’(Poisot, 2011) in R (R Core Team, 2022). 
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The 107 articles included in the database are: An et al., 2022; Arunachalam et al., 2021; 

Baum et al., 2020; Berry et al., 2022; Bewley et al., 2021; Bixler et al., 2022; Blair et al., 2021; 

Böszörményi et al., 2021; Brouwer et al., 2021; Chandrashekar et al., 2020; Chen et al., 2021; 

Corbett et al., 2020; Cross et al., 2020, 2021; Dabisch et al., 2021; Dagotto et al., 2021; Deng, Bao, 

Gao, et al., 2020; Deng, Bao, Liu, et al., 2020; Fahlberg et al., 2020; Fears et al., 2022; Feng et al., 

2020; Finch et al., 2020; Fischer et al., 2024; Francica et al., 2021; Furuyama et al., 2022; 

Gabitzsch et al., 2021; Gao et al., 2020; Gorman et al., 2021; C. Gu et al., 2021; S. H. Gu et al., 

2020; Guebre-Xabier et al., 2020; Q. Guo et al., 2021; Y. Guo et al., 2021; Hassan et al., 2021; He 

et al., 2021; Hoang et al., 2021; Huang et al., 2021; Ishigaki et al., 2021; Ishii et al., 2022; Jiao, Li, 

et al., 2021; Jiao, Yang, et al., 2021; Johnston et al., 2021; B. E. Jones et al., 2021; Kim et al., 

2021; Kobiyama et al., 2021; Koo et al., 2020; Lakshmanappa et al., 2021; Lambe et al., 2021; D. 

Li, Edwards, et al., 2021; D. Li, Luan, et al., 2021; M. Li, Guo, et al., 2021; Y. Li, Bi, et al., 2021; 

Liang et al., 2021; J.-F. Liu et al., 2022; X. Liu et al., 2022; Z. Liu et al., 2022; Lu et al., 2020, 

2021; Ma et al., 2022; Maisonnasse et al., 2020, 2021; McMahan et al., 2021; Mercado et al., 2020; 

Munster et al., 2020; Nagata et al., 2021; Nawaz et al., 2020; Nomura et al., 2021; Pan et al., 2021; 

Patel et al., 2021; Philippens et al., 2022; Qin et al., 2020; Rauch et al., 2020; Rockx et al., 2020; 

Roozendaal et al., 2021; Rosenke et al., 2020; Rosenke et al., 2021; Routhu et al., 2021; Salguero 

et al., 2021; Sanchez-Felipe et al., 2021; Saunders et al., 2021; Seo et al., 2021; Shan et al., 2020; 

Shi et al., 2020; Singh et al., 2021; Sokol et al., 2021; Song et al., 2020, 2021; Speranza et al., 

2021; C. Sun et al., 2023; S. Sun, Cai, et al., 2021; S. Sun, He, et al., 2021; J. Y. J. Tan et al., 2023; 

S. Tan et al., 2023; van Doremalen et al., 2020; Vogel et al., 2021; G. Wang et al., 2021; H. Wang 

et al., 2020; S. Wang et al., 2020; Z. Wang et al., 2022; Williamson et al., 2020; Woolsey et al., 
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2021; Yadav, Ella, et al., 2021; Yadav, Kumar, et al., 2021; Yao et al., 2021; Yang et al., 2020; J. 

Yu et al., 2020; J. Yu et al., 2022; P. Yu et al., 2020; Zheng et al., 2020; Zost et al., 2020. 

Anatomical characterization 

In this study, our analyses focused on the nose, throat, trachea, lung, upper gastrointestinal 

tract, and the lower gastrointestinal tract (GI). We categorized all reported sample types into these 

six tissue categories, and we distinguished between invasive and non-invasive sampling methods 

(Table S2.3). We also grouped the six tissues into three broader categories as follows: (i) upper 

respiratory tract: nose and throat; (ii) lower respiratory tract: trachea and lung; and (iii) 

gastrointestinal tract: upper and lower GI. We refer to these broad tissue categories as ‘organ 

groups.’  

Key metrics for characterizing kinetics 

To guide our analysis, we selected five key metrics to characterize within-host infection 

kinetics in any given tissue for any individual, namely: (i) the probability of ever testing positive, 

(ii) the time until becoming detectably infected, (iii) the time until reaching the peak titer, (iv) the 

quantitative peak titer, and (v) the time until the infection becomes undetectable (Figure 2.1c). 

From the five primary metrics, we also calculated the duration of detectable infection (the time 

elapsed between becoming detectable and undetectable) and the area under the infection curve (0.5 

* the duration of detectable infection * the peak titer). We extracted all of these metrics for the 

following five primary tissues that can be sampled repeatedly by non-invasive methods: nose, 

throat, trachea, lung, and the lower gastrointestinal tract. For the upper gastrointestinal tract, which 

was only accessible by invasive methods, we only estimated the probability of testing positive and 

the time until becoming detectably infected. 
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Extracting metrics for all individuals 

Given that sampling occurs at discrete times, our metrics cannot be observed exactly. To 

account for this, we extracted bounded intervals during which the events could have occurred for 

every individual that had data for any given tissue location and assay type. Brief descriptions of 

these extraction methods are outlined below for each metric, with example individuals illustrated 

in Figure 2.1D. 

Probability of testing positive and time to detectability. For all individuals that tested 

positive in a given tissue location for a given assay, we bounded their time to detectability between 

the day of their first observed positive test and the day of their previous negative test. For 

individuals that never tested positive in that tissue for that assay, we considered two possibilities: 

either the individual would have never tested positive, or they would have tested positive if 

observed later post infection. In the latter case, we assumed that their time to detectability must be 

bounded between their last observed negative test and day forty-five post infection, reflecting that 

a month and a half (or more) delay for initial positivity is highly unlikely. 

Peak time and peak titer. For all individuals with positive quantitative titers for at least two 

days post inoculation, we identified the day with their largest observed titer. We used the previous 

and subsequent sampling days as the lower and upper bounds, respectively, for that individual’s 

time to peak titer. If the individual’s highest titer was observed on the final sampling day, then we 

set the upper bound as day fifty post infection. We used the titer from the observed peak time for 

the peak titer model. 

Time to undetectability. For all individuals with at least one negative sample after their 

final observed positive sample, we bounded their time to undetectability between the day of their 

last observed positive sample and their subsequent (negative) sample. If an individual tested 



129 

 

positive on their final sample day, then we set their upper bound as day fifty-five post infection, 

reflecting that prolonged infection beyond approximately two months post inoculation is highly 

unlikely in otherwise healthy animals. 

Modeling framework 

Survival analysis methods can estimate event times from bounded (or ‘censored’) 

observations (Bogaerts et al., 2017). We used these techniques as a basis to develop our Bayesian 

model, given that, during animal infection experiments, samples are collected at discrete times to 

study an on-going infection process. As described above, we characterized within-host kinetics for 

all considered tissues according to three event times: the time to viral detectability (TD), the time 

to peak viral titer (TP), and the time to viral undetectability (TU). We used an accelerated failure 

time model for all three, where we assumed that the time delay between any two sequential events 

(i.e., between inoculation and TD, between TD and TP, and between TP and TU) was distributed 

according to the Weibull distribution, which allows for flexible event time distributions. We fit 

our model to the median of each distribution, which is given by the equation λ(ln2)1/k, where λ is 

the Weibull scale parameter and k is the Weibull shape parameter. We assumed that the medians 

were predicted by a linear combination of a set of j covariates (Xj; see next section), all with their 

own unique regression coefficients (𝛽TD,j, 𝛽TP,j, 𝛽TU,j). On top of those standard covariates, the time 

to peak titer had an additional term that captured any dependence on the time to detectability 

(𝛽TP,TDTD), and the time to undetectability had an additional term to capture any dependence on 

the peak titer (𝛽TU,PTPT). We also estimated Weibull shape parameters (kTD, kTP, kTU) that were 

shared among cofactors but unique to each event time and organ group. For numerical stability, 

we required that these shape parameters be greater than or equal to one.  



130 

 

To capture that some individuals may never test positive (e.g., because of failed infection 

in a given tissue or low assay sensitivity), we adapted our time to detectability model into a mixture 

cure model (Amico & Keilegom, 2018) that also estimated whether an individual will ever test 

positive (P) in a given location. We assumed that P was Bernoulli distributed with probability p, 

which is predicted by a linear combination of the standard j covariates (𝛽PXP) with a logit link 

function. Thus, the overall probability that an individual will test positive by a given time t, which 

we represent by the function S(t), depends both on p as well as the probability of testing positive 

by time t when conditioned on ever testing positive (Sp(t)). All other metrics are conditional on the 

individual ever testing positive.  

 We modeled peak titers differently, as they are not event times. We assumed that all true 

peak titer values (in log10 units; PTtrue) are normally distributed, where the mean is a linear 

combination of our standard j covariates with their own regression coefficients (𝛽PTXPT). We 

included an additional term to capture any dependence of the peak titer on the time to peak titer 

(𝛽PT,TPTP). We allowed this relationship to differ between exposed and not exposed tissues, 

because exposed tissues often peak within the first day, possibly due to resampling the inoculum. 

The standard deviation of these titers (σPT) is specific to the tissue group (URT, LRT, GI). Given 

that an individual’s true peak titer likely differs from their observed largest titer (PTobs), we treated 

PTobs as normally distributed around the sum of PTtrue and an article- and assay-specific offset 

(δlab,assay).  

To capture quantitative differences in all metrics due to methodological variation among 

articles, we included linear offset terms for article and assay effects (see Covariates for more 

details). We also allowed the standard deviations of the observed peak titers to differ across 
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articles, given that sampling schemes and other methodological choices may affect variability in 

observed titers. 

 Below is the general form of this model, where ɑ are the intercept parameters and all other 

parameters are described above.  

 

S(t) = (1 - p) + p Sp(t) 

P ~ Bernoulli (p) 

p = logit-1(ɑP + ∑j𝛽P,jXj) 

TD ~ Weibull (λTD, kTD) 

Median(TD) = exp(ɑTD + ∑j𝛽TD,jXj) 

TP ~ Weibull (λTP, kTP) 

Median(TP) = exp(ɑTP + 𝛽TP,TD TD + ∑j𝛽TP,jXj) 

TU ~ Weibull (λTU, kTU) 

Median(TU) = exp(ɑTU + 𝛽TU,TP TP + ∑j𝛽TU,jXj) 

PTtrue ~ Normal(ɑPT + 𝛽PT,TP TP + ∑j𝛽PT,jXj, σPT) 

PTobs ~ Normal(PTtrue + δlab,assay, exp(σ + σlab,assay)) 

 

As described above, we cannot exactly observe when an individual experiences their three 

true event times (TDtrue,i, TPtrue,i, TUtrue,i). Instead, we treated them as bounded quantities, such that 

the true time for any individual i occurs within their lower and upper bound (e.g., [LBTD,i, UBTD,i] 

for TDi). Each individual’s true times must occur within these intervals, where the probabilities of 

any given event time within that interval are given (as above) by the Weibull distribution for their 
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unique combination of cofactors (e.g., TDtrue,i ~ Weibull(λTD,i, kTD) where the median is exp(ɑTD + 

∑j𝛽TD,j,iXj,i)).  

Covariates 

We allowed all of our metrics to vary across multiple covariates, which have been 

hypothesized to influence within-host kinetics. All categorical cofactors with more than two 

groups (exposure route, age, species, article, assay) were treated as unordered index variables. 

Binary predictors (sex, tissue location) were treated as indicator variables. When age, sex, assay, 

or tissue location (within an organ group) were unknown, we marginalized over all possibilities.  

Biological cofactors 

We included exposure route as a categorical cofactor with the following classifications: (i) 

upper respiratory exposure, (ii) lower respiratory exposure, (iii) combined upper and lower 

respiratory exposure via liquid administration, (iv) combined upper and lower respiratory exposure 

via aerosol inhalation, and (v) upper gastrointestinal exposure. We grouped all reported inoculation 

routes (e.g., ocular, intranasal) into these categories (Table S2.2). For all analyses, we generated 

predictions for the following representative route for each category: (i) intranasal, (ii) intratracheal, 

(iii) equal combination of intranasal and intratracheal, (iv) aerosol, and (v) intragastric.  

We included exposure dose by stratifying the total inoculation dose (in log10 pfu) into 

location-specific categories. For every individual, we calculated the dose administered specifically 

to the nose, throat, trachea, lung, and stomach. We assumed that the total dose was split among 

locations for each inoculation route as follows: (i) ocular: 100% nose; (ii) intranasal: 50% nose, 

50% throat; (iii) oral: 100% throat; (iv) intratracheal: 100% trachea; (v) intrabronchial: 100% lung; 

(vi) aerosol: 25% nose, 25% throat, 25% trachea, 25% lung; and (vii) intragastric: 100% stomach. 
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We assumed ocular inoculation resulted in nasal exposure, given that fluids administered to the 

eye rapidly drain into the nose via the nasolacrimal duct (Belser et al., 2013). A small number of 

studies included intravenous inoculation in addition to other routes (Table S2.2), but we did not 

include a parameter in our model for this route given small sample sizes. When studies reported 

inoculation dose as TCID50 values, we converted to pfu using a standard conversion factor (1 

TCID50=0.69 pfu; Carter & Saunders, 2007). 

We included age, sex, and non-human primate species as our demographic effects. For 

species, we distinguished between rhesus macaques, cynomolgus macaques, and African green 

monkeys. For age class, we distinguished between juvenile, adult, and geriatric individuals, where 

we assigned age classes as described in Snedden & Lloyd-Smith, 2024. Briefly, ages less than 5 

years were considered juveniles for all three species. Adults included ages 5-19 years for both 

macaque species and 5-14 for African green monkeys. All older individuals were geriatrics.  

Finally, we included a binary predictor for tissue location to account for differences 

between the two distinct tissues studied within an organ group (i.e., for nose and throat in the 

model of the upper respiratory tract, and for the trachea and lung in the model of the lower 

respiratory tract). 

Methodological cofactors 

We incorporated multiple cofactors to handle methodological variation among articles. 

Given that virus detection and virus quantification can vary across assays (e.g., PCR vs. virus 

culture), we included a cofactor for assay type with the following four categories based on our 

prior work (Snedden & Lloyd-Smith, 2024): (i) total RNA assays targeting the N gene, (ii) any 

genomic RNA assay or total RNA assays targeting less expressed genes, (iii) sgRNA assays, and 
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(iv) culture assays. When presenting results for a total RNA or culture assay, we use categories (i) 

and (iv), respectively. To account for differences in other methodological factors among articles 

(e.g., RNA extraction methods, viral strains), we included a linear term for each article and assay 

combination. For example, if an article included data from both a total RNA and a culture assay, 

then that article would have its own unique offset term for each assay. 

Parameter sharing within organ groups 

Each organ group (upper respiratory, lower respiratory, and gastrointestinal tracts) has their 

own set of equations, such that, for example, the nose and throat share most regression coefficients 

with each other, but they do not share any with the lower respiratory or gastrointestinal tissues. In 

particular, the following parameters are shared within organ groups: intercepts, demographic 

effects (age, sex, species), location effect, assay effects, lab effects, and the dependence on 

previous metrics (i.e., 𝛽TP,TD, 𝛽PT,TP, 𝛽TU,TP).  

Cofactor combinations 

When generating predictions from our model, it is necessary to choose a route, dose, age, 

sex, and species of interest. For most of our analyses and unless otherwise specified, we focus on 

total doses of 104 and 107 pfu. Given there are five exposure route categories, two focal dose 

values, three species, three ages, and two sexes, there are 180 possible combinations of cofactors 

to choose from. We refer to any one of these 180 options as an individual ‘cofactor combination.’ 

In many of our analyses, we report results that include predictions for all 180 possible cofactor 

combinations, or for more combinations when we consider additional doses (e.g., in Figure 2.2). 

In some cases, we report results for a ‘standard cofactor combination,’ which corresponds to the 

following: an adult, male rhesus macaque. 
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Prior probabilities 

For all covariates in our model, we used weakly informative priors to exclude implausible 

relationships, but we made no a priori prediction on the direction of those individual effects (i.e., 

the priors for each cofactor were centered on zero). The only exception was for the relationship 

between dose and probability of positivity (see above). Prior predictive simulations confirmed 

variable but reasonable expectations for all metrics. 

Model predictions and determining significance 

 Unless otherwise noted, we used at least 100 post-warmup parameter samples to generate 

predictions for each cofactor combination for all presented results. Each prediction is generated 

using grouped parameter samples (e.g., samples from the same chain and iteration) to preserve 

correlation structure. We also assume there is no article effect when generating predictions, unless 

otherwise stated (i.e., we set all article terms to zero). To determine whether any differences in 

predictions were significant, we analyzed 90% prediction intervals. If they did not include zero, 

then we considered the difference to be significant.  

Ranking the importance of biological cofactors 

To determine which biological cofactors had the largest impact on each metric for each 

tissue, we generated predictions for all cofactor combinations. From these predictions, we 

calculated the differences for all possible pairwise combinations of the categories within each 

cofactor (e.g., juvenile vs. adult, adult vs. geriatric, and juvenile vs. geriatric for age). Then, for 

each cofactor and metric, we computed the mean value of their differences. The cofactor with the 

largest such mean for a given metric thus had the largest average difference among its categories 

and thus exerted the greatest influence on that given metric. We assigned this cofactor an effect of 
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‘1’ for that metric. Finally, we calculated metric-specific relative effects for all other cofactors by 

scaling their mean differences by the largest mean difference. 

Computational methods and software 

All data preparation, analysis, and plotting were completed with R version 4.2.0. Posterior 

sampling of the Bayesian model was performed with No-U-Turn Sampling (NUTS) via the 

probabilistic programming language Stan using the interface CmdStanR version 0.5.2. All model 

fits were generated by running six replicate chains with 2000 iterations each, of which the first 

1000 iterations were treated as the warmup period and the final 1000 iterations were used to 

generate parameter estimates. Model convergence was assessed by the sampling software using 𝑅A, 

effective sample sizes, and other diagnostic measures employed by CmdStan by default. No issues 

were detected. 
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Results 

Data and model overview 

During our comprehensive literature search, we identified 107 articles that reported viral 

RNA load or infectious virus for at least one biological specimen from an NHP challenged with 

ancestral SARS-CoV-2 strains (i.e., ones that circulated prior to the emergence of Alpha variants; 

Figure S2.1; Table S2.1). From these studies, we extracted 22,183 observations from 721 animals 

across the respiratory, gastrointestinal, and other systems (Figure 2.1a). This includes many 

different exposure routes, a range of exposure doses (101.2-107.4 pfu), three NHP species (rhesus 

macaque, cynomolgus macaque, African green monkey), both sexes, and three age classes 

(juvenile, adult, geriatric). 

Our analyses focused on the nose, throat, trachea, lung, upper gastrointestinal tract, and 

lower gastrointestinal tract (Figure 2.1b; see Table S2.3 for the sample types available for each 

included tissue). In each location, we characterized infection by: (i) the probability of ever testing 

positive, (ii) the time to viral detectability, (iii) the time to peak viral titer, (iv) the peak titer itself, 

and (v) the time to undetectability (Figure 2.1c). From these metrics, we also calculated the 

duration of infection and the area under the infection curve (AUC). Due to sampling constraints, 

each event is not directly observable. However, for any given animal in our database, we bounded 

each metric within an interval based on their sampling dates, first observed positive, largest 

observed titer, and last observed positive (examples in Figure 2.1d; sample sizes in Figure 2.1e). 

This censoring approach allows us to explicitly account for differences in sampling times and 

frequency across tissues and studies. We used these observations to fit our Bayesian time-to-event 

model, which estimates the effects of exposure conditions (dose, route), demographic factors (age, 
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Figure 2.1 | Overview of data and modeling approach. 
a, Data distribution across key cofactors in the full database. Bar heights give the percentage of all 
samples, and annotated numbers give the total number of observations. Exposure route acronyms 
are as follows: IC, intracranial; OC, ocular; IN, intranasal; OR, oral; IT, intratracheal; IB, 
intrabronchial; AE, aerosol; IG, intragastric. Multi-route includes all exposures via three or more 
distinct locations. b, Diagram of the six primary tissues, grouped into three categories: URT, upper 
respiratory tract, LRT, lower respiratory tract, GI, gastrointestinal tract. c, Diagram of the key 
metrics on a hypothetical time series (not pictured: probability of positivity). The true continuous 
trajectory (top) contains labels for the key metrics. The observed trajectory (bottom) includes the 
observed event times (first positive, diamond; largest titer, triangle; last positive, square) and all 
other sampling days (black days). Each event time is censored and must occur within the time 
range indicated by the bold colored lines, which are connected to the corresponding true times by 
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shaded regions. d, A small subset of the available time series from our database, classified by 
bounded event times and colored as in panel c. Each row is a unique individual. Solid lines 
correspond to interval-censored observations. Dashed lines indicate the individual was positive on 
their final sample day, so their event is right censored. e, Sample sizes across tissues and metrics. 
Tissues with shaded rows are the primary focus for the analyses in this study. f, Model predictions 
for two individuals’ event times and peak titers. Densities give the estimated probabilities for a 
given time or titer (colored as in panel c). The black line gives the individual’s median inferred 
trajectory, with 300 samples of the posteriors shown in gray. g, Model predictions for the percent 
of individuals that will ever test positive, corresponding with the observed event times in panel h. 
h, i, k, Median model fit (bold line) and 90% credible intervals (shaded regions) against individual 
bounded event times (points in rows) for (h) the times to detectability, (j) peak titer, and (k) 
undetectability. The y axis displays the percent of individuals predicted to have experienced the 
event by the given days since the previous event. Predictions in each panel were based on 100 
posterior samples each for all possible combinations of age, sex, species, and doses ranging from 
104-107 (in increments of 1 order of magnitude), specifically for IN-exposed individuals sampled 
by a total RNA assay targeting the N gene. The plotted data are also restricted to these cofactors 
(but allowing all PCR assays). Models are fit to the censored intervals and not to the symbols. 
Filled points are interval-censored observations, and open points with dashed lines are right-
censored observations. See Figures S2.2-2.4 for the fits for all other routes and assays. j, 
Relationship between the largest observed titer and the mean true peak titer predicted by the model. 
Each point is an individual sampled in a given tissue by a given assay. The inset shows the 
distribution of differences between the true and observed titers. 

sex, species), and methodological variation (assay, unique random effects for each article) on 

overall infection patterns while also inferring true event times and peak titers for each individual 

(see examples in Figure 2.1f). Formally, we fit each event as a delay from the previous event (e.g., 

days between detectability and peak titer; Figure 2.1g,h,j), but for interpretability we report results 

in calendar days since inoculation. 

The model fits the data well for all metrics, generating predictions that are highly 

concordant with the observed number of positive individuals (Figure 2.1g;S2.2) and the bounded 

event times (Figure 2.1g,h,j;S2.2-S2.4). Predicted peak titers are highly correlated with the largest 

observed titers (r=0.98; Figure 2.1i), where estimated peak titers are, on average, 0.44 log10 titer 

units (TCID50 or pfu) larger than the largest measured titers (Figure 2.1i,inset). This reflects the 

reality that it is highly unlikely to sample exactly when an individual peaks, and so the largest 
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observed value reflects an individual’s still-increasing or already-decreasing viral load. Notably, 

model predictions for all metrics differed more among assays than across all other sources of 

article-level variation combined (Figure S2.5). Subsequent analyses report results for a baseline 

study (i.e., controlling for article effects but not visualizing them). 

Infection patterns are highly variable within tissues 

Infection patterns varied substantially within each tissue (Figure 2.2) when considering 

model predictions for all 380 possible combinations of exposure conditions and demographic 

groups (termed ‘cofactor combinations’; e.g., female adult rhesus macaques intranasally 

challenged with 104 pfu). The median probability of an animal ever testing culture positive in 

specimens from a given tissue exhibited up to a 6.5-fold change among all cofactor combinations 

(squares in the top row of Figure 2.2a), corresponding to a 72.5% difference in the probability 

(Figure 2.2b,c). Temporal metrics based on infectious virus measurements in specimens exhibited 

fold changes from 1.7 to 6.2, with raw differences ranging from 0.8 days to 13.3 days (Figure 

2.2a,b). This variation resulted in highly heterogeneous median infection trajectories within each 

tissue, especially in the gastrointestinal (GI) and lower respiratory (LRT) tracts (Figure 2.2d). 

Individual-level trajectories (i.e., sampling from the full posterior distributions on event times 

instead of their central tendencies; Methods) are even more variable (Figure S2.6). Total viral RNA 

data exhibited similar fold changes to culture data for all metrics except the probability of positivity 

(circles in Figure 2.2a); for all tissues, RNA positivity is much more likely than culture positivity 

(Figure 2.2c). 
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Figure 2.2 | Infection dynamics within tissues are highly heterogeneous. 
Colors in all panels distinguish between sampled tissues, as indicated in the legend at the top. 
Model predictions were generated and compared for all possible combinations of age, sex, species, 
exposure route, and exposure dose (including 104, 105, 106, and 107 pfu). The Upper GI is only 
accessible by invasive sampling, so we could only estimate the probability of positivity and the 
time to detectability for this tissue. The Lower GI can be sampled non-invasively (e.g., via rectal 
swabs), so we were able to estimate all metrics (see Table S2.3 for all sample types available for 
each included tissue). a, Fold changes in predictions between the cofactor combinations with the 
smallest and largest median predictions for each metric (rows). Each point corresponds to one 
tissue. Squares and circles display results for culture and total RNA assays, respectively. Fold 
changes were similar though often smaller when restricting analyses only to the cofactor 
combinations with data that was available for fitting the model. b, Maximum observed differences 
in culture predictions across all possible cofactor combinations for each metric (rows). This panel 
shares the same row labels as panel a. Columns and colors distinguish between tissues. Units for 
each row correspond to the metric, so the probability of positivity displays the difference in 
percentage, temporal metrics display differences in days, peak titer displays differences in log10 
culture units (pfu or TCID50), and AUC displays differences in AUC units. c, The median 
probability of positivity by culture (top) and total RNA (bottom) in each tissue. Each point is the 
median for one cofactor combination. d, The median trajectory as measured by culture (top) and 
total RNA (bottom) in each tissue. Each line gives the median value for one cofactor combination 
for the median time to detectability, median time to peak titer, mean peak titer, and median times 
to undetectability. 
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Exposure route has the largest effect on within-host infection patterns 

Most of the variation in median infection patterns within each tissue was attributable to 

differences in exposure conditions (Figure 2.3). Strikingly, exposure route had the largest effect 

on 35 of the 37 total tissue-level metrics (indicated by a ‘1’ in each row of Figure 2.3a; calculated 

based on mean differences among cofactors, see Methods; all other values are normalized to the 

largest effect). It also had the largest aggregate impact for each metric when summing across 

tissues (Figure 2.3b). Considering all metrics and tissues jointly, via either culture or PCR assay, 

route was most influential by a large measure (Figure 2.3c). There were limited exceptions to this 

finding: age was most important for the time to peak titer in the nose, while species ranked highest 

for lower GI positivity (Figure 2.3a). Although dose never ranked highest for any individual metric 

(Figure 2.3a,b), it ranked second in aggregate importance across metrics and tissues (Figure 2.3c). 

The finding that route and dose ranked highest overall was robust to choice of summary statistic 

and to additional dose comparisons (Figure S2.7). 

Early infection dynamics differ among exposed and non-exposed tissues 

We then analyzed infection patterns across the five major exposure routes: intranasal (IN), 

intratracheal (IT), combined intranasal and intratracheal (IN+IT), aerosol (AE), and intragastric 

(IG) inoculation. Within-host dissemination and early spatiotemporal infection patterns clearly 

varied among exposed and non-exposed tissues (Figure 2.4). Infection patterns in the throat and 

trachea largely mirrored the nose and lung, respectively (Figure S2.8), so subsequent analyses 

focus chiefly on the nose, lung, and lower GI. Both non-invasive and invasive samples were 

available for these three focal tissues (e.g., rectal swabs and necropsy samples of the colon for the 

lower GI; Table S2.3).   
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Figure 2.3 | Exposure route and dose are the top two determinants of within-host kinetics. 
Model predictions were generated for all possible combinations of age, sex, species, exposure 
route, and exposure dose (restricting to 104 and 107 pfu). Sensitivity analyses for these results are 
in Figure S2.7. a, Relative effects of each cofactor (columns) on the predictions for viral culture 
for each metric (rows) in the tissue indicated by panel labels. The cofactor with a ‘1’ and the 
darkest blue had the largest mean effect. The intensity of the color for all other cofactors are scaled 
according to their relative effect (against the largest mean effect). Predictions for the upper GI 
were only available for the probability of positivity and the time to detectability, given the upper 
GI is only accessible using invasive sampling. See the Methods for further details on obtaining 
these values. b, The sum of the relative effects for each cofactor across all tissues in panel a, which 
were then scaled to relative effects within each row. These were calculated for each metric 
separately. Metrics (rows) are ordered as in panel a. c, The sum of the relative effects for each 
cofactor across all metrics and tissues in panel a, which were then scaled to relative effects. Results 
are stratified by assay type (culture, blue; total RNA, red). 

Tissues exposed during inoculation (or adjacently exposed; i.e., lung for IT) had higher 

probabilities of culture positivity (darker colors in Figure 2.4a,e), and they became detectable 

earlier than non-exposed tissues (Figure 2.4b,f; most pairwise comparisons were significant, 

Figure S2.9). Notably, IT exposure was the only route that resulted in substantially higher 

probabilities of lung positivity than nasal positivity, with a clear pattern of infection spreading 

from the LRT to the URT and then the GI. This contrasts starkly with IN exposure, which resulted 

in the lowest probability of lung detection, and which was the only route where nasal positivity 
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preceded lung positivity. In the lower GI, the probabilities of culture positivity were small for all 

routes (Figure 2.4a,e; few pairwise differences were significant, Figure S2.9), and detectability 

always occurred after the respiratory tract but earliest for IG exposure (Figure 2.4e,f). Total RNA 

assays recapitulated these patterns, but with overall higher probabilities of positivity and slightly 

earlier times to detectability (Figure S2.5b,S2.10).  

Patterns in the timing of culture detectability across all six tissues revealed a functional 

within-host connectivity structure that aligned with physical proximity. When considering IN, IT, 

and IG exposures, all tissues had the most similar times to detectability as an anatomically superior 

tissue (indicated by a column-wise rank ‘1’ in Figure 2.4c), with the exception of the nose which 

had no such tissue and was most similar to its nearest inferior tissue. These findings are consistent 

with the connectivity structure displayed in Figure 2.4d, where the nose and throat are highly 

connected to both the lower respiratory and gastrointestinal tracts, with directionality consistent 

with the importance of the mucociliary escalator and swallowing as mechanisms of within-host 

dissemination. 

Upper respiratory exposure results in different patterns in the peak and conclusion of infection 

Across exposure routes, differences in the peak and conclusion of infection were largely 

driven by whether inoculation included nasal exposure (Figure 2.4g). Peak times for culture in the 

nose were remarkably consistent and occurred before peak titers in the lung (except for AE 

exposure; Figure 2.4g,h,j; Figure S2.9). However, the nose had larger peak titers (Figure 2.4g,i,k), 

later times to undetectability (Figure 2.4g,l,n), and overall longer infection durations (Figure 

2.4g,m,p) when it was exposed (IN, IN+IT, AE) than when it was not exposed (IT, IG). Some of 

these effects were reversed in the lung, which often had earlier peak times (Figure 2.4g,h,j), larger 
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peak titers (Figure 2.4g,i,k), earlier times to undetectability (Figure 2.4g,l,n), and shorter infection 

durations (Figure 2.4g,m,o) when the nose was exposed. In the lower GI, URT inoculation resulted 

in later peak times (Figure 2.4g,h,j), similar (though slightly larger) peak titers (Figure 2.4g,i,k), 

later times to undetectability (Figure 2.4g,l,n), and longer infection durations (Figure 2.4g,m,o). 

Patterns were similar for total RNA (Figure S2.10). Interestingly, peak times rarely deviated by 

more than one day between total RNA and culture, but total RNA remained detectable much longer 

than viable virus in the respiratory tract, in contrast to the GI where undetectability occurred almost 

simultaneously (Figure S2.5b). 

Aerosol exposure leads to different infection dynamics than other routes 

When considering the full course of infection across tissues, AE exposure clearly resulted 

in different spatiotemporal patterns than all other routes, given it had the largest total number of 

significant differences with other routes across all metrics and tissues (Figure 2.4p). AE exposure 

was the only route where infection dynamics in the lung clearly tracked those in the nose, with 

almost simultaneous times to detectability, peak titer, and undetectability for viral culture (Figure 

2.4q). AE exposure also resulted in significantly higher peak titers in the nose and lower GI, as 

well as delayed and prolonged GI positivity. These patterns ultimately resulted in shorter infection 

durations in the lung but longer durations in the nose and lower GI for AE exposure compared to 

all other routes. Crucially, despite IN+IT exposure being commonly used as a tractable model for 

AE exposure, the resulting infections differed significantly for many metrics (Figure 2.4p; Figure 

S2.9) and their dynamics were visibly distinct (Figure 2.4q). Ultimately, these discrepancies 

emphasize that no other exposure route approximates all features of infection patterns following 

AE inoculation.  
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Figure 2.4 | Effects of exposure route on spatiotemporal spread of infectious virus. 
All results in this figure are displayed for viral culture. See Figure S2.10 for results for total RNA. 
Results in panels a, b, h, i, l, m, and q were generated specifically for an adult male rhesus macaque 
exposed to 104 pfu by the indicated route, for visual clarity. All other panels integrate across all 
possible combinations of demographic cofactors and the following exposure doses: 104, 105, 106, 
and 107 pfu. Colors for all panels correspond with the sampled tissue, as indicated in the legend 
along the top (purple: nose; blue: throat; green: trachea; yellow: lung; orange: upper GI; red: lower 
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GI). Dashed lines in panels a, b, g, h, i, l, and m distinguish between routes that include upper 
respiratory exposure (solid lines; IN, IN+IT, AE) and those that do not (dashed lines; IT, IG). 
Exposure route acronyms are as follows: IN, intranasal; IT, intratracheal; IN+IT, combined 
intranasal and intratracheal; AE, aerosol; and IG, intragastric. Tissues that were exposed or 
adjacently-exposed during inoculation have more intense colors in panels a, b, e, f, and h-o. a, 
Model predictions for the probability of positivity across exposure routes. b, Model predictions 
for the median time to detectability. c, Similarities in the median time to detectability among 
tissues for IT, IN, and IG exposures. For each tissue indicated by the column label, their times are 
most similar to the tissue (on the row) with rank 1 and least similar to the tissue with rank 5. 
Annotated text gives the rankings in all cells, with white text for rank 1 for visual clarity. More 
similar tissues have darker shading. We did not include IN+IT and AE exposures in these 
calculations to reduce bias, given these routes inoculate many tissues, leading to highly similar 
dynamics in all exposed tissues. Calculations were based on the average of the absolute value for 
all pairwise differences across tissues. d, Connectivity structure based on all rank 1 similarities in 
panel c. For each tissue in the columns in panel c, we included an arrow between that tissue and 
its rank 1 tissue. The arrow points from the tissue that becomes detectable earlier on average 
towards the tissue that becomes detectable later on average. e, Rankings of the median probabilities 
of positivity for all exposure routes within each tissue (rows). Probabilities increase from left to 
right of this figure, with annotated text indicating the corresponding route. f, Rankings as in panel 
e for the median time to detectability. g, Median trajectories for all five routes separated into panels 
by tissues, where the inoculation routes were distinguished by whether they included nasal 
exposure (solid lines; IN, IN+IT, AE) or not (dashed; IT, IG). h, Model predictions for the median 
time to peak titer. i, Model predictions for the mean peak titer. j, Rankings as in panel e for the 
median time to peak titer. k, Rankings as in panel e for the mean peak titer. l, Model predictions 
for the median time to undetectability. m, Model predictions for the median duration of infection. 
n, Rankings as in panel e for the median time to undetectability. o, Rankings as in panel e for the 
median duration of infection. p, The number of significant differences among all tested infection 
metrics (e.g., probability of positivity) between any given pair of exposure routes, for all tissues 
(top panel, both diagonals, greyscale), upper respiratory tissues (URT; nose, bottom diagonal; 
throat, upper diagonal), lower respiratory tissues (LRT; trachea, bottom diagonal; lung, upper 
diagonal), and gastrointestinal tissues (GI; upper GI, lower diagonal; lower GI, upper diagonal). 
Intensity scales with the total number of significant differences. Diagonals sum across all 
significant differences for a given route in the panel. The total possible number of significances 
within each off-diagonal cell was 32 for all tissues, 6 for the nose, throat, trachea, lung, and lower 
GI, and 2 for the upper GI. q, Median trajectories for each route indicated in the panel label. Thick, 
opaque lines give the median across 1000 samples for each tissue, while thin transparent lines 
display 200 randomly sampled trajectories. 
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The effects of dose are route- and location-specific 

Exposure dose affected infection patterns in many ways, although the direction, strength, 

and significance of these effects often varied across exposure routes and tissues (Figure 2.5). As 

expected, larger doses led to significantly higher probabilities of detectable infection across all 

tissues and routes (Figure 2.5e; dose-specific predictions for an AE-exposed individual and the 

standard cofactor set are displayed in Figure 2.5a,b,d,f-i,j and for all other routes in Figure 

S2.11,2.12). When considering all demographic groups jointly, median infectious dose values 

(ID50) based on the detection of infectious virus were much lower in exposed tissues than non-

exposed tissues (Figure 2.5c). Estimates in the nose ranged from 101.5 pfu for IN exposure up to 

>107.4 pfu for IT and IG exposure, with AE exposure falling at the lower end of this range (102.2 

pfu). ID50 estimates in the lung were as low as <101 pfu for IT exposure and as high as 105.3 pfu 

for IN exposure. The lower GI had consistently large ID50 estimates for culture positivity, ranging 

from 106.4 to >107.4 pfu. ID50 values for the detection of total RNA is markedly lower than for 

infectious virus, with median estimates <101 pfu for nearly all routes and tissues. 

Dose effects on all other metrics often differed between routes that did or did not include 

nasal exposure. For routes with nasal exposure (IN, IN+IT, AE; dark outline in Figure 2.5e), larger 

doses significantly: (i) decreased the time to detectability in the nose but had no effect in the lung 

or lower GI (Figure 2.5d,e), (ii) decreased the time to peak titer in the respiratory tract and 

increased them in the lower GI or had no effect (Figure 2.5e,f), (iii) increased peak titers in all 

tissues (Figure 2.5e,g), (iv) increased time to undetectability in the lower GI but not in the 

respiratory tract (Figure 2.5e,h), and (v) increased infection duration in the lower GI (Figure 

2.5e,i). For AE exposure in particular, larger doses increased the peak but minimally affected the 

duration of infection in the nose, while causing a quicker and more intense infection in the lung  
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Figure 2.5 | Effects of exposure dose on spatiotemporal spread of infectious virus. 
Results in panels a, b, d-i, and j are for a male, adult, AE-exposed rhesus macaque. For all other routes, see Figure S2.11. All other 
panels (c, e) were generated using predictions for all demographic groups and the indicated exposure route. Colors in all panels 
correspond with the sampled tissue, as in the legend at the top (purple: nose; yellow: lung; red: lower GI). a, The probability of culture 
positivity across a range of exposure doses. The thick lines are the median prediction at each dose, and the shaded regions correspond 
with the 90% prediction interval. The overlaid histograms give the distribution of doses available for model fitting from an aerosol-
inoculated individual for all assays. b, As in panel a, but for the probability of total RNA positivity. c, The median estimate of the 50% 
infectious dose for each route and for both total RNA and culture. The rows correspond with different tissues, colored as in the legend. 
Tissues with an estimate of 101 or 107.4 are upper and lower bounds, respectively (i.e., the ID50 estimate is <101 or >107.4). d, The median 
time to detectability. The thick line is the median prediction for the median time to detectability, and the shaded regions correspond with 
the 90% prediction interval on the median time to detectability. e, Significances of the effects for each combination of metric (columns), 
route (rows), and tissue (panels). These were generated by comparing the prediction between doses of 101 and 107 pfu. A “+” indicates 
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the metric significantly increases as dose increases, while “-” indicates the metric significantly decreases as dose increases. No label 
indicates there was no significant effect. Intensities of the colors are scaled against the relative effect (more intense colors indicate a 
larger effect). Dark boxes enclose the routes that included upper respiratory exposure. f, As in panel d, but for the time to peak titer. g, 
The mean peak viral titer. The thick line is the median prediction for the mean peak viral titer, and the shaded region gives the 90% 
prediction interval. h, As in panel d, but for the time to undetectability. i, As in panel d, but for the duration of infection. j, Trajectories 
in each location for variable doses, computed based on the median values for the median time to detectability, median time to peak titer, 
mean viral titer, and median time to undetectability. More intense colors correspond with larger doses.  



151 

 

(Figure 2.5j;see Figure S2.11,S2.12 for other routes). Both the duration of infection and the peak 

titer in the lower GI increased with dose. For routes without nasal exposure (IT, IG), there were 

few measurable dose effects. Larger doses decreased the time to detectability in adjacently-

exposed tissues (e.g., lung for IT, lower GI for IG), and they decreased the time to peak titer in the 

lower GI, but they otherwise had no significant effects (Figures 2.5e,S2.9,S2.11,S2.12). All 

patterns were similar for total RNA (Figure S2.13). Overall, dose had the biggest impact on the 

kinetics of nasally-challenged individuals, perhaps due to the centrality of the nose in the tissue 

connectivity structure (Figure 2.4c,d). 

Clinical profiles vary significantly across exposure conditions and demographics 

Finally, we analyzed tissue-specific AUC values to assess the impacts of exposure 

conditions and demographic effects on nasal shedding (the best available proxy for infectiousness) 

and GI shedding. We used lung AUC as our best available metric for disease severity, given our 

database does not include symptom scores or immunological markers. Once again, AE exposure 

had a significantly different profile from all other routes, with the highest overall nasal and GI 

shedding but the lowest lung severity (Figure 2.6a,b,c). Crucially, IN+IT and AE exposures 

differed substantially, and IN+IT was more similar to IN exposure than to AE. Nasal and GI 

shedding were largest for routes including nasal exposure (AE, IN, IN+IT), while lung severity 

was largest following IN exposure. IT and IG exposures resulted in nearly identical profiles (Figure 

2.6a,b,c), given they only differed significantly for four metrics across all tissues (Figure 2.5p). 

Shedding increased as dose increased for all routes, with the only exception being reduced nasal 

shedding following larger IG doses, although this effect was small.  
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Although demographic groups had similar probabilities of testing culture positive (Figure 

2.7b), their clinical profiles often differed. Among species, African green monkeys (AGM) had 

significantly higher lung severity than rhesus and cynomolgus macaques (RM and CM; Figure 

2.6d,e,f), which can be explained by their significantly larger peak titers and longer infection  

 

 

 
 
Figure 2.6 | Clinical profiles across exposure conditions and demographics. 
a and b, Relationship between median lung severity and (a) nasal shedding or (b) GI shedding, all 
of which were calculated as culture AUC values. Colored shapes and labels distinguish between 
the exposure routes, with shapes indicating the total exposure dose. All values are expressed 
relative to the AUC value for aerosol exposure with 107 pfu. c, Median AUC predictions for all 
possible combinations of cofactors, relative to the corresponding prediction for an AE-exposed 
individual. Colors and shapes are the same as in panels a and b, distinguishing between the route 
and the dose. Panels separate the tissues (nose, bottom; lung, middle; lower GI, top). d, e, and f, 
As in panels a, b, and c, except comparing species with color (RM, rhesus macaque; CM, 
cynomolgus macaque; AGM, African green monkey). Values were calculated relative to 
cynomolgus macaques. g, h, and i, As in panels a, b, and c, except comparing age classes with 
color. Values were calculated relative to adults. j, k, and l, As in panels a, b, and c, except 
comparing sexes with color. Values were calculated relative to females. 
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Figure 2.7 | Effects of demographic factors on spatiotemporal spread of infectious virus. 
Colors in all panels denote the tissue being sampled (purple: nose; yellow: lung; red: lower GI). 
All results were generated for viral culture. a, The number of significant differences among all 
infection metrics (e.g., probability of positivity) in each location (columns) between the 
demographic groups labeled on the rows. The overall column sums across the tissues to give the 
total number of significant differences for those demographic groups. There were 6 possible 
differences for each cell, except for the overall column where there were 18 possible differences. 
The intensity of the color scales with the percent of differences that were significant. Species 
acronyms are: RM, rhesus macaque; CM, cynomolgus macaque; AGM, African green monkey. b, 
The median probability of positivity for each demographic group indicated along the y axis. The 
histograms are the percent of the data used for model fitting for each demographic group (including 
all assays). All estimates were based on predictions generated for all routes, one dose (104 pfu), 
and all possible demographic factors except the one being varied (e.g., the RM estimates include 
predictions for all ages and sexes but not for CM or AGM). Colored lines connecting the dots in 
panels b-g indicate the corresponding difference was significant. Dotted lines correspond with an 
insignificant difference. c-g, As in panel b except for the median predictions of (c) the median time 
to detectability, (d) the median time to peak titer, (e) the mean peak titer, (f) the time to 
undetectability, and (g) the duration of infection. 

durations (Figure 2.7e,g). CMs had the highest nasal shedding (Figure 2.6d) given their 

significantly larger peak titers (Figure 2.7e), while AGMs had the highest GI shedding (Figure 

2.6e) given their slightly (but insignificantly) larger peak titers and longer durations (Figure 

2.7e,g). Adults had significantly lower nasal shedding, higher GI shedding, and lower lung severity 
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than juveniles and geriatrics (Figure 2.6g-i). Geriatrics had the highest nasal shedding and lung 

severity (Figure 2.6g), although sample sizes were small so cautious interpretation is warranted 

(Figure 2.7b). Females had significantly higher nasal and GI shedding than males (Figure 2.6j.k), 

given they had similar durations but larger peak titers (Figure 2.7e,g). However, males had 

significantly higher lung severity (Figure 2.6j), which arose from longer infection durations with 

no difference in peak titer (Figure 2.7e). 
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Discussion 

This study addresses long-standing, fundamental questions on the determinants of 

spatiotemporal infection patterns inside hosts by conducting the most comprehensive quantitative 

analysis of non-human primate (NHP) challenge experiments to date. We demonstrate that 

exposure route shapes the probability, onset, peak, and conclusion of SARS-CoV-2 infection 

across the respiratory and gastrointestinal tracts more than exposure dose or demographic factors 

do. Our results show that infection patterns following aerosol inhalation are clearly distinct from 

any other exposure route, including intranasal or combined intranasal/intratracheal inoculation. 

We also demonstrate that dose affects infection patterns in nuanced ways (e.g., primarily when 

administered to the nose), beyond standard discussions of infection probability. Altogether, our 

study identifies the determinants of infection patterns inside hosts for an important respiratory 

virus in an important animal model for human disease, offering a foundation and direction to 

uncover general principles that constrain the success of human respiratory pathogens. 

All aspects of within-host infection varied significantly across exposure routes, including 

spatiotemporal patterns and shedding profiles. Tissues exposed during inoculation became 

detectably infected before non-exposed tissues, followed by physically proximate tissues. 

Exposure routes that included URT inoculation (e.g., intranasal [IN], aerosol [AE], combined 

intranasal and intratracheal [IN+IT]) resulted in longer infections with larger peak titers in the 

nose, shorter infections with earlier and larger peak titers in the lung, and delayed but prolonged 

infections in the lower GI. In accordance with work on influenza (Lai et al., 2024) but in contrast 

with a study on SARS-CoV-2 (with small sample sizes; Blair et al., 2021), AE exposure resulted 

in different dynamics than IN or IN+IT exposures, which are both used regularly as tractable 
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alternatives to aerosol inhalation in animal experiments. For example, AE exposure was the only 

route with synchronous temporal patterns in the nose and lung, and it had significantly higher nasal 

shedding. Intriguingly, AE exposure also resulted in the lowest lung severity because it had the 

shortest infection duration, which contrasts with a report for influenza A that aerosol inoculation 

resulted in more severe symptoms than intranasal inoculation (Lindsley et al., 2015). This 

discrepancy could stem from our choice of severity metric (culture AUC in the lung), which treats 

longer infections even at lower titers as more severe than quick, intense infections. The most 

accurate correlate of severity remains to be identified, especially given that positive, negative, and 

no relationships have been observed between infection duration and illness severity for SARS-

CoV-2 (Cevik et al., 2021). However, this pattern could also be related to theories and some 

experimental evidence that smaller doses lead to gentler immune responses and lower severity 

(Marois et al., 2012; Van Damme et al., 2021): aerosol exposure distributes the same dose across 

more respiratory locations, including the lung, which could allow the infection to be controlled 

more easily than following a flood of liquid inoculum. Overall, given stark differences in infection 

dynamics across all routes, extreme caution is warranted when extrapolating insights from any 

other inoculation procedure to aerosol exposure, including in transmission experiments, where 

discrepancies between donor (typically IN exposed) and sentinel animals could be explained by 

differences in the route of exposure as opposed to, or in addition to, differences in dose. 

Our model showed that the probability of successful infection in any given tissue was 

strongly dependent on exposure route, dose, and detection assay. Based on viral culture, exposed 

tissues were more likely to test positive and had smaller ID50 values. For example, our ID50 

estimates in the nose were 101.5, 102.2, and >107.4 pfu for intranasal, aerosol, and intratracheal 

inoculations, respectively, which is consistent with previous human challenge experiments that 
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have estimated variable ID50 values for aerosol versus intranasal inoculation of respiratory viruses 

(Alford et al., 1966; Couch et al., 1966; Lindsley et al., 2015). Lung positivity varied less across 

routes, likely given the lower respiratory tropism of early SARS-CoV-2 strains (named variants 

were not included in our database), but differences were still substantial between aerosol (101.3 

pfu) and intranasal exposures (105.3 pfu). In contrast, median ID50 estimates based on total RNA 

positivity did not exceed 102 pfu for any location or exposure route, emphasizing that within-host 

dissemination of viable virus from exposed tissues often fails to occur or fails to become 

detectable, despite widespread RNA positivity. This highlights the importance of discussing 

infection probability and infectiousness in the context of within-host spatial structure, and it warns 

that investigations of the source of exhaled, virus-laden aerosols must carefully consider which 

tissues were truly infected. 

Exposure dose influenced many aspects of within-host dynamics besides the probability of 

infection, including shedding and severity. Larger doses have been hypothesized to decrease the 

incubation period, increase viral load, lead to faster infection progression, and increase disease 

severity for SARS-CoV-2 (Mølbak et al., 2024; Van Damme et al., 2021; Wang et al., 2021). 

While we could not measure incubation directly without symptom data, our model did predict that 

larger doses would significantly decrease the time to detectability in all exposed tissues but not in 

non-exposed tissues. We also found that larger aerosol doses resulted in shorter infections with 

larger peak titers in the lung, ultimately increasing severity (measured as culture lung AUC), thus 

lending support to those theories while corroborating the dose-severity relationship identified for 

other respiratory viruses (e.g., hCoV 229E in a human challenge trial, Bradburne et al., 1967; 

SARS-CoV-2 and influenza A in murine models, Imai et al., 2020; Marois et al., 2012). 

Intriguingly, larger doses increased nasal shedding and lung severity for all routes that included 
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upper respiratory exposure (AE, IN, IN+IT), however they did not substantially affect either metric 

for intratracheal or intragastric inoculation. These results emphasize that shedding and severity for 

early SARS-CoV-2 strains are particularly sensitive to dose administered to the nose and throat, 

and that studies employing other inoculation procedures would likely not identify a strong dose-

severity or dose-shedding relationship. 

Our study offers the unique opportunity to contrast the overall infection patterns observed 

in humans with those in NHPs, which are an important animal model for human disease (Estes et 

al., 2018). Based on PCR data, we estimated ID50 values at or below 101 pfu (or equivalently 101.4 

TCID50) for respiratory tissues regardless of exposure route. This is nearly identical to the dose 

that resulted in PCR-detectable upper respiratory infections for 53% of participants in the SARS-

CoV-2 human challenge trial (101 TCID50; Killingley et al., 2022), and it is similar to ID50 

estimates in humans for other respiratory viruses (e.g., human coronavirus 229E, Watanabe et al., 

2010; influenza A H2N2, Alford et al., 1966; and rhinovirus NIH 1734, Couch et al., 1966). Two 

early SARS-CoV-2 studies, including one large meta-analysis, reported that 48% of COVID-19 

patients were RNA positive in GI samples (Cheung et al., 2020; Lin et al., 2020), although this 

likely overestimates population-wide prevalence since many individuals were hospitalized. Based 

on our model predictions that the median ID50 values for RNA detection in the lower GI are ≤102 

pfu for all exposure routes, this suggests that the average natural exposure dose in humans could 

be less than 102 pfu. 

Comparisons of temporal infection patterns between humans and NHPs were more 

difficult, given they are highly route- and dose-specific and given that most descriptions in humans 

are necessarily based on times since symptom onset rather than since exposure (Cevik et al., 2021; 

He et al., 2020; Weiss et al., 2020; Wölfel et al., 2020). However, our model predictions for low-
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dose, aerosol-exposed rhesus macaques (101-102 pfu; aggregating across age and sex) were similar 

to estimates from a prospective sampling study (Kissler et al., 2021), namely for the proliferation 

phase (i.e., time between detectability and peak titer; 2.2 vs. 3.3 days), the clearance phase (i.e., 

time between peak titer and undetectability; 9.0 vs. 8.5 days), and the overall infection duration 

(11.3 vs. 11.7 days) when monitoring the nose via PCR. We also estimated, for the same exposure 

conditions as above, that culture titers in the nose would peak 1.5 days after becoming detectable, 

which is consistent with another estimate in humans that culture probability peaks in the nose 1.8 

days after the onset of shedding (Jones et al., 2021). Notably, given we identified distinct infection 

profiles for all respiratory exposure routes and given infection trajectories were remarkably 

consistent among all participants in the human challenge experiment (Killingley et al., 2022), the 

observed heterogeneity in naturally-acquired infections in humans could stem from variable routes 

or doses of exposure. 

Despite compiling the largest ever database of non-human primate challenge experiments, 

our study was still limited along some dimensions. Available doses and overall sample sizes were 

unevenly distributed across routes: combined intranasal/intratracheal inoculation comprised 62% 

of the full database, and aerosol inhalation was the only route with doses that may be more relevant 

to natural exposure (101-103.5 pfu). More comprehensive coverage across exposures would further 

improve ID50 estimates and comparisons of spatiotemporal kinetics. As with all analyses of 

animal challenge experiments, there is risk that some infections were not observed or that statistical 

noise obscured true patterns. These risks, however, should be lower for our study than individual 

experiments conducted with few animals, given that we integrated across articles to identify 

aggregate patterns across more than 700 individual NHPs and given that our model predicted 

minimal differences in our infection metrics across studies. Finally, all NHPs included in our 
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database were immunologically naive to SARS-CoV-2 and were inoculated with ancestral SARS-

CoV-2 strains that circulated prior to the emergence of Alpha variants, so future work that 

characterizes infection across diverse immune profiles and viral genetic landscapes would be 

highly valuable. 

Our study presents the most comprehensive and quantitative evidence to date that exposure 

conditions shape infection patterns inside hosts, in ways that affect an individual's disease risk and 

shedding potential. With our study, we demonstrate the ability of meta-analysis to answer 

fundamental questions that are inaccessible for individual experiments, ultimately enhancing the 

value of each constituent study and improving adherence to the 3R principles. Future studies can 

increase their statistical power by contrasting their results with our database of historical control 

individuals, including to compare patterns across SARS-CoV-2 variants, evaluate the efficacy of 

pharmaceutical interventions, or identify differences across disparate pathogens. Overall, 

quantitative tools like ours show immense promise to transform our understanding of pathogen-

host biology and to launch us into a new era of microbiology and improved human health. 

 

 

Data and Code Availability 

The full database compiled during the literature search will be made available on GitHub 

alongside the published version of this manuscript. All data and code used to produce the results 

and figures in this manuscript will also be made available on the same GitHub. 
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Supplementary Figures 

 

Figure S 2.1 | Screening and selection procedure for database compilation, including both 
literature searches.  
We created this figure by adapting the template flowchart provided in Moher et al., 2009, which 
offers guidelines and resources for systematic reviews and meta-analyses. We incorporated all of 
their suggested steps for reporting the results of systematic literature searches, but all of the 
substantive content (e.g., numbers, exclusion reasons) is based entirely on our literature search. 
Additional detail on the screening procedure is provided in the Supplementary Methods. 
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Figure S 2.2 | Model fits for the probability of positivity and time to detectability.  
All panels are as presented in Figure 2.1h, except this figure includes PCR and culture assays, all 
tissue locations except the upper GI, and all exposure routes. Some observations occurred after 
day 20 post inoculation, resulting in points that are either not visible or partially visible along the 
far right side of each panel. We were still able to generate predictions for panels without data 
because of information sharing in our model. 



163 

 

 
Figure S 2.3 | Model fits for the time to peak titer. 
All panels are as presented in Figure 2.1i, except this figure includes both PCR and culture assays, 
all tissue locations except the upper GI, and all exposure routes. We were still able to generate 
predictions for panels without data because of information sharing in our model. 
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Figure S 2.4 | Model fits for the time to undetectability. 
All panels are as presented in Figure 2.1l, except this figure includes both PCR and culture assays, 
all tissue locations except the upper GI, and all exposure routes. We were still able to generate 
predictions for panels without data because of information sharing in our model. Predictions are 
also available but not shown for 20 or more days since the peak titer.    
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Figure S 2.5 | Differences in model predictions among assays and among articles. 
Within both panels, results are grouped into rows by metric, which are labeled along the left-hand 
side with panel a. a, Pairwise differences in the predictions for each metric across all assays 
(assuming no article effect; blue) and across all articles (conditioned on using the same assay; red). 
These were generated for any possible combination of cofactors. b, Differences between total RNA 
and viral culture in the median predictions for all metrics. Each point presents the differences for 
a given combination of cofactors, where color denotes which assay has the larger metric (red: total 
RNA is larger than culture; blue: culture is larger than total RNA). 
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Figure S 2.6 | Variation in individual-level trajectories. 
Each line is one example individual-level trajectory. Each panel includes all five routes, all ages, 
all sexes, all species, and one dose (104 pfu). 
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Figure S 2.7 | Sensitivity of rankings to summary statistic and dose comparisons. 
a-c, Rankings of relative cofactor effects as in Figure 2.2, except calculated using the median 
differences. d-f, Rankings of relative cofactor effects as in Figure 2.2, except allowing dose 
comparisons between 101 and 104 pfu as well as 104 and 107 pfu. 
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Figure S 2.8 | Trajectories within the upper and lower respiratory tract, for total RNA and 
culture. 
Rows stratify results into organ groups and assays, while columns denote the exposure route. 
Colors distinguish between the tissues, as in the legend at the bottom (purple: nose; blue: throat; 
green: trachea; yellow: lung). Thick, opaque lines give the median trajectory, and thin, transparent 
lines give samples of the median trajectory.  
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Figure S 2.9 | Significant differences for culture among all routes and all locations. 
Effects are relative to the route indicated on the row, compared to the route on the column. For 
example, IN inoculation results in larger probabilities of positivity in the nose than IG (red cell), 
but IT exposure results in lower probabilities of positivity than all other routes (blue cell). Light 
gray cells indicate no comparison was possible. These were generated for predictions from the 
standard cofactor set. 
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Figure S 2.10 | Route effects visualized for total RNA. 
All panels are presented as in Figure 2.4, except that this figure displays results for total RNA 
assays. 
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Figure S 2.11 | Dose effects on culture metrics for all exposure routes. 
Visualization techniques are the same as for Figure 2.5, except this figure includes predictions for 
all exposure routes.  
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Figure S 2.12 | Dose effects on culture trajectories for all exposure routes. 
Results are presented as in Figure 2.5j, with lighter colors corresponding to smaller exposure doses. 
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Figure S 2.13 | Dose effects on total RNA metrics for all exposure routes. 
Visualization techniques are the same as for Figure 2.5, except this figure includes predictions for 
all exposure routes and for total RNA.  
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Supplementary Tables 
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Article # 
indivs. 

#  
obs. Route Dose 

(log10 pfu) 
Age 

Class Sex Species PCR 
type 

PCR 
gene 

Culture 
assay 

Cell 
line 

Sample 
Type Strain 

An et al. 2021 3 42 IT 6.1* J U RM T N   I CHN/U (ID: 20SF107) 
Arunachalam et al. 2020 4 32 IT, IN 6.5 J, A, U M RM SG N, E   NI USA/WA1/2020 
Baum et al. 2020 10 183 IT, IN 6, 5 A, U M, F RM T, SG N, E   NI USA/WA1/2020 
Berry et al. 2022 6 262 IN 4.5* U F CM T, SG E, ORF7 U VeroE6-SS2 NI, I AUS/VIC01/2020 
Bewley et al. 2020 6 43 IT, IN 6.7 J U RM T N   NI AUS/VIC01/2020 
Bixler et al. 2022 8 264 AE 4.8 A U RM, CM T, SG U, E PFU Vero 76 NI USA/WA1/2020 
Bixler et al. 2022 8 264 IT, IN 7.4 A U RM, CM T, SG U, E PFU Vero 76 NI USA/WA1/2020 
Blair et al. 2021 4 92 AE 4 A, G M, F RM, AGM T N   NI USA/WA1/2020 
Blair et al. 2021 4 89 IT, IN, OR, CJ 6.6 A, G M, F RM, AGM T N   NI USA/WA1/2020 
Böszörményi et al. 2020 8 1180 IT, IN 4.8* J, A M RM, CM G, SG ORF1, E   NI, I DEU/BavPat1/2020 
Brouwer et al. 2021 4 124 IT, IN 6 A F CM G, SG ORF1, E   NI FRA/1DF0372/2020 
Chandrashekar et al. 2020 13 341 IT, IN 6, 5, 4 A U RM T, SG N, E PFU Vero E6 NI, I USA/WA1/2020 
Chen et al. 2021 8§ 34 IN 5.1* J U RM U U   I CHN/KMS1/2020 
Corbett et al. 2020 15 63 EB 4, 5 A M, F RM U U   NI USA/WA1/2020 
Corbett et al. 2020 23 167 IT, IN 5.9, 5, 4 J, A M, F RM T, SG, U N, E, U   NI USA/WA1/2020 
Cross et al. 2020 6 403 IN 6.4 A F AGM T N PFU Vero E6 NI, I ITA/INMI1/2020 
Cross et al. 2021 2 85 IT, IN 5.7 U U AGM T N PFU Vero E6 NI, I ITA/INMI1/2020 
Dabisch et al. 2021 16 448 AE 1.2-3.5*† J, A M, F CM G ORF1 TCID50 Vero NI USA/WA1/2020 
Dagotto et al. 2021 4 16 IT, IN 4 A U RM T N, E   NI USA/WA1/2020 
Deng et al. 2020A 7 207 IT 5.8* J U RM T E   NI, I CHN/WH-09/2020 
Deng et al. 2020B 2 90 CJ 5.8* J M RM T E TCID50 Vero E6 NI, I CHN/WH-09/2020 
Deng et al. 2020B 2 83 IG 5.8* J M RM T E   NI, I CHN/WH-09/2020 
Deng et al. 2020B 1 74 IT 5.8* J M RM T E TCID50 Vero E6 NI, I CHN/WH-09/2020 
Fears et al. 2022 8 544 AE 4* A M RM, AGM T, SG N TCID50 Vero E6 NI, I USA/WA1/2020 
Fears et al. 2022 8 543 IT, IN 6.1* A M RM, AGM T, SG N TCID50 Vero E6 NI, I USA/WA1/2020 
Feng et al. 2020 6 63 IT 4.2, 2.4* A M, F RM T S   NI, I CHN/WIV04/2019 
Finch et al. 2020 3 117 IB 6.6 J M, F CM T N   NI USA/WA1/2020 
Fischer et al. 2024 4 68 AE 2.8-3.3*† J M RM G ORF1   NI, I USA/WA1/2020 
Fischer et al. 2024 4 68 IN 5.7* J M RM G ORF1   NI, I USA/WA1/2020 
Francica et al. 2021 7 42 IT, IN 6.5 U U RM SG E   NI USA/WA1/2020 
Furuyama et al. 2022 4 124 IT, IN, OR, OC 6.3* U F RM T, SG E   NI, I USA/WA1/2020 
Gabitzsch et al. 2021 2 48 IT, IN 5.8* J M, F RM T, SG N, E   NI USA/WA1/2020 
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Gorman et al. 2021 4 64 IT, IN 6 A U RM T, SG N, E   NI, I USA/WA1/2020 
Gu et al. 2020 1 1 IT, IN 6.6 A M RM T E   I KOR/U (ID: NCCP43326) 
Gu et al. 2021 1 7 IT 4.8* A U RM T S   NI CHN/WIV04/2019 
Guebre-Xabier et al. 2020 4 16 IT, IN 4 J, A M, F CM SG E   NI USA/WA1/2020 
Guo et al. 2021 3 45 IT 4.8* A U RM T N   NI, I CHN/WIV04/2019 
Hassan et al. 2021 6 138 IN, IB 5.8* A U RM U, G N, ORF1 TCID50 Vero E6 NI, I USA/WA1/2020 
He et al. 2021 10 20 IT, IN 4 A U RM SG E   NI USA/WA1/2020 
Hoang et al. 2021 4 164 IT, IN 6 A M, F RM T N   NI, I USA/WA1/2020 
Huang et al. 2021 8 104 AE 4* A M RM, AGM T N   NI USA/WA1/2020 
Ishigaki et al. 2021 3 393 IT, IN, OR, CJ 6.2* A M, F CM T N TCID50 Vero E6 NI, I JPN/WK-521/2020 
Ishii et al. 2022 4 48 IN 4.8* J F CM T, SG U TCID50 Vero E6-SS2 NI, I JPN/WK-521/2020 
Jiao et al. 2021A 5 335 IG 7 U M RM T N TCID50 Vero E6 NI, I CHN/U 
Jiao et al. 2021A 5 326 IN 7 U M RM T N TCID50 Vero E6 NI, I CHN/U 
Jiao et al. 2021B 2 100 IC 5, 6 J M RM T N   NI, I CHN/U 
Jiao et al. 2021B 5 147 IN 7 J M RM T N   NI, I CHN/U 
Johnston et al. 2020 11 473 AE 4.5, 4.6, 4.7 J, A M, F RM, CM, AGM T N PFU Vero 76 NI USA/WA1/2020 
Jones et al. 2021 4 88 IT, IN 5 A F RM T, SG N, E   NI, I USA/WA1/2020 
Kim et al. 2021 3 90 IT, IN, OR, OC 6.3* A U RM T S TCID50 Vero E6 NI, I KOR/U 
Kobiyama et al. 2021 2 76 IT, IN, OR, CJ 7.3 A F CM T N TCID50 VeroE6-SS2 NI, I U 
Koo et al. 2020 16 567 IT, IN, OR, CJ, IV 7.3* U U RM, CM G ORF1 TCID50 Vero NI, I KOR/U (ID: NCCP43326) 
Lakshmanappa et al. 2021 6 24 IT, IN, OC 6.4 J M, F RM T N   NI USA/CA-CZB-59X002/2020 
Lambe et al. 2021 6 26 IT, IN 6.7 J U RM T N   NI AUS/VIC01/2020 
Li (Dandan) et al. 2021 2 34 IN 4.8* J M RM T N   NI, I CHN/KMS1/2020 
Li (Dapeng) et al. 2021 11 182 IT, IN 5 J, A M, F CM T, SG E, N   NI USA/WA1/2020 
Li (Mingxi) et al. 2021 2 24 IT 6 A M RM U, SG U, E   NI, I CHN/Wuhan-Hu-1/2020 
Li (Yuzhong) et al. 2021 5 15 IT 6.5* J U RM T N   I CHN/Kunming-BP16/2020 
Liang et al. 2021 6 136 IT, IN 6.3* U M RM T N   NI, I CHN/U (ID: 107) 
Liu (Xiaolei) et al. 2022 4 72 IN 4.8* J M, F RM T E   NI, I CHN/KMS1/2020 
Liu (Jiang-Feng) et al. 2022 5 10 IN 5.7 A U RM T N   I CHN/U (ID: GD108#) 
Liu (Zezhong) et al. 2022 3 48 IT 5.8* J U RM T N   NI, I CHN/WH-09/2020 
Lu et al. 2020A 20 760 IT, IN, CJ 6.7, 6.4 J, A M, F, U RM, CM T N   NI, I CHN/Wuhan-Hu-1/2020 
Lu et al. 2020B 3 27 IT, IN, CJ 6.7 J, A F RM T N   NI CHN/Wuhan-Hu-1/2020 
Ma et al. 2022 4 92 IT 4.8 J M, F RM T S   NI, I CHN/WIV04/2019 
Maisonnasse et al. 2020 8 214 IT, IN 6 J M, F CM G ORF1   NI FRA/1DF0372/2020 
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Maisonnasse et al. 2021 5 100 IT, IN 6 U F CM G, SG ORF1, E   NI FRA/1DF0372/2020 
McMahan et al. 2020 5 56 IT, IN 4 J M, F, U RM SG E   NI USA/WA1/2020 
Mercado et al. 2020 20 204 IT, IN 4 A U RM SG E PFU Vero E6 NI USA/WA1/2020 
Munster et al. 2020 8 646 IT, IN, OR, OC 6.3* J, A M, F RM T, SG E, ORF7 TCID50 Vero E6 NI, I USA/WA1/2020 
Nagata et al. 2021 6 495 IT, IN, CJ 7.4* A F CM T, SG N TCID50 VeroE6-SS2 NI, I JPN/WK-521/2020 
Nawaz et al. 2020 4 59 IN, OR 6.1* U U RM U U   NI, I PAK/Lahore-IV/2020 
Nomura et al. 2022 6 295 IN 5.7, 4.7, 3.7* J, A M, F CM T, SG U TCID50 VeroE6-SS2 NI JPN/WK-521/2020 
Pan et al. 2022 4 68 IT 4.8* A U RM T S   NI, I CHN/WIV04/2019 
Patel et al. 2021 5 130 IT, IN 4 J M, F RM T, SG N, E   NI USA/WA1/2020 
Philippens et al. 2021 8 224 IT, IN 4.8* J, A M RM, CM G, SG ORF1, E   I DEU/BavPat1/2020 
Qin et al. 2020 2 38 IN 4.8* J F RM U U   NI, I CHN/KMS1/2020 
Rauch et al. 2020 6 88 IT, IN 6.7 U M, F, U RM U, SG N, E   NI, I AUS/VIC01/2020 
Rockx et al. 2020 8 371 IT, IN 6.8* A F CM U U TCID50 Vero E6 NI, I DEU/BavPat1/2020 
Roozendaal et al. 2021 7 84 IT, IN 4.8* J M, F RM SG E   NI USA/WA1/2020 
Rosenke et al. 2020 10 482 IT, IN, OR, OC 6.3* J M RM U E TCID50 Vero E6 NI, I USA/WA1/2020 
Rosenke et al. 2021 5 575 IN 6 A, U M, F AGM SG, T E, N TCID50 Vero E6 NI, I USA/RML-7/2020 
Routhu et al. 2021 5 60 IT 4.7 J M RM SG E   NI USA/WA1/2020 
Salguero et al. 2021 12 437 IT, IN 6.7 J M, F, U RM, CM T, SG N, E PFU Vero E6 NI, I AUS/VIC01/2020 
Sanchez-Felipe et al. 2021 6 24 IT, IN 4* J, A M CM G ORF1   NI BEL/GHB-03021/2020 
Saunders et al. 2021 5 46 IT, IN 5 J, A M, F CM SG E, N PFU Vero E6 NI USA/WA1/2020 
Seo et al. 2021 3 54 IT, IN, OR, CJ, IV 7.3* U U CM G ORF1 TCID50 Vero NI KOR/U (ID: NCCP43326) 
Shan et al. 2020 8 330 IT 6.7, 5.8* A M, F RM T S TCID50 Vero E6 NI, I CHN/WIV04/2019 
Shi et al. 2020 1§ 1 IT 4.8* A U RM T S   NI CHN/IVDC-HB-envF13/2020 
Singh et al. 2020 16 592 IT, IN, OC 6 J, G M, F RM T, SG N, E PFU Vero E6 NI, I USA/WA1/2020 
Sokol et al. 2021 4 83 IT, IN 7.3 J, A F RM, CM G ORF1   NI FRA/1DF0372/2020 
Song et al. 2020 8 280 IT 6.8* A M RM T N   NI, I CHN/U (ID: 107) 
Song et al. 2021 3 48 IT 6.8* A M RM U U   NI, I CHN/U (ID: 107) 
Song et al. 2021 3 48 IT, IN 6.8* A M RM U U   NI, I CHN/U (ID: 107) 
Speranza et al. 2020 8 557 IT, IN, OR, OC 6.3* A M, F AGM T, SG E TCID50 Vero E6 NI, I USA/WA1/2020 
Sun (Shiyu) et al. 2021 6 180 IN 6.8* J M, F RM T N   NI, I CHN/U (ID: 107) 
Sun (Shihui) et al. 2021 4 24 IT, IN, OC 6.3* J M, F CM T S   I CHN/IME-BJ01/2020 
Sun et al. 2023 4 83 IN 5.7 A U RM T N   NI, I CHN/U (ID: GD108#) 
Tan (Shudan) et al. 2023 4 148 IT 4.8* A M, F RM T S   NI, I CHN/WIV04/2019 
Tan (Janessa)  et al. 2023 4 144 IT 6.3* U U CM T N   NI SG/WX-56/2020 
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van Doremalen et al. 2020 6 456 IT, IN, OR, OC 6.3* J U RM G, SG ORF1, E TCID50 Vero E6 NI, I USA/WA1/2020 
Vogel et al. 2021 9 130 IT, IN 6 J M RM T N   NI USA/WA1/2020 
Wang (Gan) et al. 2020 3 90 IT, IN 6.8* A M RM T N   NI, I CHN/U (ID: GD108#) 
Wang (Shuang) et al. 2020 3 84 IT 4.8* A U RM T S   NI, I CHN/WIV04/2019 
Wang (Hui) et al. 2020 2 26 IT 5.8* J U RM T N   NI, I CHN/WH-09/2020 
Wang et al. 2022 6 180 IT 4.8* A M, F RM SG S   NI, I CHN/WIV04/2019 
Williamson et al. 2020 6 441 IT, IN, OR, OC 6.3* J M, F RM T E TCID50 Vero E6 NI, I USA/WA1/2020 
Woolsey et al. 2020 6 470 IT, IN 5.7 A M, F, U AGM T N PFU Vero E6 NI, I ITA/INMI1/2020 
Yadav et al. 2021A 5 313 IT, IN 6.5* A U RM T, SG E   NI, I IND/UN-770/2020 
Yadav et al. 2021B 4 262 IT, IN 6.5* A U RM T, SG E U Vero CCL-81 NI, I U 
Yang et al. 2020 5 166 IN 5.7 A U RM T, SG N, E   NI, I U 
Yao et al. 2021 3 30 IT 5.8* A U RM T S   NI, I CHN/WIV04/2019 
Yu (Jingyou) et al. 2020 10 209 IT, IN 4 A U RM T, SG N, E PFU Vero E6 NI U 
Yu (Pin) et al. 2020 5 21 IT 5.8* J, A U RM T E   NI, I CHN/IVDC-HB-01/2020 
Yu et al. 2022 9 252 IG 5.8* A U RM T, SG N, E   NI USA/WA1/2020 
Yu et al. 2022 12 240 IT, IN 4.8* A U RM SG E   NI USA/WA1/2020 
Zheng et al. 2020 14 670 IN 5.1* J M RM G ORF1 TCID50 Vero NI, I CHN/KMS1/2020 
Zost et al. 2020 4 20 IT, IN 4 A U RM SG E   NI USA/WA1/2020 

 
Table S 2.1 | Database summary. 
Each row is for a distinct exposure route, so articles with multiple routes have multiple rows. Acronyms are: IN, intranasal; IT, 
intratracheal; IC, intracranial; OR, oral; OC: ocular; CJ: conjunctival; IV, intravenous; AE, aerosol; IB, intrabronchial; EB: 
endobronchial; U, unknown; J, juvenile; A, adult; G, geriatric; M, male; F, female; RM, rhesus macaque; CM, cynomolgus macaque; 
AGM, African green monkey; T, total RNA; G, genomic RNA; SG, subgenomic RNA; VeroE6-SS2, VeroE6-TMPRS22. *: dose 
reported as TCID50 was converted to pfu. †: includes many doses in the indicated range. §: more than this number of animals were 
included in the indicated study, but we were only able to extract individual-level data for some of them. For articles where the first 
author has the same last name as another author, we also include the first name of the first author in parentheses.  
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Exposure 
category URT LRT URT + LRT 

(Liquid) 
URT + LRT 

(Aerosol) GI 

Reported 
Inoculation 

Routes 

IN 
OC 

IT 
IB 
EB 

IT, IN 
IB, IN 

IT, IN, OC 
 IT, IN, OR, OC 

IT, IN, OR, OC, IV 

AE IG 

 
Table S 2.2 | Categorization of reported inoculation routes into exposure categories for model 
fitting.  
Acronyms are as follows: IN: intranasal; OC: ocular; IT: intratracheal; IB: intrabronchial; EB: 
endobronchial; OR: oral; IV: intravenous; AE: aerosol; IG: intragastric. Underlines indicate the 
route used when generating predictions for each category.  
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Tissue Group Non-invasive sample types Invasive sample types 

Nose Nasal swab / wash 
Nasopharyngeal swab / fluid Nasal mucosa / tissue 

Throat 
Throat swab 

Pharyngeal swab 
Oropharyngeal swab 

Oropharynx 
Laryngeal mucosa 

Trachea Tracheal swab / brush / fluid Trachea 
Carina 

Lung BAL 
Bronchial brush / swab 

Bronchus 
Lung (any lobe) 

Upper GI  

Esophagus 
Stomach 

Liver 
Small intestine 

Duodenum 
Ileum 

Jejunum 

Lower GI 
Rectal swab / fluid 

Anal swab 
Feces / Fecal swab 

Colon 
Cecum 

 
Table S 2.3 | Reported sample types grouped into tissue categories. 
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Chapter 3. Spatial models reveal principles that govern  

SARS-CoV-2 infection patterns inside hosts 

Abstract 

Viral infection dynamics inside hosts depend on pathogen fitness and dissemination across 

the internal landscape of host tissues, but the relative effects of these two governing processes on 

realized spatiotemporal patterns are difficult to disentangle from observational data. In this study, 

we developed a mechanistic model of SARS-CoV-2 infection that captures the inherent spatial 

structure and connectivity of tissues across the respiratory and gastrointestinal tracts. We fit this 

model to data from nine articles that experimentally challenged rhesus macaques with SARS-CoV-

2, which allowed us to identify consistent patterns across disparate exposure conditions and 

sampling methodologies. Our model estimated high rates of viral dissemination across tissues, 

especially into the throat. We found that tissue-specific temperature often had larger estimated 

effects on infection rates than local receptor or protease expression. Our results also indicated that 

most infections resulted in fewer than 10% of all available target cells in a given tissue becoming 

infected and, relatedly, that most infections were subcritical. Upper respiratory tissues more 

frequently experienced supercritical infection, and they almost always produced more infectious 

virus than the lung or lower GI over the full course of infection. Our mechanistic modeling 

framework is the first to formally investigate how tissue traits and connectivity structure interact 

to determine spatiotemporal infection patterns inside hosts, and it lays the foundation for within-

host mechanistic models to help answer long-standing questions in virology about the determinants 

of tissue tropism.    
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Introduction 

Spatiotemporal patterns of viral infection inside hosts can vary widely depending on the 

pathogen-host system, ranging from systemic infections to those that are highly localized in key 

tissues or cell types (McCall, 2021). In humans, for example, rotaviruses primarily infect 

gastrointestinal tissues, whereas Nipah virus disseminates broadly via the circulatory system 

(Crawford et al., 2017; de Wit & Munster, 2015). These spatial infection patterns are often referred 

to as ‘tissue tropism,’ and they can vary across host species, as observed for MERS-CoV, which 

preferentially infects the lower respiratory tract of humans but the upper respiratory tract of 

dromedary camels (Van Doremalen & Munster, 2015). Tropism is typically determined by 

observing symptoms, swabbing orifices, collecting invasive tissue samples post mortem, and 

occasionally by fluorescent imaging of labeled viruses during experimental infection of small 

animal models (Karlsson et al., 2015). However, the generative processes that give rise to observed 

tropism are largely unobservable in vivo, and the viral and host factors that ultimately determine 

tropism remain incompletely understood. Both epidemiology and public health would benefit 

immensely from better characterizing these factors, as transmissibility and pathogenicity are 

inextricably linked to how well a virus infects and spreads within its host.  

Current discourse largely attributes tropism patterns to the availability of cellular receptors 

and proteases, both of which mediate virus-cell membrane fusion (Baggen et al., 2021; Bourgonje 

et al., 2020). Yet observed tropism does not always map neatly onto receptor or protease 

expression, likely due to other tissue-specific factors that constrain viral infectivity, proliferation, 

and persistence, given that observed tropism requires sufficient local infection as well as local 

replication. These factors fall into several categories. Physical barriers can prevent access to 
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permissive cells (e.g., via the mucus coating respiratory epithelial cells; Zanin et al., 2016), 

interferon-signaling can trigger antiviral cellular states (Samuel, 2001), and immune cells can 

directly clear infectious viral particles or induce cell-mediated apoptosis (Mercer & Greber, 2013; 

Zhou et al., 2017). In vitro experiments have shown that viral expression and replication patterns 

can differ across the variable temperatures observed throughout the human respiratory tract (e.g., 

influenza A, Laporte et al., 2019; influenza C, Sreenivasan et al., 2019) or at different tissue-

relevant pH values (e.g., influenza, Russell et al., 2018; SARS-CoV-1, Laporte et al., 2021). In 

fact, abiotic sensitivities are well-established barriers for the adaptation of avian influenza to 

mammals (Lipsitch et al., 2016; Russell et al., 2018). Within-host dissemination mechanisms likely 

also limit observed tropism, given that viruses must be able to access permissive tissues, either by 

spreading locally to physically proximate locations (e.g., cell-free or cell-to-cell transmission; 

Cifuentes-Muñoz et al., 2018) or by long-range movements throughout the host body (e.g., via the 

lymph or blood; Fenner et al., 1987), though this is typically not observable in vivo and difficult 

to approximate in in vitro settings. Ultimately, although cellular receptors, proteases, and abiotic 

conditions clearly impact viral infectivity and replication in vitro, no systematic study has yet 

disentangled the relative effects of these host tissue factors, along with connectivity among tissues, 

on determining in vivo spatiotemporal infection patterns. 

Given the wealth of experimental and clinical data generated during the COVID-19 

pandemic, SARS-CoV-2 provides a unique opportunity to investigate the drivers of tropism for an 

important pandemic-turned-endemic virus. SARS-CoV-2 primarily causes respiratory infection in 

humans, but it is known to also cause extrapulmonary complications (Gupta et al., 2020) and viral 

RNA has been detected in many different organ systems of deceased patients (Puelles et al., 2020; 

Stein et al., 2022; Yao et al., 2021). This broad tropism could be explained by the relatively 
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widespread expression of ACE2 (Salamanna et al., 2020; Sungnak et al., 2020), which is the 

primary cellular receptor for SARS-CoV-2 (Hoffman et al. 2020). However, ACE2 is moderately 

expressed in some tissues where infection is rare (e.g., cornea) but has seemingly lower expression 

in some tissues with high rates of infection (e.g., lung; Sungnak et al., 2020), and one study found 

that roughly half of all deceased COVID-19 patients showed signs of extrapulmonary infection, 

but half did not (Yao et al., 2021). Together, this emphasizes that receptor availability cannot fully 

explain tropism and that other mechanisms likely constrain the spatial distribution of SARS-CoV-

2, either by preventing access to seemingly permissive tissues or by limiting infection once it 

reaches them.  

The seeming discordance between observed ACE2 and SARS-CoV-2 distributions could 

be explained by other host factors, including the usage of alternate cellular receptors. Some have 

been proposed for SARS-CoV-2 (e.g., CD147), but their relevance for cellular entry in vivo 

remains unclear (Baggen et al., 2021; Jackson et al., 2022; Lim et al., 2022; Shilts et al., 2021). 

Meanwhile, many proteases have demonstrated the ability to cleave the SARS-CoV-2 spike 

protein at the cellular surface (e.g., TMPRSS2, TMPRSS4, TMRPSS11a, HAT), in endosomes 

(e.g., cathepsin B, cathepsin L), or even before exocytosis (e.g., furin; Beumer et al., 2021; 

Hoffmann et al., 2020, 2020; Kishimoto et al., 2021; Laporte et al., 2021; Shang et al., 2020; Zang 

et al., 2020). However, TMPRSS2 expression results in higher levels of cleavage, cellular entry, 

and replication in vitro relative to the other functional proteases, and it is generally considered the 

primary protease, suggesting SARS-CoV-2 tropism could be constrained by its availability across 

tissues. Other experiments have also demonstrated that SARS-CoV-2 infected more cells and 

replicated to higher titers when cultured at the ambient temperature of the human upper respiratory 

tract (33°C) compared to the core body temperature of the lower respiratory tract (37°C; Laporte 
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et al., 2021; V’kovski et al., 2021). These factors may all impact in vivo SARS-CoV-2 dynamics, 

but their relative effects on tropism are difficult to disentangle with direct observation or statistics 

on patient derived data, because they are inherently confounded by the processes that generated 

the observable patterns. 

The processes governing viral tropism are directly parallel to those determining habitat 

selection and species distribution in ecology, since within-host infection can be viewed as a virus 

invading the tissue landscape of its host (Snedden et al., 2021). Similar to how resource availability 

and environmental conditions determine wildlife fitness in habitat patches, the cellular properties 

and abiotic conditions of individual tissues also determine local viral fitness. Seminal work in 

spatial ecology has demonstrated that landscape-wide population dynamics are highly sensitive to 

spatial heterogeneity in fitness and to connectivity patterns in multi-patch systems (Becker et al., 

2018; Pulliam, 1988; Schreiber & Lloyd‐Smith, 2009). For example, dispersal patterns can 

substantially impact species distributions and can result in misleading signals about habitat 

suitability: regions with positive growth rates can maintain populations in those with negative 

growth rates given sufficient dispersal (i.e., source-sink dynamics), and suitable habitat can remain 

unoccupied unless individuals are introduced (i.e., dispersal limitation; Pulliam, 1988, 2000). Huge 

untapped potential exists in bringing these ecological theories and their methods to bear on modern 

problems in virology, especially in harnessing mechanistic models to identify the underlying 

processes that give rise to observed infection patterns.  

Mathematical models of within-host infection can be designed to capture any mechanisms 

hypothesized to underlie tropism patterns, and these hypotheses can then be tested by fitting the 

model to data, ideally from both in vivo and in vitro sources. The traditional model of virus 

infection within a host individual can track the growth and decline of target cells and viruses in a 
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given tissue for any virus-host system of interest (e.g., HIV in the blood in humans; Perelson, 

2002). This model framework can be extended to consider multiple host tissues simultaneously 

(e.g., upper vs. lower respiratory tract; Gonçalves et al., 2021; Rodriguez & Dobrovolny, 2021), 

though such analyses are much less common than single-tissue analyses and, when available, 

rarely involve more than two tissues. Some modeling work for SARS-CoV-2 included viral 

movement between multiple respiratory compartments in their preliminary models but not their 

main analyses, given insufficient data to fully estimate movement rates between tissues (Alexandre 

et al., 2022; Gonçalves et al., 2021). In contrast, a single study modeled viral dynamics among 

eight distinct tissues, and they were able to estimate nonzero movement rates among them, 

although these movement estimates relied on data from hamsters and not humans (Dogra et al., 

2021). Given the many mechanisms by which viruses could disseminate between tissues (e.g., 

aspiration, mucociliary escalator, local transport, blood; Fenner et al., 1987) and given the clear 

lesson from ecology that connectivity can be a crucial driver of population distribution, more 

modeling research is needed to characterize the effects of virus dissemination on observed 

infection patterns. In fact, multi-tissue models may be the best currently available method that can 

integrate connectivity structure with heterogeneous fitness landscapes to identify the determinants 

of spatiotemporal infection patterns across the host body.  

In this study, we developed a model of SARS-CoV-2 infection that captures the inherent 

spatial structure and connectivity of tissues across the respiratory and gastrointestinal (GI) tracts. 

We fit this model to data from 9 articles that experimentally challenged rhesus macaques with 

SARS-CoV-2, which increased our sample sizes relative to individual studies and which allowed 

us to identify consistent patterns across disparate exposure conditions and sampling 

methodologies. We investigated the determinants of SARS-CoV-2 tissue tropism by estimating 
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the dependence of tissue-specific infection rates on local ACE2 expression, TMPRSS2 

availability, ACE2-TMPRSS2 coexpression levels, and temperature. We also estimated tissue-

specific reproductive numbers, and we characterized local viral production as well as dispersal 

rates among the nose, throat, lung, and lower GI. With our modeling framework, we quantitatively 

tested the influence of multiple putative drivers of tropism, all while accounting for connectivity 

among tissues and the mechanisms underlying within-host viral replication, which, to our 

knowledge, has not been attempted before. 
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Methods 

Data compilation 

For this study, to ensure adequate temporal resolution, we included all articles from our 

larger database (see Chapter 2) that obtained repeated non-invasive samples from rhesus macaques 

(Macaca mulatta) in the nose, throat, lung, and lower GI. Nine articles included sufficient data for 

analysis, resulting in a dataset composed of males, females, juveniles, and adults (Table 3.1; Bixler 

et al., 2022; Blair et al., 2021; Fears et al., 2022; Hoang et al., 2021; Munster et al., 2020; Rosenke 

et al., 2020; Salguero et al., 2021; Vogel et al., 2021; Williamson et al., 2020). It includes animals 

exposed by aerosol inhalation, combined intranasal and intratracheal inoculation, and combined 

intranasal, intratracheal, ocular/conjunctival, and oral (i.e., ‘multi-route’) inoculation. Total 

exposure doses ranged from 104 to 107.4 plaque forming units. Quantitative titers were available 

for total RNA PCR, sgRNA PCR, and culture assays. All studies used either the USA/WA1/2020 

or the AUS/VIC01/2020 isolate of SARS-CoV-2.  

Determining tissue-level expression patterns and temperature  

We sought to classify ACE2 expression, TMPRSS2 expression, cell-specific ACE2-

TMPRSS2 co-expression, and ambient temperature across tissues in rhesus macaques. 

Recognizing the limitations in available data, we classified these factors qualitatively as high, 

medium, low, or absent. When available, we prioritized data from rhesus macaques, followed in 

order by data from cynomolgus macaques, other non-human primates, or humans.  

To determine tissue-level receptor and protease expression, we used cell-type specific 

ACE2 expression, TMPRSS2 expression, and ACE2-TMPRSS2 co-expression values from data 

published in Han et al., 2022. This included single-cell transcriptomics data from the lower 
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respiratory tract (trachea, bronchus, lung) and the gastrointestinal tract (stomach, duodenum, 

colon) of cynomolgus macaques (Macaca fascicularis), among other tissues. Given that the non-

invasive lower respiratory samples included in our dataset (i.e., bronchoalveolar lavage, bronchial 

brush) could reasonably contain viruses produced in the trachea, lung, or bronchus, we considered 

all three tissues to classify overall expression for our lung tissue compartment. Similarly, given 

that the gastrointestinal tissue(s) where SARS-CoV-2 replication may occur is unknown, plus the 

inherently directional flow through the gastrointestinal tract, we considered all three GI tissues 

when classifying lower GI expression. For all six tissues separately (trachea, bronchus, lung, 

stomach, duodenum, colon), we identified the cell type with the highest mean expression values 

for ACE2, TMPRSS2, and co-expression. For both the lower respiratory and GI compartments, 

we averaged the corresponding maximum ACE2, TMPRSS2, and co-expression values for the 

constituent tissues to generate overall expression profiles (Table S3.1). Semi-quantitative rankings 

of these expression profiles (i.e., low, medium, high) were unchanged when using the maximum 

of the maximum expression values instead of when averaging over the maximum expression 

values. The resulting quantities were consistent with other reports suggesting that ACE2 is more 

expressed in some gastrointestinal tissues than in the lung of macaques (Gao et al., 2022; Ziegler 

et al., 2020).  

Comparable expression values were not available for upper respiratory tissues in 

macaques, but other studies have noted that ACE2 is highly expressed in the nose of rhesus 

macaques (Liu et al., 2011) and that ACE2 expression decreases down the respiratory tract in 

humans (Hou et al., 2020). Based on these findings, we set ACE2 expression in the nose and throat 

as the average of the expression values in the lung and lower GI, which preserves the key 

qualitative patterns in available data, namely: (i) the expression gradient down the respiratory tract, 
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and (ii) the high levels of expression in the macaque GI. TMPRSS2 expression has been shown to 

be relatively consistent across the respiratory tract of humans (Hou et al., 2020), so we set 

TMPRSS2 expression values in the nose and throat as equal to those in the lung. One study 

observed co-expression of ACE2 and TMPRSS2 in the nasal epithelium and bronchioles of 

humans but found negligible co-expression in the alveoli (Carossino et al., 2024). Another study 

found higher cell-specific percentages of co-expression in the human nasal cavity than in the 

bronchial tissues or the lung parenchyma (Sungnak et al., 2020). Based on these reports, we 

assumed that the difference in co-expression values between the upper respiratory tissues and the 

lungs was equal to the difference between the lungs and the lower GI. This captures the expectation 

of higher co-expression in the nose and throat than in the lung.  

Temperatures vary along the respiratory tract from approximately 30-32°C in the human 

nasal cavity to 37°C in human lungs (Lindemann et al., 2002; McFadden et al., 1985). We assumed 

rhesus macaques have a similar temperature gradient, with lower temperatures in the nose and 

throat than the core body temperature found in the lung and lower GI. Relative quantities for the 

expression patterns and temperature conditions of each tissue are displayed in Figure 1C. 

Modeling viral dynamics within each tissue 

We model the infection dynamics within each considered tissue (nose, throat, lung, lower 

GI) with a system of ordinary differential equations, as in the traditional model of within-host 

infection (Perelson, 2002), although we make various adjustments to better align with our data and 

context. We track the growth and decline of target cells (T), eclipse phase cells (E), infected cells 

(I), infectious virus particles (V), full-length genomic RNA (G; not packaged inside a virion), and 

subgenomic RNA (sgRNA; S) over time (Figure 3.1A). All rates are expressed in their occurrence 
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per day. As is typical for modeling acute infections, we assume that cells are not proliferating and 

that only infected cells die during our time period of interest. Infectious viral particles successfully 

infect target cells with rate 𝛽, at which point the cells enter the eclipse phase. Eclipse phase cells 

do not generate infectious virus by definition, but they do produce genomic RNA and subgenomic 

RNA at rates 𝜎E and 𝜂E, respectively. Eclipse phase cells become infected cells with rate 𝛾, which 

we fix at 4 per day as in other studies for SARS-CoV-2 (Ke et al., 2021; Marc et al., 2023). Infected 

cells produce virus at rate p, genomic RNA at rate 𝜎I, and subgenomic RNA at rate 𝜂I. Infected 

cell death occurs at rate 𝛿. To capture that the average infected cell lifespan should not exceed one 

day, we set 1 as the lower bound for 𝛿. Both RNA types are degraded or cleared by the immune 

system at rate cR, for which we set a lower bound of 0.2 to reflect that we do not expect the average 

RNA lifespan to exceed 5 days. Without this lower bound, the fits from our model occasionally 

predicted durations of RNA positivity that were much longer than typically observed in 

immunocompetent animals (as in our dataset). Infectious virus is cleared, degraded, or otherwise 

rendered non-infectious at rate cV, which we enforced must be larger than cR. All rates are tissue-

specific (e.g., viral production rates are allowed to vary between all four tissues). Model equations 

are given after the next section, which outlines the spatial coupling between tissues.  

Modeling connectivity between tissues 

Our model tracks infection dynamics in the nose, throat, lung, and lower GI separately, but 

we allow viral particles, gRNA, and sgRNA to move between these tissue compartments based on 

hypothesized within-host dissemination mechanisms (Figure 3.1B). We refer to these tissues in 

our parameters using the following numbers: 1, nose; 2, throat; 3, lung; 4, lower GI. The movement 

rates of infectious viral particles from tissue i to tissue j are unique (mVij), but movement rates are 
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shared between gRNA and sgRNA (mRij). Particles may move down the respiratory tract one tissue 

at a time via local transport or inhalation (i.e., nose to throat [mV12, mR12], throat to lung [mV23, 

mR23]). They may also move up the respiratory tract sequentially via local transport, exhalation, 

coughing, or the mucociliary escalator (i.e., lung to throat [mV32, mR32], throat to nose [mV21, mR21]). 

Swallowing can transport virus or RNA into the lower GI from the nose (mV14, mR14) or throat 

(mV24, mR24). The lung and lower GI can exchange virus or RNA via systemic spread, at direction- 

and assay-specific rates (mV34, mR34, mV43, mR43). We also include movement from the lower GI to 

the throat to capture fecal-oral self-transmission or systemic spread (mV42, mR42). To constrain the 

model to reasonable parameter space and aid identifiability, we do not allow the sum of all 

movement rates out of a given tissue to exceed 0.5 (for virus and RNA separately), given we do 

not expect more than half of all available virus or RNA to be transported out of a tissue within a 

single day on average.  

Compartmental model equations 

 Model equations for a given tissue i are indicated below, where J is the set of all tissues 

that flow into tissue i and K is the set of all tissues that tissue i flows out to (see above section). 

All other parameters are explained two sections above.  

 

𝑑𝑇'
𝑑𝑡 = 	−𝛽'𝑇'𝑉' 

𝑑𝐸'
𝑑𝑡 = 	𝛽'𝑇'𝑉' − 𝛾'𝐸' 	 

𝑑𝐼'
𝑑𝑡 = 	𝛾'𝐸' − 𝛿'𝐼' 	 
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𝑑𝑉'
𝑑𝑡 = 	𝑝'𝐼' +8 𝑚>.'𝑉. −8 𝑚>'?𝑉' − 𝑐>'𝑉'

?∈A.∈B
 

𝑑𝐺'
𝑑𝑡 = 	𝜎4𝐸' + 𝜎;𝐼' +8 𝑚C.'𝐺. −8 𝑚C'?𝐺' − 𝑐C'𝐺'

?∈A.∈B
 

𝑑𝑆'
𝑑𝑡 = 	𝜂4𝐸' + 𝜂;𝐼' +8 𝑚C.'𝑆. −8 𝑚C'?𝑆' − 𝑐C'𝑆'

?∈A.∈B
 

 

Setting and estimating initial conditions  

Simulating a system of ordinary differential equations requires fixing or estimating initial 

conditions for all state variables (in our case: target cells, eclipse cells, infected cells, virus, gRNA, 

and sgRNA). When we fit our model with wide priors on the initial number of target cells, there 

were clear correlations between the number of target cells and other parameters. Thus, we followed 

convention and fixed the number of target cells in each tissue compartment, since only the product 

of the number of target cells and the viral production rates are identifiable (Zitzmann et al., 2024). 

We set the number of target cells in the nose and throat to each be 104.5, based on a recent 

measurement in the nose of a cynomolgus macaque (104.3; Gonçalves et al., 2021). Similar to 

previous studies, we set the number of target cells in the lung to be 10-fold higher than the nose 

(105.5; Ciupe & Tuncer, 2022) and the number in the GI to be the same as the nose (104.5; Dogra et 

al., 2021). We assumed that time starts immediately after the inoculum has been deposited in the 

target tissues such that no cells are infected yet, and so we set the initial number of eclipse and 

infected cells at zero.  

Approximate exposure doses of infectious viral particles are reported for each route in each 

study, and we used these values as our initial conditions for the virus state variables. The amount 
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of free (i.e., not virion-associated) gRNA or sgRNA contained in the inoculum is not typically 

measured or reported in animal challenge experiments, so we first considered models that 

estimated their initial quantities for each tissue based on reported exposure doses, alongside all 

other viral dynamic parameters. For example, we estimated the initial log10 gRNA quantity in the 

nose (log10(G1(t=0))) as a scalar multiple (𝛼G,1) of the reported log10 dose administered to the nose 

(log10(D1)), resulting in the following relationship: log10(G1(t=0))=𝛼G,1log10(D1). These models 

often fit poorly with frequent divergent transitions, likely due to issues with parameter 

identifiability. The models also struggled to fit when we fixed the initial gRNA quantity at zero, 

but the fits performed well when we instead fixed the initial gRNA quantity at the local dose. This 

reflects that the inoculum likely also contains detectable free RNA or RNA associated with non-

infectious viral particles, and it is consistent with many studies detecting large quantities of RNA 

one day post infection. One article with particularly large RNA quantities resulted in poor fits 

under this relationship (Bixler et al., 2022; aerosol exposure only), so we allowed this model only 

to estimate initial virus and gRNA quantities without restraint, which substantially improved 

model performance. We fixed initial sgRNA quantities at zero for all studies and tissue locations. 

No article included in this study inoculated animals intragastrically, so we set all initial virus and 

RNA quantities in the lower GI to zero, such that any flow of the inoculum into the gastrointestinal 

system must happen after the inoculation procedure via the included movement parameters.  

We determined location-specific doses (i.e., D1, D2, D3) similarly to our previous work 

(Chapter 2). Given sample sizes were too small to include a trachea compartment in this analysis, 

we instead allowed intratracheal inoculation to increase the dose in the lung. We assumed that the 

reported route-specific doses were distributed across respiratory tissues as follows: (i) intranasal: 

50% nose, 50% throat; (ii) oral: 100% throat; (iii) intratracheal: 100% lung; (iv) ocular or 
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conjunctival, 100% nose; and (v) aerosol: 25% nose, 25% throat, 50% lung. As in our previous 

work, we assumed ocular or conjunctival inoculation ultimately resulted in nasal exposure, given 

that we do not include a compartment for the eyes and given that fluids administered ocularly 

rapidly drain into the nose via the nasolacrimal duct (Belser et al., 2013). 

Incorporating dependence of the infection rate on tissue conditions 

 In our model, the infection rate for a given tissue i (𝛽i) can be influenced by local ACE2 

expression (ACE2i), TMPRSS2 expression (TMPRSS2i), ACE2-TMPRSS2 coexpression in cells 

(COEXPi), and temperature (TEMPi). For simplicity, we express the log infection rate as a linear 

combination of these cofactors, each with their own unique regression coefficients (λACE2, 

λTMPRSS2, λCOEXP,  λTEMP, respectively) and with an intercept shared across all tissues (ψ). Unlike 

most other parameters in our model, these trait parameters (λACE2, λTMPRSS2, λCOEXP,  λTEMP) are not 

tissue-specific and are instead shared by all tissues. This allows us to capitalize on trait variation 

across tissues to determine their relative effects on the infection rate. Given the nose and throat 

have the same tissue conditions for the considered factors (Figure 3.1C), we include an additional 

term that allows their infection rates to differ from each other according to any unmodeled factors 

(λURT). The full equation for the infection rate is as follows: 

 

log10(𝛽i) = ψ + λACE2ACE2i + λTMPRSS2TMRPSS2i +  

λCOEXPCOEXPi + λTEMPTEMPi + λURTURTi 

  

 Tissue specific conditions are displayed in Figure 3.1C. For ACE2i and COEXPi, we 

encode low expression as the value -0.5, medium expression as the value 0, and high expression 
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as the value 0.5. For TMRPSS2i and TEMPi, we encode low values as 0 and high values as 1. 

URTi is encoded as 1 for the throat and 0 for all other tissues. Given that ACE2 and TMPRSS2 

are known to facilitate viral entry in vitro, we constrain λACE2, λTMPRSS2, λCOEXP to be greater than 

or equal to zero, reflecting that higher expression should not reduce local infectivity. Similarly, 

given SARS-CoV-2 infected more cells and replicated to higher titers when cultured at the lower 

temperatures of the human upper respiratory tract than at the core body temperature, we constrain 

λTEMP to be less than or equal to 0. We do not set any constraints on λURT. The shared intercept 

parameter (ψ) is allowed to be any negative value, given that prior estimates of the SARS-CoV-2 

infection rate have not exceeded 1.  

Fitting the model to data 

To estimate all parameter values, we fit the compartmental model to each article in our 

dataset separately. For studies that included multiple exposure routes (Bixler et al., 2022; Blair et 

al., 2021; Fears et al., 2022), we also fit each route separately, resulting in twelve total fits. Our 

data includes quantitative measurements of total RNA, subgenomic RNA, and infectious virus 

titers, which we fit to different state variables on the log10 scale. Given total RNA PCR could 

amplify full-length genomic RNA, subgenomic RNA, and virion-associated RNA, we assumed 

that total RNA quantities (TR) were normally distributed around the sum of the model predictions 

for the state variables G, S, and V, with some estimated standard deviation (𝜎TR). Similarly, we 

assumed sgRNA quantities (SG) were normally distributed around the predictions of S and that 

culture titers (C) were normally distributed around the predictions for V, each with their own 

standard deviations (𝜎SG, 𝜎C). These relationships are expressed statistically as follows: 
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 log10(TR) ~ Normal ( log10(G + S + V) , 𝜎TR )  

 log10(SG) ~ Normal ( log10(S) , 𝜎SG )  

 log10(C) ~ Normal ( log10(V) , 𝜎C )  

 

We treat all samples reported as falling below the limit of detection as censored data, with 

the limit of detection as the upper bound of the true value. In practice, this is done by incrementing 

the log probability by the log cumulative normal probability at the reported limit of detection. 

When detection limits were not reported, we used the smallest value reported for the given assay 

in that article as our best available proxy. For one article, the limit of detection for culture was not 

available and there were no reported positives, so we set the limit at a conservative value of 1.7 

log10.   

We model all virus production rates (p) on the natural log scale, such that the model fits 

values for plog=loge(p). We used this transformation because it led to better model fits than when 

fitting to untransformed p or log10(p). RNA production rates (𝜎E, 𝜂E, 𝜎I, 𝜂I) are expressed as scalar 

multiples of the log virus production rates (plog). For example, 𝜎E=exp(θE plog) and 𝜂E=exp(τE plog). 

All other rates are expressed similarly, and the scalar multiples are unique to each tissue. To aid 

with parameter identifiability and given clear evidence of substantially higher detectable RNA 

quantities than infectious virus titers, we constrain these scalar multiples (θE, θI, τE, τI) to be greater 

than or equal to 0.5. 

Prior distributions  

 We used weakly informative priors for all estimated parameters to reflect patterns expected 

based on prior in vitro experiments or other modeling work. All parameters are described in the 
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previous methods sections. The priors for the regression model on the infection rates are shown 

below. Note that we truncated these distributions to constrain the model to reasonable parameter 

space. In particular, we force λACE2, λTMPRSS2, and λCOEXP to be greater than 0, but λTEMP and Ψ to 

be less than 0. 

 

Ψ ~ Normal(-7, 1.5); truncated such that Ψ≤0 

 λACE2 ~ Normal(0.5, 2); truncated such that λACE2≥0 

λTMPRSS2 ~ Normal(0.5, 2); truncated such that λTMPRSS2≥0 

λCOEXP ~ Normal(0.5, 2); truncated such that λCOEXP≥0 

λTEMP ~ Normal(-0.5, 2); truncated such that λTEMP≤0 

λURT ~ Normal(0, 0.25); not truncated 

 

The priors for the viral dynamic model were equal across tissues. As with the infection rates, the 

priors are truncated at certain values, as indicated below and justified in the above methods 

sections.  

 

𝛿 ~ Normal (1.7, 1); truncated such that 𝛿≥1 

cV ~ Normal (15, 5); truncated such that cV≥cR 

cR ~ Normal (2, 1); truncated such that cR≥0.2 

loge(p) ~ Normal (loge(50), 1); not truncated 

θE ~ Normal (1, 1); truncated such that θE ≥0.5 

θI ~ Normal (1, 1); truncated such that θI≥0.5 

τE ~ Normal (1, 1); truncated such that τE≥0.5 
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τI ~ Normal (1, 1); truncated such that τI≥0.5 

 

For one study with particularly large RNA quantities (Bixler et al. 2022; aerosol exposure), we 

increased the prior on loge(p) to instead be centered at loge(100) with a standard deviation of two. 

We also altered the priors on θE, θI, τE, and τI to be Normal (2, 2), with the same truncation at 0.5 

as for all other models. This improved this model’s ability to fit. The priors on the observation 

model for all articles were: 

 

𝜎TR ~ Exponential(1) 

𝜎SG ~ Exponential(1) 

𝜎C ~ Exponential(1) 

 

We did not set priors on specific movement rates, though they all had 0 as their lower bound. We 

did set priors on the sum of all movement rates out of each tissue (for virus and RNA separately). 

They all had the same priors: Normal (0.2, 0.2) truncated above 0.  

Computational methods and software 

All data preparation, analysis, and plotting were completed with R version 4.2.0. Posterior 

sampling of the Bayesian model was performed with No-U-Turn Sampling (NUTS) via the 

probabilistic programming language Stan using the interface CmdStanR version 0.5.2. We used 

the Stan ODE solver designed for stiff systems (ode_bdf) with larger relative and absolute 

tolerances than the default (10-4 vs. 10-6) to speed up computation. Due to computational 

constraints, we generated all model fits by running two replicate chains with 1000 iterations each, 
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of which the first 500 samples of each chain were treated as the warm-up period and the final 500 

iterations were used to generate parameter estimates. Some model fits included a small number of 

divergent transitions, but they still fit the data well. 

Generating predictions 

We estimated median parameter values and their 90% credible intervals using all available 

post-warmup samples. When calculating other derived quantities (e.g., the number of infected 

cells), we used at least 100 post-warmup parameter samples to generate predictions from simulated 

trajectories. Each prediction was generated using grouped parameter samples (e.g., samples from 

the same chain and iteration) to preserve correlation structure. When we calculated posterior 

probabilities, we computed the fraction of all predictions that resulted in the particular outcome of 

interest versus all other possible outcomes.   

  



223 

 

Results 

Data and model overview 

We analyzed the data from 9 articles that challenged rhesus macaques with ancestral 

SARS-CoV-2 strains (USA/WA1/2020 or AUS/VIC01/2020) and that reported viral RNA or 

infectious virus measurements from the nose, throat, lung, and lower GI (Table 3.1). This dataset 

includes 1,600 total observations from 62 individuals, spanning three different exposure routes 

(aerosol; combined intranasal and intratracheal; combined intranasal, intratracheal, 

ocular/conjunctival, and oral) and total exposure doses ranging from 104-107.4 plaque forming units 

(pfu). Given different exposure routes can result in clearly distinct dynamics (Chapter 2), we 

analyzed routes from the same article separately. All included individuals were either juveniles or 

adults, and the dataset included both sexes. 

 

 

Table 3.1 | Sample sizes across tissue locations for each article. 
Acronyms in the route column are: AE, aerosol; IT, intratracheal; IN, intranasal; OR, oral; CJ, 
conjunctival; OC, ocular. Dose is presented in log10 plaque forming units. Assay acronyms are: 
T, total RNA; SG, subgenomic RNA; C, culture. Age acronyms are: A, adult; J, juvenile. Sex 
acronyms are: M, male; F, female; U, unknown.  

# of observations# of
IndivsSexAgeSpeciesAssaysDose

(log10)RouteArticle Lower 
GILungThroatNoseTotal

32832521244UARMT, SG, C4.8AEBixler et al. 2022
32832521244UARMT, SG, C7.4IT+INBixler et al. 2022
1261110392MARMT4AEBlair et al. 2021
7758272M, FARMT6.6IT+IN+OR+CJBlair et al. 2021

324848481764MARMT, SG, C4AEFears et al. 2022
324848481764MARMT, SG, C6.1IT+INFears et al. 2022
321632321124M, FARMT6IT+INHoang et al. 2021
442444441568M, FA, JRMT, C6.3IT+IN+OR+OCMunster et al. 2020
564256562109MJRMU6.3IT+IN+OR+OCRosenke et al. 2020
161139501166M, FJRMT, SG, C6.7IT+INSalguero et al. 2021
26172727979MJRMT6IT+INVogel et al. 2021
573075812436M, FJRMT, C6.3IT+IN+OR+OCWilliamson et al. 2020
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We fit the data from each article to our model, which tracks infection dynamics using a 

system of ordinary differential equations (Figure 3.1A). In each tissue, we model changes over 

time in the available target cells (T), eclipse phase cells that are infected but not yet producing 

infectious viral particles (E), infected cells that do produce virus (I), and infectious viral particles 

themselves (V). Our dataset includes measurements of total RNA and sgRNA, so we include two 

additional state variables for full-length genomic RNA (G; not virion-associated) and subgenomic 

RNA (sgRNA; S), such that total RNA assays measure the sum of virion-associated RNA, all full-

length genomic RNA, and all subgenomic RNA (i.e., V+G+S). We allow RNA and virus to move 

between tissues at differing rates, according to the topology in Figure 3.1B. Briefly, we include 

connections that account for physical proximity, the mucociliary escalator, swallowing, systemic 

spread, or fecal-oral self-transmission (see Methods for details). We also classified tissue-specific 

ACE2 expression, TMPRSS2 expression, ACE2-TMPRSS2 coexpression, and temperature as 

shown in Figure 3.1C (see Methods for details). This model broadly fits the data well (see example 

fit in Figure 3.1D). 

Parameter estimates across articles 

Given we fit each article to our model separately, we first investigated variability in the 

parameter estimates across tissues and articles (sorted by value in Figure 3.2; see Figure S3.1 for 

estimates sorted by article). Based on the median parameter values, the average infected cell 

lifespan was between 8 and 21 hours (Figure 3.2A). We fixed the average eclipse phase duration 

at 6 hours (based on prior work; Ke et al. 2021), and so the average total time between a virus 

entering a cell and that cell dying was predicted to range from 14 to 27 hours. Detectable virus  
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Figure 3.1 | Model schematic and example fit. 
A, Schematic of cellular and viral dynamics within each tissue. Transitions between state variables 
and removal from the system are denoted with solid black or orange arrows, respectively. 
Production of RNA and virus are denoted with dashed arrows. Parameters correspond with those 
outlined in the methods. B, Connectivity between tissues. Each circle is a tissue, which is colored 
as in the first column of panel C (purple, nose; blue, throat; yellow, lung; red, lower GI). White 
arrows indicate directional connections between two tissues that are included in the model. C, 
Tissue-specific expression patterns and temperature (Temp). Color intensity scales with the 
indicated expression level or temperature (e.g., light gray for low). D, Example model fit on total 
RNA data from Williamson et al. 2020, which includes data from 6 animals. Each point is an 
observation, and each semi-transparent line is a predicted trajectory sampled from all posterior 
parameters. Each panel distinguishes between tissues, which are colored as in panel B and C. 
Panels A and B were made with BioRender.com.  
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Figure 3.2 | Parameter estimates. 
In all panels, we plot the median parameter values for each article-route combination as circles, 
and their corresponding 90% credible intervals as horizontal lines. Each color corresponds with 
the tissue indicated along the y axis (and as presented in Figure 3.1C). Circles filled with gray and 
outlined in color correspond with studies that used aerosol inoculation. All other routes are circles 
filled with color and outlined in black. The figure legend displays this with the color scheme for 
the nose as an example. For each tissue within each panel, we sorted the estimates for all article-
route combinations by increasing median value. The presented parameter values are: A, the 
average time an infected cell lives (1/𝛿, rescaled to hours), B, the average time until a detectable 
viral titer (i.e., pfu or TCID50 per sample volume) becomes undetectable (1/cV, rescaled to hours), 
C, the average time until a detectable RNA copy number per sample volume becomes undetectable 
(1/cR), D, the average production rate of detectable genomic RNA copies per sample volume per 
day for an eclipse cell (𝜎E), E, the average production rate of detectable genomic RNA copies per 
sample volume per day for an infected cell (𝜎E), and F, the average production rate of a detectable 
viral titer per sample volume per day for an infected cell (p). 
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(i.e., a pfu or TCID50 per sample volume) was predicted to become undetectable within 2 hours 

on average for all tissues and articles, though the 90% credible intervals extended up to 6 hours 

(Figure 3.2B). Detectable RNA (i.e., copy numbers per sample volume) persisted for much longer 

than infectious virus, namely from approximately 6 hours to 2.5 days on average (Figure 3.2C). 

RNA clearance was often faster in the GI than in the respiratory tract. The estimated production 

rates of (non-virion associated) genomic RNA were highly similar between eclipse and infected 

cells and among tissues (Figure 3.2D,E), with most producing on average around 100 detectable 

copy numbers per sample volume per cell per day (henceforth we do not mention sample volume). 

For a few articles, the median production of infected cells was especially high at values near or 

exceeding 10,000 detectable copies per day. sgRNA production rates were estimated as broadly 

similar to those for gRNA. Virus production rates were typically smaller than for RNA, with 

median values ranging from around 10 to 100 detectable pfu or TCID50 per infected cell per day 

(henceforth titer units per day; Figure 3.2F). Overall, these parameter estimates were remarkably 

similar across articles, with the median values for a given article falling within the 90% credible 

interval of most other studies. 

Tissue-specific infection rates and their relationship with tissue conditions 

We then investigated tissue-specific infection rates, and their dependence on local ACE2 

expression, TMPRSS2 expression, ACE2-TMPRSS2 coexpression, and temperature (Figure 

3.1C). Overall, median infection rates varied across tissues and articles from 10-10.9 to 10-2.6 cells 

per detectable titer units per day (Figure 3.3A). For all articles, median infection rates were nearly 

identical in the nose and throat (ordered by increasing value across tissues for each article in Figure  
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Figure 3.3 | Tissue-specific infection rates and their relationship with tissue conditions. 
A, Median parameter values (points) and the 90% credible intervals (horizontal lines) for tissue-
specific infection rates.  Each color corresponds with the tissue, as indicated along the y axis and 
as presented in Figure 1C. Circles filled with gray correspond with studies that used aerosol 
inoculation. The figure legend below panel D displays this with the color scheme for the nose as 
an example. For each tissue, we sorted the estimates for all article-route combinations by 
decreasing median value. B, Median infection rates for the article indicated along the y axis. Each 
cell is colored according to the corresponding tissue as in panel A, and they are ordered by 
increasing median infection rate (from left to right). Articles are ordered alphabetically on the y 
axis. C, The posterior probability of each tissue having the largest infection rate for each article. 
All orders and colors are consistent with panel B. The intensity of the color in each cell scales with 
the displayed probability (more intense colors indicate higher probability). D, Median parameter 
values (points) and the 90% credible intervals (horizontal lines) for the parameters that determine 
infection rates (ace2: ACE2 expression; coexp: ACE2-TMPRSS2 coexpression; tmprss2, 
TMPRSS2 expression; temp, Temperature). Colors correspond with the parameter indicated along 
the y axis. For each cofactor, we sorted the estimates for all article-route combinations by 
decreasing median value. E, Median values for the tropism parameters in panel B. Each cell is 
colored according to the corresponding cofactor in panel D. They are ordered from left to right by 
increasing posterior probability of each cofactor having the largest effect, which is shown in panel 
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F. Articles are ordered alphabetically on the y axis. F, Posterior probability of each tropism 
cofactor having the largest effect on the infection rate. All orders and colors are consistent with 
panel E. The intensity of the color in each cell scales with how likely that cofactor is to have the 
highest value relative to all other probabilities for that study (more intense colors indicate higher 
relative probability). 

3.3B), and they had similarly large posterior probabilities of having the largest infection rate 

(Figure 3.3C). The lung and lower GI clearly had the lowest infection rates (Figure 3.3B), with no 

or nearly no posterior probabilities of having the largest value (Figure 3.3C). The lung had similar 

or larger median infection rates than the lower GI (Figure 3.3B), but both were very small in some 

cases (<10-10; Figure 3.3A, B). Interestingly, studies that used aerosol inhalation had some of the 

highest infection rates, especially in the upper respiratory tract (gray circles in Figure 3.3A).  

We then characterized and compared the effects of tissue conditions on predicted infection 

rates. In our model, we allowed receptor expression, protease availability, and receptor-protease 

coexpression to increase or have no effect on the infection rate, while higher temperatures were 

allowed to decrease or have no effect on the rate (given evidence of this trend in vitro; Laporte et 

al., 2021; V’kovski et al., 2021). The values in Figures 3.3D and 3.3E are standardized to reflect 

the raw increase or decrease in the log10 infection rate between low and high values for all cofactors 

(e.g., between low and high levels of ACE2 expression), which allowed us to compare them 

directly. The range of effect sizes was similar for all four cofactor types (Figure 3.3D). For each 

article, to determine which cofactors were predicted to have the largest impact on estimated 

infection rates, we computed the posterior probability of each cofactor having the largest effect 

(Figure 3.3F), which we then used to rank them by increasing importance. Some articles 

demonstrated clear support for one cofactor having a larger effect, while others estimated similar 

probabilities and effect sizes for multiple cofactors (Figure 3.3E,F).  
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For all studies, infection rates were predicted to change by at least a median value of 1 

log10 units for at least one of the tested cofactors (Figure 3.3E), and for each article the cofactor 

with the largest median effect was predicted to increase beta anywhere from 1.5 to 3.3 log10 units 

(Figure 3.3F). Based on posterior probabilities for each article, there was always greater than a 

93% or 71% chance that at least one of the traits would increase beta by at least 1 or 2 log10 units, 

respectively. Interestingly, temperature had the largest effect for more than half of the studies 

(n=9/12). TMPRSS2 had the largest effect for 2 of the 3 remaining articles, but it clearly ranked 

as least important for almost all others (Figure 3.3E,F). When taking the average of the 

probabilities across studies, temperature had the most posterior support for having the largest effect 

(0.30 probability), followed by ACE2 (0.27), TMPRSS2 (0.22), and coexpression (0.21).  

Within-host reproductive number and the number of infected cells  

To determine whether local infections were productive, we calculated within-host 

reproductive numbers assuming no virus movement (R0; using the formula in Zitzmann et al. 2024) 

and the percent of cells that became infected (Figure 3.4). Strikingly, most infections were 

subcritical (i.e., median R0<1), with aerosol inoculations being the most likely to result in 

supercritical infections (i.e., median R0≥1) in respiratory tissues (bars in Figure 3.4A, 

corresponding to the bottom axis). Median R0 estimates exceeded 1 in the upper respiratory tract 

for a few other studies, but, for many of them, the 90% credible interval also included support for 

subcritical infections (horizontal lines in Figure 3.4A). Only two studies resulted in supercritical 

median R0 values in the lung, which also included substantial posterior support for subcritical 

infections. All articles had clearly subcritical infections in the lower GI (i.e., median and 90%  
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Figure 3.4 | Within-host reproductive number and the number of infected cells. 
A, the median tissue-specific reproductive numbers (bars, bottom axis) and the median percent of 
available cells that became infected by day 40 post infection (points, top axis). Each row 
corresponds with the article indicated on the y axis. The black horizontal lines provide the article-
specific 90% credible intervals for the tissue-specific reproductive numbers. Panels are separated 
by tissue, according to the colors in Figure 3.1C (purple: nose; blue: throat; yellow: lung; red: 
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lower GI). B-E, The relationship between the median percent of cells that become infected and 
(B) the median viral production rate, (C) the median viral clearance rate, (D) the median total 
inflow by day 40 post infection, and (E) the median total outflow by day 40 post infection. Each 
point corresponds with one tissue from one article, where tissues are distinguished by color as in 
panel A.  

credible intervals below 1), with only one exception that had a median R0 value above 1 but also 

substantial support for subcritical values.  

The percent of all available target cells that became infected followed similar trends as the 

R0 values, as expected (points in Figure 3.4A, corresponding with the top axis). Most infections 

resulted in fewer than 10% of cells becoming infected, especially in the lower GI (based on the 

median number per tissue by day 40 post inoculation). Tissues with larger R0 values tended to have 

higher median percentages of infected cells (Figure S3.2). Many, though not all, infections with 

supercritical median R0 values resulted in median predictions of all cells becoming infected, 

suggesting other unmodeled factors limit infection. When considering all articles jointly, the 

percent of infected cells was not strongly correlated with local viral production rates (Figure 3.4B) 

or clearance rates (Figure 3.4C). However, there was some evidence that, for a given tissue, the 

percent of infected cells increased with the total inflow into the tissue (Figure 3.4D) and with the 

total outflow from that tissue (Figure 3.4E). Ultimately, given that there was substantial variation 

in our predictions of R0 and the percent of all infected cells, it is possible that unmodeled stochastic 

effects (e.g., dispersal limitation) may drive the apparent pattern of largely subcritical infections.  

Tissue-specific virus production 

We then determined which tissues produced the most infectious virus in each article. 

Although infections were largely subcritical with small percentages of infected cells (Figure 3.4), 

most still resulted in the median production of at least 103 titer units in the upper respiratory tract 
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(bars in Figure 3.5, corresponding with the bottom axis). For all but three studies, the nose or throat 

produced the most virus (darker bars in Figure 3.5) with high probabilities (points in Figure 3.5, 

top axis). The lung produced the most virus with relatively high probabilities for all three 

exceptions (Figure 3.5), which notably were the same studies that had supercritical or nearly 

supercritical median R0 values in the lung (Figure 3.4A). However, infections in the lung for most 

other articles resulted in the median production of less than 103 detectable titer units, though this 

quantity had large amounts of uncertainty for some articles (i.e., large 90% credible intervals; 

indicated by black horizontal lines in Figure 3.5). Substantial production in the GI was rare, with 

only one article resulting in median values exceeding 103 titer units and with many resulting in 

less than one titer unit. As with the lung, however, there were large amounts of uncertainty on GI 

production for many articles. Aerosol exposures resulted in either the nose or lung having the  

 

 
Figure 3.5 | Tissue-specific virus production. 
Bars indicate the median amount of virus produced by each tissue by day 40 post infection (bottom 
axis), while the points display the posterior probability of that tissue producing the most virus 
(points, top axis). Each row corresponds with the article indicated on the y axis. Darker bars 
indicate that tissue had the highest median amount of virus produced for that article. Filled black 
points indicate that tissue had the highest posterior probability of producing the most virus for that 
article. All other points are white. The black horizontal lines provide the article-specific 90% 
credible intervals for the amount of virus produced. Panels are separated by tissue, according to 
the colors in Figure 1 (purple: nose; blue: throat; yellow: lung; red: lower GI).  
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largest median virus production (dark bars in Figure 3.5). This could be related to differences in 

the particle sizes used for each study which are known to affect deposition sites along the 

respiratory tract, but the information provided in the articles did not allow us to directly compare 

particle sizes. All of these patterns were qualitatively similar for genomic RNA but with larger 

quantities produced. 

Connectivity and movement rates among tissues 

To characterize viral dissemination across tissues, we compared estimated movement rates 

among the nose, throat, lung, and lower GI (Figure 3.6). For all articles, virus flowed out of the 

nose into the throat at a higher rate than into the lower GI (purple points in Figure 3.6A; larger 

circles indicate higher rates for a given article) with high posterior probability (Figure 3.6B). 

Viruses also moved from the throat into the nose at higher median rates than into the lung for 

nearly all articles, and median movement rates from the throat to the lower GI were always smallest 

(Figure 3.6A). However, these outflows from the throat often had similar, intermediate 

probabilities of having the largest flow rate (Figure 3.6B), suggesting outflow from the throat may 

be broadly comparable across tissue destinations. Movement rates from the lung to the throat were 

typically larger than from the lung to the lower GI (Figure 3.6A), and often with high probability 

(Figure 3.6B). In some instances, though, these movement rates had similar posterior probabilities 

of having the largest flow rate, which could be explained by infections that managed to spread 

systemically. The movement rates from the lower GI to the throat and to the lung were very similar 

(Figure 3.6A) and both had approximately equal posterior probability of having the largest outflow 

rate (Figure 3.6B). This suggests that lower GI-respiratory dissemination may be primarily driven 

by systemic spread rather than by fecal-oral self-transmission.  
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Figure 3.6 | Connectivity and movement rates among tissues. 
A, Median movement rates of infectious virus for all connections included in the model. The y-
axis labels have the form X→Y, which indicates the flow of virus from tissue X to tissue Y. Each 
point gives the median parameter value from one article. The points are colored by the source of 
the virus (i.e., tissue X) according to the color scheme displayed in Figure 3.1B. The size of the 
point indicates whether that movement rate is the largest of all movement rates out of the same 
tissue source (i.e., within the points with the same color) for each article. The large sizes 
correspond with the largest median rate. B, The posterior probability that the movement rate 
indicated on the y axis is the largest of all movement rates out of the same tissue source (i.e., for 
points with the same color). C, Difference in the median movement rates between tissues 
connected in both directions. Each point corresponds to one article. Points are colored based on 
the tissue source with the largest directional flow. For example, the purple points in the first row 
indicate the flow from the Nose→Throat is bigger than the Throat→Nose because purple 
corresponds with the nose. D, The posterior probability of the movement being larger for the 
tissues connected in both directions. Points are colored based on the tissue source (e.g., purple 
points in the top row correspond with the flow from the Nose→Throat while blue points 
correspond with the flow from the Throat→Nose). E, Mean value across articles for the movement 
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rates from the tissue along the x axis to the tissue on the y axis. Gray cells are connections not 
included in the model. Black cells are within-tissue flow rates, which we do not calculate. 

Some tissue pairs were connected via bidirectional movement between them, which we 

compared to identify the directions with higher predicted flow rates (Figure 3.6C,D). The median 

movement rates were higher from the nose to the throat than from the throat to the nose for all 

articles (purple points in the first row of Figure 3.6C), with fairly high posterior probability (Figure 

3.6D). Rates were greater from the lung to the throat than from the throat to the lung (yellow points 

in the second row of Figure 3.6C), which is consistent with the mucociliary escalator transporting 

material from the lower to the upper respiratory tract. Unexpectedly, predicted movement rates 

from the lower GI to respiratory tissues were almost always larger than those from the respiratory 

tissues to the lower GI (red points in the bottom two rows of Figure 3.6C), often with high posterior 

probability (Figure 3.6D). This would be consistent with virions frequently failing to maintain 

infectivity as they disseminate from the upper respiratory tract to the lower GI tract via the highly 

acidic upper GI. Median estimates for RNA movement rates were typically similar, though often 

smaller, than virus movement rates (Figure S3.2). When taking the mean of all virus movement 

rates across articles, the flow rate into the throat from other respiratory tissues was larger than all 

others (Figure 3.6E), highlighting the high rates of virus sharing among respiratory tissues.  

Total viral inflow and outflow from each tissue 

We then characterized the total amount of virus that flowed into and out of each tissue over 

the full infection course (Figure 3.7), which depends on both the movement rates and the local 

viral titers. The nose experienced more outflow than inflow for all but one article (i.e., flow ratios 
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Figure 3.7 | Total viral inflow and outflow from each tissue. 
A, the ratio of the median total inflow and median total outflow in each tissue along the x axis by 
day 40 post infection. Each bar corresponds with one article, and they are sorted by decreasing 
ratio within each tissue. The color corresponds with the tissue, as indicated on the y axis. B, the 
posterior probability that the total inflow is larger than the total outflow for each tissue on the y 
axis. Each point corresponds with one article. Points are colored based on the tissue, as in panel 
A. C, the total amount of virus that flows into (points with colored fill and black outlines) or out 
of (points with colored outline and white fill) the tissue indicated on the y axis. Colors correspond 
with the tissue as in panel A. D, the total virus that flowed between tissues for all connections 
included in the model. The y-axis labels have the form X→Y, which indicates the flow of virus 
from tissue X to tissue Y. Each point gives the median parameter value from one article. The points 
are colored by the source of the virus (i.e., tissue X) as in panel A. The size of the point indicates 
whether that virus outflow is the largest of all outflows from the same tissue source (i.e., within 
the points with the same color) for each article. The large sizes correspond with the largest flow. 
E, the posterior probability of that outflow being the largest of all outflows from the same tissue 
source (i.e., within the points with the same color). Points are colored as in panel E, by the tissue 
source. F, as in panel D but the points are colored by the destination of the virus (i.e., tissue Y) 
and the y axis is sorted to group connections based on the tissue destination. The size of the point 
indicates whether that virus inflow is the largest of all inflows into the same tissue destination (i.e., 
within the points with the same color) for each article. The large sizes correspond with the largest 
flow. G, The posterior probability of that inflow being the largest of all inflows into the same tissue 
destination (i.e., within the points with the same color). Points are colored as in panel F, by the 
tissue destination. 
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< 1 in Figure 3.7A), which had a very high posterior probability of experiencing more inflow (0.93; 

Figure 3.7B). Median total inflows and outflows from the nose both ranged from approximately 

102.5 to 105 titer units (points with colored fill versus points with colored outlines in Figure 3.7C). 

All inflow to the nose came from the throat by design (see Methods). For all articles, outflow from 

the nose primarily went into the throat (determined as the tissue with the largest median inflow 

quantities; large circles indicate the highest outflow for each tissue per article; Figure 3.7D), with 

posterior probabilities of this occurring always exceeding 0.5 (Figure 3.7E). Inflows exceeded 

outflows for the throat (Figure 3.7A) with relatively high probabilities for most studies (Figure 

3.7B). The inflows into the throat most frequently stemmed from either the nose or lung (blue 

points in Figure 3.7F) often with high probability (Figure 3.7G). Outflows from the throat most 

frequently went to the nose though occasionally also to the lung (Figure 3.7D). The lower GI was 

not the primary inflow source or outflow destination for the throat for any article. Similar to the 

nose, the lung experienced primarily outflows (Figure 3.7A) with high posterior probabilities 

(Figure 3.7B). Both the inflows into and outflows from the lung were associated primarily with 

the throat (Figure 3.7D,F), where the inflow had remarkably high posterior probabilities (Figure 

3.7G). The lower GI experienced primarily inflows (Figure 3.7A) with near certainty for most 

articles (Figure 3.7B) and with much higher total quantities (Figure 3.7C). The largest inflow of 

infectious virus into the lower GI typically originated from the lung (Figure 3.7F), possibly 

because this route does not involve exposure to the highly acidic upper GI. The outflow from the 

lower GI primarily went to the throat (Figure 3.7D), but posterior probabilities were often very 

similar for the throat and lung (Figure 3.7E). Given the apparent differences in the movement rates 

and overall virus flow among tissues, connectivity clearly impacts within-host dynamics and 

emphasizes the importance of modeling tissues jointly whenever possible.  
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Discussion 

In this study, we developed a mechanistic model to analyze SARS-CoV-2 infection 

patterns in the upper respiratory, lower respiratory, and gastrointestinal tracts of experimentally 

challenged rhesus macaques. By jointly modeling infection dynamics across multiple tissues, we 

were able to estimate the connectivity structure among the nose, throat, lung, and lower GI based 

on inferred virus movement rates between them, which revealed particularly high rates of 

movement into the throat from other respiratory tissues. We also allowed tissue-specific infection 

rates to vary based on local receptor expression, protease availability, and temperature. Our 

analyses revealed that infections were overall more successful and productive in the nose and 

throat than in the lung and lower GI, which was consistent with an estimated increase in the local 

infection rates at lower temperatures. Because we fit this model to the data from nine studies 

separately, we were able to identify within-host infection patterns that were robust to exposure 

conditions and experimental designs and, conversely, we were able to characterize the variability 

in parameter estimates and predicted outcomes across studies. To our knowledge, no other 

modeling framework has formally investigated how tissue traits and connectivity structure interact 

to determine spatiotemporal infection patterns inside hosts, nor has any within-host modeling study 

of SARS-CoV-2 included as many datasets in a single analysis. Overall, our study demonstrates 

that spatial patterns of SARS-CoV-2 infection inside hosts are strongly influenced by the 

heterogeneous tissue landscape and virus dispersal patterns across tissues. Population invasions in 

ecology exhibit similar dependencies, emphasizing that ecological theories and analytical 

approaches are a valuable but currently underutilized toolkit to better understand within-host 

infection dynamics.  
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 Viral kinetic parameters estimated by our model were remarkably consistent across the 

nine studies included in our analysis, and they were broadly comparable to those estimated in other 

modeling studies of SARS-CoV-2. We found that, in all articles, the median infectivity parameters 

governing cell infection rates were higher in upper respiratory than lower respiratory tissues, 

corroborating prior work that modeled SARS-CoV-2 dynamics in humans (Ciupe & Tuncer, 2022; 

Wang et al., 2020). The range of our estimated infection rates also aligns with estimates reported 

for similar tissues in other studies modeling data from humans and non-human primates 

(Alexandre et al., 2022; Ciupe & Tuncer, 2022; Gonçalves et al., 2021; Wang et al., 2020). Our 

estimates of virion lifespans were highly similar across studies and tissues, as were the estimates 

of RNA lifespan, though a few studies predicted prolonged RNA detection. Some parameters 

exhibited greater variability across studies and host tissues. These include the median infected cell 

death rate, but notably the range of our estimates is similar to those previously reported (Alexandre 

et al., 2022; Ciupe & Tuncer, 2022; Gonçalves et al., 2021; Ke et al., 2021). Prior modeling work 

has estimated higher virus or RNA production rates in the upper respiratory tract compared to the 

lower respiratory tract (Alexandre et al., 2022; Gonçalves et al., 2021; Wang et al., 2020) and 

higher clearance rates in the lower respiratory tract than the upper respiratory tract (Ciupe & 

Tuncer, 2022). This was true for some but not all articles in our analyses, suggesting these 

parameters may be particularly sensitive to individual heterogeneity. Altogether, the similarities 

in many parameter estimates across the studies we included were particularly striking. This 

highlights the value of analyzing many different datasets using the same model structure, as it can 

help identify parameters that could be fixed in future analyses with minimal risk of biasing other 

model outputs.   
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With our modeling framework, we quantitatively tested the influence of receptor 

expression, protease availability, receptor-protease co-expression, and temperature on tissue-

specific infectivity rates, which, to our knowledge, has not been attempted before. Our models 

estimated that receptor and protease expression influence infection dynamics, but, interestingly, 

our results do not align with the common narrative that these traits are the primary determinants 

of spatial SARS-CoV-2 infection patterns inside hosts. Based on the data that was available for 

various tissue traits, we found that temperature often had a higher relative effect on tissue-specific 

infection rates than ACE2 expression, TMPRSS2 expression, or ACE2-TMPRSS2 co-expression 

in cells. Our models predicted that the lower temperatures of the upper respiratory tract are 

correlated with higher infection rates than at the core body temperature of the lung and lower GI, 

which is consistent with previous in vitro experiments conducted on SARS-CoV-2 (Laporte et al., 

2021; V’kovski et al., 2021). Temperature is known to drive the tropism patterns of other viruses, 

including avian influenza (Lipsitch et al., 2016; Russell et al., 2018). While these results and 

concordances suggest that temperature likely does affect in vivo SARS-CoV-2 infection patterns, 

our analyses were limited by the available data and so they should be interpreted cautiously.  

In particular, several factors hindered our ability to definitively determine the relative 

effects of receptor expression, protease availability, and abiotic conditions on SARS-CoV-2 

tropism. All of the tissues we considered (nose, throat, lung, lower GI) are generally accepted as 

sites of SARS-CoV-2 infection, so it is possible that they all express sufficient levels of ACE2 and 

TMPRSS2 to support virus replication, leading to underestimates of the relative importance of 

these factors on local infection rates. The inclusion of tissues with lower or no expression would 

likely increase their predicted importance. Furthermore, while we assigned tissue conditions based 

on certain traits, it is possible that other underlying differences across tissues could have affected 
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our measured outcomes. Temperature, for example, may appear so important because it 

distinguishes between upper respiratory tissues and all others, which could also be explained by 

differences in an unmodeled cofactor (e.g., local pH or the expression of an alternate receptor). 

Also, although we classified tissue-specific expression patterns to the best of our ability, we were 

limited by the available trait data. Due to these data limitations, we had to use transcriptomic 

measurements, which can be poorly correlated with actual protein abundance (Haider & Pal, 

2013), and it was necessary for us to combine trait data obtained from humans and non-human 

primates, which can have different expression profiles (Han et al., 2022). Because we integrated 

information from multiple sources and species, our analyses necessarily relied on semi-

quantitative trait descriptions (e.g., low, medium, high) rather than truly quantitative comparisons, 

which likely also reduced our model’s ability to estimate relative cofactor effects. Despite these 

data limitations, our modeling framework lays the foundation for within-host mathematical models 

to answer long-standing questions in virology about the determinants of tropism, and a simulation 

study conducted with our model would offer guidance on the data types and data resolution 

necessary to confidently attain these estimates. While our study advances a valuable hierarchical 

model to assess how tissue traits affect observed tropism, more definitive answers will require 

broader datasets that include tissues with higher trait variability and that can draw upon species-

specific, quantitative expression patterns.  

Because we jointly modeled infection dynamics in the nose, throat, lung, and lower GI, we 

were able to characterize virus movement across these tissues and its influence on overall infection 

patterns. Our models inferred high rates of viral dissemination among respiratory tissues, with the 

nose and lung experiencing larger quantities of viral outflow while the throat experienced larger 

quantities of viral inflow. The connections from the nose to the throat and from the lung to the 
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throat had the largest overall movement rates of any connections included in our model, 

emphasizing the centrality of the throat and the highly connected nature of the respiratory tract. 

These findings are not surprising, given the known importance of viral dissemination across the 

respiratory tract (e.g., mucociliary escalator, inhalation, exhalation), and since experiments with 

targeted routes of exposure have shown that infections can spread from the upper to the lower 

respiratory tract or vice versa (Chapter 2). Our findings are also concordant with prior within-host 

models of SARS-CoV-2 infection that estimated nonzero movement rates among respiratory 

tissues in humans (Ciupe & Tuncer, 2022; Dogra et al., 2021), but they contrast with others that 

estimated nonsignificant movement rates among upper and lower respiratory tissues in macaques 

(Alexandre et al., 2022; Gonçalves et al., 2021). However, the latter studies partially attributed 

their negative findings to insufficient data. The discrepancies between our results could also reflect 

differences in the underlying model assumptions and structure. Goncalves et al., for example, fixed 

the movement rate to be equal in both directions, while we included unique rates in all directions. 

Alexandre et al. may have found worse model performance when including tissue connectivity 

because these analyses involved fixing all other parameters to those estimated without movement, 

and these fixed parameters likely already accounted for movement effects in other ways (e.g., via 

higher local clearance rates). Future work that applies our modeling framework to their data could 

investigate whether these structural and analytical differences explain our disparate conclusions.  

Our models also inferred significant virus movement among respiratory and 

gastrointestinal tissues. The lower GI clearly experienced higher rates of viral inflow than outflow, 

confirming its intuitive role as a ‘sink’ for SARS-CoV-2. Of the respiratory tissues, we found that 

the lung was the strongest source of infection to the lower GI, with the highest movement rate and 

often the largest overall flow of viruses. This surprising finding could be explained by successful 
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systemic spread from the lung, as suggested previously (Zhang et al., 2021), combined with large 

losses of infectivity when viruses swallowed from the upper respiratory tract pass through the 

highly acidic upper gastrointestinal tract (Evans et al., 1988; Fallingborg, 1999), as has been 

demonstrated in low pH in vitro systems (A. C.-Y. Lee et al., 2020). Our model fits were also 

consistent with possible systemic spread from the lower GI, given highly similar, nonzero 

movement rates from the lower GI to the throat and to the lung. This could be related to the 

accessibility of lymphatic tissue in the GI tract (e.g., Peyer's patches), which can facilitate access 

to the bloodstream (Fenner et al., 1987). However, virus production was minimal in the GI and 

outflow quantities were small, suggesting that respiratory dynamics are likely not strongly 

influenced by gastrointestinal infections following upper and lower respiratory inoculation (as in 

our dataset). Overall, our results demonstrate that observed infection dynamics inside hosts are the 

product of both local replication and high rates of viral movement among tissues, especially within 

the respiratory tract, emphasizing the importance of accounting for connectivity when studying 

spatiotemporal infection patterns. 

In each tissue, we characterized the percent of all available target cells that became 

infected, and, relatedly, we determined whether local infections were productive and self-

sustaining in the absence of viral movement. Our models estimated that most infections resulted 

in fewer than 10% of all available target cells becoming infected, especially in the lung and lower 

GI. This finding was concordant with our estimates that these tissues were typically subcritical 

with a median within-host reproductive number (R0) less than one, which indicates that the 

infection did not spread significantly in the given tissue because, on average, each infected cell 

resulted in fewer than one additional cell becoming infected. However, many of these tissues also 

had substantial posterior support for being productive and supercritical, as the credible intervals 
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for R0 often included values greater than one. Most of the supercritical infections in our analyses 

occurred in the nose and throat, with only two instances of supercritical infections in the lung and 

one instance in the lower GI. While initially surprising, these results are consistent with rhesus 

macaques broadly being considered good animal models for mild but not severe SARS-CoV-2 

infection, especially in young animals like those in our dataset (C.-Y. Lee & Lowen, 2021). Other 

modeling work has also estimated supercritical R0 values in the upper respiratory tissues of 

macaques (Alexandre et al., 2022; Gonçalves et al., 2021; Marc et al., 2023) and humans (Ke et 

al., 2021). However, in contrast with our results, studies have estimated supercritical R0 values 

also in the lower respiratory tract of macaques (Alexandre et al., 2022; Gonçalves et al., 2021). 

This discrepancy could be explained by many factors, including that our models were fit to 

bronchoalveolar lavage or bronchial brush samples in rhesus macaques instead of tracheal swabs 

in cynomolgus macaques. Our model structure also differed substantially from these studies, 

especially with Alexandre et al., which (i) modeled the dynamics and clearance of the inoculum 

separately from virus produced during infection, (ii) expressed the production of and the 

relationships between RNA products and infectious viruses differently, and (iii) did not include 

viral movement between tissues, among other differences. The implications of these choices on 

our respective results are difficult to predict without theoretical exploration and simulation, and 

such work is needed to identify the best multi-tissue modeling approaches for high-dose exposures 

in animal challenge experiments. 

Within individual tissues and also across studies, we observed high variability in our R0 

estimates, which could reflect unmodeled stochastic processes. Our prior work (Chapter 2) on a 

similar but larger dataset has shown that not all macaques become detectably infected in the nose, 

throat, trachea, lung, and GI following inoculation–viral invasion can succeed in some tissues yet 
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fail in others, even in those that could theoretically support productive infection. These failures 

likely correspond to observations of within-host bottlenecks, wherein small numbers of viral 

particles moving from one tissue to another are subject to chance events that can lead to success 

or failure (i.e., stochastic variation) and, consequently, variable infection outcomes and invasion 

speed (Snyder, 2003). Ordinary differential equations, which are the foundation of our models and 

all traditional within-host models of virus dynamics (Perelson, 2002), are deterministic and cannot 

capture stochastic effects. That means that any virus introduced into a tissue location will always 

trigger productive infection if R0 is supercritical. Parameter estimates from fitting deterministic 

models will reflect the average of the successful and failed infections in any given tissue, likely 

resulting in smaller population-level estimates of the infection rates in successful infections, and 

consequently, smaller estimates of R0 and the number of infected cells. Multi-tissue models are 

especially vulnerable to this effect given that there is substantial individual-level heterogeneity in 

spatiotemporal infection patterns, especially when compared to single-tissue models that are 

typically only applied to clearly infected tissues in clearly infected individuals. However, 

ecological theory cautions that, by disregarding viral movement, single-tissue models risk 

estimating supercritical R0 values in truly subcritical tissues, because dispersal from populations 

with positive growth rates can make neighboring locations with negative growth rates appear 

suitable (Pulliam, 1988, 2000). Our model results suggest these source-sink dynamics may occur 

between the respiratory tract and the lower GI. Median R0 values in the lower GI were almost 

always subcritical, minimal amounts of virus were produced in the GI, and yet GI infection was 

often detectable, likely due to high quantities of viral inflow from the respiratory tract. This 

emphasizes the need for new analytical methods, or techniques borrowed from other fields like 

ecology and systems biology, to overcome the challenges with modeling multi-tissue systems. 
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Once developed, these models could better characterize the unobservable processes that govern 

the spatial distributions of viruses inside their hosts.  

We fit the data from nine different studies to our model, which allowed us to identify 

patterns that were or were not consistent across different exposure routes, doses, sampling 

schemes, and labs. Many findings were remarkably similar, including parameters describing 

within-tissue dynamics (e.g., cell death rates), the estimated connectivity structure across tissues, 

and the small R0 values in the lung and lower GI. However, others differed substantially, even 

among articles that used the same exposure route, including which respiratory tissue produced the 

most virus and what the estimated R0 values were in the upper respiratory tract. These 

discrepancies could be related to each lab’s specific inoculation procedure, or individual 

heterogeneity and stochastic effects, especially given that there can be as few as two animals per 

study protocol. These differences caution against drawing strong conclusions after analyzing an 

individual dataset, as they may not reflect expected trends for other exposure conditions or for the 

broader population. A meta-analytic approach of fitting all datasets jointly in a single model would 

offer the best chance at accounting for statistical noise and identifying generalizable trends. While 

this was computationally impractical for our study, the similarities in many of our parameter 

estimates suggest that this approach would be feasible. To capitalize on contrasts and investigate 

generalizability across exposure conditions, such analyses would ideally include more variable 

exposure doses and routes than were available for this study. Despite our broader database 

containing more than 100 articles that experimentally challenged non-human primates with SARS-

CoV-2 (Chapter 2), only nine articles fit our criteria for this study, and all of them simultaneously 

exposed the upper and lower respiratory tract, which can lead to different infection dynamics than 

exposure via a single location (Chapter 2). More consistent sampling coverage across tissues for 
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more variable experimental designs would be invaluable for post-hoc quantitative analyses of 

animal challenge experiments, with the added ethical benefits of enhancing the insights obtained 

per study animal (Prescott, 2010).  

Our mechanistic models have demonstrated the importance of considering tissue 

heterogeneity and connectivity patterns to study viral infections inside hosts. Our analyses 

highlighted the potential rewards but also the challenges in modeling multi-tissue infection 

dynamics, which can be highly sensitive to stochasticity and individual-level heterogeneity. More 

theory and new techniques are clearly needed to model these complex systems, which should 

include simulation studies conducted with our model. Crucially, our mechanistic modeling 

framework is the first to formally investigate how tissue traits and connectivity structure interact 

to determine spatiotemporal infection patterns inside hosts, but more comprehensive profiles of 

receptor expression, protease availability, and abiotic factors in non-human primates are sorely 

needed to enable more accurate estimates. As these data become more available, we believe our 

analytical approach will help answer long-standing questions in virology about the determinants 

of tissue tropism.  
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Supplementary Figures 
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Figure S 3.1 | Article-specific parameter values. 
Parameters are distinguished by the column header, and the tissue is indicated in the row labels. 
The article is indicated by the label on the y axis, which are sorted alphabetically. Each point gives 
the median prediction, colored by the corresponding tissue. The horizontal line gives the 90% 
credible interval of the parameter. Virus and RNA production rates are shown as the log10 
parameter value. All parameters are displayed in their raw units (e.g., quantities per day). 
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Figure S 3.2 | Relationship between R0 and the percent of cells that become infected. 
Each point is the median prediction for a given tissue in a given article. The horizontal and vertical 
lines give the 90% credible intervals for both displayed quantities for each point. Colors distinguish 
between tissues (purple: nose; blue: throat; yellow: lung; red: lower GI). 
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Figure S 3.3 | Difference in the median movement rates of infectious virus particles and RNA. 
All connections included in the model are displayed and indicated on the y axis. These have the 
form X→Y, which indicates the flow of virus from tissue X to tissue Y. Each point gives the 
median parameter value from one article. The points are colored by the source of the virus (i.e., 
tissue X) according to the color scheme displayed in Figure 3.1B (purple: nose; throat: blue; 
yellow: lung; red: lower GI). Points to the right of zero correspond with a higher movement rate 
of virus than of RNA. 

 

  



253 

 

Supplementary Tables 

 

Table S 3.1 | Tissue-specific expression patterns. 
Each row gives the maximum expression value for each expression type and its associated cell-
type in the indicated tissue. These values were calculated based on data presented in Han et al. 
2022 (see Methods for details). The average rows give the mean of the expression values for that 
group of tissues, followed in parentheses by the assigned classification used in this study. 
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