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Searching for spin glass ground states
through deep reinforcement learning

Changjun Fan1,8, Mutian Shen2,8, Zohar Nussinov2,3,4, Zhong Liu1,
Yizhou Sun 5 & Yang-Yu Liu 6,7

Spin glasses are disordered magnets with random interactions that are,
generally, in conflict with each other. Finding the ground states of spin
glasses is not only essential for understanding the nature of disordered
magnets andmany other physical systems, but also useful to solve a broad
array of hard combinatorial optimization problems across multiple dis-
ciplines. Despite decades-long efforts, an algorithm with both high
accuracy and high efficiency is still lacking. Here we introduce DIRAC – a
deep reinforcement learning framework, which can be trained purely on
small-scale spin glass instances and then applied to arbitrarily large ones.
DIRAC displays better scalability than other methods and can be lever-
aged to enhance any thermal annealing method. Extensive calculations on
2D, 3D and 4D Edwards-Anderson spin glass instances demonstrate the
superior performance of DIRAC over existing methods. The presented
framework will help us better understand the nature of the low-
temperature spin-glass phase, which is a fundamental challenge in sta-
tistical physics. Moreover, the gauge transformation technique adopted
in DIRAC builds a deep connection between physics and artificial intelli-
gence. In particular, this opens up a promising avenue for reinforcement
learning models to explore in the enormous configuration space, which
would be extremely helpful to solve many other hard combinatorial
optimization problems.

The Ising spin glass is a classical disordered system that has been
studied for decades1,2. Its spectacular behaviors have attracted
considerable interests in several branches of science, including
physics, mathematics, computer science, and biology. The endo-
genous nature of quenched disorder in spin glasses results in
the fact that, it is hard to find out the ground state of such a
system due to the frustrations (i.e., the impossibility of simulta-
neously minimizing all the interactions), despite its seemingly

simple Hamiltonian3:

H= �
X
hi,ji

Jijσiσj: ð1Þ

In general, this Hamiltonian can be defined on arbitrary graphs. Here,
we will focus on the most heavily studied lattice realization of the
nearest neighbor Ising spin glass,where the sites lie onaD-dimensional
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hypercubic lattice with N = LD sites (see Fig. 1 for 2D instances) and
σi = ± 1 represents the binary Ising spin value at site i. The coupling Jij is
a Gaussian random variable that represents the interaction strength
between two neighboring spins i and j. In the literature, this is often
referred to as the Edwards-Anderson (EA) spin glass model. The EA
model aims at capturing the quintessential character of real, physically
occurring, spin glasses4. Comparing to other short range models such
as themean-field Bethe Lattice5, the EAmodel seemsmore challenging
in the sense that there exists vast amounts of short loops that will lead
to much more frustrations.

There are at least three strong motivations to find the ground
states of spin glasses. First of all, finding the spin glass ground states is
a key to the mysteries behind the strange and complex behaviors of
spin glasses (and many other disordered systems), such as its glassy
phase6 and ergodicity breaking7. In particular, ground-state energies in
different boundary conditions can be used to compute the stiffness
exponent of spin glasses, which can help us ensure the existence of a
spin glass phase at finite temperatures8,9. Second, finding ground
states of Ising spin glasses in three or higher dimensions is a non-
deterministic polynomial-time (NP) hard problem10, which is closely
related tomany other hard combinatorial optimization problems11. For
example, all of Karp’s 21 NP-complete problems and many NP-hard
problems (such as the max-cut problem, the traveling salesman pro-
blem, the protein folding problem, etc.) have Ising spin glass
formulations11–13. Therefore, finding the Ising spin glass ground states
may help us solve many other NP-hard problems. Finally, the cele-
brated Hopfield model14 and other pioneering models of neural net-
works drewdeep connectionswith Isingmagnets15 (and spin glasses, in
particular16,17) on general networks. The study of spin glasses and their
ground states has led to (andwill continue lead to) the development of
powerful optimization tools such as the cavity method and Belief
Propagation that will further shed new light on computational com-
plexity transitions2,18.

Given theNP-hardnature of finding the spin glass ground states in
three or higher dimensions, the exactbranch-and-bound approach can
only be used for very small systems19. For two-dimensional latticeswith
periodic boundary conditions in at most one direction (or planar
graphs in general), the Ising spin glass ground states can be calculated
bymapping to the minimum-weight perfectmatching problem, which
can be exactly solved in polynomial time20,21. However, for general
cases with large system sizes, we lack a method with both high accu-
racy and high efficiency. We used to rely on heuristic methods. In
particular, Monte Carlo methods based on thermal annealing, e.g.,
simulated annealing (SA)22, population annealing23 and parallel tem-
pering (PT)24–27, have been well studied in the statistical physics
community.

Recently, reinforcement learning (RL) has proven to be a pro-
mising tool in tackling many combinatorial optimization problems,
such as the minimum vertex cover problem28, the minimum indepen-
dent set problem29, the network dismantling problem30, the travelling
salesman problem31, the vehicle routing problem32, etc. Compared to
traditional methods, RL-based algorithms are believed to achieve a
more favorable trade-off between accuracy and efficiency. We note
that RL was recently used to devise a smart temperature control
scheme of simulated annealing in finding ground states of the 2D spin
glass system, which enabled small systems to better escape local
minimum and reach their ground states with high probability33. How-
ever, this RL-enhanced simulated annealing still fails in finding ground
states for larger spin glass systems in three or higher dimensions.

In this work, we introduce DIRAC (Deep reinforcement learning
for spIn-glass gRound-stAte Calculation), a RL-based framework that
can directly calculate spin glass ground states. DIRAC has several
advantages. First, it demonstrates superior performances (in terms of
accuracy) over the state-of-the-art thermal annealing methods, espe-
cially when the gauge transformation (GT) technique is adopted in
DIRAC. Second, it displays better scalability than other methods.
Finally, it can be leveraged to enhance any thermal annealing method
and offer much better solutions.

Results
Reinforcement learning formulation
Following many other RL formulations in solving combinatorial opti-
mization problems31,34–36, DIRAC considers the spin glass ground state
search as a Markov decision process (MDP), which involves an agent
interacting with its environment (i.e., the input instance), and learning
an optimal policy that sequentially takes the long-sighted action so as
to accumulate its maximum rewards. To better describe this process,
we first define state, action and reward in the context of Ising spin glass
ground state calculation. State: a state s represents the observed spin
glass instance, including both the spin configuration {σi} and the cou-
pling strengths {Jij}, based on which the optimal action will be chosen.
The terminal state sT is met when the agent has tried to flip each spin
once. Action: an action a(i) means to flip spin i. Reward: the reward
rðs,aðiÞ,s0Þ is defined as the energy change afterflipping spin i fromstate
s to get a new state s0, i.e., rðs,aðiÞ,s0Þ=2Pj2∂iJijσiσj, where ∂i represents
the set of nearest neighbors of spin i.

Through the RL formulation, we seek to learn a policy πΘ(a(i)∣s)
that takes any observed state s and produces the action a(i) corre-
sponding to the optimal spin flip that maximizes the expected future
cumulative rewards. Here Θ= fΘE ,ΘDg represents a collection of
learnable encoding parameters ΘE and decoding parameters ΘD,
which will be updated through RL.

Fig. 1 | Case study comparison. We applied four algorithms: (a) Greedy, (b)
Simulated annealing (SA), (c) Parallel tempering (PT), and (d) DIRAC (more pre-
cisely, DIRACm) to compute the ground state of a randomly generated 6 × 6
Edwards-Anderson (EA) spin glass instance with fixed boundary conditions and
couplings Jij sampled from the Gaussian distribution N ð0,1Þ. The ferromagnetic
bonds (Jij >0) are shown with straight lines, while the anti-ferromagnetic bonds
(Jij <0) are shown with zigzag lines. The width of the lines are proportional to ∣Jij∣.
Nodes are filled/hollow if the spin values σi = +1/−1, respectively. If the energy of a

bond, − Jijsisj, is positive, namely not satisfied, we draw a light blue shaded rectangle
around the bond, with width proportional to ∣Jij∣. This way a smaller total shaded
area of the image corresponds to a lower system energy. We also showed the
approximate ratio (prediction/ground truth, where the numerator is the energy of
the predicted ground state computed by eachmethod and the denominator is the
exact ground state energy computed by Gurobi, a branch-and-bound based exact
solver) in brackets. Note that in this small case DIRAC has actually achieved the
exact ground state.
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DIRAC architecture
We design DIRAC to learn the policy πΘ automatically. As shown in
Fig. 2, DIRAC consists of two phases: offline training and online
application. For offline training, the DIRAC agent is self-taught on
randomly generated small-scale EA spin glass instances. For each
instance, the agent interacts with its environment through a sequence
of states, actions and rewards (Fig. 2a). Meanwhile, the agent gains
experiences to update its parameters, which enhances its ability in
finding the ground states of EA spin glasses (Fig. 2b,c). For online
application, the well-trained DIRAC agent can be used either directly
(DIRAC1, Fig. 2d) or iteratively (DIRACm, Fig. 2e) or just as a plug-in to a
thermal annealingmethod (DIRAC-SA and DIRAC-PT), on EA spin glass
instances with much larger sizes than the training ones.

DIRAC’s success is mainly determined by the following two key
issues: (1) How to represent states and actions effectively? (2) How to
leverage these representations to compute a Q-value, which predicts
the long-term gain for an action under a state. We refer to these two
questions as the encoding and decoding problem, respectively.

Encoding. Since a hypercubic lattice can be regarded as a special
graph, we design an encoder based on graph neural networks37–41,

namely SGNN (Spin Glass Neural Network), to represent states and
actions. As shown in Fig. 3, to capture the coupling strengths {Jij}, which
are crucial to determine the spin glass ground states, SGNN performs
two updates at each of the K iterations: the edge-centric update and
the node-centric update, respectively. Here,the hyper-parameter K
represents the number of message-passing steps in SGNN, and we set
K = 5 in our calculations. The edge-centric update (Fig. 3b, Fig. S1a)
aggregates edge embedding vectors, which are initialized as edge
input features (SI Sec. IA), from its adjacent nodes. The node-centric
update (Fig. 3c, Fig. S1b) aggregates node embedding vectors, which
are initialized as node input features (SI Sec. IA), from its adjacent
edges. Both updates concatenate the self embedding and the neigh-
borhood embedding and are then subjected to a non-linear transfor-
mation (e.g., rectified linear unit, ReLUðzÞ= maxð0,zÞ). Traditional
graph neural networks architectures often carry only node-centric
updates37–39,41, with edge weights taken as node’s neighborhood if
needed. Yet this would fail in our case where edge weights play vital
roles, and lead to unsatisfactory performances (see ablation study in SI
Sec. IF and Fig. S2).

SGNN repeats K iterations of both edge-centric and node-centric
updates, and finally obtains an embedding vector for each node (or

Fig. 2 | Overview of DIRAC. The DIRAC framework consists of two phases: offline
training and online application. (Left) During training, we first generate random
small EA spin glass instances with couplings sampled fromGaussian distribution, as
the training data.a For each episode,we sample a random instance of sizeN, and let
DIRAC learn to find its ground state. During each episode, the agent starts from the
all-spins-up configuration and ends at the all-spins-down configuration, with each
spin flipped only once. For the next episode, we sample another training instance.
To determine the right action to take, DIRAC first adopts an encoder to represent
each node as an embedding vector (shown as a color bar), and then decodes a Q-
value (shown as a green bar with heights proportional to its value) for each node
that predicts its long-term gain.bWhenone episode ends, we collect the trajectory
(s1, a1, r1,…, sN) generated during this process, extract the 4-tuple transitions, i.e.,
(st, at, rt,t+n, st+n), where rt,t +n =

Pt +n
k = t γ

krk , and push them into the experience
replay buffer B, which is a queue that maintains Sbuffer most recent n-step

transitions. c, To update parameters Θ= fΘE ,ΘDg, we randomly sample mini-batch
transitions from the buffer and perform gradient descents over Eq. (3). Repeat this
process until the number of training episodes reaches Ω = 106. The best model is
selected with achieving the highest validation performance, which is measured by
the approximation ratio (eDIRAC0 =eGreedy0 ) on the validation data. Here eDIRAC0 and
eGreedy0 are the energy densities computed by DIRAC and by Greedy respectively.
(Right) During application, we have two basic DIRAC strategies: DIRAC1 and DIR-
ACm. d, For an input instance, DIRAC1 (with the optimized parameters fΘ*

E ,Θ
*
Dg)

starts from {σi = + 1}, and greedily flips the highest-Q spins till {σi = − 1}. The spin
configuration of the lowest energy encountered during this process is returned as
the predicted ground state. e, DIRACm refers to a sequential running ofm iterations
of DIRAC1 connected by GTs. For each iteration, GT converts the lowest-energy
configuration from last iteration to be {σi = + 1} for DIRAC1, and convert it back as
the output of the current iteration.
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Fig. 3 | The encoder Spin Glass Neural Network (SGNN). SGNN encodes (a) the
input spin glass instance (with any arbitrary spin configuration) into a (e) low-
dimensional space,where each spin is associatedwith anembedding vector (shown
as a color bar). b SGNN first updates edge embedding vectors based on the edge
itself and its adjacent nodes, and then (c) updates node embedding vectors based
on the node itself and its adjacent edges. Note that the node-centric updates take
place only when the edge-centric updates finish for all edges at each layer. Both
updates are followed by a non-linear transformation operator (e.g., ReLU) with

learnable parameters. The edge features are initialized by edge weights, and the
node features are initializedby its coordinates in the hypercubic coordinate system.
d, Each node or edge updates its embedding vector in one layer. Repeating several
layers, weobtain anembedding vector for eachnode (e) that reflects its informative
features. f, Each layer of updates increases the long-range couplings with onemore
hop’s neighbors (dashed lines) for a given spin. For example, for the central spin
(colored in dark red), its final embedding vector after K = 5 layers captures both its
position and its long-range couplings with neighbors within K = 5 hops.
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spin) (Fig. 3e). Essentially, each node’s embedding vector after K
iterations captures both its position in the lattice and its long-range
couplings with neighbors within K hops (see Fig. 3f for an example of
K = 5). In our RL setting, each node is subject to a potential action, thus
we also call the embedding vector of node i, denote as zi, its action
embedding. Collectively, we denote za = {zi}, which includes embed-
ding vectors for all the nodes i = 1,⋯ ,N. To represent the whole lattice
(i.e., the state in our setting) andobtain the state embedding, denote as
zs, we sum over all node embedding vectors41, which is a straightfor-
ward and empirically effective way for graph-level encoding. (SI Sec. IA
and Algo. S3 describe more details about SGNN.)

Decoding. Once the action embeddings za and state embedding zs
have been computed, DIRAC will leverage these representations to
compute the state-action pair value function Q(s, a(i);Θ), which pre-
dicts the expected future cumulative rewards if taking action a(i) under
state s, and following the policyπΘ(a

(i)∣s) till the end of the episode (i.e.,
till all the spins have been flipped once). Hereafter, we will refer to this
function as the Q-value of spin-i. Specifically, we concatenate the
embeddings of state and action, and apply a neural network with non-
linear transformations to map the concatenation [zs, zi] to a scalar
value. In theory, any neural network architecture can be used. Here for
the sake of simplicity, we adopt the classical multilayer perceptron
(MLP) with ReLU activation. (see SI Sec. IB for more details):

Qðs,aðiÞ;ΘÞ=MLPð½zs,zi�;ΘÞ: ð2Þ

Note that hereΘ= fΘE ,ΘDg,ΘE are the SGNN encoder parameters (see
SI Eq. 1–Eq. 2), ΘD are the MLP decoder parameters (see SI Eq. 3).

Offline training. We will adopt the above Q function to calculate the
spin glass ground state. Prior to that, we first need to optimize the Q
function to predict a more accurate future gain.

We define the n-step Q-learning loss as:

L=Eðst ,at ,rt,t +n ,st +nÞ∼B rt,t +n + γmax
at +n

Qðst +n,at +n; Θ̂Þ � Qðst ,at ;ΘÞ
� �2

" #
,

ð3Þ
and we perform mini-batch gradient descent to update parameters Θ
over large amounts of experience transitions, which are represented
by the4-tuple transitions (st, at, rt,t+n, st+n) in theDIRAC framework. The
transitions are randomly sampled from the experience replay bufferB,
st and at denote the state and action at time step t, respectively.
rt,t +n =

Pn�1
k =0 γ

krðst + k ,at + k ,st + k + 1Þ represents the n-step accumulated
reward, the discount factor γ is a hyper-parameter that controls how
much to discount future rewards. Θ̂ is the target parameter set, which
will only be updated withΘ every a certain number of episodes (see SI
Sec. IC and Algo. S4 for more details on training).

Online application. DIRAC is trained over a large number of small
random spin glass instances. Once the training phase is finished, we
will performtheoptimizedQ-basedground state search. TraditionalQ-
based strategy greedily takes the highest-Q action each step till the
end. Here we adopt the batch nodes selection strategy30, i.e., at each
step we flip a top fraction (e.g., 1%) of the spins with highest Q-values.
Similar to the training phase, we start from the all-spins-up config-
uration, end at the all-spins-down configuration, and each spin is flip-
ped only once. Hereafter we refer to this process as DIRAC1. The spin
configuration of the lowest energy encountered during this process is
returned as the predicted ground state. Note that starting from the
same configuration forces the agent to learn a strategy with the same
starting point, which drastically reduces the potential trajectory space
and thus requires less data for training. Ending at the same config-
urationmakes the agent always finish the MDP within finite steps. This

finite-horizon MDP forces the agent to pick the right move without
allowing too many regrets.

We emphasize that the vanilla strategy DIRAC1 has several lim-
itations. First, it can only handle one single uniform initialization
{↑,⋯ ,↑}, rather than multiple random initializations. This drastically
hinders DIRAC’s performance as significant performance improve-
ments would be achieved by simply taking the best solution found
across multiple initializations. Second, starting from the all-spins-up
configuration and ending at the all-spins-down configuration (with
each spin flipped only once) is certainly not ideal. An ideal way is to let
the agent “revisit” its earlier decisions so as to search for an ever-
improving solution. After all, due to the inherent complexity of com-
binatorial optimization problems, a policy that produces only one
single “best-guess” solution is often sub-optimal. However,most of the
existing RL algorithms are unable to revisit their earlier decisions in
solving combinatorial optimization problems, because they often use
a greedy strategy to construct the solution incrementally, adding one
element at a time. To solve this issue, many recent attempts designed
complex neural network architectures with lots of tedious and ad hoc
input features42,43. Yet, their presented results are far from satisfactory,
they could not achieve the exact ground truth on even small instances,
and they lack the validations on large instances.

To resolve the limitations of DIRAC1, we employ the technique of
GT in Ising systems44. The GT between one spin glass instance {σi, Jij}
and another instance fσ0

i,J
0
ijg are given by45,46:

J0ij = Jijtitj ,σ
0
i = σiti, ð4Þ

where ti = ± 1 are independent auxiliary variables so that σ0
i can take a

desired Ising spin value. This technique is able to switch the spin glass
system between any two configurations while keeping the system
energy invariant (since J0ijσ

0
iσ

0
j = Jijσiσj), which also means any input

configuration can be gauge transformed to the all-spins-up configura-
tion. In this way, DIRAC1 is able to handle any random input spin
configuration. Note that if there exists external fields hi, we only need
to make h0

i =hiti so that GT still works.
With the aid of GT, we can design a more powerful strategy

beyondDIRAC1, referred to as DIRACm hereafter. As the name suggests
(also shown in Fig. 2e), DIRACm repeatsm iterations of DIRAC1. During
each iteration, DIRAC1 starts from an instance with all-spins-up con-
figuration, which is obtained by gauge transforming the lowest-energy
configuration found in the previous iteration, until the system energy
no longer decreases. (As shown in SI Fig. S3, initializing from the
lowest-energy configuration found in the previous iteration is much
better than from a random one.) Notably, GT allows DIRACm to revisit
the earlier decisions by computing a new set of Q-values (so as to re-
evaluate the states and actions) at each iteration. The Q-value can be
seen as a function of {Jij, σi}, i.e., Q(Jij, σi). DIRAC will generate different
Q-values for different instances, as long as they have different bond
signs and spin values (even if those instances areconnectedbyGTs and
hence share the same physics). This also explains why GT only works
for DIRAC, but fails for any other energy-based methods, such as
Greedy, SA or PT. Those methods only consider the energy of each
bond, while GT does not change the energy of each bond at all:
ð�Jijσiσj = � J0ijσ

0
iσ

0
jÞ. (see SI Sec. ID for more details on DIRACm).

Another prime use of GT is the so-called gauge randomization47,
where one may execute many runs (or randomizations) of DIRAC
(either DIRAC1 or DIRACm) for an input spin glass instance, with each
run the instance is randomly initialized with a different spin config-
uration. The configuration of the lowest energy among these runs is
then returned as the predicted ground state of the input instance.

DIRAC can also serve as a plug-in to Monte-Carlo based methods,
such as SA and PT. The key ingredient of thesemethods is the so-called
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Metropolis-Hastings criterion:

PðΔE;βÞ= minð1,e�βΔE Þ, ð5Þ

which means that the probability of accepting a move with energy
changeΔE at β (indicates the inverse temperature, 1/T) is theminimum
of 1 and e−βΔE. Themove is usually referred to as a small perturbation of
the system, and in our case it just means a single-spin flip. At high
temperatures, the Metropolis-Hastings criterion tends to accept all
possible moves (including “bad” moves with ΔE >0). However, at low
temperatures it is more likely to accept those “good”moves that could
lower the energy (i.e., with ΔE < 0), rendering the move-and-accept
iteration more like a greedy search. We refer the process of using the
Metropolis-Hastings criterion to accept moves as the energy-based
Metropolis-Hastings (EMH) procedure hereafter. The art of these
Monte-Carlo based methods, in some sense, is the balance between
exploration at high temperatures and exploitation (energy descents)
at low temperatures.

The general idea of usingDIRAC as a plug-in toMonte-Carlo based
methods is to replace the EMH procedure with DIRAC. (Later in this
paper we will demonstrate the long-sighted greediness of DIRAC with
respective to a purely energy-based greediness.) Specifically, we
design a DIRAC-based Metropolis-Hastings (DMH) procedure. At each
iteration, we let the systems or replicas choose randomly between
DMH and EMH for a more effective configuration search. The DMH
procedure uses one DIRAC1 (with the assistance of GT) to lower the
system energy. When the system energy reaches a local minimum (i.e.,
ΔE = 0), DMH will perturb the spin configuration by flipping each spin
with a temperature-dependent probability (SI Eq. 6). When applying
this plug-in idea to SA and PT, we obtain DIRAC-SA and DIRAC-PT,
respectively. See SI Sec. IH, Algo. S6, Algo. S7 and Fig. S4 for more
details about these two DIRAC-enhanced algorithms.

Performance of finding the ground state
To demonstrate the power of DIRAC in finding the ground states of
Ising spin glasses, we first calculated the probability P0 of finding the
ground states of small-scale EA spin glass instances as a function of the
number of initial spin configurations (denoted as ninitial) (see
Fig. 4(a–c)). Here we want to point out the difference between the
concepts of initial configuration and run. Usually initial configuration
can be seen as the same as sweep, referring to N spin-flip (attempts). A
run refers to a complete process of an algorithm, and it contains a
certain number of initial configurations. For example, PT consists ofNe

epochs and Nr replicas, in each epoch, a replica will do a single sweep,
namely N spin-flip attempts, so a run of PT contains Ne ×Nr initial
configurations; DIRACm contains m iterations of DIRAC1, and each
DIRAC1 contains N spin-flips, so each run of DIRACm is counted as m
initial configurations. Those instances were chosen to be small so that
their exact ground states can be calculated by the branch-and-bound
based solver Gurobi within tolerable computing time. For each given
ninitial, we empirically computed P0 as the fraction of 1000 random
instances forwhich the ground state is foundbyDIRAC (and confirmed
by Gurobi48). We found that DIRAC enables a much faster finding of
ground states than the Greedy, SA, and PT algorithm. In fact, all DIRAC
variants (DIRAC1, DIRACm, DIRAC-SA and DIRAC-PT) facilitate the
finding of ground states. For example, in the case of D = 2 and L = 10
(Fig. 4a),n*

initial (theminimumvalueofninitial whereP0 reaches 1.0) of PT
is 322,800, while n*

initial of DIRAC
m is only 600. In fact, for DIRACm the

ground states can be found with only one gauge randomization for
some instances.

To systematically compare those algorithms in terms of their
ability of finding the ground states, we investigated the system size
scaling of n*

initial. As shown in Fig. 4(d–f), DIRAC’s superior perfor-
mances of facilitating the finding of ground states is persistent across

different systemswith varying sizes, rather thanonly for the three sizes
presented in Fig. 4(a–c).

We notice that the P0 ~ ninitial curve of DIRAC-SA contains very few
scatter points, and itsn*

initial is almost independent of the system sizeN.
This is because inour implementation, each result of SAorDIRAC-SA is
calculated using 5000 initial configurations (one run), and for these
small systems,one runofDIRAC-SA is able to reach their ground states.
Due to the NP-hard nature of this problem, we believe the n*

initial of
DIRAC-SA will eventually grow exponentially with N for large N.

We also notice that in Fig. 4(b,c) the performances of SA and PT
seem to be worse than the simple Greedy algorithm.We suspect this is
because for those small systems, the simple Greedy algorithm, which
greedily flips the highest-energy-drop spin, could reach the ground
states much faster than SA or PT. Indeed, those annealing-based
algorithms often require multiple energetically-unfavorable spin-flips
in order to ultimately reach a lower energy state. For large systems, the
Greedy algorithmwould easily get stuck in the localminimumand thus
needmore initial configurations to reach the ground state, as shown in
Fig. 4 (a,d–f).

Performance of minimizing the energy
For larger systems, it is hard to compute the probability of finding the
ground states for any algorithm, because we need to confirm if the
calculated “ground state” is the true ground state obtained by an exact
solver, and even the best branch-and-bound solver could not calculate
the ground states of very large instanceswithin acceptable time. In this
case, amore practical choice of benchmarking various algorithms is to
compare the energy of their predicted “ground state”, denoted as E0,
which is not necessarily the true ground state energy, but the lowest
energy provided by each algorithm for each particular instance. In
particular, we are interested in the disorder averaged “ground-state”
energy per spin, denoted as e0, which is computed as E0/N averaged
overmany instances. In Fig. 5, we demonstrate e0 as a function of ninitial
on several large systems. Up to our knowledge, some of these systems,
such as D = 3, L = 20, have never been considered in previous studies.
Moreover, we have never seen results on the 4D systems in the
literature.

From Fig. 5 wemade several following observations. First, DIRAC-
SA reaches the lowest e0 for all cases. In some cases, DIRAC-SA is very
close to the reported ground state in existing studies. For example, for
D = 3 and L = 10, Ref. 49 reported e0 = −1.6981 (with ninitial = 3.2 × 107,
obtained by PT), while DIRAC-SA obtained e0 = − 1.6906 (with
ninitial = 2 × 104, fewer than one thousandth of the number of initial
configurations used in Ref. 49) (Fig. 5d). Second, the performance of SA
in minimizing the system energy is surprisingly good, which is com-
parable, sometimes even has a better performance than PT (up to
ninitial = 2 × 104). PT has long been considered as the state-of-the-art
algorithm for the spin glass ground state problem27,49,50. However, our
observation suggests that we should revisit the potential of SA in sol-
ving this problem. Third, DIRAC as a general plug-in could greatly
improve annealing-based Monte-Carlo methods, such as SA and PT.
For the nine systems studied in Fig. 5, DIRAC-SA computes an average
0.79% energy lower than SA, andDIRAC-PT calculates an average 2.01%
energy lower than PT. Statistical tests indicate that these improve-
ments are not marginal, but statistically significant : p value < 10−4 for
most cases, and <0.05 for all the cases (Wilcoxon signed-ranked test,
see SI, Fig. S5). Finally, there is a clear performance gap between
DIRAC1 and DIRACm in Fig. 5. This is simply because DIRACm (as a
sequential running of m iterations of DIRAC1 connected by GTs) can
jump out of local minimum and finally reaches a much lower energy
state than DIRAC1.

Efficiency
Besides the effectiveness, DIRAC is also computationally efficient.
For example, during the application phase, at each step DIRAC1
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flips a small fraction (e.g., 1%) of the highest-Q spins, rather than
just flipping the spin with the highest Q-value as we did in the
training phase. In our numerical experiments, we found this batch
nodes selection strategy30 reduces the running time significantly
without sacrificing much accuracy (Fig. S6). Both time complexity
analysis (SI Sec. IE, Tab. S1, Fig. S7) and the performance analysis
of finding the ground state (Fig. 4) suggest that DIRAC displays a
better scalability than other methods.

We should admit that DIRAC needs to be offline trained while
other methods needn’t. Yet, we think it is reasonable to compare
DIRAC’s efficiency without considering its training time, as DIRAC
needs to be trained offline only once for each dimension (Fig. S8), and
could then be applied infinite times for the systems (of the same
dimension) with different sides. Besides, DIRAC’s training time is often
affordable. For some large systems the total costs required by its
training and application are still lower than that of PT. For instance,
althoughDIRACneeds about 2.5 h tofinish trainingon the3D system, it
takes only on average 417 s for DIRACm to calculate a random spin glass
instance with D = 3, L = 20 (ninitial = 10). However, to obtain the same

energy, PT needs on average 3 h (ninitial = 5, 360), which is higher than
the total time costs of DIRACm (about 2.62 h) (Fig. 5f). Note that all the
calculations were conducted on a 20-core computer server with 512GB
memory and a 16GB Tesla V100 GPU.

Since the biggest computational cost of DIRAC is from the matrix
multiplications in SGNN, the graphics processing unit (GPU)-accel-
erations can be more easily applied on DIRAC than other methods, as
the matrix multiplication itself is particularly suitable for paralleling.
Still, for the sake of fairness, here we report DIRAC’s CPU testing time
only, and do not deploy its GPU-accelerations in the application phase.
We only utilized GPU to speed up the training process. Hence, the
efficiency of DIRAC presented here is rather conservative.

Application on general NP-hard problems
It has been shown that many NP-hard problems, including all of
Karp’s 21 NP-complete problems (such as the max-cut problem,
3-SAT problem and the graph coloring problem), have Ising
formulations11. Hence, we anticipate that DIRAC (with some
modifications) could help us solve a wide range of NP-hard

Fig. 4 | Performance of different methods in finding the ground state. To
compare the ability of finding the exact ground states, we evaluated different
methods on small spin glass systems for which the true ground state can be
computed by the branch-and-bound-based solver Gurobi49. In (a–c), the quantity
we chose to compare is the probability of finding the ground state, denoted as P0,
which is empirically calculated as the fraction of 1000 random instances for which
the ground state is found (and confirmedbyGurobi).We computed P0 as a function
of the number of different initial configurations, denoted as ninitial. In (d–f), we plot
n*
initial, i.e., the minimum value of ninitial where P0 reaches 1, as a function of system

size N. To compute n*
initial, we generated 100 random instances for each size, and

performed 10 independent runs for each instance. The minimum number of initial
configurations that is required by eachmethod to obtain the true ground state was
returned as the result of one run. We averaged n*

initial over these 1000 independent

runs, and showed the results of mean and standard error of the mean (SEM)
(shaded area, comparable with the line width or data point symbol size in most
cases) of different methods on different sizes. Log scale was used for visualization
purpose. Note that to have a variety of systemsizes, instead of using the same side L
for each dimension, we considered different sides for different dimensions. By
tuning the sides (L1,⋯ , LD), we generated a variety of system sizeN = L1 ×⋯ × LD. In
our implementations, one run of SA and DIRAC-SA needs 5000 initial configura-
tions, and for some of these small systems, one run of DIRAC-SA is able to reach
their exact ground states. As a result, the curves of DIRAC-SA are shown to be
independent of these presented sizes. Also, the data points for larger N fluctuate
more because we calculated fewer samples due to the computational resource
limits.
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problems that have Ising spin glass formulations. We emphasize
that to make the current DIRAC framework fully compatible with
more complex Ising formulations is nontrivial. In the EA spin glass
model, we only have pair-wise or two-body interactions, which
can be represented by “edges” connecting spins. When the Ising
formulation involves k-body interactions (with k > 2), we have to
leverage the notion of hypergraph and replace the “edge feature”
in DIRAC with the “hyperedge feature”51, which have been heavily
studied in the field of hypergraph and hypergraph learning52–54.

We emphasize that GT can be applied to any optimization pro-
blem (such as k-SAT55 and graph coloring11) with an Ising formulation.
Consider a general Ising formulation:

H= �
XM
a= 1

Jaσa1
σa2

� � � σaka
: ð6Þ

Here we have M interactions, and the a-th interaction involves ka⩾ 1
Ising spins (ka = 1 corresponds to the external field, ka = 2 corresponds

to the two-body interaction we considered in this paper). Note that GT
still works (with ti = ± 1):

Ja ! J0a = Jata1
ta2

� � � taka

σi ! σ0
i = σiti

(
ð7Þ

So that the Hamiltonian/energy remains the same:

H ! H0 = �
XM
a= 1

Jaσa1
σa2

� � �σaka
t2a1

t2a2
� � � t2aka

= �
XM
a= 1

Jaσa1
σa2

� � �σaka
=H: ð8Þ

As a concrete example, we applied DIRAC to explicitly calculate
the max-cut problem (SI Sec. II), a canonical example of the mapping
between Ising spin glasses and NP-hard problems11. The results are
shown in SI Fig. S9. We found that DIRAC consistently outperforms
other competing max-cut solvers.

Fig. 5 | Performance of different methods in minimizing the energy.We com-
pared the disorder averaged “ground-state” energy per spin (predicted by each
method), denote as e0, as a functionof the number of initial configurationsninitial, to
benchmark various methods on large systems. Since the Greedy algorithm per-
forms the worst inminimizing the energy, its results are not shown here so that we
can better compare the performance of other methods. We compared on three
dimensions (D = 2, 3, 4), and for each dimension we consider three different sides
(a–i). For each case, we run ninitial = 2 × 104 initial configurations for eachmethod. At
a given ninitial, we chose the lowest energy among all runs for each instance, and
averaged the results from 50 independent instances as the final result. We showed
their mean and SEM (shaded area) of different algorithms on different sizes. Since

each result of SA and DIRAC-SA is calculated using 5000 initial configurations, the
curves of SA and DIRAC-SA actually consist of only four scatter points. Note that
here the presented ground state energies reached by our PT implementation are
different from the one found in the literature. For example, Ref. 51 reported an
average energy density e0 = − 1.6981 (PT) for the 3D-10 (D = 3, L = 10) system, while
our PT only reached an average e0 = − 1.6707 (f)). This is simply because different
number of initial configurations (ninitial) were used. In Ref. 51, the authors used
ninitial = 3.2 × 107 initial configurations to reach e0 = − 1.6981, while we only used
ninitial = 2 × 104 initial configurations (i.e., fewer than one thousandth of their ninitial)
to reach e0 = − 1.6707. We know that for those annealing methods, the more initial
configurations we explored, the more potential to reach a lower energy.
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Interpreting the superior performance of DIRAC
In this section, we offer a systematic interpretation on the superior
performances of DIRAC. In Fig. 6, we compare the system’s energy
difference between DIRAC1 and the Greedy algorithm at each greedy
step. Note that both methods are performed greedily, the differ-
ence is that the former greedily flips the highest-Q-value spin at each
step while the latter greedily flips the highest-energy-drop spin at
each step. (Note that, for a fair comparison, here in DIRAC1 at just
step we just flip the spin with the highestQ-value, instead of flipping
a fraction of spins with highest Q-values.) The (energy-based)
Greedy algorithm represents an extremely short-sighted strategy,
since it focuses only on each step’s maximal energy drop. Fig. 6
clearly shows that compared to this short-sighted strategy, DIRAC1

always goes through a high-energy state temporarily for the early
steps, so as to reach a much lower energy state in the long run. This
result implies that DIRAC has learned to make short-term sacrifices

for long-term gains. In other words, DIRAC has been trained to be
mindful of its long-term goals.

In Fig. S10, we demonstrate that, during each iteration of DIRACm

(which is a sequential running ofm iterations of DIRAC1 connected by
GTs), there are two interesting phenomena: (1) the fraction of anti-
ferromagnetic bonds in the gauge transformed instances keeps
decreasing (Fig. S10k); and (2) the Q-value distribution becomes more
homogeneous (Fig. S10l). In Fig. S3, we show clear evidence that DIR-
ACm significantly outperforms m independent DIRAC1 (where each
DIRAC1 is dealing with a random instance with ≈ 50% anti-
ferromagnetic bonds). These results implies that the superior perfor-
mance of DIRACm is related to the decreasing fraction of anti-
ferromagnetic bonds and a more homogeneous Q-value distribution
due to the sequential GTs.

The results shown in Fig. S3 and Fig. S10 prompt us to ask if the
superior performance of DIRAC over other methods can be better

Fig. 6 | A long-sighted greediness. We compared the energy density difference
between DIRAC1 and Greedy (eDIRAC0 � eGreedy0 ) at each step. Here e0 denotes the
disorder averaged “ground-state” energy per spin (predicted by eachmethod), and
f denotes the fraction of spins that have been flipped. Note that the number of
greedy steps of two methods may not be exactly the same, we fill the length of the
shorter sequencewith its last value, such that the valuesof these two sequences can
be compared one by one. Note that to compare with Greedy step by step more
precisely, the results of DIRAC1 are achieved by flipping only one spin each step. By

contrast, the results of DIRAC1 in Fig. 5 are achieved by flipping a fraction of top 1%
highest-Q-value spins at each step. (a–i) illustrate the energy gaps for different
dimensions and different sides. For each size, we tested using 100 randomly gen-
erated EA spin glass instances (with couplings sampled from Gaussian distribution
N ð0,1Þ), which were represented by 100 curves of different colors. It can be clearly
seen that DIRAC1 always goes through a high-energy state temporarily in the early
stage of the greedy process, so as to reach a much lower energy state in the
long run.
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visualized in an extreme case, i.e., an anti-ferromagnetic Ising
model where Jij = − 1 for all the bonds. It is well known that this
simple model has a ground state with a checkerboard pattern in
the spin configuration (as shown in Fig. 7, first row, step = 200,
where the red/white sites represent −1/+1 spins, respectively).
However, for classical energy-based heuristic algorithms (e.g.,
Greedy, SA and PT), this ground state cannot be found easily.
Consider an anti-ferromagnetic Ising model on a 20 × 20 square
lattice with periodic boundary conditions. The last column in Fig. 7
shows the trend of energy vs. the number of steps taken by those
heuristic algorithms. For the Greedy algorithm, it ran for 191 steps
and got stuck in a local minimum whose energy is significantly
higher than the ground state energy. For SA or PT (the coldest
replica), it took 21,333 or 10,808 steps to finally reach the ground
state, respectively. By contrast, DIRAC only took 200 = 20 × 20/
2 steps (i.e., flipping exactly half of the spins) to reach the ground
state for this lattice. In other words, DIRAC did notmake any wrong
decision in the whole process, which is remarkable.

To further explain why DIRAC is so “smart” in this case, we
look at the snapshots shown in Fig. 7. All the different algorithms
start from a uniform initial state where all the spin values are set to
be +1. Note that in the snapshots, red sites represent spin
values − 1. Sites with grayscale colors represent spin values + 1, and
the grayscale of each site is determined by its Q-value or site-
energy. For DIRAC, a darker site corresponds to a higher Q-value;
for Greedy, SA and PT, a darker site corresponds to a higher site-
energy. All the algorithms always tend to flip a darker site with a
higher Q-value or site-energy. But DIRAC differs from other algo-
rithms in the following way. Since the instance composes of purely
anti-ferromagnetic bonds, the Q-values of different nodes (spins)
are all the same at the beginning. After the first spin is flipped (see
the center node in the step = 1 snapshot of DIRAC in Fig. 7), there
are two consequences: (1) all its first nearest neighbors’ Q-values
are “smartly” decreased, rendering them less likely to be flipped in
the future; (2) all its second nearest neighbors’ Q-values are
“smartly” increased, rendering them more likely to be flipped in
the next step. In a sense, DIRAC has a long-sighted vision that
cleverly leverages the nature of a purely anti-ferromagnetic Ising
model. As a result, the intermediate snapshots (e.g., in step = 50)
display a clear “stripe” pattern that “grows” from the first flipped
spin. By contrast, other algorithms are short-sighted, try almost
random flips at the beginning, then make incorrect flips and get
stuck in the local minimum. The Greedy algorithm got stuck in a
local minimum forever. SA and PT can jump out of their local
minimum, but it took them very long time to achieve the final
ground state.

Taken together, DIRAC seeks to mimic human intelligence in
solving the ground state problem. For the spin glass ground state
problem, it learns to scarify short-term satisfaction for long-termgains.
For the anti-ferromagnetic Ising model, it demonstrates a remarkable
long-sighted vision by making a smart move every time.

Discussion
This work reports an effective and efficient deep RL-based algorithm,
DIRAC, that can directly calculate the ground states of EA spin glasses.
Extensive numerical calculations demonstrate that DIRAC outper-
forms state-of-the-art algorithms in terms of both solution quality and
running time. Besides, we also evaluate DIRAC’s superior perfor-
mances under different scenarios, e.g., different coupling distributions
(Gaussion vs. Bimodal vs. Uniform) (Fig. S11); different topological
structures (trees vs. loopy trees vs. lattices) (Fig. S12); different hard-
ness regimes (Fig. S13, Fig. S14) and different spin glass models (EA vs.
Sherrington-Kirkpatrick) (Fig. S15), see SI Sec. III for more details.
Through a pure data-driven way and without any domain-specific
guidance, DIRAC smartlymimics the human intelligence in solving the

spin glass ground state problem. In particular, DIRAC enables a much
faster finding of ground states than existing algorithms, and it can
greatly improve annealing-based methods (e.g., SA and PT) to reach
the lowest system energy for all dimensions and sides.

Note that in our implementations of annealing-based methods
(e.g., SA and PT), we took the parameters of SA and PT fromRef. 50 and
Ref. 49. We found that our implementations of SA and PT were able to
generate similar results as (or, arguably, a slightly better performance
than) what were reported in existing works (see SI, Fig. S16 and
Fig. S17). We emphasize that even if SA or PT itself can be further
improved, we can still use DIRAC as a plug-in to enhance the improved
version of SA or PT. Hence, we are not only interested in comparing
DIRAC with the state-of-the-art implementation of SA or PT, but also
interested in comparing DIRAC-enhanced thermal annealing algo-
rithms with their corresponding vanilla algorithms (as shown in
SI Fig. S5).

In the future, advances in deep graph representations may enable
us design a better encoder, and developments of RL techniques may
help a more efficient training. Both would further improve DIRAC’s
performances to find the ground states of Ising spin glasses. The uti-
lization of GT in DIRAC and the way of combining DIRAC and
annealing-basedmethodsmay also inspiremany other physics-guided
AI research. Our current framework is just the beginning of such a
promising adventure.

Methods
DIRAC
For DIRAC, Tab. S2 lists the values of its hyper-parameters, which were
determined by an informal grid search. We only tried to tune a few
hyper-parameters, including the discount factor γ, delay reward steps
n and the message-passing steps K. The results are shown in Fig. S18,
Fig. S19, and Fig. S20. Therefore DIRAC’s performances can be further
improved by a more systematic grid search. For example, in Fig. S20,
we found that the agent trained using the same K value as that in
testing often yields the best performance, and this observation stands
for different system sizes. This contradicts our intuition that a larger K
should always obtain better performances on large systems due to a
better capture of the long-range correlations.We suspect that thismay
be due to the inconsistency between K and the embedding dimension
d (i.e., the size of node embedding vector, which is always set to be
d = 64 in all our calculations). We anticipate that d should be higher for
higher K so that longer correlations can be encoded in the node
embedding vector. Systematically testing this idea is beyond the scope
of the current study. For more implementation details, please see
SI Sec. I.

SA
For SA, we linearly annealed the temperature fromahigh value to a low
one, the number of temperatures is set to beNt. For each temperature,
we performed Ns sweeps of explorations, each sweep contains N
(number of spins) randommoves. The values of hyper-parameters are
determined from Ref. 50, i.e., setting the maximal inverse temperature
βmax = 5 and theminimal inverse temperature βmin = 0.We setNt = 100,
which is consistent with the first row in TABLE I in Ref. 50. Ref. 50 also
pointedout that the optimized valueofNt ×Ns should be around5000.
In our case, we set Ns = 50 and Nt = 100. For more implementation
details, please see SI Sec. IV.

PT
For PT, we chose Nr = 20 replicas, whose temperatures range from 0.1
to 1.6 with equal interval49, initialized with random configurations.
Within each epoch, we attempted random flips for N (the number of
spins) times. After these random flips, we randomly picked up two
replicas and exchanged their spin configurations. The lowest energy
and the corresponding spin configuration of all the replicas were
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recorded during the whole process. For more implementation details,
please see SI Sec. IV.

Data availability
The data used to reproduce the results in this paper are publicly
available through Zenodo56 (https://doi.org/10.5281/zenodo.7562380).

Code availability
The source code of DIRAC (and its variants), as well as the two baseline
methods, SA and PT, are publicly available through Zenodo56 (https://
doi.org/10.5281/zenodo.7562380or on GitHub (https://github.com/
FFrankyy/DIRAC.git).
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