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R E S E A R C H A N D A N A LYS I S

Consequential Life Cycle Assessment of
Policy Vulnerability to Price Effects
Deepak Rajagopal

Summary

The application of life cycle assessment (LCA) in a policy context highlights the need
for a “consequential” LCA (CLCA), which differs from an “attributional” LCA (ALCA).
Although CLCA offers some advantages over ALCA, such as a capacity to account for
emissions resulting from both substitution and price effects, it entails additional assumptions
and cost and may yield estimates that are more uncertain (e.g., estimates of impact of
biofuel policies on greenhouse gas [GHG] emissions). We illustrate how a CLCA that relies
on simple partial equilibrium models could provide important insights on the direction and
magnitude of price effects while limiting the complexity of CLCA. We describe how such a
CLCA, when applied early in the policy life cycle, could help identify policy formulations that
reduce the magnitude of adverse price effects relative to the beneficial substitution effect on
emissions because—as the experience with biofuel regulations indicates—regulating price
effects is costly and controversial. We conclude that the salient contribution of CLCA in
the policy process might lie in warning policy makers about the vulnerabilities in a policy
with regard to environmental impact and to help modify potentially counterproductive
formulations rather than in deriving the precise estimates for uncertain variables, such as
the life cycle GHG intensity of product or average indirect emissions.
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Introduction

The debate about the environmental impact of biofuel poli-
cies has brought into focus the use of life cycle assessment
(LCA) for public decision making. Whereas supply-chain–
focused analyses of life cycle greenhouse gas (GHG) emissions
suggest that biofuels are less GHG intensive relative to fos-
sil fuel substitutes (de Carvalho 1998; Sheehan et al. 2000;
Farrell et al. 2006; Edwards et al. 2008; Huo et al. 2009; Liska
et al. 2009), economic analyses predict that GHG emissions
may increase over the next several decades as a result of bio-
fuel policies (Searchinger et al. 2008; Hertel et al. 2010; Bento
et al. 2011; Laborde 2011; Dumortier et al. 2011; Overmars et al.
2011; Rajagopal and Plevin 2013). This suggests that extrapo-
lating differences in the average supply chain emission intensity
of two products in order to predict the future impact of adopt-
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ing the cleaner of the two products might be misleading. Even
preceding the biofuel debate, researchers had recognized limi-
tations of supply-chain–focused LCA as a decision aid and had
argued for distinguishing such an LCA, which is sometimes re-
ferred to as “attributional” LCA (ALCA), from a “consequential”
LCA (CLCA), which is considered more suitable in a decision-
making context (Curran et al. 2005; Delucchi 2005; Finnveden
et al. 2009; Earles and Halog 2011; Weidema 2011).

There is a growing body of literature that highlights the
differences between ALCA and CLCA. Ekvall and Weidema
(2004) suggest that ALCA generally relies on data on aver-
age performance or impact, whereas CLCA requires data on
marginal changes. Depending on the type of marginal data,
CLCA can be used to model the short- or long-run effects
(Eriksson et al. 2007). In this article, we focus on the following
conceptual distinction between ALCA and CLCA and discuss
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how CLCA may be employed in the policy process. Whereas
ALCA focuses on the vertical dependencies in a product’s sup-
ply chain, CLCA’s strength is in modeling the horizontal link-
ages at each vertical step in the supply chain. By horizontal
linkages, we refer to the competition for a good in alternative
applications. For instance, whereas an ALCA of ethanol will
account for the relationship of the corn industry to the biorefin-
ing industry, the relationship of the biorefining industry to the
market of transportation fuels, and so on, CLCA recognizes the
competition of corn with other crops (e.g., soybean, wheat, and
so on) for farm land, the competition of the biorefining industry
with food and livestock industries for corn, the competition of
biorefining with oil refining sectors in the fuel market, and so
on. Because of such linkages, a shock to any one sector will lead
to adjustments in the sectors it is linked to directly (i.e., sectors
in the vertical chain) and sectors that are indirectly linked be-
cause of competition. CLCA accounts for the transmission of
such shocks both vertically and horizontally. For instance, con-
sider a policy such as a corn ethanol mandate. A corn ethanol
mandate will increase the demand for corn and therefore in-
crease the price of corn. This will cause corn consumers to
substitute away from corn and toward, say, soybean and also
reduce total food consumption. At the same time, the increase
in corn price will induce farmers to expand corn production at
the expense of other crops. This may lead to further adjustments
in each of the affected crop markets. Increasing ethanol supply
also reduces the demand for gasoline, which, in turn, affects
the demand for crude oil. These interlinkages give rise to what
is referred to as feedback effects or indirect effects in the LCA
literature. We simply refer to them as price effects. The role of
price effects in LCA has been illustrated for several products
and services other than biofuels, including electricity produc-
tion (Mattsson et al. 2003), milk production (Thomassen et al.
2008), waste management (Ekvall et al. 2007), fuel cell vehi-
cles (Sandén and Karlström 2007), lead-free solders (Ekvall and
Andrae 2006), and land use (Kløverpris et al. 2010).

Accounting of emissions resulting from price effects is an ad-
vantage of CLCA relative to ALCA, which, however, entails
additional cost. It requires data on behavioral and economic
parameters, such as the price elasticity of supply and demand
in the sectors directly and indirectly related to the final sector
of interest, and so on. One also needs to determine whether a
partial equilibrium or general equilibrium analysis is appropri-
ate and whether the model is to be regional, national or global
in scope. A general equilibrium framework is theoretically con-
sistent, but also intensive in data requirements and effort. The
greater the level of regional and sectoral disaggregation, the
larger will be the data requirements. A partial equilibrium (PE)
model focusing on one or a few economic sectors of interest
is a simpler alternative, but not theoretically complete. In the
absence of standard guidelines for performing CLCA, differ-
ences between studies resulting from the modeling framework
(partial versus general equilibrium), the level of regional and
sectoral disaggregation, the computational tools, different data
assumptions despite using a common computational tool, and
so on, have tended to yield estimates that are more uncertain,

when compared to estimates from studies based on ALCA. The
estimates of GHG benefits of biofuels is a case in point (Plevin
et al. 2010; Dumortier et al. 2011; Rajagopal and Plevin 2013).
This presents a challenge for analysts, especially when policy
makers or regulators demand a point estimate for choosing a
standard or to determine whether a firm is in compliance, as is
the case under the U.S. Renewable Fuel Standard (RFS) and
California Low Carbon Fuel Standard.

These challenges notwithstanding, in the absence of globally
consistent action against global problems, such as global climate
change, a life cycle approach is essential if policy makers are to
avoid potentially counterproductive, albeit well-intentioned,
unilateral policies, such as renewable energy policies, emis-
sion performance standards, and so on. In the case of renew-
able energy, such policies may be rationalized based on other
criteria, such as improvements in the terms of trade (Huang
et al. 2013), supporting infant industries (Nemet 2012), demon-
strating leadership (Schreurs 2008), and so on. The aim of this
article is to analyze the role of CLCA in designing energy and
environmental policies. To this end, we describe a general ap-
proach to CLCA that can yield useful insights about how price
effects may manifest themselves in different markets and also
identify the sectors that are likely to have a large unintended
impact on emissions as a result of a partial policy. This can
help analysts focus their attention on modeling a few sectors in
detail while excluding others, thereby limiting the complexity
of CLCA. We discuss how such a CLCA, when applied early in
the policy life cycle, can help identify vulnerabilities in a pro-
posed policy and suggest alternative policy formulations that
reduce those risks.

Several studies have analyzed different economic modeling
approaches for incorporating price effects in LCA (see the ar-
ticle by Earles and Halog 2011 for a review of these studies).
The contribution of this article is to derive general conclusions
about the direction of price effects and changes in consumption
in different sectors of the economy in response to a shock to one
sector. We derive insights that are robust to the choice of mod-
eling approach, whether it is single-market PE, multimarket
PE, or general equilibrium. The rest of the article is organized
as follows. We first illustrate, using simple PE models, how one
can derive, to a first order of approximation, emissions resulting
from price effects one market at a time, which are then to be
aggregated to derive the change in total emissions (section on
A partial equilibrium consequential life cycle assessment of biofuel
policies). We then extend those insights to a more general mul-
timarket PE framework with multiple interconnected sectors
(section on A general multimarket partial equilibrium consequen-
tial life cycle assessment). We describe how one can predict the
direction of impact of price effects in different sectors depending
on how they are related to the final sector of interest. Given the
recent experience with regulations on emissions resulting from
price effects of biofuel policies, which are complex and contro-
versial, we conclude by discussing how CLCA can be utilized to
identify potentially harmful policies early in the policy process
and to modify the policy formulations (section on Implications
for use of life cycle assessment in policy settings). For the sake of

2 Journal of Industrial Ecology



R E S E A R C H A N D A N A LYS I S

clarity, we focus on GHG emissions as the environmental bur-
den of interest. However, the findings extend to any number of
different environmental burdens.

A Partial Equilibrium Consequential Life
Cycle Assessment of Biofuel Policies

We analyze a policy that increases the demand for a good.
We describe the effects of this policy on a downstream sector,
which consumes this good, on upstream sectors producing the
necessary inputs for producing of the good, and a sector that
competes for inputs. We first describe the effects conceptually
and derive analytical expressions and follow this with numer-
ical simulation. For illustrative purposes only, we use a corn
ethanol mandate as the policy under consideration and con-
sider gasoline as the substitute to corn ethanol. We also assume
that the mandate is binding, which means that the target level
of consumption would not be achieved in the absence of the
policy. For mathematical clarity and without loss of generality,
we illustrate the effects in a single-region context. The intu-
ition extends easily to a model with multiple regions involved
in trade and an arbitrary number of sectors, but the algebraic
expressions become unwieldy.

Output Market

We consider the market for gasoline fuel. Let, subscripts g ,
e , and f denote gasoline, ethanol, and the blended fuel, re-
spectively, p and q denote fuel price and fuel quantity, respec-
tively, Si (p) = qi , i ∈ {e, g } denotes the fuel supply function,
and D(p) = q denotes the fuel demand function. The fuel mar-
ket equilibrium is defined by the following system of equations
(1) and (2):

Sg (pg ) + q̄e = D(p f ) (1)

p f (Sg (pg ) + q̄e) = pg Sg (pg ) + q̄e S−1
e (q̄e) (2)

Equation (1) is a fuel market clearing condition, which states
that total supply of fuels (with ethanol adjusted for energy
equivalence relative to gasoline) equals demand for gasoline.
Equation (2) states that the price of ethanol-blended gasoline
is a weighted average of the price of gasoline and ethanol. For a
given quantity of ethanol, q̄e , the system of two equations can
be solved for p f and pg .

One approach to analyze the effect of an exogenous shock
to the quantity of ethanol is to conduct a comparative static
analysis of the system of equations. Completely differentiat-
ing the two equations with respect to p , pg , and q̄e , and
eliminating the d p terms from the two equations, we get
equation (3):

d qg =
[
− b − d + ce

a − d + c f

]
︸ ︷︷ ︸

�

d q̄e (3)

where a = (1 − α)
∂S−1

g (qg )
d qg

≥ 0, b = α
∂S−1

e (qe )
d qe

≥ 0, c =
S−1

e (qe) − S−1
g (qg ) ≥ 0, d = ∂ D−1(q )

d q ≤ 0, e = α(1 − α)/qe

≥ 0, f = −α2/qe ≤ 0, and α = q̄e
Sg (pg )+q̄e

∈ [0, 1] .
Equation (3) is the relationship between the equilibrium

change in quantities of gasoline and ethanol. Because a − d +
c f ≥ 0 and b − d + ce ≥ 0, � ≤ 0 and therefore d q f and d q̄e

have the opposite sign. In other words, increasing the stringency
of ethanol mandates clearly reduces gasoline consumption.1

The change in emissions resulting from the replacement
of gasoline with ethanol and assuming fixed ALCA emission
intensities, zg and ze , respectively, is shown by equation (4):

dZfuel = zedq̄e + zg dqg

= (ze − zg )dq̄e︸ ︷︷ ︸
dZALCA

+ zg (dq̄e + d qg )︸ ︷︷ ︸
dZifue

(4)

If dqg = −dq̄e , dZfuel = dZlca, which is the change in emissions
based only on direct life cycle emission intensity and dZifue = 0.
Otherwise, as shown by equation (5):

dZifue = zg (dq̄e + dqg ) = zg

(
1 − b − d + ce

a − d + c f

)
︸ ︷︷ ︸

≤0 or ≥0

dq̄e (5)

We can verify that if demand is perfectly inelastic, which
implies that d = ∂ D−1(q )

dq = ∞, then by using L’Hospital’s rule,

as d → ∞,� → 1 ⇒ dqg

dq̄e
→ −1. In other words, if demand is

perfectly inelastic, then dq̄e + dqg = 0, that is, ethanol leads to
one-to-one replacement of gasoline, which implies dZifue = 0.
Otherwise, dZifue < 0 or > 0.

Input Market

We now illustrate the effect of the shock on the input-
producing sectors. For the sake of clarity, we consider two up-
stream markets only, namely, the land market and agricultural
commodity market, and analyze these markets in a single-region
context. The intuition extends easily to an arbitrary number of
upstream activities and regions. We also assume that the de-
mand for land is solely for crop production and that there is
only one crop, namely, corn, which can be used as food or
transport fuel. The crop market clearing condition is defined by
equation (6):

Sc(pc) = Dc,F (pc) + Dc,B (6)

where subscripts c and l denote crop and land, respectively, sub-
scripts F and B denote food and biofuel, respectively, and S(·)
and D(·) denote supply and demand functions, respectively.

To analyze the effect of a shock dDc,B to corn demand,
we again perform comparative static analysis of the system of
equations above. Completely differentiating the two equations
with respect to p , pg , and Dc,B , we get equation (7):

∂Sc

∂pc
dpc = ∂Dc,F

∂pc
dpc + dDc,B (7)
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Using the definition of the own price elasticity of supply for
commodity i with respect to its price, εi = ∂ Qi

∂pi

p0
i

Q0
i

(super-

script 0 denotes the initial state) and substituting the gradients
in equation (7) with elasticities, and solving for d pc we get
equation (8):

dpc

p0
c

= dDc,B

S0
c εs

c − D0
c,F εd

c

= 0 (8)

The net change in corn supply is shown by equation (9):

dSc = S0
c εs

c
dpc

p0
c

= S0
c εs

c

S0
c εs

c − D0
c,F εd

c

dDc,B ≥ 0 (9)

A positive ethanol demand shock will increase the price of
corn and increase the total supply of corn.

Economic theory suggests that an increase in output price
will lead to both a more intensive use of inputs, which increases
productivity of existing farm land (the intensive margin effect)
and also leads to expansion of crop acreage (the extensive
margin effect). The relative importance of the intensive and
extensive margin effects in increasing supply is a question for
empirical research and a topic of debate among economists
(Keeney and Hertel 2009; Roberts and Schlenker 2010; Berry
2011). Zilberman and colleagues 2011 argue that the history of
development of agriculture suggests these margins are dynamic
and unstable and are dependent on government policies over
the long run. For illustrative purposes, we assume it is constant.
If β is the share of the extensive margin in the total increase
in corn supply, and assuming the average productivity of land
on the extensive margin is y, the increase in acreage d Sl for
an increase d Sc in supply can be calculated as d Sl = β d Sc

y . If zl

is the emissions per unit area of land on the extensive margin
that is converted from nonfarm use to farm use, the increase
in emissions associated with increase in land use is shown by
equation (10):

dZluc = zl dSl = zl β
dSc

y
(10)

Assuming a fixed-proportion relationship between corn in-
put and ethanol output, a given corn ethanol shock, dq̄e , trans-
lates in a given shock to corn demand. If η is the ethanol yield
per unit of corn, then equation (11) follows:

dDc,B = dq̄e

η
(11)

Substituting equations (9) and (11) in (10), we get equation
(12):

dZluc = zl
β

y

[
S0

c εs
c

S0
c εs

c − D0
c,F εd

c

]
dq̄e

η
(12)

We can verify that if the supply of corn is perfectly inelastic,
that is, εs

c = 0, then dSl = 0 and therefore dZluc = 0.
If zc is the emission intensity associated with crop produc-

tion, then the change in emissions resulting from the change in

food consumption is given by equation (13):

dZfood = zcdDc,F = zcε
d
c D0

c,F
dpc

p0
c

= zc
εd

c D0
c,F

S0
c εs

c − D0
c,F εd

c

dq̄e

η
(13)

If d pc
p0

c
≥ 0, then dDc,F ≤ 0 and, consequently, dZc ≤ 0. There-

fore, an ethanol mandate reduces food consumption, which
contributes to a reduction in GHG emissions. If corn demand
for food consumption is perfectly inelastic, that is, εd

c = 0, then
dDc,F = 0. In other words, there is no change in corn use for
food consumption and therefore dZc = 0.

Combining the different price effects we can write equation
(14):

dZCLCA = dZfuel + dZluc + dZfood

= dZALCA︸ ︷︷ ︸
≤0

+ dZifue︸︷︷︸
≤0 or ≥0

+ dZluc︸︷︷︸
≥0

+ dZfood︸ ︷︷ ︸
≤0

(14)

Equation (14) depicts the difference between ALCA and
CLCA predictions of the impact of replacing gasoline with
corn ethanol. The nature of impact of price effect in different
markets suggests that predictions based only on ALCA may be
biased either up- or downward.

Substituting equations (4), (12), and (13) in equation (14)
we get equation (15):

dZCLCA = (ze − zg )dq̄e︸ ︷︷ ︸
dZALCA

+zg (1 + �)dq̄e

+
(

zl
β

y
εs

c S0
c + zcε

d
c D0

c,F

) [
1

S0
c εs

c − D0
c,F εd

c

]
dq̄e

η

(15)
See equation (3) for the definition of �. It should be pointed
out that we have assumed that the price effects do not affect the
emission intensities, namely, zg , ze , zc , and zl . In reality, ALCA
emission intensities may themselves also be endogenous.

Numerical Illustration

We perform a numerical simulation to illustrate which pa-
rameters may cause CLCA to differ from ALCA and also iden-
tify directions in which the system boundary may need to be
expanded. In ex ante analysis of policies, the stringency of a
policy is also a decision variable. The magnitude of the policy
shock will determine the magnitude of price effects. We there-
fore simulate three different levels of the mandate, namely, 25%,
100%, and 200% increase in ethanol consumption relative to a
base year, chosen as 2007, and illustrate the sensitivity to policy
stringency. Also, the more stringent the target, the longer the
policy horizon tends to be. However, our model is static and
does not include an explicit representation of the time duration
over which a policy target is realized. We overcome this limi-
tation of our model by choosing (and subjectively so) different
values for the model parameters, depending on the magnitude of
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Table 1 Assumed range of values for model parameters for comparison of CLCA and ALCA estimates of change in emissions resulting
from an increase in ethanol consumption

Model parameters Short run Medium run a Long run a

Elasticity of gasoline demand (εd
f ) (–0.08, –0.03) b 150% 200%

Elasticity of gasoline supply (εs
g ) (0.05, 0.15) c 150% 200%

Elasticity of ethanol supply (εs
e ) (0.5, 1.0) d 150% 200%

Elasticity of corn supply (εs
c ) (0.08, 0.13) e 150% 200%

Elasticity of corn demand (for food) (εd
c, f ) (–0.08, –0.05) f 150% 200%

Average ALCA GHG intensity of gasoline (zg ) (gCO2-eq/MJ) g (86, 94) h 100.5% 101%
Average ALCA GHG intensity of corn ethanol (ze ) (gCO2-eq/MJ) (60, 70) i 97.5% 95%
Average conversion efficiency of corn to ethanol (η) (liter/tonne) (387, 417) j 105% 110%
Annualized land conversion emissions (zl ) (tonnes CO2-eq/hectare/year) (3.7, 16) k 97.5% 95%
Average marginal corn yield per hectare (y) (tonnes/hectare) (8.8, 10) l 102% 104%
Share of extensive margin for corn (β) (0.3, 0.7) m 100% 100%
Average ALCA GHG intensity of corn (zc ) (kgCO2-eq/hectare) n (2,600, 2,800) o 102% 104%
Policy shock (% increase in ethanol use) 25% 100% 200%

Notes: Table shows different assumed values for three different levels of policy shock.
aMedium- and long-run values are obtained by scaling the short-run values by the factors shown in the corresponding columns, and these were chosen
subjectively.
bBased on range reported by Hughes and colleagues (2008).
cImputed based on range for oil supply elasticity reported by Greene (2010).
dSubjective values based on the order or magnitude used in previous studies (Holland et al. 2009; Rajagopal and Plevin 2013) for long run.
e, f Based on range reported by Roberts and Schlenker (2010).
gg = grams; MJ = megajoule.
hA mean value estimated based on range reported by Venkatesh and colleagues (2011).
iMean value assumed by Rajagopal and Plevin (2013).
jCorresponds to the range of (2.6, 2.8) gallons per bushel.
kCorresponds to the range of (140, 160) bushels per acre.
lBased on values in the GTAP database for global average pasture land conversion emissions of 110 tonnes of CO2-eq/hectare and global average forest
conversion emissions of 490 tonnes of CO2-eq/hectare and amortization of these values over 30 years without any discounting to get the annual average
emissions from land use.
mAn assumption that 40% of the increase in supply is achieved by expanding the area planted to corn.
nkg = kilograms.
o EBAMM model of Farrell and colleagues (2006) reports of 2,700 kg CO2-eq/hectare of corn production.
CLCA = consequential life cycle assessment; ALCA = attributional life cycle assessment; GHG = greenhouse gas; CO2-eq = carbon dioxide equivalent.

shock. Albeit subjective in magnitude, the direction of scaling
is based on theoretical considerations or empirical observations.
For instance, we assume that the magnitude of price elasticity
and technical efficiencies increase with time. Table 1 shows the
assumed range of values for the model inputs for the short run,
which are used for the 25% shock. For the medium and long
run, we scale the short-run values by the factors shown, which,
to reiterate, are subjective. We use the medium- and long-run
values for the simulations involving a 100% and 200% increase
in ethanol consumption. The base-year value for prices and
quantities consumed are listed in Table 2.

Table 3 reports the change in price, quantity, and emis-
sions when each input parameter assumes the mean value of its
chosen range. Ethanol consumption increases, whereas gasoline
consumption declines, in response to the mandate. However,
the price of blended fuel declines, and so total fuel consumption
increases. Total corn consumption increases, whereas corn con-
sumption as food declines. With respect to emissions, because
the ALCA emission intensity of corn is less than that of gaso-
line, a one-to-one replacement of gasoline with corn (adjust-
ing for energy equivalence) implies emissions will decline and

hence �Z ALC A < 0. The change in emissions resulting solely
from the change in total quantity of fuel consumed, �Z I F U E ,
is positive as a consequence of the increase in total fuel con-
sumption and offsets the pure substitution effect, represented
by �Z ALC A. The increase in corn production contributes to
positive land-use change emissions, �ZLUC. Our simulations
highlight yet another indirect effect, namely, that as a result
of the reduction in corn use for food consumption, this ef-
fect counteracts the indirect land-use change (ILUC) effect. It
should be pointed out that both indirect fuel-use effect (IFUE)
and food consumption effect have received little attention in
the debate on indirect emissions of biofuels. Figure 1 plots the
relationship between policy stringency and the change in emis-
sions. It suggests that the relationship between �ZCLC A and
policy stringency is nonlinear and supports our hypothesis that
the sign of �ZCLC A is uncertain.

Sensitivity Analysis

We now describe a sensitivity analysis in which we vary one
parameter at a time while holding all the other parameters at

Rajagopal, CLCA of Policy Vulnerability to Price Effects 5
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Table 2 Base-year (2007) values used in simulation

Input Value

Ethanol consumption (q̄ 0
e ) (billion liters) 25

Gasoline consumption (S0
g ) (billion liters) 523

Ethanol price (p0
e ) ($ a /liter) 0.59

Gasoline price (p0
g ) ($/liter) 0.73

Blended fuel price (p0
f ) ($/liter) 0.62

Corn use as ethanol (D0
c,E ) (million tonnes) 41

Corn use as food (D0
c,F ) (million tonnes) 290

Total corn use (S0
c ) (million tonnes) 330

a$ refers to U.S. dollars.

their mean value and calculate a variable as shown by equation
(16):

R = �ZCLC A

�Z ALC A
(16)

R > 0 implies that both ALCA and CLCA suggest the same
direction of impact on emissions. Because �ZALCA < 0, this
implies that indirect emissions do not result in a net increase
in emissions. R < 0 implies that indirect emissions result in a
net increase in emissions. Because we perform a local sensitiv-
ity analysis by varying one parameter at a time, and because
varying any one parameter among corn yield, y, the ALCA
emission intensity of corn production, zc , and the parameter
denoting the efficiency of conversion of corn to ethanol, η, will
affect the ALCA emission intensity of ethanol, ze , we exclude
these parameters from the sensitivity analysis. We divide the
chosen range for each input into ten equally spaced intervals
and calculate R 11 times for each parameter. We then compute
a pairwise linear correlation between R and each parameter,
which is shown in figure 2.

It should be pointed out that the relative strength of the cor-
relation depends on the range chosen for each parameter. For
the chosen range of inputs, emission intensity of marginal land

Figure 1 Relationship between magnitude of policy shock and the
various sources of change in emissions when each input parameter
assumes the mean value in the chosen range. ILUC = indirect
land-use change; IFUE = indirect fuel-use effect; ALCA =
attributional life cycle assessment; CLCA = consequential life cycle
assessment, which, here, is the sum of ALCA, ILUC, IFUE, and food
market effects on emissions.

has the largest impact on R and is negatively correlated with R.
This suggests the importance of limiting expansion of agricul-
ture and preventing expansion into carbon-rich lands. Elasticity
of gasoline supply is next most strongly and positively correlated
with R. Because an ethanol mandate lowers the price of gaso-
line, the higher the elasticity of gasoline supply, the greater
the reduction in supply of gasoline. This implies lower emis-
sions resulting from IFUE. The share of the extensive margin
is negatively correlated with R because the higher the share for
the extensive margin in the increase in corn production, the
higher the LUC emissions. ALCA emission intensity of ethanol

Table 3 Results for simulation when each input parameter assumes the mean value of its range

Policy shock (% change in ethanol use) 25% 100% 200%

Change in ethanol consumption (billion liters) 6.2 (25%) 24.6 (100%) 49.2 (200%)
Change in gasoline consumption (billion liters) −3 (−0.6%) −12.8 (−2.5%) −28 (−5.3%)
Change in consumption of blended fuel (billion liters) 1.1 (0.2%) 3.6 (0.7%) 5 (0.9%)
Change in price of blended fuel ($ a /liter) −0.03 (−3.8%) −0.1 (−8.2%) −0.1 (−8.4%)
Change in quantity of corn for food (million tonnes) −3.6 (−1.2%) −14.2 (−4.9%) −27.8 (−9.6%)
Total change in corn consumption (million tonnes) 6.6 (2%) 26 (7.9%) 51 (15.4%)
Change in emissions (� Z) in teragrams CO2-eq/yr
�Z ALC A −3.3 (100%) −14.3 (100%) −30.8 (100%)
�Z resulting from IFUE 3.2 (−98.4%) 10.5 (−73.8%) 14.5 (−47.2%)
�Z resulting from LUC 3.5 (−107.2%) 13.6 (−95%) 26.1 (−84.8%)
�Z resulting from change in food consumption −1 (31.4%) −3.9 (27.2%) −7.3 (23.7%)
Total change in emissions �ZCLC A 2.4 (−74.2%) 6 (−41.7%) 2.5 (−8.3%)

Note: Numbers in parentheses denote the percentage change relative to base year for consumption and price. For emissions, they denote the change
relative to change in emissions implied by ALCA. Emissions are reported in units of teragrams of CO2/yr.
a$ refers to U.S. dollars.
CO2-eq/yr = carbon dioxide equivalent per year; IFUE = indirect fuel-use effect; LUC = land-use change.
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Figure 2 Pairwise linear correlation coefficient between R = �ZCLCA
�ZALCA

and the different input parameters obtained by varying one
parameter at a time. Results shown are for a policy shock involving doubling of ethanol consumption relative to base year.

is negatively correlated with R because �Z ALC A, which is
negative, increases (the magnitude of �Z ALC A decreases) and
therefore R decreases. Elasticity of gasoline demand is positively
correlated with R. This, however, needs careful interpretation.
Because elasticity of demand is a negative quantity, a positive
correlation means that as magnitude of elasticity of demand
decreases, R increases. This is because of the fact that if the
ethanol mandate lowers the price of ethanol-gasoline blend,
then the more inelastic the demand for fuel, the smaller will
be the rebound in gasoline consumption and hence the smaller
will be the magnitude of the IFUE effect, which is positive (i.e.,
contributes to additional emissions). As a result, the difference
between �ZCLCA and �ZALCA decreases and R increases. How-
ever, if the ethanol mandate raises the price of ethanol-gasoline
blend, then the more elastic the demand for fuel, the greater
the reduction in total fuel consumption will be, and hence the
smaller the magnitude of the IFUE effect will be, but which is
now negative (i.e., contributes to emission reduction). In this
case, the correlation between elasticity of demand and R will
be negative. For the range of inputs in table 1, we find that the
ethanol mandates always lower the price of ethanol-gasoline
blend and hence find a positive correlation between elasticity
of demand. This is attributable to the high elasticity of ethanol
supply. When we assume a highly inelastic supply of ethanol
(e.g., a value in the range 0.05 to 0.1), the model predicts
that a doubling of ethanol consumption increases the price of
ethanol-gasoline blend and that the elasticity of gasoline de-
mand is negatively correlated with R in such cases. ALCA
emission intensity of gasoline is positively correlated with R
because �Z ALC A, which is negative, increases (the magnitude
of �Z ALC A decreases) and therefore R decreases. Elasticity of
ethanol supply is negatively correlated with R. The higher the
elasticity of supply of ethanol, the larger (smaller) the decrease

(increase) in price of ethanol-gasoline blend, which implies
a higher level of total fuel consumption and IFUE emissions
and hence a smaller value of R. Elasticity of corn supply is
negatively correlated with R. Because the mandate increases
demand for corn, a higher elasticity of supply leads to a greater
net increase in corn output and land-use change, which implies
higher emissions and therefore a smaller value of R. Elastic-
ity of corn demand is also negatively correlated with R. The
higher the elasticity of demand (i.e., the smaller the value of
demand elasticity, which is a negative quantity), the smaller
the increase in price for a given elasticity of supply and a given
demand shock is, and hence the smaller the net increase in corn
output is, which implies lower emissions and therefore a higher
value of R.

We found similar correlations for both the smaller shock
(25% increase in ethanol) and the larger shock (200% increase
in ethanol). In fact, with the exception of the correlation be-
tween R and the elasticity of fuel demand, the sign of the
correlation we find in figure 2 is true for any range of inputs
of all parameters. Further, we also performed a Monte Carlo
experiment simulating the model for 5,000 different randomly
chosen combinations of values for the inputs and found the
same type of correlation between output and inputs (see figure
3 for results of this experiment).

The PE analysis provides some new and general insights.
The sensitivity to policy stringency, which, ex ante to policy
adoption, is a decision variable, reveals a nonmonotonic rela-
tionship with emissions. The analysis also shows how various
technical and behavioral economic parameters, such as emis-
sion intensity, price elasticities, and so on, affect CLCA. It
also reveals the role of uncertainty in model parameters. For
instance, it shows how the elasticity of fuel demand differs from
other parameters in its relationship to total emissions and how
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Figure 3 Pairwise linear correlation coefficient between R = �ZCLCA
�ZALCA

and the different input parameters obtained through a Monte Carlo
simulation involving 5,000 randomly chosen combinations of inputs. All inputs are assumed uniformly distributed within the range shown in
table 1. Results shown are for a policy shock involving doubling of ethanol consumption relative to base year.

the supply function of ethanol may determine whether total
fuel consumption increases or decreases.

A General Multimarket Partial
Equilibrium Consequential Life Cycle
Assessment

Above, we illustrated price effects in different markets using
a PE analysis one market at a time without considering inter-
linkages between different markets. For instance, we assumed
that corn supply and corn demand are both unaffected by the
price of other crops, land, energy, and so on. Similarly, we
also assumed that the ethanol supply and ethanol demand are
also unaffected by the price of corn. We now describe a more
general multimarket framework with multiple interconnected
markets and describe how a shock to one market affects con-
sumption and therefore emissions in every other sector. Figure 4
is a schematic representation of such a multimarket framework.
Consider a policy that mandates an increase in consumption of
the good M, which we refer to as the “main” good. This pol-
icy will cause consumption of M to increase and the substitute
to main good(s), denoted S, to decrease. Correspondingly, the
price of M increases, whereas that of S decreases. Total con-
sumption of the services provided by M and S, denoted M + S,
may either increase or decrease. In our numerical example,
consumption of ethanol-blended gasoline increased as a conse-
quence of the decline in the price of blended fuel. However,
this need not always be the case. The price of blended product
(or the average price in the market for M + S) can increase, in
which case aggregate consumption M + S can decline. Higher

levels of consumption of the costly technology will lead to lower
total consumption.

Consumption of intermediate inputs that are associated with
production of the main final good M, but not with production
of the substitute final good S, increases with increase in con-
sumption of M. These are denoted as IM (corn, in our example).
Consumption of goods that compete with M for inputs declines.
These are denoted as IMC (corn for food consumption, in our
case). Consumption of intermediate inputs that are associated
with production of the substitute final good, but not with the
production of the main good, decreases because of decline in
consumption of S. These are denoted as IS (e.g., crude oil,
which is an input to gasoline). Consumption of goods that de-
pend on intermediate inputs IS , declines because of a decline in
the consumption of IS . These are denoted as ISC (e.g., diesel,
which is a product of oil refining). Consumption of intermediate
inputs that are common inputs to the production of different
goods may either increase or decrease. These are denoted IC

(e.g., energy in the form of process heat, electricity, or fuel for
machinery).

Consumption in the sectors associated with the production
of the intermediate input (IM) to the main good M, but not
associated with substitute to main good S, also increases. These
are denoted as II M. However, consumption of II M in competing
applications, denoted as II MC, declines. Consumption in the
sectors associated with the production of the intermediate input
(IS) to the substitute good S, but not associated with the main
good M, declines. These are denoted as II S . As a consequence,
consumption of II S in competing applications, denoted as II SC,
also declines. The above insights can be extended to an arbitrary
number of up- and downstream activities.
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Figure 4 A multimarket framework showing the impact of a positive demand shock to good M (shown by solid arrow) on consumption
in the market for other goods. Upward arrows indicate a net positive impact on consumption of a good; a downward arrow indicates a net
negative impact on consumption. A bidirectional arrow indicates that the direction of impact is ambiguous.

Emissions associated with a sector will either increase or
decrease depending on whether that sector experiences a net
increase or decrease in consumption. The aggregate effect may
be either an increase or decrease in global emissions. Whereas
an ALCA-based comparison would suggest a decrease in emis-
sions because of substitution of a dirty with a clean good, CLCA
would suggest an ambiguous effect on emissions. We generalize
the findings from the numerical example. Table 4 shows the
effect of a change in a given parameter on the ratio �ZCLCA

�ZALCA
,

ceteris paribus. As the difference between the ALCA emission
intensities of the main good and the substitute good increases
(by either an decrease in the ALCA emission intensity of the
cleaner good or an increase in the ALCA emission intensity of
the dirtier good), the magnitude of the pure substitution effect
increases relative to the price effects and therefore the differ-
ence between CLCA and ALCA decreases (or R increases).
The relationship between the elasticity of demand for the ser-
vice provided by the final product and its substitute, denoted
by M + S and R, is ambiguous. It depends on the impact of
shock on the price in the market for M + S (see the discussion
in the section on Sensitivity analysis on the elasticity of demand
for gasoline). A higher elasticity of supply of final product M
also implies a smaller price effect, and therefore the difference
between CLCA and ALCA decreases or R decreases. A higher
elasticity of demand for inputs to the main final product IM in
a competing use to M (denoted by IMC) implies a smaller net
increase in the consumption of IM and hence a smaller differ-
ence between CLCA and ALCA (or R increases). A higher

Table 4 Effect of a change in a given parameter on the ratio R =
�ZCLCA
�ZALCA

, ceteris paribus

Parameter R

ALCA emission intensity of main good M ↑ ↓
ALCA emission intensity of substitute to main

good S
↑ ↑

Elasticity of demand for services provided by
main good M + S

↑ 


Elasticity of supply of main good M ↑ ↓
Elasticity of supply of substitute to main good S ↑ ↑
Elasticity of supply of input to production of main

good IM

↑ ↓

Elasticity of supply of input to production of
substitute to main good IS

↑ ↑

Elasticity of demand for input to main good in a
competing use IMC

↑ ↑

Elasticity of demand for input to substitute good
in a competing use ISC

↑ ↑

Note: Up arrow indicates increase, down arrow indicates decrease, and
bidirectional arrow indicates increase or decrease.
ALCA = attributional life cycle assessment.

elasticity of supply of input IM to the final product M implies a
larger increase in the supply of the IM, and therefore the differ-
ence between CLCA and ALCA increases (or R decreases). A
higher elasticity of supply of the substitutes S to the final prod-
uct implies a smaller rebound in the consumption of substitutes
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and hence a smaller difference between CLCA and ALCA (or
R decreases). A higher elasticity of supply of inputs IS to the
final product also has a similar effect as the elasticity of supply
of the substitute S.

Implications for Use of Life Cycle
Assessment in Policy Settings

When policies are incomplete, that is, do not cover all
sources of pollution and target only a subset of polluting ac-
tivities, policy makers need to be aware of the risk that leakage
of pollution to unregulated markets and regions might result
in a policy proving ineffective or even counterproductive (as
studies suggest may be the case with biofuels). LCA can play
a role in highlighting the susceptibility of partial policies to
leakage early in the policy life cycle. When policy makers only
seek information about the current life cycle environmental
footprint of an industry on average or that for a specific firm,
then an ALCA may be adequate. In this role, ALCA can aid
in screening potentially beneficial technologies for further con-
sideration. Subsequently, when policy makers are considering
a policy intervention to support a specific technology or type
of service, say, through a technology mandate or a subsidy, and
seek to understand the potential impact of such a policy on
future outcomes to an order of magnitude, then a CLCA is the
more appropriate type of LCA. In this case, one then needs to
identify the appropriate modeling framework (whether partial
or general equilibrium) and the level of regional and sectoral
detail in the chosen framework. Given that the data require-
ments, and therefore cost of CLCA, increase with level of detail
and that uncertainty may increase, we suggest an iterative ap-
proach. One can begin with simple partial equilibrium models
focusing on the key processes in the life cycle, which, an ALCA
might suggest, are major contributors to the current life cycle
performance of the main good and of its substitutes. Sensitiv-
ity analysis can be used to identify which parameters cause the
predictions of CLCA to diverge from ALCA. This can help
to identify parameters that deserve further consideration and
more detailed investigation. For instance, our illustration of
corn ethanol suggests that in addition to the ALCA emission
intensities of corn and gasoline, elasticity of gasoline supply and
demand have a strong effect on CLCA estimates. This suggests
that one should analyze the fuel market effect in greater detail,
say, by incorporating the market for crude oil and the rest of the
oil products. A benefit of gradually increasing the complexity of
CLCA is that simpler models are more amenable to a systematic
sensitivity analysis, when compared to larger models.

The previous literature highlighted several issues concern-
ing reliability of LCA results, which are attributable to reasons
such as subjective selection of a single methodology when no
single standard exists (e.g., Guinee and Heijungs 2011; Creutzig
et al. 2012), uncertainty in model parameters (e.g., Huijbregts
2008; Rajagopal and Plevin 2013), and the instability of model
parameters over time as a result of dynamic processes (see Zil-
berman et al. 2011). Our analysis reveals new dimensions of

variability. Although each individual category of indirect emis-
sions exhibits a monotonic relationship with policy stringency,
total emissions exhibit a nonmonotonic relationship with pol-
icy stringency. This suggests that policies that appear harmful
in the short run may prove beneficial in the long run or vice
versa or exhibit more-complex relationships.

The recent experience with biofuel regulations highlights
another policy challenge relevant to partial policies, that of
regulating indirect emissions or emissions resulting from price
effects. Regulation involves holding firms or individuals ac-
countable for their actions, and therefore regulating emissions
resulting from price effects requires holding individual firms ac-
countable for such emissions. Emissions from the supply chain,
the use phase, and the end of life of any given batch of goods
are, in principle, traceable and attributable to the actions of a
specific firm or individual. Therefore, the estimates of ALCA
can, in principle, be a basis for regulating any given firm and
for determining its compliance with a given target. However,
in a competitive market, no single firm can affect price and so
the change in price is a consequence of the exogenous shock
to supply or demand. The changes that occur in the various
interconnected markets as a result of this shock are not trace-
able or attributable to the actions of any single firm or group
of firms. Yet, the increase in emissions in unregulated markets
as a consequence of the policy shock represent real additional
externalities and hence are policy relevant. This is a challenge
that policy makers face in implementing life-cycle–based poli-
cies and a topic of debate (NFA 2008; UCS 2008; Liska and
Perrin 2009).

LCA is one among several different analytical or procedu-
ral tools, such as cost-benefit analysis, life cycle costing, strate-
gic environmental assessment, and environmental management
systems, for analyzing the system-wide impacts of a technology
or policy (Finnveden and Moberg 2005; Höjer et al. 2008).
However, the complexity of the task of deriving a single best
estimate for a random variable, such as the emission intensity
of the supply chain or the emissions resulting from price effects,
is so complex that any single modeling approach or different
approaches combined may either prove inadequate or prove to
be an opaque, costly exercise. This is one criticism applicable
to the large multimarket or computable general equilibrium–
based modeling efforts to estimate the life cycle GHG impacts
of biofuels. Norgaard 1986 argues that whereas the tendency for
single-valued estimates can be explained given the political use
of estimates and projections, the approach is analytically inde-
fensible. Further, a decision as to whether and how to address
emissions resulting from price effects is beyond the realm of a
tool such as LCA. However, we show that CLCA could help
identify policy formulations that mitigate the risk of counterpro-
ductive outcomes. For instance, we find that the difference in
ALCA emission intensity of corn and gasoline has a significant
impact on the ratio of CLCA and ALCA estimates. Therefore,
ethanol whose ALCA emission intensity is much lower rela-
tive to gasoline, such as the second-generation biofuels from
cellulosic feedstock derived from agricultural residues, munici-
pal wastes, or even dedicated energy crops, appear more likely to
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reduce global emissions. To this end, policies should be designed
to promote technologies with a smaller ALCA footprint. For
instance, stipulating an upper bound on the ALCA emission
intensity of the clean technology and setting this upper bound
below a safe limit relative to the ALCA emission intensity of
the dirty technology will reduce the likelihood that price effects
overwhelm the pure substitution effect. In fact, the U.S. RFS II
regulations specify such upper bounds for the emission intensity
of the different types of biofuels. However, whether the upper
bounds that have been specified are sufficiently stringent is a
topic for further research. The higher cost of cleaner biofuels
will also lead to lower fuel consumption overall, a benefit, from
an environmental perspective, that needs balancing against its
socioeconomic impacts.

In conclusion, we find that ALCA and CLCA are com-
plements, rather than substitutes, in the policy process. The
salient contribution of CLCA may lie in warning policy makers
about the vulnerable aspects of a policy with regard to envi-
ronmental impact and to help modify potentially counterpro-
ductive formulations early in the policy life cycle, rather than
as a tool for selection of a single best estimate for uncertain
variables, such as the life cycle GHG intensity of product, and
so on.

Note

1. To determine the magnitude of change, one can evaluate equation
(3) either with respect to the initial state, the final state, or any
intermediate state, which will yield different, but approximately
equal, results for small disturbances. This is not true for large dis-
turbances. We therefore simply solve the system of equations (1)
and (2) to determine the final equilibrium and compute the change
between the initial and final state. One can verify that evaluating
the comparative static expression at the mid-point of the initial and
final states yields a similar result as solving the two equations.
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