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Abstract
Purpose Fragile X syndrome (FXS) is a neurodevelopmental disorder, caused by an CGG repeat expansion (FM, > 200 
CGG) in the fragile X messenger ribonucleoprotein 1 (FMR1) gene. Female carriers of a premutation (PM; 55–200 CGG) 
can transmit the PM allele, which, depending on the CGG allele size, can expand to an allele in the FM range in the offspring.
Methods Carrier screening for FMR1 PM is not available in Thailand. This study aimed to investigate the prevalence of 
PM carriers among Thai reproductive women at the tertiary hospital. A total of 1250 females participated in this study; ages 
ranged from 20 to 45 years, mean of 30 years (S.D. = 6.27).
Results Two carriers of a premutation allele, with 32,62 and 32,69 CGG repeats respectively, were identified. This cor-
responds to 1 in 600 women or 0.17% of the population. Further, three women carrying a gray zone allele (45–54 CGG 
repeats) were identified (29,51; 29,49; and 30,47 CGG repeats) which equals to 1:400 women or 0.25% of the population. 
No FM case was detected.
Conclusions This study heightens the importance of PM carrier screening of women of reproductive age, particularly for 
the higher risk of developing fragile X–associated primary ovarian insufficiency (FXPOI). Early identification of PM carrier 
status enhances family planning and fecundity alternatives and improves reproductive health outcomes leading to a better life.

Keywords FXPOI · FXPAC · Premutation · Carrier screening · Prevalence

Introduction

Expansion of the CGG trinucleotide sequence within the 5′ 
UTR of the fragile X messenger ribonucleoprotein 1 (FMR1) 
gene is implicated in a spectrum of disorders, including frag-
ile X syndrome (FXS) and the fragile X premutation–associ-
ated conditions (FXPAC).

While individuals harboring alleles with greater than 200 
CGG repeats have the full mutation (FM) causing Fragile 
X syndrome, individuals harboring the premutation (PM), 
delineated by having a 55 to 200 CGG repeats allele, are at 
risk for various conditions, falling under the umbrella of 
FXPAC. These include fragile X–associated tremor/ataxia 
syndrome (FXTAS), fragile X–associated primary ovarian 
insufficiency (FXPOI) and fragile X-associated neurodevel-
opmental disorders (FXAND) [1].

Approximately 40% of men and 6–18% of women are at 
risk of developing FXTAS which presents with clinical fea-
tures including intentional tremors, gait ataxia, parkinson-
ism, neuropathy, and autonomic dysfunction [2–4]. Further, 
approximately 20–30% of women carriers of a PM allele, 
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compared to 1% in the general population [5], can develop 
FXPOI, which entails early menopause, elevating the risks 
of infertility and hormonal imbalances leading to symptoms 
like hot flashes and osteoporosis [6–8]. Carrier of a PM can 
also be affected by FXAND, which is characterized by ele-
vated rates of mental health issues including anxiety and 
depression [1]. Finally, carriers of a PM also face height-
ened risks of various medical conditions such as thyroid 
disorders, fibromyalgia, autoimmune diseases, headaches, 
and sleep disturbances [1, 9, 10]. In female carriers of a PM, 
the incidence of immune-mediated disorders may escalate in 
individuals affected by FXTAS and/or FXPOI, potentially 
because of the additional effect of these conditions rather 
than the PM alleles itself [11].

Approximately 1 in 110–250 women are carriers of the 
FMR1 PM, impacting over a million women in the U.S. 
[12–15]. Many become aware of their carrier status through 
a family history of FXS, while approximately 15–30% are 
diagnosed due to FXPOI symptoms [16, 17]. Twenty to 
thirty percent of women with PM experience ovarian func-
tion decline, before the age of 40, and, thus, develop FXPOI 
which is characterized by irregular or absent menstrual 
cycles, disrupted ovulation, and hormonal imbalances.

Several studies investigated the prevalence of FXPOI 
found that although FMR1 CGG repeat and the AGG inter-
ruptions do not correlate with age at amenorrhea [18], a 
nonlinear association between the number of CGG repeats 
and the ovarian phenotypes has been reported, with FXPOI 
risk escalating with increasing repeat counts before pla-
teauing or even declining after reaching medium-sized PM 
alleles of approximately 80–100 CGG repeats [5, 19, 20]. 
In general, all carrier groups showed a higher prevalence of 
FXPOI compared to non-carriers, with the medium-sized 
PM group exhibiting the strongest positive correlation. Simi-
larly, women carriers of a PM experienced a decrease in 
mean menopausal age, with the medium-sized group show-
ing the lowest mean age of menopause. Further, they enter 
menopause on average about 5 years earlier than non-carri-
ers. Additionally, menstrual cycle patterns differed among 
carrier groups, with those in the low-sized (59–79 CGG 
repeats) and medium-sized PM categories more likely to 
report shorter cycles and longer intervals between periods; 
however, the medium-sized group was more prone to irregu-
lar cycles. Further, women with medium-sized repeats had 
lower fertility rates and an increased incidence of dizygotic 
twinning compared to both non-carriers and other carrier 
groups. These comprehensive examinations shed light on 
the varied reproductive health outcomes associated with dif-
ferent CGG repeat allele sizes particularly for the medium-
sized group who demonstrated a higher risk for FXPOI and 
the poorest reproductive health [6, 20–23].

The mechanisms behind compromised ovarian follicu-
lar function before the full development of FXPOI are not 

understood, but it is suggested that these issues may arise 
at various stages of follicular development with an increase 
in atresia among the population of growing follicles at all 
developmental stages [24, 25]. The exact reasons behind the 
observed early depletion of the ovarian reserve (the pool of 
non-growing follicles) are not well understood. However, 
research shows that there are clear interactions between 
the pools of growing and non-growing follicles that help 
regulate when follicle growth is activated [26–28]. Despite 
this knowledge, the specific molecular mechanisms causing 
FXPOI remain unclear, although there are indications of an 
RNA toxic effect as the genetic underlined cause [23].

Various prevalence studies conducted in different coun-
tries have mainly focused on at-risk neurodevelopmental 
populations including intellectual disabilities and autism 
spectrum disorders. However, several studies have investi-
gated allele frequencies in the general population. Among 
the Asian general population, a few studies [29, 30] have 
found a significant number of women carrying the PM allele 
including a large screening study involving 20,188 pregnant 
Taiwanese women, where 26 carriers of a premutation were 
detected, which transmitted the expanded allele to 17 fetuses 
(56.6%), resulting in 6 FM cases. The authors concluded the 
prevalence of PM in low-risk Taiwanese women is 1 in 777 
(0.13%) which was considered to be high, cost-effective, and 
feasible for carrier screening in Taiwan [29]. In a screening 
study focused on carrier status conducted in Korea, 8 out 
of 8641 pregnant women were identified as PM carriers, 
indicating a prevalence rate of approximately 0.09% within 
the sampled population [31]. Another screening study in 
Korea, including 5829 women of reproductive age, identi-
fied 7 PMs among 5470 low-risk women, corresponding to 
a carrier frequency of 1 in 781 (0.13%), rather high among 
the Asian population [30]. The prevalence of PM carriers 
among Pakistani preconception women was found to be 6 
in 808 (0.7%), 0.5% for women with a family history of ID, 
and 0.2% for those with a family history of ASD [32]. A 
study in Turkey found a prevalence rate of 90 out of 263 
(34.2%) females harboring the FMR1 PM and only 0.2% of 
women had FXPOI [33]. In Spain, a study revealed that 19 
out of 84 women (22.6%) were identified as PM carriers at 
risk for FXPOI [34]. In Israel, pre-conceptional and prenatal 
screening for Fragile X syndrome detected 231 carriers out 
of 36,483 women, representing a prevalence rate of approxi-
mately 0.63% [35].

These studies emphasize the importance of carrier screen-
ing in women before conception. Identification of PM car-
riers allows tailored counseling and management strate-
gies, ensuring individuals to understand the potential risks 
to offspring and can make informed choices about family 
planning.

Here, we report an investigational study in Thailand to 
screen preconceptionally women of reproductive age, for the 
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presence of the FMR1 PM. Our goal was to determine the 
prevalence of the PM carrier in this low-risk population and 
to understand the experiences of the identified women with 
a PM before and after receiving the FMR1 PM diagnosis. By 
understanding these experiences, healthcare providers can 
improve care for individuals with FXPOI and offer personal-
ized care and support tailored to the unique needs and prefer-
ences of everyone, ultimately promoting their reproductive 
health and overall well-being.

Materials and methods

Subjects

Blood samples were collected from a group comprising 1250 
women, whose ages spanned between 20 and 45 years of 
age and who sought medical attention at the drop-in clinic 
situated within the Department of Obstetrics and Gynecol-
ogy at Sirindhorn Hospital, Thailand. This comprehensive 
study underwent rigorous ethical scrutiny and was granted 
approval by two esteemed regulatory bodies: the Ethics 
Committee of King Mongkut’s Institute of Technology Lad-
krabang (approval reference number EC_KMITL_63_056) 
and the Bangkok Metropolitan Administration Human 
Research Ethics Committee (approval reference number 
E006h/62_EXP). Each participant voluntarily provided writ-
ten informed consent, signifying their conscious decision to 
take part in this project.

The inclusion criteria were thoroughly defined, ensur-
ing a homogeneous study population. Specifically, the study 
targeted Thai women who were not currently pregnant but 
expressed aspirations of conception. Furthermore, partici-
pants were screened to exclude any clinical evidence of sin-
gle gene disorders, thereby ensuring the integrity and homo-
geneity of the group. Additionally, individuals with a history 
of recurrent pregnancy loss were excluded to maintain the 
study’s focus and minimize confounding variables.

This approach to participant selection underscores the 
study’s commitment to scientific rigor and ensures the relia-
bility and validity of the findings derived from this esteemed 
group. Through adherence to stringent ethical standards and 
meticulous attention to detail, this study aims to contribute 
invaluable insights into the intricate interplay of genetic fac-
tors influencing reproductive health among Thai women.

CGG repeat allele sizing

Blood samples from 1250 female participants were collected 
on the Whatman 903 Protein Saver Card (Buckinghamshire, 
UK). The blood spot cards were allowed to dry and stored 
at room temperature until ready for the genotyping analy-
sis. DNA isolation was carried out from 2 × 1.2 mm blood 

spots (Whatman 903 Protein Saver Card) according to the 
manufacturer’s instructions. The Eppendorf tubes containing 
the washed blood spots were boiled for 10 min in a boil-
ing water bath and subsequently centrifuged at 13,000 rpm 
to eliminate any remaining liquid before transferring into a 
clean PCR reaction tube and subjected to PCR. Amplifica-
tion of the FMR1 gene was performed using a combination 
of the Asuragen AmplideX® PCR/CE FMR1 Kit (Asuragen, 
Austin, TX, USA) using the CGG trinucleotide primer and 
the FastStart Taq DNA Polymerase kit by Millipore Sigma 
Aldrich (Roche Diagnostics, Mannheim, Germany) accord-
ing to the manufacturer instructions.

A Genetic Analyzer, ABI 3130 XL, was utilized for the 
determination of PCR product sizes. Subsequent analysis 
was conducted using Peak Scanner software (version 2.0; 
Thermo Fisher Scientific) in accordance with the guide-
lines provided by the manufacturer. Alleles were classified 
into distinct categories including full mutation (> 200 CGG 
repeats), premutation (55–200 CGG repeats), intermediate 
(45–54 CGG repeats), and normal (< 44 CGG repeats).

Results

There were 1250 females who participated in this study. 
Participants’ age ranged from 20 to 45 with the majority 
(64%), being 20–30 years old, obtained bachelor’s degree 
(43%), and have low income between 10,000–30,000 Baht 
per month (57%). Common medical problems seeking 
treatment/intervention included allergy and asthma, major 
depressive disorder and anxiety disorders, thyroid dysfunc-
tion, diabetes, hypertension, dyslipidemia, migraine, thalas-
semia, and anemia, respectively.

A total of 1245 women (99.6%) harbored an FMR1 allele 
within the normal CGG repeat range (Fig. 1a). No cases 
of FM were detected among participants. Two women 
(0.17% of the total population) presented an allele in the 
PM range, of 32,62 and 32,69 CGG repeat length with no 
AGG interruptions (Fig. 1b and c). One female reported 
having migraine. Further, three women (0.25% of the total 
group) had a gray zone allele, associated with intermediate 
CGG repeat lengths. Their CGG repeat numbers were 29,51, 
29,49, and 30,47 respectively, with one or two AGG inter-
ruptions (Fig. 1d, e, f). They reported no medical problems.

Discussion

To our knowledge, this is the first screening that investi-
gated the prevalence of PM carriers among the Thai female 
population. Of 1250 female participants, two carriers of a 
PM were identified. No FM case was detected which is not 
surprising given the small cohort studied and since the ratio 
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of FM in women was reported to be 1:11,000 (Hunter et.al., 
2014). Comparing our findings with population-based stud-
ies examining the prevalence of FMR1 PM carriers among 
preconception and pregnant women in diverse populations 
reveals intriguing insights. Notably, the prevalence rates 
observed in our study align with or fall below those reported 
in other ethnic and geographic groups. For instance, preva-
lence rates in Korean, Chinese, Australian, Israeli, Paki-
stani, and Spanish women vary from 0.04 to 1.3%, indicat-
ing significant variability across populations [29, 30, 32, 
36–38]. Among the Asian population, our PM prevalence is 
relatively higher than that of Taiwanese and Korean studies 
at 1:777 and 1:781, respectively, although our samples are 
much smaller than these two large studies. It is possible that 
increasing the sample size may find a higher ratio of PM 
carriers among the Thai female population.

Significantly, women carrying PM alleles face an elevated 
risk of having affected children due to the expansion of the 
repeat to the FM (> 200 CGG repeats), a phenomenon that 
occurs when the mutation is passed from mother to child 
[39]. However, the identification of PM carriers highlights 
the need for comprehensive reproductive counseling and 
support services. Women identified as carriers of the PM 
allele may benefit from fertility evaluations, hormone assess-
ments, and genetic counseling to understand their risk of 
developing FXPOI and explore reproductive options. Rec-
ommendations from various medical organizations advocate 
for FMR1 testing for all women exhibiting unexplained ovar-
ian insufficiency or elevated follicle-stimulating hormone 

(FSH) levels before the age of 40, irrespective of family 
history [16, 19, 40, 41]. Enhanced clinician awareness of 
FXPOI is imperative for timely diagnosis and follow-up care 
to mitigate medical risks and improve quality of life [42, 43]. 
Younger women who develop FXPOI are expected to face a 
prolonged period of uncertainty before receiving a diagno-
sis [16], a delay attributed to healthcare providers’ limited 
understanding of FXPOI and to the rarity of the condition, 
which necessitates patients to advocate for themselves more 
actively [12, 44].

Moreover, molecular analysis identified both PM and gray 
zone alleles in our study. The presence of one or two AGG 
interruptions within the CGG repeats of gray zone alleles 
was demonstrated, highlighting the intricate genetic land-
scape underlying FXPOI susceptibility. Both the number of 
CGG repeats and the presence of AGG triplets within the 
CGG repeat segment play a significant role in determining 
the likelihood of expansion [45, 46] and in gray and small 
PM alleles containing 45–69 repeats, a clear link between 
the number of AGG interruptions, the length of uninter-
rupted CGG repeats and maternal age has been reported. 
These factors have been associated with the instability of 
maternal alleles and the subsequent risk of repeat expansion 
when transmitted to offspring [47, 48]. While our study’s 
sample size may have been limited, our findings corrobo-
rate these previous findings, highlighting the importance of 
assessing repeat stability, particularly for women with alleles 
falling within the gray zone. The presence of alleles within 
the gray zone raises important considerations regarding their 

Fig. 1  CGG plots of women with a normal allele, b, c premutation alleles, and d, e, f gray zone alleles
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potential implications on reproductive health and ovarian 
function, warranting further investigation into their pheno-
typic consequences.

In women of reproductive age, being a carrier of the PM 
allele often goes unnoticed unless clinicians may diagnose 
PM-carrier women based on a family history of Fragile 
X–related disorders. While the PM carrier status typically 
remains silent, it signifies a genetic predisposition that may 
elevate the risk of Fragile X–associated conditions, albeit to 
a lesser extent than the FM [49].

The research underscores the impact of knowing one’s 
premutation carrier status on reproductive choices, given 
the risk of having an FXS-affected child and the heightened 
infertility risk associated with FXPOI [6, 12, 50]. Women 
with the PM and/or FXPOI symptoms should receive com-
prehensive reproductive counseling during their childbearing 
years, encompassing fertility evaluations, hormone assess-
ments, genetic counseling, and guidance on reproductive 
options such as conceiving naturally, assisted reproductive 
technologies, or opting for adoption [23, 51]. Thus, these 
findings further emphasize the importance of comprehensive 
genetic screening programs to identify at-risk individuals 
and facilitate timely interventions and support. By identify-
ing PM carriers early, healthcare providers can offer initia-
tive-taking management and support to mitigate the risk of 
FXPOI-related complications.

Despite the valuable insights provided by this study, 
several limitations should be acknowledged. The relatively 
small sample size and localized nature of the study popu-
lation limit the generalizability of the findings to broader 
populations of Thai women. Future research could aim to 
replicate these findings in larger groups and explore addi-
tional factors contributing to FXPOI risk, such as environ-
mental influences and genetic modifiers.

Longitudinal studies tracking the reproductive outcomes 
and health trajectories of PM carriers are also needed to 
assess the long-term implications of FMR1 PMs on ovarian 
function and overall well-being. By monitoring individuals 
over time, researchers can gain insights into the progres-
sion of FXPOI and the efficacy of interventions aimed at 
preserving fertility and improving quality of life for affected 
individuals.

Conclusion

In conclusion, this investigation emphasizes the importance 
of genetic screening for FMR1 PM alleles in women from 
the general population. By identifying PM carriers early and 
providing personalized reproductive counseling and support, 
healthcare providers can empower women to make informed 

decisions about their fertility options and family planning 
strategies, improving reproductive health outcomes and 
quality of life.
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