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Abstract—I/O performance monitoring tools such as Darshan
and Recorder collect I/O-related metrics on production systems
and help understand the applications’ behavior. However, some
gaps prevent end-users from seeing the whole picture when it
comes to detecting and drilling down to the root causes of I/O
performance slowdowns and where those problems originate.
These gaps arise from limitations in the available metrics, their
collection strategy, and the lack of translation to actionable items
that could advise on optimizations. This paper highlights such
gaps and proposes solutions to drill down to the source code
level to pinpoint the root causes of I/O bottlenecks scientific
applications face by relying on cross-layer analysis combining
multiple performance metrics related to I/O software layers. We
demonstrate with two real applications how metrics collected in
high-level libraries (which are closer to the data models used by
an application), enhanced by source-code insights and natural
language translations, can help streamline the understanding of
I/O behavior and provide guidance to end-users, developers, and
supercomputing facilities on how to improve I/O performance.
Using this cross-layer analysis and the heuristic recommenda-
tions, we attained up to 6.9× speedup from run-as-is executions.

Index Terms—I/O bottleneck, source code analysis, root causes

I. INTRODUCTION

High-Performance Computing (HPC) systems provide a
multi-layered I/O software stack to support serial and parallel
data access from scientific applications, as Fig. 1 illustrates.
This approach hides the complexities and particularities of the
underlying layer behind abstractions, exposing (at the top) data
models that closely map to the application’s data abstractions
rather than the internals of a storage system (at the bottom).

Hence, it becomes natural that data transformations reshape
an application’s access pattern while I/O requests traverse
the I/O stack, passing through high-level and middleware I/O
libraries, undergoing various optimization steps, until reaching
a parallel file system (PFS) [1]. However, such transformations
are often transparent to end-users and application developers,
who only feel the effects of their success or overheads.
While some I/O optimizations expose tunable parameters to
accommodate distinct workload characteristics, others rely on
source-code changes to apply best practices in data represen-
tation, data movement, and storage layout. Hence, visualizing
and understanding those transformations and where poorly
performing accesses originate in the source code (caused by
either misusing each layer or by the transformations) becomes

§These authors contributed equally to this work.

paramount to determine an appropriate course of action and
correct optimization techniques for each situation.

Furthermore, as novel workloads began to require HPC
resources and enter supercomputer facilities [2]–[5], they will
need to adhere to best practices to fully harness performance
from the existing I/O stack. Hence, understanding how they
will run on such systems, and how their data access model will
seamlessly or not map to this cross-layered structure will be-
come vital to enable faster scientific discovery. Such problem
is still faced by traditional scientific simulation applications
when running for the first time in a new large-scale platform.
For instance, despite previous studies [6]–[9] indicating that
small requests have a negative impact on I/O performance,
widespread usage of small I/O requests is still observed
today in applications across science domains [10], [11]. To
complicate matters further, optimization techniques such as
collective buffering and data sieving [12], which have been
proposed decades ago and demonstrate performance gains are
not yet adopted in cases it should have been. Automatic tuning
mechanisms [13]–[15] have also been proposed to tweak and
adapt some of the techniques to best suit the application, and
though they have been successful in some cases, they can be
expensive to train and limited in what they can do (as they
will only affect exposed options). Moreover, some changes
are intrinsic to the way the application accesses its data, and
modifying that requires knowledge of the impact of those
design choices in the HPC I/O stack.

From the existing profiling tools used in the HPC context
to understand application behavior [16]–[19], some, such
as Darshan [20] and Recorder [21], specialize in collecting
I/O-related performance metrics and traces. Using different
approaches to collect data and distinct formats to store their
observations, they seek to provide the means to characterize
the I/O behavior. Each has its potential and limitations, as
further discussed in Section II, but both can aid in uprooting
the causes of I/O performance issues. However, the final
feedback loop back to end-users and developers is not there,
leaving the communication and interpretation of the metrics
and findings restricted to I/O experts (researchers, system
admins), making them incomprehensible to many users [22].

Recent efforts attempted to fill the gap between the collected
metrics and their interpretations and translation into optimiza-
tions. One such tool is DXT Explorer [23], an interactive web-
based trace analysis tool. This tool tries to connect the dots
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Fig. 1. Traditional parallel I/O stack deployed in production scale super-
computers and the coverage of common I/O profiling and tracing tools. (R)
Recorder, (D) Darshan, and (DXT) Darshan eXtended Tracing. For those
maked with partial support, the feature has some caveats or limitations in
what type of metric is collected or its usage.

between I/O bottleneck detection and optimization through
interactive visualizations. It provides a detailed view of the
I/O behavior of the application exclusively from DXT traces in
the form of interactive visualizations with the ability to zoom
in and out in regions of interest. Similarly, recorder-viz is a
solution crafted for Recorder [21] traces. Drishti [24], [25],
on the other hand, tries to identify I/O performance pitfalls
based on a set of heuristic-based triggers and provide insights
on optimizations in the form of a report. Although these tools
are one step in the right direction, they still lack the capability
to do cross-layer I/O analysis by combining I/O metrics from
different sources and drilling down to the root cause in source
code, closing this feedback loop.

The “Understanding I/O Behavior in Scientific and Data-
Intensive Computing” report [22], which brought together
computer scientists worldwide to survey how I/O workloads
are measured and analyzed on HPC systems, highlights some
existing gaps in methodology and technology to advance HPC
productivity. Among them, some key challenges are low-
fidelity acquisition, lack of hierarchical scope, incompatible
formats, the complexity of analysis, and lack of a standard.

In this paper, we work towards solving some of those
challenges. We seek to explore how different sources of I/O
metrics can be abstracted and harnessed to provide actionable
insights to end-users, drilling down to the source-code causes
(where appropriate) and reducing the complexity of analysis.
We also highlight the existing gaps in metric collection and
mismatching representations and discuss tradeoffs and over-
heads. Our work lays out the foundations for an end-to-end
solution to uproot I/O performance problems in their origin.

The remainder of the paper is organized as follows. In

Section II, we examine different sources of I/O-related metrics,
their opportunities, and limitations. Section III discusses the
design choices to drill down to the root causes in the source
code. Section IV approaches how metrics from high-level
libraries can enhance the understanding of I/O behavior. We
demonstrate the feedback to end-users and developers in
Section V. Related work is covered in Section VI. We conclude
the paper in Section VII and discuss future R&D.

II. DATA SOURCES AND LIMITATIONS

In this section, we discuss some of the existing tools that
can collect I/O-related metrics across the HPC I/O stack, their
support, and limitations. We also highlight how they can used
to infer behavior and identify I/O performance bottlenecks.

A. Darshan

Darshan [20] is a tool deployed on several large-scale HPC
facilities to collect I/O-related performance metrics and aid in
understanding how applications use such a complex stack. Dar-
shan provides an efficient, transparent, and compact runtime
instrumentation of many standard I/O interfaces (POSIX, MPI-
I/O, STDIO). It also includes additional modules (e.g., DXT,
HDF5, Lustre), that enhance the tool’s capabilities based on
the application’s demands. Fig. 2 depicts the extensible format
used by Darshan to store these profiling metrics.
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Record

Name 
Records

POSIX 
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MPI I/O
Records

HDF5 
Records

STDIO 
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Lustre 
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Module Data

…

Fig. 2. Darshan format to store I/O metrics from multiple modules/sources.

B. Darshan DXT

Darshan eXtended Tracing (DXT) [26] extends Darshan by
providing fine-grain traces of the I/O of the application, which
can be used to get an in-depth view of the I/O behavior. These
traces are recorded only for the POSIX and MPI-IO interfaces
and include details such as the file, offset, length, start and
end times, and the rank issuing that request. DXT traces are
often used for offline post-mortem in-depth analysis to identify
I/O issues. Although the overhead of the DXT module is
minimal in many cases, it can be high (in time and space)
for unoptimized applications. That is why the DXT module is
turned off by default on production systems.

C. Recorder

Recorder [21] is another application-level tracing tool fo-
cused on I/O. It captures function calls at multiple levels
of the I/O stack, including HDF5, MPI-IO, and POSIX I/O.
Like Darshan, Recorder does not require an application to be
recompiled to be profiled/traced, as this is activated by setting
the LD_PRELOAD environment variable. Recorder, however,
exposes some fine-grain control regarding which levels are
traced, but it does not yet support other high-level libraries,
such as NetCDF. Differently from Darshan, the traces and
metrics collected by Recorder are stored in a Recorder-specific
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Fig. 3. Recorder format representation to store I/O traces.

tracing format using a format-aware compression algorithm,
yielding a directory containing three files per rank plus a
metadata file, instead of a single self-contained file.

Fig. 3 depicts the log format used by Recorder. Each record
is identified as either a compressed or uncompressed trace, and
the status byte distinguishes between the two. The start and
end bytes signify the function execution period. The following
function byte is an integer representing the function name. The
remaining bytes represent variable-length function arguments.
The compression process keeps a slicing window that retains a
subset of recent traces. For each new trace, it checks whether
a trace exists with the same function call and at least one
matching argument. If so, the status byte of the new trace
is configured with the first bit set to 1, and the following
bits indicating the indices of arguments that are different.
Additionally, the function byte stores the relative location to
that similar trace instead. The trace is compressed by only
keeping the difference.

D. High-Level Libraries

Darshan and Recorder have partial support for collecting
high-level library I/O counters, as depicted by Fig. 1. Dar-
shan has specific modules to capture HDF5 and PnetCDF
performance-related counters, but it does not yet have support
to collect traces through its extended tracing module (DXT).

Regarding HDF5, an application must use the same HDF5
library version that Darshan or Recorder was compiled against.
On the one hand, Darshan can capture aggregated metrics
covering the H5F (files) and H5D (dataset) HDF5 APIs. On the
other hand, Recorder intercepts more HDF5 APIs, grabbing
detailed information from files, groups, datasets, attributes,
objects, links, and property lists. Furthermore, Recorder does
not yet support other high-level libraries, such as PnetCDF.
However, Darshan can capture aggregated metrics for two key
PnetCDF abstractions (files and variables) but no traces.

Having information from high-level libraries is important
to understand how the data abstractions that are natural to
an application domain, map into I/O libraries and how those
interface with the underlying layers, commonly triggering
transformation. Since both HDF5 and PnetCDF expose a rich
user-defined metadata API, this gap in metric collection and
coverage of the I/O stack can potentially hide application-level
metadata-related issues. We demonstrate this in Section V.

E. Parallel File Systems

In HPC systems, applications read and write data to shared
Parallel File Systems (PFS), which provides a globally per-
sistent storage infrastructure and a global namespace. A PFS
is comprised of two types of servers with distinct roles: the
data servers and the metadata servers. The latter handles
details about the files themselves (e.g., sizes and permissions)

and their location in the system. Lustre [27], [28] and IBM
Spectrum Scale (previously known as GPFS) [29] are the ones
commonly deployed in HPC facilities.

Darshan can collect basic information about Lustre, cover-
ing the number of OSTs (Object Storage Targets) and MDTs
(Metadata Targets) in the system. When such a module is avail-
able and enabled, Darshan also collects striping information
(size, offset, and width) for each file, which could hint at how
the POSIX layer accesses the file system. However, Darshan
does not capture anything specific for the Spectrum Scale.

Nonetheless, other sources of metrics could be combined to
complete the cross-level view of how requests reach the file
system. In the case of Lustre, some metrics are exposed by
vendors, e.g., in ClusterStor, while others rely on open-source
solutions such as collectl-lustre [30] and Lustre Monitoring
Tool (LMT) [31]. Besides each of these solutions having their
own format, correlating these file system metrics (collected
as cumulative counters in time-based intervals) with job or
application metrics is very complex. The complexity also
arises from network-related factors and gaps while associating
metrics from upper layers without losing the necessary context
for I/O-related analysis. Though we acknowledge that they
should be part of this cross-layer exploration, due to such
complexity, we leave this problem as future work.

III. DRILLING DOWN TO THE SOURCE-CODE

While end-users may be aware of where their input/output
(I/O) calls are being made, the real challenge arises due to
the multiple transformations that an I/O request undergoes
while traversing the HPC I/O stack. This makes it difficult
to identify the root cause of any performance issues (i.e.,
what in the application code ended up impairing performance).
Consequently, what a user thinks their application is doing
might not be the case. This leads to several known I/O
performance problems.

Source code analysis is an important technique to dig deeper
into the vulnerabilities and bottlenecks in an HPC application.
Using different source code analysis methodologies, we can
drill down to the source of the I/O bottlenecks, making it easier
to optimize the application. Source code analysis in HPC I/O
applications can have some challenges as we deal with vast
amounts of data, which can result in added overhead.

This section presents a framework for source code analy-
sis in HPC I/O applications prototyped inside Darshan. We
enhance the Darshan logs with additional information related
to the I/O source code of HPC applications that Drishti uses
to provide the exact line numbers where optimizations need
to be made. We also discuss the design choices we made
while developing this framework and the experiments we
conducted to choose a suitable library for source code analysis.
As mentioned, this framework is currently developed inside
Darshan, but it can be integrated into other I/O profiling and
tracing tools such as Recorder.

A. Unveiling the Source-Code
A backtrace is a list of function calls that are currently

active in a program. Though external debuggers are often



1 /darshan/lib/libdarshan.so(dxt_posix_write+0x118) [0x7f4afdbabc58]
2 /darshan/lib/libdarshan.so(pwrite+0x19d) [0x7f4afdb9761d]
3 /opt/cray/pe/lib64/libmpi_gnu_91.so.12(+0x26007f3) [0x7f4afcae37f3]
4 /opt/cray/pe/lib64/libmpi_gnu_91.so.12(+0x2605cec) [0x7f4afcae8cec]
5 /opt/cray/pe/lib64/libmpi_gnu_91.so.12(+0x25d60d9) [0x7f4afcab90d9]
6 /opt/cray/pe/lib64/libmpi_gnu_91.so.12(PMPI_File_write_at_all+0x21)[0x7f4afcabaa11]
7 /darshan/lib/libdarshan.so(MPI_File_write_at_all+0xbb) [0x7f4afdbaff1b]
8 /hdf5/lib/libhdf5.so.310(+0x38913c) [0x7f4afd65e13c]
9 /hdf5/lib/libhdf5.so.310(H5FD_write+0x68) [0x7f4afd41cda8]

10 /hdf5/lib/libhdf5.so.310(H5F__accum_write+0x194) [0x7f4afd3f6794]
11 /hdf5/lib/libhdf5.so.310(H5PB_write+0x6cb) [0x7f4afd50f3fb]
12 /hdf5/lib/libhdf5.so.310(H5F_shared_block_write+0x30) [0x7f4afd401ce0]
13 /hdf5/lib/libhdf5.so.310(H5D__mpio_select_write+0x22) [0x7f4afd65c402]
14 /hdf5/lib/libhdf5.so.310(+0x37a8d3) [0x7f4afd64f8d3]
15 /hdf5/lib/libhdf5.so.310(+0x37aaa5) [0x7f4afd64faa5]
16 /hdf5/lib/libhdf5.so.310(+0x3854e2) [0x7f4afd65a4e2]
17 /hdf5/lib/libhdf5.so.310(H5D__collective_write+0x9) [0x7f4afd65c4c9]
18 /hdf5/lib/libhdf5.so.310(H5D__write+0x166) [0x7f4afd3c0586]
19 /hdf5/lib/libhdf5.so.310(H5VL__native_dataset_write+0x8f) [0x7f4afd61dfdf]
20 /hdf5/lib/libhdf5.so.310(H5VL_dataset_write_direct+0x81) [0x7f4afd6085d1]
21 /hdf5/lib/libhdf5.so.310(+0xb5ef0) [0x7f4afd38aef0]
22 /hdf5/lib/libhdf5.so.310(H5Dwrite+0x9f) [0x7f4afd38e20f]
23 /darshan/lib/libdarshan.so(H5Dwrite+0xd7) [0x7f4afdbbc757]
24 /h5bench/bin/h5bench_e3sm() [0x6c986b]
25 /h5bench/bin/h5bench_e3sm() [0x457c4b]
26 /h5bench/bin/h5bench_e3sm() [0x454e87]
27 /h5bench/bin/h5bench_e3sm() [0x452947]
28 /h5bench/bin/h5bench_e3sm() [0x451f1c]
29 /lib64/libc.so.6(__libc_start_main+0xef) [0x7f4af9fba24d]
30 /h5bench/bin/h5bench_e3sm() [0x4525da]

Fig. 4. Sample backtrace from an HDF5 application monitored with Darshan.

used to inspect a backtrace, there are scenarios where it is
useful to obtain a backtrace programmatically from within a
program. For this purpose, the Standard C library exposes the
execinfo.h header file, which declares functions that obtain
and manipulate backtraces§.

The backtrace() function obtains the backtrace for the
calling thread as a list of pointers and places those in a
buffer. Each entry in the buffer contains one return address
per stack frame, limited by how deep one wants to investigate.
It is important to notice that this approach has some caveats.
Particular compiler optimization may interfere with obtaining
a valid backtrace. Furthermore, inline functions do not have a
stack frame, tail call optimizations replace one stack frame
with another, and frame pointer elimination will stop the
backtrace from correctly interpreting the contents of the stack.

Once the addresses from backtrace() call are available,
backtrace_symbols() can be used to get the symbolic
representation of the addresses in the form of a string. The
representation of each address has the function name, the
hexadecimal offset, and the actual hexadecimal return address.
Fig. 4 shows a sample backtrace of a write call from an HPC
application that uses the HDF5 I/O library and Darshan. It is
possible to see the symbolic representation of the addresses of
the call chain of this request. However, that backtrace contains
no source-level information, such as line or function names.
Nevertheless, it is possible to get this data by employing some
libraries and tools such as libunwind, pyelftools, and addr2line.

libunwind is a portable and efficient C library that is very
helpful in unwinding a stack (i.e., the process of removing
function entries from function call stack at run time) from
within a running program [32]. Although this library is very
efficient in getting the call stack information, it is limited
because it can only get the function and the register but cannot
get the line number. To achieve this goal, debug information is
needed to connect the performance issues and their true root
causes in the source code.

§https://man7.org/linux/man-pages/man3/backtrace.3.html

1 0x6c986b, /h5bench/e3sm/src/drivers/e3sm_io_driver_h5blob.cpp:226
2 0x457c4b, /h5bench/e3sm/src/cases/var_wr_case.cpp:448
3 0x454e87, /h5bench/e3sm/src/cases/e3sm_io_case.cpp:99
4 0x452947, /h5bench/e3sm/src/e3sm_io_core.cpp:97
5 0x451f1c, /h5bench/e3sm/src/e3sm_io.c:563
6 0x4525da, /home/abuild/rpmbuild/BUILD/glibc-2.31/csu/../sysdeps/x86_64/start.S:122

Fig. 5. Mapping of stack addresses to source-code lines.
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Fig. 6. Overhead for getting the line number from the addresses returned by
backtrace() using different libraries.

To get the line number from the addresses, one needs access
to DWARF (Debugging With Attributed Record Formats) [33],
used by many compilers and debuggers to support source-
level debugging [34]. pyelftools is a Python library for parsing
and analyzing DWARF debugging information. This library
provides the functionality to take in an address and the binary
and return the function name, file name, and line number.
Apart from pyelftools, there is a command line utility called
addr2line, which uses the debugging information to translate
addresses into file names and line numbers [35]. This utility
takes as input a hexadecimal address and the binary and returns
the file name and the line number associated with that address.
A sample of this output is available in Fig. 5, which shows
the mapping of the addresses reported for the h5bench_e3sm
binary (in purple) in Fig. 4.

1) Feasibility: We prototyped a simple solution to compare
addr2line and pyelftools on the h5bench [36] write benchmark
and AMReX I/O kernel. We modified h5bench to collect the
call stack using the backtrace() function call during the
benchmark execution, where calls to writing the dataset are
issued, and saved the returned addresses in a shared file. Once
the stack addresses were available, we used both pyelftools
and addr2line to get the line numbers in two separate im-
plementations. These took as input the addresses in the file,
retrieved the line information, file name, and function name,
and reported the time it took to complete this step. For the
h5bench write benchmark, we observed that the pyelftools
library took considerably more time to get the line information
as compared to addr2line, as can be shown in Fig. 6.

We noticed a similar trend with the AMReX kernel. Since
there was a huge difference in overhead for getting line
numbers between pyelftools and addr2line, we investigated
pyelftools further, breaking down the time to get the line num-
bers and function names. The results in Fig. 7 show that getting
the function names atone for most of this overhead. Since
our experiments with the initial prototypes on the h5bench
showed better performance and less overhead with addr2line,
and though having the function name can be considered a plus
when reporting this information back to the user, we found it
sufficient to have the filename and line numbers only. They
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Fig. 7. Time taken to get the line numbers vs. the function names using
pyelftools for all addresses returned by backtrace() in an execution with
the AMReX [37] I/O kernel (1 compute node and 8 ranks).

would still reach the goal of pinpointing where in the code
that I/O behavior originated from without the extra overhead.
Hence, we opted to rely on addr2line to collect this data.

2) Enhancing Darshan DXT: To support getting the call-
chain information in Darshan, we enhanced some data struc-
tures used by Darshan runtime to store the required informa-
tion. These changes are depicted in Fig. 8. We modify the
segment structure of the POSIX and MPIIO DXT records to
store the call stack addresses in a buffer, apart from storing the
usual information: the offset, transfer size, start, and end time.
For each POSIX and MPI-IO read/write request, we retrieve
the call stack of that request using backtrace().

Apart from storing the call stack information for each
read/write request, we also filter the unique address-to-line
mappings for the binary while it is being instrumented by
Darshan and store those in the Darshan log for later use.
Through this approach, we avoid the dependency on the
binary being always available to get the line information
and allow log analysis with this additional information across
multiple systems. To achieve this, we modified the POSIX
and MPI-IO serialize functions, which are called by Darshan’s
shutdown routine to serialize all the records, and append them
to the final Darshan log. In the serialize functions, we use
backtrace_symbols() to get the symbolic representation
of all the unique stack addresses collected.

Fig. 4 shows the output of backtrace_symbols() for
the call stack addresses of a POSIX write call accessed in
the POSIX serialize method. Multiple addresses are in the
backtrace, but not all correspond to the binary. Some are from
Darshan and HDF5 external libraries, which are not of interest,
and processing these addresses will only add extra overhead.
Through this symbolic representation, we check which ad-
dresses correspond to the binary. We store these addresses in
a file-per-process approach to avoid extra communication and
synchronization costs. In the next step, as part of the Darshan
shutdown routine, we filter the unique addresses across these
files and call addr2line to get the address-to-line mappings
while we still have access to the binary. Fig. 5 shows the
output of addr2line on some of the addresses that correspond
to the application’s binary. Through this technique, we can
avoid calling addr2line on addresses that do not correspond to
the binary, reducing the overall overhead. Once we have all the
unique address-to-line mappings, we append these mappings
to the header of the Darshan log.

To expose this new information appended in the Darshan log
so external applications such as Drishti can benefit from it, we

POSIX read/write 
request

MPI-IO read/write 
request

darshan_core_shutdown()

POSIX serialize MPI-IO serialize

Store addresses

Store mappings

Remove duplicate 
addresses Filter addresses

Access backtrace

backtrace_symbols()

backtrace()

Darshan log file addr2line

Fig. 8. Framework to capture source code information in Darshan to enhance
I/O analysis and recommendations in Drishti.

modified both its utility package and PyDarshan. PyDarshan
extends Darshan’s analysis capabilities with a convenient
Python interface and corresponding CLI utilities to enable
advanced and customized analysis seamlessly connected to the
rich ecosystem of data science and machine learning libraries
that support Python. Since Drishti relies on PyDarshan to parse
a Darshan log, we enhanced the pandas dataframe used to
represent each access to include the stack memory addresses
as a new column. We also added two more dataframes, one
for POSIX and one for MPIIO, for the unique address-to-line
mappings, using the addresses as unique identifiers. Fig. 8
illustrates the complete framework.

So far, we have discussed the framework developed to
collect the stack trace information for any parallel application
being instrumented by Darshan. To pinpoint the exact line
number where the user needs to make optimizations, we
combine the DXT information and the stack memory addresses
to give the complete backtrace of the issue. For example, one
of the issues that we look for in the HPC I/O applications is
a high number of small read or write requests on the POSIX
level. We formulate a threshold value below which any read or
write request is considered small. Using the DXT information,
we check which read or write requests have a size smaller than
the threshold. Once we identify all the ranks that exhibited
this behavior, we group those together and then provide the
backtrace information to drill down to where the read/write
call originated. We have implemented over 30 triggers in
Drishti, of which 13 can be related to the application’s source
code rather than a misconfiguration. Those cover triggers
include POSIX read/write count intensiveness, POSIX random
read/write usage, POSIX size imbalance, MPIIO blocking
read/write usage, etc. These triggers were enhanced to drill
down and point to the origins of an I/O performance bottleneck
in the source code.

3) Discussion and Overhead: One of the most significant
advantages of this source code analysis framework is that it
does not rely on the availability of the binary or code on the
Drishti side, as we already get all the address-to-line mappings
during instrumentation. This approach promotes flexibility and
portability in analyzing the HPC I/O application. Drishti can
get the address-to-line mappings offline as well but this will
make the analysis more stringent as we are dependent on the
availability of the binary. However, collecting the mappings



during instrumentation comes with a non-negligible cost, as it
adds some overhead in Darshan to call addr2line, which re-
quires invoking another process. We rely on posix_spawn()§

instead of using the standard system() call to optimize this
further. We noticed that posix_spawn() took less time to
invoke the addr2line command to get the line numbers than
the alternative.

Apart from this, we have also made sure that we call
addr2line the least amount of times possible. To do that,
we used the backtrace_symbols() to extract only the
addresses that correspond to the binary, as discussed in
Section III-A2. Nonetheless, we still observe some overhead
in runtime. We noticed an increase in time for the E3SM
application compared to when both Darshan and DXT trace
collection are enabled. However, it is important to recall that
such I/O debugging and tuning exercises often use small-scale
experiments and then are scaled back to production-size runs.
Hence, we consider this overhead acceptable for our potential
gains based on the insights and recommendations provided by
Drishti, as showcased in Section V.

Debug symbols are necessary to identify the root cause
of performance issues in the code. However, despite their
availability Drishti can still provide valuable insights using
basic profiling metrics collected by Darshan in production
systems. The initial report can be further enhanced by enabling
the full range of features, including stack collection. One can
draw a parallel with the same tradeoffs of overhead/value
a debugger tool would bring to the table, with a focus on
I/O access patterns and taking a step further by providing
actionable insights.

Finally, we also make this stack trace collection in Darshan
configurable through an environment variable, which is turned
off by default, so the user can avoid incurring the additional
overhead if they do not want this analysis. We will discuss the
overhead further in the use cases section.

IV. BUILDING UP TO HIGH LEVEL LIBRARIES

As discussed in Section II-D, both Darshan and Recorder
have some limitations while collecting metrics and traces
in high-level libraries, particularly HDF5 which it partially
covered in both. Towards solving these issues, and seeking to
balance usability and performance to demonstrate how Drishti
could harness high-level metrics, we propose a VOL (Virtual
Object Layer) connector [38] that HDF5-based applications
can use without source-code modifications. Nonetheless, Dr-
ishti can be extended to handle other sources of data collected
from high-level libraries. This paper uses HDF5 as a use case
due to its inherent support for intercepting I/O calls using the
VOL feature. The VOL is an abstraction layer in the HDF5
library that intercepts all API calls that could potentially access
objects in an HDF5 container and forwards those calls to a
VOL connector, which implements the storage. The user or
application benefits from the familiar and widely-used HDF5
data model and public API. However, not all public HDF5

§https://man7.org/linux/man-pages/man3/posix_spawn.3.html

API calls pass through the VOL, only those that manipulate
the storage. Since we are interested in the datasets and attribute
operations, we are not bound by this limitation.

VOL connectors can be implemented as passthrough or
terminal connectors. The first performs operations and then
invokes another connector layer underneath, whereas the latter
do not and are typically designed to map HDF5 objects and
metadata to storage. The proposed Drishti VOL connector, by
nature, fits the description of a passthrough VOL since we only
want to capture operation’s timestamps and meta-information
for further analysis using Drishti.

An HDF5 file is a container for data and metadata. Re-
garding data operations, we focus on the HDF5 datasets. A
dataset object eventually find its way to a file and it is stored
in two parts: a header and a data array (i.e., the raw data
represented as a one-dimensional or multi-dimensional array
of elements). The H5D API provides mechanisms for managing
datasets, including transferring data between memory and disk.
H5Dcreate, used to create an HDF5 dataset, could result in

I/O operations if file space allocation is set. However, HDF5
exposes the H5Pset_fill_value() API which is designed
to work in concert with both H5Pset_alloc_time() and
H5Pset_fill_time(). The last two govern the timing of
dataset storage allocation and fill value write operations and
are important in tuning I/O performance. H5Dcreate can
also result in small metadata writes, if metadata cache is not
enabled, or HDF5 decides to flush it at the time. However,
that metadata would be considered internal to the library.

Regarding metadata, HDF5 files can contain: (1) library
metadata, (2) static user metadata, or (3) dynamic user meta-
data. Users do not have any direct interaction with or control
over library metadata, as the HDF5 library itself generates
that to describe the file structure and the contents of objects
in a file. However, that is not the case for static and dynamic
user metadata, which are defined and provided by the user.
Examples of static metadata include property lists, dataset’s
dataype and dataspace, fill values, and dataset or group storage
properties. It is also uncommon for this type of metadata to
change through the life of a file or object. On the other hand,
dynamic user metadata can change over time, and it is often
stored in an HDF5 attribute.

Considering the aspects upon which a user might have
control in tuning or optimizing, only the static and dynamic
metadata would be of interest. Yet, when considering VOL
connectors, non-storage HDF5 API calls do not go through
the VOL (e.g., dataspace and property list calls); hence, we
focus mainly on the dynamic user metadata defined by the
HDF5 attributes API. An attribute has two parts: name and
value(s). Attributes are assumed to be very small and are
managed through a special interface, H5A, designed to attach
attributes to primary data objects as small datasets containing
metadata information and to minimize storage requirements.

Considering the key attributes operations (H5Acreate,
H5Aopen, H5Awrite, H5Aread, and H5Aclose) and how
they would eventually translate to file operations in underlying
layers of the I/O stack, our tracing VOL connector should track



TABLE I
HDF5 DATASET AND ATTRIBUTE API OPTIONS CURRENTLY SUPPORTED

BY THE Drishti I/O TRACING VOL CONNECTOR.

Operation File Operations Drishti-VOL

Datasets

H5Dcreate ✓ p
H5Dopen p p
H5Dwrite ✓ ✓

H5Dread ✓ ✓

H5Dclose p p

Attributes

H5Acreate p p
H5Aopen p p
H5Awrite ✓ ✓

H5Aread ✓ ✓

H5Aclose p p

both write and read operations only. It is important to notice
that H5Acreate creates the attribute in memory, which only
exists in the file once H5Awrite is called, while H5Aread
generally comes into play in concert with H5Aget_* and
H5Aopen_* functions to read from a file. Table I summarizes
the support and tracing coverage of dataset and attribute
operations in our VOL connector.

There are some caveats to ensure such VOL traces can be
combined and matched with Darshan DXT traces. First, the
DXT module stores the timestamp of each MPI-IO and POSIX
operations relative to the start of the execution instead of
relying on the absolute timestamp. To ensure data is collected
through this tracing VOL connector, we adopted the same
approach to collect the timestamp as Darshan uses. Still, we
also require an offline adjustment to the relative format using
the job start time reported by Darshan (which might differ
from the actual job start time in milliseconds due to the
initialization of Darshan itself). Second, to avoid additional
overhead, the VOL traces are stored in memory and persisted
to file using a file-per-process approach once the VOL is shut
down. We opted for such a file-per-process approach to avoid
adding message communication and potentially impacting the
observed makespan time of the application. Lastly, since we
are generating those additional files, Darshan will capture
metrics regarding those operations. Nonetheless, we can easily
filter them out when analyzing, visualizing, and recommending
actions to avoid common I/O performance pitfalls.

The proposed VOL connector wraps the operations of
interest (Table I) with microsecond-precision timers. For each
operation, to ensure we could combine the reported metrics
and give similar context information, we record the start, end,
duration, rank, operation, and offset (where applicable).

V. CROSS-LAYER EXPLORATION

In this section, we demonstrate the potential of our cross-
layer Drishti exploration solution with three use cases from
distinct science domains, by harnessing different I/O metrics.

A. WarpX

WarpX [39] is a time-based, electromagnetic, and electro-
static Particle-In-Cell code that is highly parallel and opti-
mized for GPUs and multi-core CPUs. WarpX scaled to the

DARSHAN | 4 critical issues | 2 warnings | 9 recommendations

▶ 5 files (2 use POSIX, 3 use MPI-IO)
▶ Application is write operation intensive (99.99% writes vs. 0.01% reads)
▶ Application is write size intensive (99.99% write vs. 0.01% read)

▶ High number (100.00%) of misaligned file requests
▶ High number (2753913) of small write requests (< 1MB)

▶ 100.00% of all write requests
▶ Observed in 3 files:

▶ 8a_parallel_3Db_0000001.h5 with 917971 (33.33%) small write requests
▶ 8a_parallel_3Db_0000002.h5 with 917971 (33.33%) small write requests
▶ 8a_parallel_3Db_0000003.h5 with 917971 (33.33%) small write requests

▶ Recommended action:
▶ Consider buffering write operations into larger, contiguous ones
▶ Since the application uses MPI-IO, consider using collective I/O calls
to aggregate requests into larger, contiguous ones
(e.g., MPI_File_write_all() or MPI_File_write_at_all())

▶ High number (2753913) of small write requests to a shared file (< 1MB)
▶ 100.00% of all shared file write requests
▶ Observed in 3 files:

▶ 8a_parallel_3Db_0000001.h5 with 917971 (33.33%) small writes requests
▶ 8a_parallel_3Db_0000002.h5 with 917971 (33.33%) small writes requests
▶ 8a_parallel_3Db_0000003.h5 with 917971 (33.33%) small writes requests

▶ Recommended action:
▶ Use collective write operations
(e.g., MPI_File_write_all() or MPI_File_write_at_all())

▶ Set one MPI-IO aggregator per compute node
▶ Application uses MPI-IO, but it does not use collective write operations

▶ 2753913 (100.00%) independent write calls
▶ Observed in 3 files:

▶ 8a_parallel_3Db_0000001.h5 with 917971 (100.0%) independent writes
▶ 8a_parallel_3Db_0000002.h5 with 917971 (100.0%) independent writes
▶ 8a_parallel_3Db_0000003.h5 with 917971 (100.0%) independent writes

▶ Recommended action:
▶ Switch to collective write operations
(e.g., MPI_File_write_all() or MPI_File_write_at_all())

▶ Application could benefit from non-blocking (asynchronous) reads
▶ Application could benefit from non-blocking (asynchronous) writes

▶ Application mostly uses consecutive (50.77%) and sequential (0.00%) read requests
▶ Application mostly uses consecutive (0.00%) and sequential (99.99%) write requests

Fig. 9. Cross-layer I/O report and insights for openPMD extracted from
Drishti VOL connector combined with Darshan metrics and DXT traces.

world’s largest supercomputers and was awarded the 2022
ACM Gordon Bell Prize. It writes diagnostics data in plotfile
or openPMD [40] format(s). While plotfiles are AMReX’s
native data format, openPMD is implemented in popular
community formats such as ADIOS [41] and HDF5 [42]. Thus,
the optimization of data access using HDF5 plays a crucial role
in improving the application’s data access performance.

In this experiment, we evaluate openPMD’s WarpX backend
using HDF5 files, in a smaller debug-like scale to pinpoint the
root causes of I/O performance problems. We used 8 compute
nodes (maximum allowed number of nodes in Perlmutter’s
debug queue), 16 ranks per node, and a total of 128 processes.
We used the PrgEnv-gnu/8.3.3 and cray-mpich/8.1.25. All
dependencies were compiled with gcc/11.2.0, including the
HDF5 library version 1.14.0. By default, one file is generated
after each step. The total file size generated by each step is
of ≈ 41MB for this small setup, with no compression set
at the HDF5 level. We configured the kernel to write a few
meshes and particles in 3D. The meshes are viewed as a grid
of dimensions [16×8×8] of mini blocks whose dimensions are
[16×8×4]. Thus, the actual mesh size is [256×64×32]. For
debugging purposes, since the application’s I/O behavior does
not change in between iterations, we set the kernel’s execution
to halt after writing three checkpoints.

Fig. 10 illustrates our investigation. The baseline (Fig. 10(a))
represents the default I/O behavior of the application before
applying any optimization. First, if we consider only the two
facets captured from the Darshan DXT module (i.e., MPIIO
and POSIX), one can see that they look almost the same.
Since the application uses MPI-IO, we can safely assume that
no changes are being done at this layer, especially related



(a) Baseline (b) Optimized

Fig. 10. Interactive web-based cross-layer visualization of I/O requests for a execution of WarpX (OpenPMD) using multi-source metrics (Drishti VOL
connector traces, DXT, and Darshan). Optimized execution time has a speedup of 6.9× compared to the baseline.

to collective I/O calls, which would result in transformations
at the POSIX level. Second, since accesses are independent,
we can observe a time imbalance between the ranks. We can
confirm that the workload between ranks is the same. Third, by
including the traces from the Drishti VOL connector, we have
a complete view from the application to lower levels of the
stack. This addition is particularly interesting for openPMD
since it uses a lot of dynamic user-level HDF5 metadata.
Furthermore, metadata access occurs independently multiple
times during each step. The I/O insights generated by Drishti
are detailed in Fig. 9. Based on the metrics and traces Drishti
has identified that the application only issues misaligned small
requests to the file system. Here, we consider a request to be
small if it is less than the Lustre stripe size used by the system
(i.e., 1 MB). All accesses to these files suffer from the same
problem. Furthermore, Drishti can capture the intended access
of using shared files, and because the I/O operations were not
issued collectively, it reports the high use of independent calls,
suggesting the source code change.

From those triggered issues, we followed the recommenda-
tions of (1) aligning the I/O requests to the file system’s stripe
boundaries; (2) enabling collective I/O for data operations; (3)
enabling collective I/O for HDF5 metadata operations. Figure
10(b) shows the optimized behavior of the application, and the
impact of the changes. Total runtime was reduced from 5.351
seconds to 0.776 seconds, a 6.9× speedup.

We also investigate the non-negligible overhead of col-
lecting data from multiple layers of the I/O stack. Table II
summarizes the results of five repetitions of each experiment
by comparing the baseline execution with adding each layer
of extra monitoring in terms of added runtime and total size
of metrics. As expected, when enabling tracing the overhead

TABLE II
METRIC COLLECTION OVERHEAD FOR THE CROSS-LAYER ANALYSIS.

Runtime (seconds) Overhead
(Min. %)

Combined
Log/TraceMin. Median Max.

Baseline 5.99 7.52 8.62 - -
+ Darshan 6.59 8.03 8.57 +9.62 35.88 KB
+ DXT 6.76 7.53 8.51 +3.03 38.88 MB
+ VOL 7.09 8.73 11.19 +4.88 41.69 MB

is increased since every I/O call is intercepted by Darshan.
Furthermore, as demonstrated by Fig. Fig. 9 and Fig. 10(a),
openPMD issues a lot of small requests, making the applica-
tion more sensible to the tracing overhead (i.e., more small
operations to trace rather than a few larger operations). The
total file size of collect metrics also reflects the impact of
tracing every I/O call at MPI-IO and POSIX layers, especially
if independent operations are there which would imply in quite
similar traces for both layers if compared to the aggregated
ones found when collective I/O calls are used. These highlight
that the impact of the overhead, when traces are collected,
has a relation to how good or bad and application access
its data. As for the VOL collected-metrics, we can see an
added overhead of ≈ 5% in time and 2.81 MB in size. We
consider this acceptable in exchange for the gains attained
from Drishti’s recommendations.

B. AMReX

AMReX [43] is a framework for massively parallel, block-
structured adaptive mesh refinement (AMR) applications to
solve partial differential equations on block-structured meshes.
It is used in astrophysics, atmospheric modeling, combustion,
cosmology, multi-phase flow, and particle accelerators.



‭DARSHAN |‬‭3 critical issues | 2 warnings | 8 recommendations‬

‭▶‬‭57 files (2 use STDIO, 1 use POSIX, 10 use MPI-IO)‬
‭▶‬‭Application is write operation intensive (99.98%‬‭writes vs. 0.02% reads)‬
‭▶‬‭Application is write size intensive (100.00% write‬‭vs. 0.00% read)‬

‭▶‬‭High number (491640) of small write requests (< 1MB)‬
‭▶‬‭99.99% of all write requests‬
‭▶‬‭Observed in 10 files:‬

‭▶‬‭plt00007.h5 with 49164 (10%) small write requests‬
‭▶‬‭1 rank made small write requests to "plt00007.h5"‬

‭▶‬‭/home/abuild/rpmbuild/BUILD/glibc-2.31/csu/../sysdeps/x86_64/start.S:122‬
‭▶‬‭/h5bench/amrex/Src/Extern/HDF5/AMReX_PlotFileUtilHDF5.cpp:380‬
‭▶‬‭/h5bench/amrex/Tests/HDF5Benchmark/main.cpp: 134‬
‭▶‬‭/h5bench/amrex/Tests/HDF5Benchmark/main.cpp: 24‬

‭▶‬‭plt00004.h5 with 49164 (10%) small write requests:‬
‭▶‬‭1 rank made small write requests to "plt00004.h5"‬

‭▶‬‭/home/abuild/rpmbuild/BUILD/glibc-2.31/csu/../sysdeps/x86_64/start.S:122‬
‭▶‬‭/h5bench/amrex/Src/Extern/HDF5/AMReX_PlotFileUtilHDF5.cpp:380‬
‭▶‬‭/h5bench/amrex/Tests/HDF5Benchmark/main.cpp: 134‬
‭▶‬‭/h5bench/amrex/Tests/HDF5Benchmark/main.cpp: 24‬

‭▶‬‭Recommended action:‬
‭▶‬‭Consider buffering write operations into larger, contiguous ones‬
‭▶‬‭Since the application uses MPI-IO, consider using collective I/O calls‬
‭to aggregate requests into larger, contiguous ones‬
‭(e.g., MPI_File_write_all() or MPI_File_write_at_all())‬

‭SOLUTION EXAMPLE SNIPPET‬

‭MPI_File_open(MPI_COMM_WORLD, "out.txt", MPI_MODE_CREATE|MPI_MODE_WRONLY, MPI_INFO_NULL, &fh);‬
‭MPI_File_write_all(fh, &buffer, size, MPI_CHAR, &s);‬

‭▶‬‭Detected data transfer imbalance caused by stragglers‬
‭▶‬‭Observed in 10 shared file:‬

‭▶‬‭plt00007.h5 with a load imbalance of 100.00%‬
‭▶‬‭/home/abuild/rpmbuild/BUILD/glibc-2.31/csu/../sysdeps/x86_64/start.S: 122‬
‭▶‬‭/h5bench/amrex/Tests/HDF5Benchmark/main.cpp: 134‬
‭▶‬‭/h5bench/amrex/Tests/HDF5Benchmark/main.cpp: 24‬
‭▶‬‭/h5bench/amrex/Src/Extern/HDF5/AMReX_PlotFileUtilHDF5.cpp: 516‬

‭▶‬‭plt00004.h5 with a load imbalance of 100.00%‬
‭▶‬‭/home/abuild/rpmbuild/BUILD/glibc-2.31/csu/../sysdeps/x86_64/start.S: 122‬
‭▶‬‭/h5bench/amrex/Tests/HDF5Benchmark/main.cpp: 134‬
‭▶‬‭/h5bench/amrex/Tests/HDF5Benchmark/main.cpp: 24‬
‭▶‬‭/h5bench/amrex/Src/Extern/HDF5/AMReX_PlotFileUtilHDF5.cpp: 516‬

‭▶‬‭Recommended action:‬
‭▶‬‭Consider better balancing the data transfer between the application ranks‬
‭▶‬‭Consider tuning the file system stripe size and stripe count‬

‭▶‬‭High number (100.00%) of misaligned file requests‬
‭▶‬‭Recommended action:‬

‭▶‬‭Consider aligning the requests to the file system block boundaries‬
‭▶‬‭Since the appplication uses HDF5, consider using H5Pset_alignment()‬

‭SOLUTION EXAMPLE SNIPPET‬

‭hid_t fileAccessProperty = H5Pcreate(H5P_FILE_ACCESS);‬
‭...‬
‭H5Pset_alignment(fileAccessProperty, threshold, bytes);‬

‭▶‬‭Since the appplication uses Lustre, consider using an alignment that‬
‭matches Lustre’s striping configuration‬

‭SOLUTION EXAMPLE SNIPPET‬

‭lfs setstripe -S 4M -c 64 /path/to/your/directory/or/file‬
‭# -S defines the stripe size (i.e., the size in which the file will be broken down into)‬
‭# -c defines the stripe count (i.e., how many servers will be used to distribute stripes of the file)‬

‭▶‬‭Application could benefit from non-blocking (asynchronous)‬‭reads‬
‭▶‬‭Recommended action:‬

‭▶‬‭Since the application uses HDF5, consider using the ASYNC I/O VOL connector‬
‭SOLUTION EXAMPLE SNIPPET‬

‭hid_t es_id, fid, gid, did;‬

‭MPI_Init_thread(argc, argv, MPI_THREAD_MULTIPLE, &provided);‬

‭es_id = H5EScreate();                         // Create event set for tracking async operations‬
‭fid = H5Fopen_async(..., es_id);              // Asynchronous, can start immediately‬
‭gid = H5Gopen_async(fid, ..., es_id);         // Asynchronous, starts when H5Fopen completes‬
‭did = H5Dopen_async(gid, ..., es_id);         // Asynchronous, starts when H5Gopen completes‬

‭status = H5Dread_async(did, ..., es_id);      // Asynchronous, starts when H5Dopen completes‬

‭H5ESwait(es_id, H5ES_WAIT_FOREVER, &num_in_progress, &op_failed);‬
‭H5ESclose(es_id);                             // Close the event set (must wait first)‬

‭▶‬‭Since the application uses MPI-IO, consider non-blocking I/O operations‬
‭SOLUTION EXAMPLE SNIPPET‬

‭MPI_File fh; MPI_Status s; MPI_Request r;‬
‭...‬
‭MPI_File_open(MPI_COMM_WORLD, "output-example.txt", MPI_MODE_CREATE|MPI_MODE_RDONLY, MPI_INFO_NULL, &fh);‬
‭...‬
‭MPI_File_iread(fh, &buffer, BUFFER_SIZE, n, MPI_CHAR, &r);‬
‭// compute something‬
‭MPI_Test(&r, &completed, &s);‬
‭...‬
‭if (!completed) {‬

‭// compute something‬
‭MPI_Wait(&r, &s);‬

‭}‬

‭▶‬‭Application could benefit from non-blocking (asynchronous) writes‬
‭▶‬‭Recommended action:‬

‭▶‬‭Since the application uses HDF5, consider‬‭using the ASYNC I/O VOL connector‬
‭▶‬‭Since the application uses MPI-IO, consider‬‭non-blocking I/O operations‬

‭▶‬‭Application mostly uses consecutive (24.79%) and‬‭sequential (33.06%) read requests‬
‭▶‬‭Application mostly uses consecutive (99.98%) and‬‭sequential (0.01%) write requests‬
‭▶‬‭Application uses MPI-IO and write data using 15360‬‭(99.81%) collective operations‬

Fig. 11. Cross-layer I/O report and insights for the baseline (run-as-is) exe-
cution of AMReX in Perlmutter (NERSC) based on Darshan metrics/traces.
This sample was generated with the verbose mode which includes source-
code and configuration snippets.

We ran AMReX with 512 ranks over 32 nodes in Perlmutter
supercomputer, with a 1024 domain size, a maximum allow-

RECORDER | 2 critical issues | 2 warnings | 8 recommendations

▶ 260 files (0 use STDIO, 1 use POSIX, 10 use MPI-IO)
▶ Application is write operation intensive (99.87% writes vs. 0.13% reads)
▶ Application is write size intensive (100.00% write vs. 0.00% read)

▶ High number (491640) of small read requests (< 1MB)
▶ 99.99% of all read requests
▶ Observed in 10 files:

▶ plt0000[0-9].h5 with 49164 (10.00%) small write requests
▶ Recommended action:

▶ Consider buffering read operations into larger, contiguous ones
▶ Since the application uses MPI-IO, consider using collective I/O calls
to aggregate requests into larger, contiguous ones
(e.g. MPI_File_write_all() or MPI_File_write_at_all())

▶ Detected data transfer imbalance caused by stragglers
▶ Observed in 10 shared files:

▶ plt0000[0-9].h5 with 100.00% imbalance
▶ Recommended action:

▶ Consider better balancing the data transfer between the application ranks
▶ Consider tuning the file system stripe size and stripe count

▶ Application could benefit from non-blocking (asynchronous) reads
▶ Recommended action:

▶ Since the application uses HDF5, consider using the ASYNC I/O VOL connector
▶ Since the application uses MPI-IO, consider non-blocking I/O operations

▶ Application could benefit from non-blocking (asynchronous) writes
▶ Recommended action:

▶ Since the application uses HDF5, consider using the ASYNC I/O VOL connector
▶ Since the application uses MPI-IO, consider non-blocking I/O operations

▶ Application mostly uses consecutive (3.16%) and sequential (6.33%) read requests
▶ Application mostly uses consecutive (99.98%) and sequential (0.01%) write requests
▶ Application uses MPI-IO and write data using 15360 (99.81%) collective operations

Fig. 12. Cross-layer I/O report and insights for the baseline (run-as-is) exe-
cution of AMReX in Perlmutter (NERSC) based on Recorder metrics/traces.

able size of each subdomain used for parallel decomposal as
8, 1 level, 6 components, 2 particles per cell, 10 plot files, and
a sleep time of 10 seconds between writes. We collected I/O
metrics and traces with Darshan, DXT, and the stack analysis
enabled, and for comparison, with Recorder.

The cross-layer I/O report generated by Drishti for the
baseline execution of AMReX using Darshan is shown in
Fig. 11. The report indicates that the majority of write requests
are small (< 1MB) for all 10 plot files, and by harnessing our
backtrace-based solution, it drills down to the source code by
showing the line numbers and the function name from where
the call originated from. We show the backtrace for 2 out of
10 files only in the report for brevity, but this can be changed
as needed. To increase the size of these small write requests,
we have set the stripe size to 16MB. Similarly, when accessing
shared files, Drishti detects data transfer imbalance.

Fig. 12 shows the same report generated with data collected
by Recorder. We omit the interactive visualization due to
space constraints since those look relatively similar at first
sight. However, as one might expect, there are some differ-
ences in the level of detail and recommendations that can
be provided (discussed in Section II), aside from the source-
code detection. First, Recorder reports a much larger number
of files than Darshan, which is explained by the fact that
Recorder intercepts all file accesses, (e.g., we detected 248
/dev/shm/cray-shared-mem-coll-kvs*.tmp files). That
significantly skews two other metrics: the intensiveness ratio
and the consecutive/sequential access ratio. Third, Recorder is
unable to capture misaligned requests. This could be recon-
structed based on the offset and size of each operation and the
striping size for each file, but Recorder does not provide that.

Based on the recommendations from the cross-layer I/O
report provided by Drishti with the source code information,
we achieve a total speedup of 2.1× (from 211 to 100 seconds).



TABLE III
METRIC COLLECTION OVERHEAD FOR THE SOURCE CODE ANALYSIS.

Runtime (seconds) Overhead
(Min. %)Min. Median Max.

Baseline 4.60 4.85 5.97 -
+ Darshan 5.60 5.91 9.10 +21.68
+ DXT 7.00 8.87 8.87 +24.96
+ Stack 9.10 9.86 10.76 +30.03

C. Energy Exascale Earth System Model (E3SM)

E3SM-IO is the parallel I/O kernel from the Energy Exas-
cale Earth System Model (E3SM) [44], [45] climate simulation
model. It makes use of Parallel I/O Library (PIO) [46] which is
built on top of PnetCDF [47]. For the evaluation in this paper,
we used the F test case which is comprised of three unique data
decomposition patterns shared by 388 2D and 3D variables (2
sharing Decomposition 1, 323 sharing Decomposition 2, and
63 sharing Decomposition 3).

The cross-layer I/O report generated by Drishti for the
baseline execution of E3SM is shown in Fig. 13. The report
highlights a high number of small read requests to one file. It
also drill down exposing the file name and line numbers where
those small requests originated. Similarly, Drishti also detects
a high number of random read operations which constitute
37.89% of all read requests. This is observed in the same .h5
file, but are triggered by another source-code region.

We also investigate the overhead for the source code anal-
ysis in this experiment. Table III summarizes these findings.
As expected, there is an increase in time compared to the
original run. The external system calls to addr2line mainly
explain the overhead. We acknowledge that there is some
overhead for performing this analysis, but that is only felt
in the exploratory runs of the program when the user is trying

▶ High number (10878) of small read requests (< 1MB)
▶ 100% of all read requests
▶ Observed in 1 files:

▶ map_f_case_16p.h5 with 49164 (10%) small read requests
▶ 1 rank made small write requests to "map_f_case_16p.h5"

▶ /h5bench/e3sm/src/drivers/e3sm_io_driver.cpp: 120
▶ /h5bench/e3sm/src/drivers/e3sm_io_driver.cpp: 120
▶ /h5bench/e3sm/src/e3sm_io.c: 539 (discriminator 5)
▶ /home/abuild/rpmbuild/BUILD/glibc-2.31/csu/../sysdeps/x86_64/start.S: 122

▶ Recommended action:
▶ Consider buffering read operations into larger, contiguous ones
▶ Since the application uses MPI-IO, consider using collective I/O calls
to aggregate requests into larger, contiguous ones
(e.g., MPI_File_write_all() or MPI_File_write_at_all())

▶ High number (4122) of random read operations (< 1MB)
▶ 37.89% of all read requests
▶ Observed in 1 files:

▶ Below is the backtrace for these calls
▶ 1 rank made small write requests to "map_f_case_16p.h5"

▶ /home/abuild/rpmbuild/BUILD/glibc-2.31/csu/../sysdeps/x86_64/start.S: 122
▶ /h5bench/e3sm/src/cases/var_wr_case.cpp: 448
▶ /h5bench/e3sm/src/e3sm_io_core.cpp: 97
▶ /h5bench/e3sm/src/e3sm_io.c: 563
▶ /h5bench/e3sm/src/drivers/e3sm_io_driver_h5blob.cpp: 254
▶ /h5bench/e3sm/src/cases/e3sm_io_case.cpp: 136

▶ Recommended action:
▶ Consider changing your data model to have consecutive or sequential reads

▶ Application uses MPI-IO and issues 10877 (100.00%) independent read calls
▶ 10877 (100.0%) of independent reads in "map_f_case_16p.h5"
▶ Observed in 1 files:

▶ Below is the backtrace for these calls
▶ /h5bench/e3sm/src/e3sm_io.c: 539 (discriminator 5)
▶ /home/abuild/rpmbuild/BUILD/glibc-2.31/csu/../sysdeps/x86_64/start.S: 122
▶ /h5bench/e3sm/src/drivers/e3sm_io_driver_hdf5.cpp: 552
▶ /h5bench/e3sm/src/read_decomp.cpp: 253

▶ Recommended action:
▶ Consider using collective read operations and set one aggregator per compute node
(e.g. MPI_File_read_all() or MPI_File_read_at_all())

Fig. 13. Critical issues detected by Drishti for the baseline (run-as-is)
execution of E3SM in Perlmutter (NERSC) with Darshan metrics/traces.

to understand the I/O behavior of the application and tune it.
Once the valuable insights are gained from Drishti, users will
not have to incur additional overhead again. Moreover, we also
noticed that the overhead remained the same and even reduced
when the application scaled. Our experiments with 1024 ranks
resulted in an increase of 11% in runtime compared to when
both Darshan and DXT trace collection are enabled.

VI. RELATED WORK

Multiple profiling tools enable performance analysis and
visualization of HPC I/O applications. These rely on different
techniques to characterize and analyze I/O behavior and detect
bottlenecks. We covered some in Section II, but we expand
this discussion with other solutions and how Drishti can aid
in closing some of the existing gaps.

TAU [16] is a popular portable profiling toolkit for instru-
mentation, measurement, and analysis of HPC applications.
TAU can get CPU, memory, and communication metrics and
extract serial and parallel file I/O information. It can also in-
strument external I/O libraries to characterize I/O performance
using library wrapping. This allows TAU to intercept POSIX,
MPI-IO calls, and instrument libraries such as HDF5. NVIDIA
Nsight [48] is a commonly used tool to analyze and visualize
the performance of HPC workloads. It provides meaningful
insights such as the usage of CPU and GPU, vectorizations and
parallelism, and GPU synchronization to optimize application
performance. Other tools have a particular focus on I/O, such
as IOMiner [49], Total Knowledge of I/O (TOKIO) [50], and
Unified Monitoring and Metrics Interface (UMAMI) [51].

Regarding source code analysis, some tools employ this
technique to detect bottlenecks in HPC applications. Drill [52]
uses the source code of large-scale storage systems to train a
sentiment language model, which is then used to detect how
likely a runtime log entry is an anomaly. Drill also performs
static code analysis on these storage systems to collect features
through which it generates vector representations to train a
bidirectional Long Short-Term Memory neural network.

HPCtoolkit [19] focuses on node-based performance anal-
ysis. It also uses source code analysis to get the program’s
structure from an application’s binary. They build a mapping of
machine instruction addresses in the binary to its context in the
source code. HPCtoolkit relies on these mappings to attribute
performance metrics to parts of source code, such as inlined
functions and loops. This helps in further understanding the
performance of the application.

Some work has also been done to connect the gap between
I/O bottleneck detection and tuning. DXT Explorer [23] is one
such tool that tries to fill this gap by proposing an interactive
log-based web analysis tool to visualize the I/O behavior
of the application from DXT logs. It provides interactive
visualizations exploring different facets of the I/O behavior
of the application with zoom-in and zoom-out capabilities.
Drishti [24], [25] is another such tool that pinpoints the
root causes of I/O performance pitfalls by evaluating the
application based on certain triggers and categorizing the I/O



behavior based on the severity of the issue. It then provides a
set of actionable recommendations to the user.

The tools mentioned above are effective in the performance
analysis of HPC applications, some with a particular focus on
I/O. However, due to limitations in the trace collection strategy
and the ability to translate from the detected bottlenecks and
optimizations, these tools preclude the end-user from seeing
the complete picture related to the I/O performance of their
application. Drishti solves this problem by providing a solution
that uses cross-layer analysis, combining multiple performance
metrics pertaining to the I/O software layers and drills all
the way down to the source code level to identify the root
causes of I/O bottlenecks, providing a visualization that helps
understand the transformations the requests underwent until
reaching lower levels of the HPC I/O stack.

VII. CONCLUSION

The complexity of the HPC I/O stack combined with gaps
in the state-of-the-art profiling tools creates a barrier that does
not help end-users and scientific application developers solve
the I/O performance problems they encounter. Closing this gap
requires cross-layer analysis combining multiple metrics and,
when appropriate, drilling down to the source code. Drishti
explores how various sources of I/O can be combined (while
a standard is not in place) and harnessed to generate actionable
insights for the end-user. It drills into the source code to
provide valuable feedback on where the optimizations need
to be made when those are not easily tuned by parameters.
Drishti is open source and all of its components can be
accessed at https://github.com/hpc-io/drishti.

Our results with Drishti show 2.1× and 6.9× speedup
from run-as-is baseline executions on different applications.
We also acknowledge the overhead that our implementation
adds in Darshan; however, this overhead will not be present on
all executions but only on exploratory small-scale runs often
used to understand the I/O behavior, pinpoint I/O performance
problems, and fine-tune the application. The user might have
to incur some overhead on the initial execution of their ap-
plication during such exploratory stages. However, once tuned
according to the valuable insights provided by Drishti, they
can scale up and benefit from the insights (without additional
overheads) by turning off tracing.

Drishti currently relies on heuristics based on the HPC
I/O community’s collective experience to define its triggers.
Creating a standard to represent I/O metrics and traces or even
seamlessly being able to convert between divergent formats
would greatly benefit the development of more advanced
solutions that can further explore and extract insights from the
complex interactions between layers of the I/O stack, catering
to a much broader set of scientific applications.
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