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Constituting the bulk of rare-earth elements, lanthanides (Ln) need to be separated 

to fully realize their potential as critical materials in many important technologies. Solvent 

extraction is the most extensively used process to separate lanthanides on an industrial 

scale. Recently, preorganized ligands such as bis-lactam-1,10-phenanthroline show unique 

selectivity trends across the lanthanide series, indicating the synergistic effects of both N 

and O donors in complexing with lanthanides. So, we examined mixed N, O-donor ligands 

containing pyridinic N and N-oxide groups and evaluated their relative aqueous 

La(III)/Ln(III) selectivity by computing free energy changes for the exchange reaction 

between the designed ligands and a reference ligand via density functional theory (DFT). 

Three novel ligands show promise as excellent extractant agents in selectively separating 

trivalent lanthanides. However, no matter of our DFT investigations or other discovery of 

new ligands in rare-earth separations by solvent extraction, they are still largely based on 

trial and error, a low-throughput and inefficient approach. As a result, deep neural networks 

on the available experimental data of distribution coefficients measured for hundreds of 
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ligands for 14 Ln(III) ions have been trained to accurately and quickly predict their 

distribution coefficients for a given ligand and the extraction conditions. Four new-

synthesized ligands were found that their predicted distribution coefficients from our 

trained machine-learning model match well with their experimental values. Then, this 

trained model was applied for some large ligand databases automatically generated by 

molecule generation tools based on string-based representations. Several hexalkyl-

nitrilotriacetamide ligands were screened out with high potential in selective rare-earth 

separations. Therefore, our machine-learning approach paves the way for accelerating the 

discovery of new ligands for rare-earth separations. In additional to rare-earth elements, 

some theoretical insights towards atomically precise ligand-protected nanoclusters by first 

principles were performed. All works in this dissertation aim at chemically understanding 

the interactions between metals and organic ligands by different computational approaches. 
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Chapter 1. Introduction 

1.1 Introduction of rare earth elements and their applications 

Rare earth elements (REE) are the group of 17 chemical elements of the periodic 

tables, namely the fifteen lanthanides and the Yttrium and the Scandium, as defined in the 

International Union of Pure and Applied Chemistry (IUPAC). Scandium (Sc) and Yttrium 

(Y) are considered REE because they are usually found in the exactly same deposits of ore 

as the lanthanides, and they have similar physical and chemical properties. These 17 

elements are furtherly classified into light REE (Sc and La-Eu) and heavy REE (Y and Gd-

Lu).  

The applications of REE and its alloys have risen significantly during the past three 

decades in a variety of technologies, as summarized in Table 1-1, including but not limited 

to autocatalytic converters, computer memory, fluorescent materials, glass additives, LED 

lighting, mobile phones, rechargeable batteries, superconductors, and super magnets. They 

are known as the vitamins of the contemporary industry since they are the most vital 

components of all sophisticated technology. Due to their special characteristics, including 

their physical, chemical, magnetic, and luminescence, they contribute to a variety of 

technical benefits, including a lower energy need, greater efficiency, a smaller size, and a 

quicker. Their need for green technology, which is more effective, lighter, and smaller 

equipment, has increased in recent years. Even better and smaller analytical tools are made 

possible by these technologies. The usage of REE will continue in the foreseeable future 

due to the expansion of green technology. 
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Table 1-1. Industrial applications of REEs.1 

Area Applications 

Electronics 

Television screens, computers, cell phones, silicon chips, monitor 

displays, long-life rechargeable batteries, camera lenses, light 

emitting diodes (LEDs), compact fluorescent lamps (CFLs), 

baggage scanners, marine propulsion systems. 

Manufacturing 

High-strength magnets, metal alloys, stress gauges, ceramic 

pigments, colorants in glassware, chemical oxidizing agent, 

polishing powders, plastics creation, as additives for 

strengthening other metals, automotive catalytic converters. 

Medical Science 

Portable X-ray machines, X-ray tubes, magnetic resonance 

imagery (MRI) contrast agents, nuclear medicine imaging, cancer 

treatment applications, and for genetic screening tests, medical 

and dental lasers. 

Technology 

Lasers, optical glass, fiber optics, masers, radar detection devices, 

nuclear fuel rods, mercury-vapor lamps, highly reflective glass, 

computer memory, nuclear batteries, high temperature 

superconductors. 

Renewable Energy 
Hybrid automobiles, wind turbines, next-generation rechargeable 

batteries, biofuel catalysts. 

 

Not all REEs are found in nature in the form of pure metal. The estimated average 

concentration of REE in the earth's crust is between 130 and 240 µg/g, which is really much 

greater than the average concentration of most frequently used elements. Because of the 

significance of REE in applications as opposed to their erratic supply and challenging to 

discover alternatives, the separation of REE has been identified as one of the seven 

chemical separations to transform the world. 



 3 

1.2 Solvent extractions in the separation of rare earth elements 

High purity levels of individual rare-earth compounds or metals are needed for 

high-tech applications and new materials; as a result, mixed rare earths obtained from rare-

earth concentrates must first be separated into pure or highly pure individual rare-earth 

compounds before being used in high-tech applications. It is exceedingly challenging to 

separate and create high-purity individual rare-earth element products from the mixed rare 

earths using simple fractional crystallization or precipitation because the features of the 

physics and chemistry of the nearby rare-earth elements are comparable. Solvent 

extraction-separation is the most efficient, cost-effective, and practical method of 

separating mixed rare earths into separate rare-earth elements with high-purity results. In 

lanthanide atoms, the 4f orbitals are gradually filled as the atomic number increases, 

although the arrangement of the valence electrons in the outermost shell is the same for all 

species. The remarkably comparable physical and chemical characteristics of the elements 

result from the screening of the 4f orbitals. The so-called "lanthanide contraction," in which 

the ionic radius gradually reduces from La3+ (1.06 Å) to Lu3+ (0.85 Å), is another 

comparable effect. 

Solvent extraction is liquid-liquid extraction, which means that the solute is 

transferred from one solvent to another due to the difference in solubility or distribution 

coefficient between two immiscible or slightly soluble solvents, and after repeated 

extractions, so that the vast majority of solutes can be extracted to achieve enrichment. The 

solvent extraction method has the advantages of large processing capacity, good separation 

effect, high recovery rate, fast equilibrium speed, simple equipment, and high automation.2 
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The disadvantage is that the price of the extractant is high and the acid consumption is 

large. Since the 1970s, with the rapid development of organic chemistry, inorganic 

chemistry, petrochemical and other fields, it has brought a good development environment 

for the development and application of new, efficient and low-cost extractants. The solvent 

extraction method is used to separate, purify, and concentrate metal ions worldwide, and it 

has been widely used in the purification of single rare earth elements.3 According to the 

differences in the chemical properties of the extractants, they are mainly divided into acidic 

extraction systems, neutral extraction systems, basic amine extraction systems and ionic 

liquid systems, etc. 

Acidic extractant has better extraction and separation performance, so it is widely 

used in rare earth separation industry. Commonly used acidic extractants are: organic 

phosphoric acid extractants P204, P507 and Cyanex272; carboxylic acid extractants CA12, 

CA100 and naphthenic acid. In industry, organic phosphoric acid extractants P507, P204 

and Cyanex272 are mainly used to extract, group and separate all rare earths, and organic 

carboxylic acid extractants CA12 and naphthenic acid are used to extract and separate 

yttrium. P204 is mainly used for the separation and purification of light rare earths, and 

P507 is mainly used for the separation and purification of heavy rare earths, but they have 

the problems of small separation coefficient, low selectivity and large strip acidity. Due to 

the steric hindrance effect of its own structure, Cyanex272 has a larger separation 

coefficient for rare earth extraction, so the selectivity is better than that of P204 and P507, 

and the stripping is easier. Cyanex272 also has its own shortcomings, such as small 

extraction volume and easy emulsification during extraction. At present, the separation 
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process of solvent extraction method is very mature, but the existing extraction system also 

has obvious shortcomings. Bontha et al. conducted the first study on the separation of 

dysprosium using PC88A in a phosphoric acid system, and found that the extraction and 

combination of organic phase dysprosium.4 According to PC88A, rare earth extraction has 

different degrees of selectivity depending on the acidity of the solution and the 

concentration of the extractant. 

The neutral extraction system can be divided into neutral phosphorus extractant, 

neutral oxygen-containing extractant, neutral sulfur-containing extractant and substituted 

amide extractant. Common extractants are tributyl phosphate (TBP), Cyanex921, TOPO 

and P350.5 Phosphorus extractant is the most widely used in industry (Table 1-2), which 

has the advantages of good extraction performance and low acidity in stripping. During the 

extraction process, the phosphoryl group of the extractant forms coordination with rare 

earth, and the rare earth is separated and enriched from the rare earth leaching solution.  

Amine extractants use nitrogen atoms as extraction functional groups to extract rare 

earths. The nature of the substituents on the nitrogen atoms determines the pH of the 

extractants. The substituents of such extractants are usually long-chain alkyl groups, 

increasing their alkalinity become stronger. At present, amine extractants that are widely 

used in the extraction and separation of rare earths include primary amine (N1923), 

secondary amine, tertiary amine and quaternary amine salts. Amine extractants have the 

advantages of strong extraction performance, good selectivity and large extraction 

capacity. However, at present, amide extractants have disadvantages such as complex 
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synthesis processes, small extraction load, difficult recovery, and the need for a large 

amount of salting-out agent, and are gradually being replaced at present. 

Table 1-2. Common extractants used in rare-earth separation industry6 

Industrial extractant shortened Molecular formula 

Di(2-ethylhexyl)phosphoric acid P204 (C8H17O)2P(O)OH 

2-Ethylhexyl 2-ethylhexylphosphonic acid 
P507 or 

PC88A 
(C8H17O)2P(O)OC8H17(OH) 

Cyanex 272 
Cyanex 

272 
R2PO(OH) 

Tributyl phosphate TBP (C4H9O)3PO 

Di(1-methylhepthl)methylphosphonate P350 (C8H17)3PO 

Tri-n-octylamine (Alamine-336) N235 (CnH2n + 1)3N n = 8–10 

Aliquat 336 N263 [CH3-N-(C8–10H17–21)3]
+ Cl−  

Primary amine N1923  (CnH2n + 1)2CHNH2 n = 9–11 

 

Many extractants have the potential to be poisonous and combustible and to 

generate secondary contamination as shown in Figure 1-1. The current focus of solvent 

extraction research is on selective extractants and organic solvent optimization to increase 

enrichment factors and separation efficiency. In order to increase separation efficiency and 

enrichment factors, we think that the present focus of solvent extraction research should be 

on developing green extractants with high separation selectivity. Studying the methods for 

recovering and reusing the vast amounts of organic solvent waste liquid that the current 

process produces. 
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Figure 1-1. Natural ligands used in REE separations at laboratory scale in literature.7 
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1.3 Recent research on selective extractants  

1.3.1 New types of extractants 

A series of ligands combing soft and hard donors based on the rigid phenanthroline 

skeleton has been a strategy of promising extractants for actinide (An) and lanthanide (Ln) 

selective separation since 2014.8-12 Due to a mount of similarities between Ln and An, 

especially their trivalent ions, more investigations on phenanthroline-derived ligands in 

Ln(III) selective separations have been performed recently. Jansone-Popova et al. reported 

a separation protocol that employs shape-persistent 2,9-bis-lactam-1,10-phenanthroline 

(BLPhen) ligands exhibiting unparalleled selectivity for light trivalent lanthanides in 

2019.13 As shown in Figure 1-2a, by using BLPhen ligand 1 in a nitric environment, an 

impressive extraction efficiency over the lanthanide family was obtained. Even in the 

presence of competing transition metals, the highly preorganized binding pockets of the 

ligands enabled the high-fidelity separation of lanthanides in a biphasic separation system. 

Notably, by changing the molecular stiffness of the extractant, the selectivity trends of the 

BLPhen ligands towards metal ions over the lanthanide series may be chemically 

controlled. In 2020, Xiao et al. reported extraction properties of tetrabutyl-(1,10-

phenanthroline-2,9-diyl)bis(phosphonate) (C4-POPhen) ligand on La(III), Eu(III) and 

Lu(III) in different solvents as shown in Figure 1-2b.14  
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Figure 1-2. (a) Jansone-Popova et al. reported variation of logD in the extraction of Ln(III), 

by BLPhen ligand 1 and BLPhen ligand 2 from 0.9M HNO3 and 0.9M HCl media into 1,2-

dichloroethane at 25oC after 25 h.13 (b) Xiao et al. reported extraction results of Ln(III) (La, 

Eu, and Lu) with C4-POPhen in n-octanol as a function of different inorganic acids.14 
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1.3.2 Structure-function relationship  

In addition to exploring the new strategy of selective ligands in solvent extractions, 

understanding the structure-function relationship on the known ligands to optimize their 

structure is another thought for higher selectivity. Diglycolamide (DGA) ligand, a widely 

used ligand at the laboratory scale, has been shown that the shortening of N,N′-alkyl 

substituents leads to an improved extraction efficiency of lanthanides(III) according to the 

invitations on three n-alkyl substituted DGA ligands.15 However, other factors such as 

symmetry, side chain, heteroatom, etc., have not been examined due to the limitation of 

synthesis speed. Recently, Jansone-Popova et al. reported the syntheses and measurements 

on D values of light Ln(III) for 15 DGA ligands (Table 1-3).16 Their study reveals that 

reduced extraction of lanthanides(III) is caused by increased crowding at the metal-ion 

binding site, which interferes with the effective accommodation of counterions in a 

secondary coordination shell, when the N,N′-alkyl group size is increased. Importantly, the 

better lanthanide extraction is caused by moving the branching sites on the N,N′-alkyl 

substituents farther away from the amide functional groups (III). Nevertheless, similar 

study combing both experimental measurements and theoretical simulations are still 

limited by synthesis routes, computational cost, and other complicatedness of lanthanides.  
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Table 1-3. Dependence of alkyl substituents’ length and size of DGA on the separation of 

La(III) and Sm(III).16 

N,N-substituent N′,N′-substituent DLa DSm SFSm/La 

n-octyl n-octyl 0.0 ± 0.47 5.99 ± 0.07 90 ± 39 

2-ethylhexyl 2-ethylhexyl 0.04 ± 0.27 0.11 ± 0.11 2.9 ± 0.4 

methyl n-octyl 4.13 ± 0.02 259 ± 0.2 63 ± 8 

methyl 2-ethylhexyl 0.7 ± 0.04 40.9 ± 0.3 56 ± 13 

methyl 4-butyldecyl 0.14 ± 0.06 2.66 ± 0.05 20 ± 0 

methyl 5,9-dimethyldecyl 0.66 ± 0.04 8.37 ± 0.20 13 ± 2 

ethyl n-octyl 0.73 ± 0.04 61.9 ± 0.1 85 ± 4 

propyl n-octyl 0.34 ± 0.07 38.5 ± 0.1 114 ± 5 

n-octyl, methyl n-octyl, methyl 3.69 ± 0.04 >3 × 103 >1 × 103 

n-octyl n-octyl, methyl 0.34 ± 0.10 23.2 ± 0.1 69 ± 2 

 2-methyldec-2anyl 1.93 ± 0.07 21.5 ± 0.0 11 ± 0 

n-octyl n-decyl 0.08 ± 0.07 11.1 ± 0.0 146 ± 14 

n-octyl 3,5-trimethylhexyl 0.05 ± 0.07 1.52 ± 0.02 32 ± 2 

n-octyl 4-butyldecyl 0.00 ± 0.86 0.67 ± 0.03 211 ± 103 

n-octyl 5,9-dimethyldecyl 0.040 ± 0.07 4.21 ± 0.02 97 ± 4 
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1.4 Scientific questions and challenge 

Although solvent extraction is the best commercial method for separating rare 

earths, its separation efficiency is limited, and many extractions must be performed in order 

to obtain high purity.17-19 As a result, more efficient extractants in trivalent lanthanides 

selective separations are required. There are two approaches to reaching this long-term aim 

at extremely strong and selective ligands for trivalent lanthanides. One is designing a new 

type of molecule, the other is the modification on the substituent of a known ligand. An 

accurate simulation on the selectivity of a given ligand could significantly accelerate the 

exploration on new ligands that synthesis and measurement could focus on the candidate 

with computational high selective. In addition, plenty of simulations on ligands’ selectivity 

according to different structures would conclude more structure-function relationships to 

help further design. Hence, we have two imperative questions to solve for design, evaluate 

and comprehend new selective ligands in lanthanide separations: 1) how do different 

simulation methodologies at different scales evaluate the selectivity of a ligand, using 

thermodynamical constants relating to the selectivity or directly simulating the extraction 

property. 2) how to use simulated results to expand the diversity of selective extracts. 

This dissertation presents our several works related to the design of strong and 

selective ligands by different computational methods, new type of phenanthroline-derived 

ligands by density functional theory simulations, new machine learning approach on 

predictions of extraction property, combing machine learning model and new ligands for 

high-throughput screenings and new inspirations from Ln(III)/An(III) to lanthanide 

separations.   
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Chapter 2. Computational Methods 

The computational methods employed in this thesis will be briefly introduced in 

this chapter, along with their primary functions. In the chapters that follow, the 

computational methods employed in each chapter will be explored in detail. 

 

2.1 Density functional theory (DFT) 

2.1.1 Basic theories 

Density Functional Theory (DFT), a popular and effective approach, has improved 

how electron-electron interactions are treated while building on the achievements of 

Hartree-Fock theory. In DFT, the electron density rather than the wavefunction itself is 

used to calculate the locations of atomic nuclei and the ground state energy of a system. A 

many-electron system's electron density in DFT is: 

ρ(𝐫) = 𝑛 ∫ Ψ∗(𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏)Ψ (𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏) 𝑑σ1𝑑𝑿𝒏 (Eq. 2.1) 

And the total energy of the system in terms of the electron density is: 

𝐸[ρ(𝐫)] = 𝑇[ρ(𝐫)] + 𝑉𝑛𝑒ρ(𝐫) + 𝐽[ρ(𝐫)] + 𝐾[ρ(𝐫)] (Eq. 2.2) 

The energy is a function of a function because it depends on density, which in turn 

depends on the spatial coordinates of the electrons. The theory's name comes from this 

functional, which is referred to as the energy density functional and is shown by square 

brackets i.e. 𝐸[𝜌(𝑟)]. Instead of solving for the system with 3n variables, where n is the 

number of electrons, calculations on the density of a system, as opposed to the 
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wavefunction, are easier (and hence faster). This is because the electron density only 

depends on three variables. 

Modern DFT begins with the Kohn-Sham equations, which take into account a 

fictional non-interacting system of electrons with a ground state density that is exactly the 

same as the real, fully interacting system of electrons. By taking into account this 

hypothetical system, the difficulty shifts from locating the universal functional to locating 

a hypothetical system with the same density as the system with interacting particles. In 

order to determine the kinetic energy, orbitals are introduced in the Kohn-Sham equations. 

The exchange and correlation functionals are only needed as approximations as a result. 

The kinetic energy of the non-interacting system, 𝑇NI, must be increased through 

interactions in order to transfer the energy of the non-interacting system onto the interacting 

system. These comprise Coulombic interactions, Vne, interactions between nuclei and 

electrons, J, and an exchange-correlation component, Exc, which contains the negligible 

kinetic energy left over from particle interactions and exchange-correlation interactions 

between electrons. The Kohn-Sham DFT energy, EKS, can be expressed generally as: 

𝐸𝐾𝑆[ρ(𝐫)] = 𝑇𝑁𝐼[ρ(𝐫)] + 𝑉𝑛𝑒ρ(𝐫) + 𝐽[ρ(𝐫)] + 𝐸𝑋𝐶[ρ(𝐫)] (Eq. 2.3) 

The exchange-correlation term is the sole unidentified term in this equation for EKS. Then, 

Eq. 2.3 can be resolved using Kohn-Sham equations, which are Schrödinger-like equations: 

(−
1

2
𝛻2 + 𝑉𝐾𝑆(𝐫)) 𝜑𝑖(𝒓) = 𝜀𝑖𝜑𝑖(𝐫) (Eq. 2.4) 

In these equations, 𝜀𝑖 is the energy associated with the orbital 𝜑𝑖 and 𝑉KS is the 

Kohn-Sham potential, which is the necessary effective potential to produce an electron 

density that is similar to that of a system with interacting particles. The Kohn-Sham orbitals 
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that are the answers to these equations are denoted by the symbol 𝜑𝑖
KS(𝐫), and the sum of 

the square moduli of the occupied Kohn-Sham orbitals determines the overall electron 

density: 

ρ(𝐫) =  ∑ |φ
𝑖
𝐾𝑆(𝐫)|2

𝑖

(Eq. 2.5) 

The SCF approach, as used in Hartree-Fock theory, may be used to solve these Kohn-Sham 

equations using a starting set of molecular orbitals. Hartree-Fock theory and Kohn-Sham 

DFT are quite similar, but they vary in that Kohn-Sham DFT is an accurate technique while 

Hartree-Fock theory is an approximation, assuming that the precise form of Exc is known 

and that the electron density can be described using a single electronic configuration. Exc 

must, however, be approximated in real life. 

The exchange-correlation functional (xc-functional) has several approximations 

that may be used to compute the ground state energies of molecular systems with varying 

degrees of precision. The simplest form of exchange-correlation functional, and the first 

rung on the Jacob’s Ladder, is the Local Density Approximation (LDA),1, 2 in which the 

exchange-correlation energy at a given point is equal to that of a uniform electron gas of 

the same electron density, for which 𝐸xc is known (for all intents and purposes) exactly, as 

follows: 

𝐸𝑋𝐶
𝐿𝐷𝐴[ρ(𝐫)] =  ∫ ρ(𝐫)ε𝑋𝐶[ρ(𝐫)] 𝑑𝐫 (Eq. 2.6) 

Where xc stands for the energy density of exchange-correlation. The LDA functional has 

a number of drawbacks, including a tendency to over bind atoms in molecules and a 

preference for more homogeneous electron densities than the precise density.1, 2  
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The Generalized Gradient Approximation (GGA) and meta-GGA functionals are 

the next two steps up from LDA because they express the exchange-correlation energy not 

only as a function of the density at a specific point in space but also as a function of the 

gradient and higher derivatives of the density. This improves LDA. GGA functionals take 

into account the first derivative, ∇𝜌, whereas meta-GGA functionals take into account the 

second, ∇2𝜌, as follows: 

𝐸𝑋𝐶
𝐺𝐺𝐴[ρ(𝐫)] =  ∫ ρ(𝐫)ε𝑋𝐶[ρ(𝐫), 𝛻ρ(𝐫) ] 𝑑𝐫 (Eq. 2.7) 

𝐸𝑋𝐶
𝑚𝑒𝑡𝑎−𝐺𝐺𝐴[ρ(𝐫)] =  ∫ ρ(𝐫)ε𝑋𝐶[ρ(𝐫), 𝛻ρ(𝐫), 𝛻2ρ(𝐫)] 𝑑𝐫 (Eq. 2.8) 

The exchange-correlation energy is calculated via a variety of different GGA 

functionals, each of which derives its parameters from first principles or semi-empirically 

from experimental data, such as atomization energies. Examples of such functionals 

include the B88P86 (BP) functional, which combines the P86 correlation functional and 

the B88 exchange functional developed by Perdew and Wang. Other examples include the 

non-empirical Perdew-Burke-Ernzerhof (PBE) functional,3, 4 which is a refinement of 

earlier work by Perdew et al. and includes the BP functional, and the semi-empirical BLYP 

functional,5 which is named after Becke for the B88 exchange part and Lee, Yang and Parr 

for the correlation part, which was parameterized using the correlation energy of the helium 

atom. While not as effective for other qualities, GGA functionals perform well for the 

prediction of structures. The meta-GGA functionals, which are on the following rung and 

are less frequent than the GGA functionals, provide a marginal improvement over the 

former at a negligible additional cost to computation. The non-empirical functional TPSS, 
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which bears the names Tao, Perdew, Staroverov, and Scuseria, is an illustration of a well-

known meta-GGA functional.3, 6 It was created in an effort to improve computation 

accuracy.  

In the Hartree-Fock approximation, the exchange contribution to the exchange-

correlation energy, which is approximated in the "pure" xc-functionals (such as PBE, 

BLYP), is accurate. A portion of this Hartree-Fock exact exchange energy is present in 

hybrid-GGA functionals, which are the fourth step on the ladder. 

 The semi-empirical B3LYP functional5, 7-10 and the non-empirical PBE0 

functional3, 4, 11 are two examples of common hybrid functionals. Exact exchange, LDA 

and GGA (B88) exchange, and LDA and GGA (LYP) correlation are all included in the 

B3LYP functional: 

𝐸𝑋𝐶
𝐵3𝐿𝑌𝑃 = (1 − 𝑎)𝐸𝑋

𝐿𝐷𝐴 + 𝑎𝐸𝑋
𝐻𝐹 + 𝑏𝛥𝐸𝑋

𝐵88 + (1 + 𝑐)𝐸𝑐
𝐿𝐷𝐴 + 𝑐𝐸𝑐

𝐿𝑌𝑃 (Eq. 2.9) 

The three parameters, a, b, and c, are 0.2, 0.7, and 0.8, respectively, and they are fit to 

experimental data. Instead, using perturbation theory, the PBE0 functional calculates the 

exact exchange contribution and combines exchange from the PBE functional with 25% of 

the Hartree-Fock exact exchange energy as follows: 

𝐸𝑋𝐶
𝑃𝐵𝐸0 = 0.25𝐸𝑋

𝐻𝐹 + 0.75𝐸𝑋
𝑃𝐵𝐸 + 𝐸𝑐

𝑃𝐵𝐸 (Eq. 2.10) 

 

2.1.2 Relativistic effective core potentials for lanthanides 

While relativistic effects on lighter atoms are minimal, they become more 

significant when the electron's speed approaches the speed of light as they approach c. The 

radial velocity for the innermost electrons rises to a considerable fraction of c in heavier 
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atoms, among which the lanthanides and actinides investigated in this work are most 

certainly counted, and these effects become noticeable. Effective core potentials (ECPs) 

address the valence electrons explicitly while substituting a number of an atom's core 

electrons with a potential field. Because lanthanides and other heavy elements have a large 

number of core electrons, using pseudopotentials can significantly lower the cost of 

computations involving these elements. The f-electrons can be treated explicitly in 

pseudopotentials for the f-block elements, or they can be included in the core. The latter, 

known as "f-in-core" ECPs,12, 13 reduces computing cost at the price of accuracy. However, 

while the 5f orbitals of the actinides are more engaged in chemical bonding than the 4f 

orbitals of the lanthanides, which are typically thought of as 'core-like' and not directly 

involved in chemical bonding, care must be taken when employing these f-in-core ECPs 

for the lanthanides. 12, 13 

Additionally, relativistic effective core potentials (RECPs), which incorporate an 

implicit treatment of relativistic effects into the potential, offer an alternate approach for 

dealing with the impacts of relativity. Since the core electrons are primarily affected by 

direct relativistic effects, RECPs permit the employment of a non-relativistic Hamiltonian 

for the valence electrons and offer indirect relativistic effects for the valence electrons. It 

has been proposed that RECPs are more accurate than the majority of popular scalar 

relativistic techniques.14 Two commonly used RECPs for lanthanides are large-core (LC) 

and Stuttgart small-core (SSC) RECPs. Large-core RECPs put 5s, 5p, 6d, and 6s shells in 

the valence space.15-17 Small-core RECPs have 28 electrons for the lanthanides.18, 19 The 

corresponding valence basis sets associated with small-core pseudopotentials are 
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(14s13p10d8f) contracted to [10s8p5d4f] for lanthanides. The basis set associated with 

lanthanide large-core pseudopotentials is (7s6p5d) contracted to [5s4p3d]. 

 

2.1.3 Modelling of solvent extractions 

Qualitative predictions for selectivity trends throughout the lanthanide series are 

now hindered by the lack of a clear theoretical account of the solvation effects for trivalent 

metal ions. Ivanov and Bryantsev developed a new polarizable dielectric continuum model 

to explain the aqueous-phase selectivity for the Ln(III) series in 2016,20 explicitly taking 

into account the initial coordination shell surrounding a trivalent metal ion and implicitly 

accounting for the impact of the outer hydration shells. They employed RECP DFT in a 

number of flavors starting from a model process where two Ln(III) ions swap ligands (Eq. 

2.11) where m is the overall charge of the respective complexes. The biggest flaw in such 

models is that they only explicitly account for the initial hydration shell surrounding a 

multivalent ion, which leaves out the solvation-free energy of the ion. They postulate that 

a dense arrangement of poorly coordinated counterions can take the role of a broad sheath 

of water molecules that were previously helping to disseminate high cationic charge into 

the medium. An improved equation Eq. 2.12 was used to define the aqueous selectivity for 

La(III) over the other Ln(III) ions. The requirement that the total charge of each complex, 

|m|, is less than one determines the number of nitrate anions in equation 2.12. Their findings 

support the notion that the aqueous-phase selectivity produced by the model suggested in 

Eq. 2.12 closely tracks experimental data.20, 21 

La(H2O)9
3+

(aq) + Ln(L)(H2O)x
m

(aq) ⇌ La(L)(H2O)x
m

(aq) + Ln(H2O)9
3+

(aq)              (Eq. 2.11) 
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La(NO3)3(H2O)3(aq) + Ln(L)(NO3)y(H2O)x
m

(aq) ⇌ La(L)(NO3)y(H2O)x
m

(aq) + 

Ln(NO3)3(H2O)3(aq)                                                                                                (Eq. 2.12) 

 

2.2 Machine learning 

With the rise of artificial intelligence technology, in the field of chemistry, 

traditional methods based on experiments and physical models are gradually merging with 

data-based machine learning paradigms. More and more representations of data for 

computer processing are being developed and increasingly adapted to generative-dominant 

statistical models. 

Machine learning improves existing methods of simulating chemical environments. 

We have already mentioned that computational chemistry allows us to partially bypass 

laboratory experiments. However, the computation of computational chemistry that 

simulates quantum mechanical processes is poor in terms of computational cost and 

accuracy of chemical simulations. A central problem in computational chemistry is to solve 

the electron Schrödinger equation for complex molecules—that is, to compute properties 

of interest given the positions of the ensemble of nuclei and the total number of electrons. 

Exact solutions are possible only for single-electron systems, while for other systems we 

have to rely on "good enough" approximations. Furthermore, many popular methods for 

approximating the Schrödinger equation scale exponentially, making brute force solutions 

difficult to solve. Over the last century, many methods have been developed to speed up 

computation without sacrificing too much accuracy. However, even some "cheaper" 

methods can lead to computational bottlenecks.  
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One way AI can speed up these calculations is to combine them with machine 

learning. Another approach bypasses the modeling of physical processes entirely by 

directly mapping molecular characterization to desired properties. Both methods allow 

chemists to more efficiently examine chemical databases for various properties, such as 

atomic charge, ionization energy, and more. The basic workflow for building machine 

learning models on the basis of supervised learning can be broken down as follows.22 

1) Data pre-processing 

2) Feature selection 

3) Model selection 

4) Fitting the model to the training data 

5) Using the model to predict values of the response variables for the test data. 

Various machine learning methods are used to build mathematical models for 

compound prediction. These methods include linear regression models, Bayesian neural 

networks, random forests (RF), partial least squares, and support vector machines (SVMs). 

In the face of some complex molecular property prediction, traditional machine learning 

algorithms are still insufficient, and deep learning technology has added a new dawn to 

cheminformatics research with its outstanding capabilities. What are the advantages of 

deep learning algorithms over traditional machine learning algorithms? First of all, for 

traditional machine learning algorithms, there are three characteristics: features are 

artificially set, in the process of feature extraction or construction, different transformations 

and approximations are applied to the input features; simple template matching, only 
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considering how The use of the input feature set produces relatively satisfactory results, 

and does not pay attention to the characterization of the problem; the expressiveness of the 

model gradually becomes stronger as the number of parameters increases. In deep learning, 

the input features are represented at different levels through a multi-layer artificial neural 

network (ANN), realizing the concept of "hierarchical representation", and then optimizing 

the performance of the model through a variety of training techniques. The surface layer 

of each of these layers may also be applied to other new problems. The expressiveness of 

the model grows exponentially with the number of layers.23 With such characteristics, deep 

learning can directly perform feature training on the basis of input raw data, and finally 

obtain a competitive prediction model. In short, deep learning algorithms are not only 

capable of building predictive models, but also have the potential to learn features 

automatically. 

The concept of deep learning stems from artificial neural networks. Artificial neural 

network is based on the basic principle of neural network in biology. After understanding 

and abstracting the structure of the human brain and the response mechanism of external 

stimuli, it uses the knowledge of network topology as the theoretical basis to simulate the 

processing mechanism of the human brain's nervous system for complex information. A 

mathematical model. ANN is an operational model composed of a large number of nodes 

(or neurons) connected to each other. Each node represents a specific output function, 

called an activation function, and the line between each two nodes represents a weight. In 

order to minimize the prediction error, the weights in the ANN model will be adjusted with 

continuous training. The network consists of 3 parts: input layer, hidden layer and output 
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layer. The 3-dimensional input information is mapped to the 1-dimensional output value 

through the nonlinear combination of neurons in each layer. The performance of the ANN 

model depends on the multi-layer nonlinear transformation ability of the hidden layer.23 As 

the number of layers increases and the layer width (the number of neurons in each layer) 

increases, more complex and abstract features will be constructed, and correspondingly, 

the model can also learn more complex and abstract representations. In this thesis, we will 

use ANN as the core algorithm to apply a machine-learning approach for predictions of 

solvent extraction properties of both trivalent lanthanides and actinides by different 

ligands. 
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Chapter 3. N-oxide Ligands for Selective Separations of Lanthanides 

3.1 Abstract 

Preorganized ligands such as bis-lactam-1,10-phenanthroline (BLPhen) show 

unique selectivity trend across lanthanide series, indicating the synergistic effects of both 

N and O donors in complexing with lanthanides. We hypothesized that by replacing amide 

functional group with N-oxide functionality would open the door to new ligand 

architectures with improved selectivities. To test this idea, we computationally examined 

mixed N,O-donor ligands containing pyridinic N and N-oxide groups and evaluated their 

relative aqueous La(III)/Ln(III) selectivity by computing free energy changes for the 

exchange reaction between the designed ligands and a reference ligand. Three novel 

ligands show promise as excellent extractant agents in selectively separating trivalent 

lanthanides. The extent of conjugation, the complex geometry, and the electron 

accumulations on the two O-donors of the N-oxide groups are found to be important factors 

in dictating the selectivity trends. 

 

3.2 Introduction 

Rare earth elements (REEs), including fifteen lanthanides (Ln), Sc, and Y, find broad 

applications in enabling many important technologies and industries.1-6 However, they 

occur naturally together due to their similar properties and must be separated. Solvent 

extraction is the primary means to separate different lanthanides on an industrial scale.7 

Due to lanthanide contraction, most ligands prefer to bind heavier lanthanides than the 

lighter ones, because of the decreasing ion size traversing the series. Commercial 
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extractants employ oxygen donors such as tributyl-phosphate (TBP),8 diglycolamide 

(DGA),9-11 and bis(2-ethylhexyl) phosphoric acid  (D2EHPA).12 Ligands with N donors 

such as alkylated bis-triazinyl pyridines (BTP),13 6,6′-bis-triazinyl-2,2′-bipyridine 

(BTBP),14 and 2,9-bis-triazinyl-1,10-phenanthroline (BTPhen)15, 16 are also used.  

Recently, ligands combining hard O-donor and soft N-donor atoms have been 

recognized as efficient extractants in that amide oxygen donors can provide stronger metal-

ion binding. One such example is 2,9-bis-lactam-1,10-phenanthroline (BLPhen)17 that 

shows unparalleled selectivity for light trivalent lanthanides.18 The rigidity of the BLPhen 

backbone has been shown via quantum chemical calculations to be an important factor 

influencing the selectivity of lanthanide ions.18 First principles molecular dynamics 

simulations suggested a tight binding pocket between BLPhen and Ln(III).19 Therefore, 

combining O-donor and N-donor atoms could be a general strategy to design new ligands 

for separations of lanthanides. An innovation would be to introduce different types of N,O 

donors on the BLPhen framework. 

N-oxide donors are common in chelate complexes of transition metals.20 More 

interestingly, some pyridine-N-oxide-derived ligands have exhibited abilities to selectively 

coordinate to Ln(III)21-23 or actinides24 whose separations can provide enlightenment to 

Ln(III) behaviors. Moreover, computational approaches haven been increasingly used to 

help design new ligands, including the data-driven machine learning approach.25 Our goal 

here is to computationally examine new mixed N,O-donor ligands based on phenanthroline 

and N-oxide functionalities for complexation across the Ln(III) series, in order to gain 

insights into their potential for separating Ln(III)s and correlate with their molecular 
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structure and electronic structure in terms of key descriptors. Below we explain our 

computational approach. 

 

3.3 Computational Method 

Following a previously established computational strategy,18, 26 the relative aqueous 

selectivity for La(III) over the other Ln(III) ions was evaluated by computing the Gibbs 

free energy change, ΔΔGaq(La/Ln), of the following ligand–exchange reaction: 

[La(Lref)](NO3)3(aq)+[Ln(Ltarget)](NO3)3(aq) ⇌ [La(Ltarget)](NO3)3(aq)+[Ln(Lref)](NO3)3(aq) (1), 

where Lref and Ltarget represent the refence ligand and the target ligand (the designed one), 

respectively. A negative ΔΔGaq(La/Ln) means that La(III) prefers complexation with the 

target ligand and Ln(III) prefers the reference ligand. For the same La/Ln pair, the target 

ligand with more negative ΔΔGaq(La/Ln) than another target ligand would have higher 

La/Ln selectivity. Following the previous study,18 we use 2,9-bis-amide-1,10-

phenanthroline (BAPhen; Scheme 3-1) as the reference ligand. 

 

Scheme 3-1. The 2,9-bis-amide-1,10-phenanthroline (BAPhen) ligand, used as the 

reference ligand to determine free-energy change for the ligand–exchange reaction 

between La(III) and Ln(III). 

 

The energies of the four 1:1 ligand-metal complexes in Reaction (1) were computed 

at the B3LYP level of density functional theory (DFT) using the Gaussian 16 (revision 
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C.01) program package.27 6-31+G(d) basis sets were used for the main-group elements and 

hydrogen. The corresponding large-core (LC) relativistic effective core potentials (RECP) 

were used for all lanthanides elements.28 Frequency calculations were performed to ensure 

real vibrational modes for the minimum ground-state structures and to provide zero-point 

energies (ZPEs). ZPEs and entropy contributions (T=298.15 K) calculated at the 

B3LYP/LC/6-31+G(d) level were added to the total energy to obtain the Gibbs free 

energies. The geometry optimizations started from the corresponding experimental crystal 

structures by appropriately modifying donor atoms, substituents, and backbone of the 

BLPhen ligands. All calculations were performed in aqueous environment by employing 

the IEF-PCM (integral equation formalism of the polarizable continuum model) implicit 

solvation model to obtain solvation free energies in the aqueous solution.29 To correct the 

errors on the free energies of low-frequency vibrational modes from the harmonic oscillator 

model, frequencies lower than 60 cm-1 were set to 60 cm-1 by following the quasiharmonic 

approximation.30  

 

3.4 Results and discussion 

3.4.1 Changing amides in BLPhen to N-oxides 

Our design starts with modification of the O donors on the BLPhen ligand (1a in 

Figure 3-1) by replacing the amide moieties with N-oxides (1b-1d). Figure 3-1b 

summarizes the computed ΔΔG trends across the Ln(III)s for the four ligands. One can see 

that the La(III)/Ln(III) selectivity becomes worse upon replacing one or both amides in 1a 

with N-oxide functionality. Figure 3-1b also shows an interesting peak at Ce, meaning that 
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the target ligands (1a-1d) prefer to bind Ce(III) over La(III). This non-linear trend at Ce 

has also been observed in several experimental reports,18, 31 suggesting a different chemical 

nature of Ce(III) from nearby Ln(III)s.  

To understand the overall performance from the N-oxides (ligands 1b-1d), we 

determined the partial charges on the O donors by the natural bond orbital (NBO) 

populations and found the charges of -0.68 e for 1a, -0.64 e for 1b, and -0.63 e for 1c and 

1d. In other words, changing amide moieties to N-oxides does not make the O donors more 

negative, as initially hypothesized. This is likely due to the enhanced π conjugation from 

the pyridinium group in 1b-1d. Hence our next strategy is to tune the conjugation to see if 

the performance of N-oxide-based ligands can be further optimized. 



 32 

 

Figure 3-1. (a) Chemical structures of BLPhen (1a) and BLPhen-derived N-oxide ligands 

(1b - 1d); (b) DFT-calculated relative aqueous-phase selectivity, ΔΔGaq(La/Ln), for the 

ligands 1a - 1d, with respect to the refence ligand (BAPhen). 

 

3.4.2 Tuning the conjugation 

The ligands 1a – 1d all have the conjugation throughout the whole molecule. Our 

idea was to disrupt the conjugation at the middle ring (2a-2d in Figure 3-2a). Since 1b, 1c, 

and 1d show similar performances (Figure 3-1b), we selected 1d as a starting ligand. Four 

new ligands were created based on modifications of 1d:  changing the middle top C=C 

double bond to a single bond (2a); reducing the middle 6-membered ring to a 5-membered 
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ring (2b); enlarging the middle ring to be a 7-membered one (2d) or eliminating the top 

C=C bond (2c). The calculated ΔΔGaq(La/Ln) values for 2a-2d (Figure 3-2b) are compared 

to those of 1a. Interestingly, ligand 2b has much better performance than 1a. On the other 

hand, the performances of 2a, 2c, and 2d are worse than that of 1a. Therefore, the reduced 

extent of conjugation in 2b, combined with other factors, makes it a more selective ligand. 

To reveal those factors, we first compare the optimized geometries after complexation.  

Similar to the structure of [La(BLPhen)](NO3)3,
17 our optimized [La(2b)](NO3)3 

complex (Figure 3-3) also has tenfold coordination: four donors from 2b ligand and six 

from three bidentate nitrates. Both [La(2b)](NO3)3 and [Ln(1a)](NO3)3 complexes are 

planar, as evidenced by the close-to-zero O1-N1-N2-O2 dihedral angle (Table 3-1 and 

Figure 3-2). On the other hand, ligands 2a, 2c, and 2d are significantly non-planar, leading 

to less planar complexes. Therefore, the geometric comparison suggests that the planar 

geometry combined with the reduced conjugation helps improve the selectivity for 2b, 

while the non-planarity of ligands 2a, 2c, and 2d indicates that the whole conjugation is 

completely broken down into two smaller parts which might be detrimental to the 

complexation.  
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Figure 3-2. (a) Chemical structures of 1,10-phenanthroline derived N-oxides with reduced 

conjugation. (b) DFT-calculated relative aqueous phase selectivity (ΔΔGaq(La/Ln)).   

 

 

Figure 3-3. DFT-optimized [La(2b)](NO3)3 complex with four donors on the 2b ligand 

labelled: (a) top view; (b) side view. 
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Table 3-1. O1-N1-N2-O2 dihedral angles in ligands 1a, 2a-2d and corresponding La 

complexes (see Figure 3-3 for the atom labels). 

 1a 2a 2b 2c 2d 3a 3b 3c 

Ligand 0.4˚ 9.9˚ 0.5˚ 18.9˚ 26.8˚ 0.0˚ 0.2˚ 0.6˚ 

La(ligand)(NO3)3 0.8˚ 8.3˚ 1.3˚ 5.0˚ 14.3˚ 1.4˚ 2.0˚ 28.0˚ 

 

Unlike other ligands considered in this study, 2b possesses a fluorene-like moiety, 

where the methylene group is known to be involved in hyperconjugation.32 Indeed, our 

natural bond orbital (NBO) analysis for 2b revealed relatively strong interactions of the 

electrons in C-H σ-bonds with adjacent C=C π* orbitals (Figure 3-4) with estimated 

second-order stabilization energies E(2) of ~3.4 kcal/mol. Such hyperconjugation leads to a 

better geometric fit for Ln(III) ions, as reflected in the shorter Ln-N bonds in the 

[Ln(2b)](NO3)3 complexes than in the complexes of other ligands (see Table 3-2 for some 

comparisons). On the other hand, NBO charge analyses on ligands 2a-2d do not show 

significant differences of charges on pyridinic nitrogen atoms or NO oxygen atoms (Table 

3-3). In other words, we think that the impact of the hyperconjugation from the middle 

constrained 5-membered ring is more geometric than electronic.  
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Figure 3-4. Natural bond orbital (NBO) analysis of the [Eu(2b)](NO3)3 complex: σC-H → 

π*C-C interactions characterized by the overlap of the C-H σ-bond orbitals with adjacent 

C=C π* orbitals. 

 

Table 3-2. Average distance between Ln(III) and N-donor in selected complexes for 

comparison 

Complexes [Eu(1a)](NO
3
)

3
 [Eu(2a)](NO

3
)

3
 [Eu(2b)](NO

3
)

3
 [Eu(2c)](NO

3
)

3
 

Eu-N distance (Å) 2.66 2.67 2.64 2.67 

Complexes [Lu(1a)](NO
3
)

3
 [Lu(2a)](NO

3
)

3
 [Lu(2b)](NO

3
)

3
 [Lu(2c)](NO

3
)

3
 

Lu-N distance (Å) 2.57 2.57 2.55 2.57 

 

Table 3-3. NBO charges of N and O atoms in ligands 2a-2d 

 2a 2b 2c 2d 

N (pyridine) -0.43 -0.43 -0.44 -0.44 

O (N-Oxide) -0.54 -0.55 -0.54 -0.55 
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We have further performed NBO charge analysis for [Ln(2a)](NO3)3 and 

[Ln(2b)](NO3)3 complexes (Figure 3-5) and found that the non-linear trends of Ln partial 

charges across the Ln series are very similar between 2a and 2b. The charges on Ln are 

lightly smaller in [Ln(2a)](NO3)3 complexes than in their [Ln(2b)](NO3)3 counterparts; in 

other words, there are more ligand charge transfers to Ln from 2a than from 2b. On the 

contrary, ∆∆Gaq(La/Ln) values in Figure 3-2 show that 2b is more selective than 2a; the 

selective trend across the Ln series is rather monotonic. So, we conclude that the charge 

transfer is unlikely to be the key factor. This is consistent with our conclusion that the 

geometric factor is more important. 

 

Figure 3-5. NBO charge on Ln in [Ln(2a)](NO3)3 and [Ln(2b)](NO3)3 complexes. 

 

3.4.3 Further tuning of the conjugation size 

Since 2b notably enhances the La(III)/Ln(III) selectivity across the whole lanthanide 

series, we designed additional ligands based on 2b by modifying the conjugation size via 

the following approaches as shown in Figure 3-6a: changing the two pyridiniums to five-
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membered rings (3a); changing only one outside ring to a five-membered one (3b); 

inserting one phenyl ring on each side (3c). In comparison with 2b, the calculated ∆∆G 

(Figure 3-6b) indicates better La(III)/Ln(III) selectivity for 3a and much worse 

La(III)/Ln(III) selectivity for 3c. Considering the contrast between 3b and 3c in 

∆∆Gaq(La/Ln) values, we think that the O-O distance is a key factor here: it is too short in 

3c (Figure 3-6a) which is very detrimental to the La(III)/Ln(III) selectivity. Besides 

geometric factors such as planarity and O-O distances, orbital interactions may also be 

important, which we analyze next. 
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Figure 3-6. (a) Chemical structures of N-oxide ligands 3a-3c derived from 2b; ligand 1a 

is also shown for comparison in terms of O-O distance. (b) DFT-calculated relative 

aqueous phase selectivity, ΔΔGaq(La/Ln), for ligands 3a-3c in comparison with ligands 1a 

and 2b. 

 

3.4.4 Orbital analysis of ligands with high La(III)/Ln(III) selectivity 

Computed ΔΔGaq(La/Ln) for our designed mixed N, O-donor shows that the N-

oxide-based ligands 2b, 3a, and 3b have the potential to be more La(III)/Ln(III) selective 

than the BLPhen ligand 1a. The complexation of these ligands with Ln(III) involves mainly 

the donation of the lone pairs of electrons from the ligands to the Ln(III) ion. Therefore, it 
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would be interesting to compare the HOMOs of these high-performing ligands. From 

Figure 3-7 one can see more electron accumulation around O donors in 2b, 3a, and 3b than 

in 1a, which could be a reason for their improved selectivity profile. The other interesting 

feature is that the conjugation is similar between 1a and 2b, but more fragmented in 3a and 

3b. This causes very different electron density distribution at N donors from 1a and 2b to 

3a and 3b. We think that this may be the reason for the more non-linear selectivity trends 

across the Ln series for 3a and 3b (Figure 3-6b).  

Of course, there could be other important factors such as conjugation sizes and O-O 

distances discussed above, as the orbitals for all the ligands considered, when examined 

together, displays a more complicated picture. A machine-learning model that can rank all 

descriptors in terms of their importance in dictating the selectivity would be highly 

desirable. Future work is warranted.  

 

Figure 3-7. (a) HOMO and (b) HOMO-1 of ligands 1a, 2b, 3a and 3b and their energies. 
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3.4.5 Implications for ligand synthesis 

Ligand 1a (BLPhen) and its derivatives have been reported recently for Ln(III) 

separations.17,18 Our results above suggest that the N-oxide-based 2b, 3a, and 3b ligands 

can potentially surpass the BLPhen-based ligands. Being the simplest among the three, 2b 

could be the first target and Scheme 3-2 shows the proposed route. It  starts with a 

commercially available compound, 3-methyl-1,8-naphthyridine-2-carboxylic acid (1) 

which reacts with methyllithium to yield 2,33 followed by oxidation to 3.34 Equivalent 3 

and 2-aminonicotinaldehyde react in potassium hydroxide and ethanol to yield 4,35 which 

dehydrates in polyphosphoric acid (PPA) to yield 5,36 followed by hydrazine reduction to 

6.36 Finally, 6 can be selectively oxidized by reacting with 3.5 equivalent meta-

chloroperoxybenzoic acid (mCPBA) in dichloromethane,37 to yield 2b. Similar routes can 

also be adopted to synthesize 3a and 3b. 
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Scheme 3-2. Proposed route to synthesize 2b. 

 

3.5 Summary and conclusions 

We have computationally evaluated a new family of mixed N,O-donor ligands, derived 

from BLPhen and incorporating N-oxide functionalities, for their relative aqueous 

La(III)/Ln(III) selectivity. Three novel ligands were identified to be promising and 

experimentally viable targets in selective separations of trivalent lanthanides. We found 

that the conjugation, O-O distance, planarity of the formed complex, and the electron 

density on the two O atoms are important control knobs that affect ligand’s selectivity for 

lanthanides. Our computational insights will guide the follow-up efforts towards 

synthesizing the top candidates. 
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Chapter 4. Advancing Rare-Earth Separation by Machine Learning 

4.1 Abstract 

Constituting the bulk of rare-earth elements, lanthanides need to be separated to 

fully realize their potential as critical materials in many important technologies. The 

discovery of new ligands for improving rare-earth separations by solvent extraction, the 

most practical rare-earth separation process, is still largely based on trial and error, a low 

throughput and inefficient approach. A predictive model that allows high-throughput 

screening of ligands is needed to identify suitable ligands to achieve enhanced separation 

performance. Here, we show that deep neural networks, trained on the available 

experimental data, can be used to predict accurate distribution coefficients for solvent 

extraction of lanthanide ions, thereby opening the door to high-throughput screening of 

ligands for rare-earth separations. One innovative approach that we employed is a 

combined representation of ligands with both molecular physicochemical descriptors and 

atomic extended-connectivity fingerprints, which greatly boosts the accuracy of the trained 

model. More importantly, we synthesized four new ligands and found that the predicted 

distribution coefficients from our trained machine-learning model match well with the 

measured values. Therefore, our machine-learning approach paves the way for accelerating 

the discovery of new ligands for rare-earth separations. 
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4.2 Introduction 

Rare earth elements (REEs), including the 14 lanthanides, yttrium, and scandium, 

are recognized as critical materials vital to many technologies.1-4 Due to their similar 

properties, REEs are difficult to separate from one another.5 Solvent extraction is the most 

extensively used process to separate lanthanides on industrial scale. This process employs 

an organic ligand (extractant or complexing agent) in a nonpolar, water-immiscible solvent 

(org) to extract trivalent lanthanides, Ln(III), from an aqueous (aq) solution. The extraction 

performance is expressed as a distribution ratio for each Ln(III), D = [M3+]org/[M3+]aq. 

High D values indicate better extraction efficiency and imply the formation of stable 

Ln(III) complexes in the organic phase. Ligands that show great promise in REE 

separations include diglycolamides (DGA),6-9 alkylated bis-triazinyl pyridines (BTP),10 

and 2,9-bis-lactam-1,10-phenanthroline (BLPhen),11, 12 among others.13-15 Extraction 

performance is also impacted by experimental conditions, including solvent, temperature, 

and volume of each phase. Organic solvents such as toluene,6 n-dodecane,16 1-octanol,17 

and dichloroethane18 are commonly used to carry out the liquid-liquid separations. 

Innovation in ligand design and discovery is key to achieving more efficient 

separation of Ln(III)s. Knowledge-based design, followed by synthesis of new ligands, 

tends to be low throughput and often relies on trial-and-error to determine optimized 

extraction conditions. In addition, quantum chemical calculations of the ligand-metal 

binding are limited by the solvation model and lack solvation dynamics; usually the relative 

change in free energy in reference to a common ligand19, 20 is predicted instead of directly 
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predicting D values for Ln(III) for a specific ligand. These calculations also have limited 

throughput due to high costs.  

Data-driven machine learning (ML) approach allows high-throughput screening of 

much larger chemical space, and the model will continuously improve as more data are 

generated. This approach has been increasingly used in predicting important equilibrium 

properties such as solubility,21, 22 binding affinity,23 pKa,24 adsorption capacities,25, 26 and 

partition coefficients of molecules.27, 28 Hence, there is an opportunity to accelerate the 

discovery of new ligands for Ln(III) separation using the data-driven ML approach. 

Herein we have developed a predictive model that accurately predicts D values for 

a given ligand by training deep neural nets on experimental data of measured D values and 

by sufficiently representing ligands, Ln(III), and experimental conditions. The model is 

then tested on four new ligands synthesized and the predicted D values are in very good 

agreement with the experiment, highlighting its predictive power to enable further high-

throughput screening. 

 

4.3 Computational Method 

Data collection. All 1,202 logD values of lanthanide extraction in our database were 

collected from the scientific literature where a single neutral ligand was the only extractant 

used to extract Ln(III) from the aqueous phase to the organic phase consisting of one or 

two different solvents. For each data point, the inputs include sequentially the 



 49 

representation of the ligand, descriptors of the extraction conditions, descriptors of the 

lanthanide. 

Representation of ligands. The first 2,048 inputs of each data point are Extended-

Connectivity Fingerprints29 (ECFP) of the ligand; the next 208 inputs are RDKit 

descriptors.30 They are both generated from the simplified molecular-input line-entry 

system (SMILES) expression of the ligand by the DeepChem package.31 Chirality is 

considered in ECFP and other parameters use default settings: radius of fingerprint = 2; 

length of generated bit vector = 2,048; bond order considered; feature descriptors not used. 

RDKit descriptors use default parameters: binary descriptors of fragments like ‘fr_XXX” 

are returned; avg = True for the Ipc (information of polynomial coefficients) descriptor32 

to return the information content divided by the total population. The names of the 208 

descriptors returned by the RDKit module are listed in the Excel file, including molecular 

weight, number of valence electrons, partial charges, electrotopological state indexes, etc. 

Details of the deep learning model and the training process. The training of fully 

connected neural networks (FCNNs) is performed via the PyTorch package (version 

1.9.1)33 with L1 type loss function, SGD optimizer, and L2 regularization for weight decay. 

The weight initializations obey the default normal distributions. Mean-absolute-error 

(MAE), root-mean-square-error (RMSE), and coefficient of determination (R2) as 

calculated via the scikit-learn module were used as metrics for evaluation during the 

training process.34  
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4.4 Results and discussion 

4.4.1 Data and Machine-Learning Workflow 

1,202 reported D values using 109 different ligands were collected from the 

literature and used to build the dataset. Each Ln(III) has more than 60 entries in the dataset 

(Figure 4-1a). The experimental D values span eight orders of magnitude: as shown in 

Figure 4-1b, logD ranges from -4 to +4. Many classes of ligands, including phosphine 

oxides, amides, and N-heterocyclic derivatives, were selected (Figure 4-1c).35, 36 117 data 

points out of 1202 for 14 Ln(III)s were randomly selected as the validation set. 

The workflow of our ML approach is summarized in Figure 4-1d. The input data 

comprises three parts: Ln(III), ligand, and solvent extraction conditions. First, the ligand, 

represented by a string-based name (SMILES), is fed into RDKit30 – a cheminformatics 

toolkit that automatically generates 208 descriptors for the ligand. The RDKit descriptors 

are then combined with the extended connectivity fingerprints (ECFPs)29 for a more 

detailed representation of the ligand. Fourteen descriptors are used for each Ln element 

(Table 4-1); solvent extraction conditions such as temperature, concentration of the ligand, 

and physical properties of organic solvents are also part of the input (Table 4-2). In total, 

2291 inputs are used for each output logD value. 



 51 

 

Figure 4-1. Dataset of logD values, typical ligands, and machine learning workflow. 

Distribution of the total dataset of logD values: (a) based on Ln(III), excluding radioactive 

Pm(III); (b) the value range. (c) Chemical structures of some representative ligands in the 

dataset. (d) The workflow of predicting logD of Ln(III) extracted by a ligand via fully 

connected neural networks with three hidden layers. 
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Table 4-1. Descriptors for fourteen lanthanides. 

 
Atomic 

Number 

Outer 

shell 

electrons 

Melting 

Point (K) 

Boiling 

Point (K) 
Density (g/cm3) 

First IE 

(kJ/mol) 

Second 

IE 

(kJ/mol) 

La 57 0 1193 3737 6.16 538.1 1067 

Ce 58 1 1072 3716 6.77 534.4 1046.9 

Pr 59 2 1204 3793 6.77 528.1 1017.9 

Nd 60 3 1289 3347 7.01 533.1 1034.3 

Sm 62 5 1345 2067 7.52 544.5 1068.1 

Eu 63 6 1095 1802 5.24 547.1 1085.4 

Gd 64 7 1586 3546 7.9 593.4 1166.5 

Tb 65 8 1632 3503 8.23 565.8 1111.5 

Dy 66 9 1685 2840 8.55 573.1 1125.9 

Ho 67 10 1745 2973 8.8 580.9 1138.5 

Er 68 12 1802 3141 9.07 589.3 1151.1 

Tm 69 12 1818 2223 9.32 596.7 1162.7 

Yb 70 13 1097 1469 6.9 603.4 1174.8 

Lu 71 14 1936 3675 9.84 523.5 1341.1 

 

 

Third 

IE 

(kJ/mol) 

Electron 

Affinity 

(kJ/mol) 

Atomic 

Radius 

(Å) 

Covalent 

Radius 

(Å) 

Pauling 

Electronegativity 

Ionic 

Radius 

(Å) 

Standard 

Entropy 

(J·mol-

1·K-1) 

La 1850.3 48 1.87 2.08 1.1 1.03 56.9 

Ce 1948.8 55 2.42 1.84 1.12 1.02 72 

Pr 2086.4 92.8 2.4 1.9 1.13 0.99 73.9 

Nd 2132.3 184.9 2.39 1.88 1.14 0.983 71.1 

Sm 2257.8 15.6 2.36 1.85 1.17 0.958 69.5 

Eu 2404.4 11.2 2.35 1.83 1.2 0.947 77.8 

Gd 1990.5 13.2 2.34 1.82 1.2 0.938 67.9 

Tb 2113.9 112.4 2.33 1.81 1.1 0.923 73.3 

Dy 2199.9 33.9 2.31 1.8 1.22 0.912 75.6 

Ho 2203.7 32.6 2.3 1.79 1.23 0.901 75 

Er 2194.1 30.1 2.29 1.77 1.24 0.89 73.2 

Tm 2284.8 99.3 2.27 1.77 1.25 0.88 74 

Yb 2416.9 -1.9 2.26 1.78 1.1 0.868 59.8 

Lu 2022.3 32.8 2.24 1.74 1 0.861 51 
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Table 4-2. Descriptors of different organic solvents in the dataset. 

 Molar 

mass 

(g/mol) 

Density 

(g/mL) 

Boiling 

point 

(K) 

Melting 

point 

(K) 

Dipole 

moment 

(D) 

Solubility 

in water 

(g/L) 

log 

P 

CH3Cl 50.49 1.003 249.3 175.8 1.9 5.325 0.91 

Dichloromethane 84.93 1.3266 312.8 176.5 1.6 17.5 1.86 

toluene 92.141 0.87 384 178 0.36 0.52 2.68 

chloroform 119.37 1.489 334.3 209.7 1.15 8.09 1.97 

n-dodecane 170.34 0.7495 489 263.5 0.07 0.004 6.82 

1-octanol 130.231 0.83 468 257 1.68 0.3 3 

nitrobenzene 123.11 1.199 383 278.8 4.28 1.9 1.85 

cyclohexanone 98.15 0.9478 428.8 226 2.9 80.6 0.81 

meta-

nitrobenzotrifluoride 

191.11 1.427 475.8 270.6 7 0 2.62 

phenyl trifluoromethyl 

sulfone 

210.17 1.249 476 315 5 0.3 0 

TBP 266.32 0.9727 562 193 4 0.4 4 

benzene 78.11 0.8765 353.2 278.7 0 1.8 2.13 

CCl4 153.8 1.587 350 250 0 0.8 2.83 

xylene 106.16 0.864 412 226 0.64 0.106 3.12 

kerosene 200 0.8 523 298 0 0 0 

sulfonated kerosene 300 0.82 523 298 5 0 0 

Isopar L 170 0.77 471 270 0 0 0 

 

4.4.2 Training and model performance 

Fully connected neural networks (FCNNs) where every neuron in one layer is 

connected to every neuron in the next layer were used as the core of our approach for deep 

learning.37 The training of the FCNNs was performed with the PyTorch package.33 In each 

epoch, 80% of the 1085 data points were randomly selected for training. As shown in 

Figure 4-2, the coefficient of determination, R2, between the predicted log D and 

experimental log D values of the validation set by using the combination of ECFP and 

RDKit for the ligands reached a higher value (∼0.80) than that using only ECFP (∼0.45) 
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or RDKit (∼0.65) after 5000 epochs of training (Figure 4-2a). Likewise, the root-mean-

squared error (RMSE) of the validation set for the ECFP+RDKit representation decreased 

more rapidly and achieved a lower value after 5000 epochs. Hence, the ECFP+RDKit 

representation of the ligand was used for the subsequent training.  

 

Figure 4-2. Comparing the three different approaches, RDKit, ECFP, or ECFP + RDKit, 

to represent ligands, based on the validation set performances of the trained FCNN for 

predicting log D against the experiment in the first 5000 epochs: (a) coefficient of 

determination, R2, between the predicted log D and experimental log D values; (b) root-

mean-square error, RMSE, between the predicted log D and experimental log D values 

(also measured against the standard deviation, σ, of experimental log D values of the 

training set, right axis). FCNN hyperparameters: 0.00001 learning rate, PReLU activation 

functions, 0.01 weight decay, three hidden layers, and the number of neurons on each layer 

= 512, 128, and 16. 

Screenings of hyperparameters are listed in Table 4-3 from the evaluations of their 

performances on the validation set. After 5000 epochs, three-hidden-layer models showed 

better predictions than one or two layers; likewise, the 0.00001 learning rate (i.e., step size 

in the gradient descent algorithm) was better than 0.001 and 0.000001. On the other hand, 

different activation functions did not show great differences after 5000 epochs; the 

activation function introduces nonlinearity when passing inputs from one layer of neurons 
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to the next, mimicking the firing of a neutron for a given input. The most popular activation 

function is ReLU (rectified linear unit): when passing the ReLU function, the output equals 

to input when it is positive and zero otherwise. PReLU or parametric rectified linear unit 

has the same output as ReLU for a positive input but a slightly different output (y = 0.25x) 

for a negative input (x), instead of 0. We found that the highest R2 (0.85) for the validation 

set was reached by the PReLU activation function after 15,000 epochs, with 0.00001 

learning rate, 0.01 weight decay, three hidden layers, and the number of neurons on each 

layer as 512, 128, and 16. 

The best FCNN model’s performance is further shown in Figure 4-3 as the parity 

plot. For the 1085 data points used for training, the R2 value reached 0.92 (Figure 4-3a) 

with RMSE of 0.40 and MAE of 0.19. More importantly, the model shows very good 

performance for the validation set: R2 = 0.85, RMSE = 0.53, and MAE = 0.34. In other 

words, this trained model can predict log D values with an uncertainty of ∼0.5. Of note, 

there are some cases with large errors in predicted log D values (Figure 4-3b), and we 

found that they are mainly from ligands with rare groups (such as -SR) for which we do 

not have a lot of data in the training set. 
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Table 4-3. Evaluations of the different combinations of the hyperparameters based on their 

performance on the validation set. The optimal set of hyperparameters are in bold. 

Activation function ELU ELU ELU ELU ELU 

Learning rate 0.00001 0.00001 0.00001 0.001 0.000001 

Weight decay 0.01 0.01 0.01 0.01 0.01 

epochs 5,000 5,000 5,000 5,000 5,000 

Neurons on 

hidden 

layers 

1st 256 512 512 512 512 

2nd  32 128 128 128 

3rd   16 16 16 

R2 on the validation set 0.36 0.58 0.77 0.18 0.65 

MAE on the validation set 0.68 0.66 0.41 0.85 0.52 

RMSE on the validation set 1.09 0.88 0.66 1.17 0.81 

 

Activation function ReLU PReLU ELU ReLU PReLU ELU 

Learning rate 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 

Weight decay 0.01 0.01 0.01 0.01 0.01 0.01 

epochs 5,000 5,000 10,000 10,000 10,000 15,000 

Neurons on 

hidden 

layers 

1st 512 512 512 512 512 512 

2nd 128 128 128 128 128 128 

3rd 16 16 16 16 16 16 

R2 on the validation set 0.77 0.73 0.80 0.84 0.81 0.84 

MAE on the validation set 0.41 0.43 0.37 0.36 0.39 0.36 

RMSE on the validation set 0.65 0.71 0.61 0.54 0.59 0.55 

       

Activation function ReLU PReLU PReLU PReLU PReLU 

Learning rate 0.00001 0.00001 0.00001 0.00001 0.00001 

Weight decay 0.01 0.01 0.01 0.01 0.01 

epochs 15,000 15,000 15,000 15,000 15,000 

Neurons on 

hidden 

layers 

1st 512 512 512 256 512 

2nd 128 128 64 64 128 

3rd 16 16 16 8 32 

R2 on the validation set 0.82 0.85 0.83 0.77 0.80 

MAE on the validation set 0.36 0.34 0.33 0.42 0.38 

RMSE on the validation set 0.58 0.53 0.52 0.65 0.61 
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Figure 4-3. Performance of the best FCNN model. The parity plot between the predicted 

and experimental log D values: (a) training set and (b) validation set 

 

4.4.3 Prediction on New Ligands 

To further test our FCNN model, four new DGA ligands (1‒4 in Figure 4a) with 

different N-alkyl substituents were synthesized by our collaborators. It is known that subtle 

changes to the size of N,N’-alkyl groups affect DGA performance in Ln(III) separation.8 

The performance of DGAs that incorporate N,N’-alkyl substituents with branching is rather 

underexplored, for example, the substituents at γ (e.g., 2 and 3) and δ (e.g., 1) positions as 

opposed to α38 and β39 positions with respect to the amide nitrogen. Additionally, 

introduction of structure-rigidifying elements in DGA, such as δ-lactam motif in ligand 4, 

opens new possibilities for chemically modifying the diglycolamide backbone to further 

alter separation behaviour. Benefits of implementing such structural modifications in 

DGAs are twofold: (1) extraction strength of Ln(III) can be tuned by varying the steric 

hindrance around the tridentate binding site; (2) the formation of third-phase in liquid-
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liquid setting is more likely to be avoided due to improved hydrodynamic properties of 

these ligands and their Ln(III) complexes in the nonpolar solvent.  

 

Figure 4-4. Predictions on new DGA ligands. (a) Chemical structures of new ligands 1−4 

synthesized for Ln(III) extractions. (b) R2 and MAE values of predicted log D for new 

ligands 1−4 in comparison with the measured values. (c) Parity plots between the predicted 

and experimental log D for ligands 1−4; there are 14 data points for each ligand, 

representing 14 Ln(III)s extracted at the same conditions. 

 

After their successful syntheses, ligands 1−4 were dissolved in an organic phase 

and contacted with mixed Ln(III) aqueous solutions in either hydrochloric or nitric acid. 

After phase separation, their D values were experimentally determined by measuring the 
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aqueous concentration of Ln(III) before and after extraction using inductively coupled 

plasma optical emission spectroscopy. To test the accuracy of our ML model to predict log 

D values, we fed these four new ligands together with their separation conditions into our 

well-trained FCNN model. As shown in Figure 4-4b, the predicted log D values are in good 

agreement with the experimental values, with R2 ranging from 0.78 to 0.92; the MAE 

between the model predictions and experimental observations of log D in ligands 1−4 are 

0.21, 0.41, 0.38, and 0.22, respectively. Even though this is a small test data set, the 

observed errors are similar to the validation set MAE of 0.34. This performance is 

consistent with the validation set shown in Figure 4-3b. The parity plot of the predicted vs 

experimental log D values for ligands 1−4 in Figure 4-4c highlights the very good 

performance of this ML model. 

In addition to widely-used DGA ligands, our FCNN model also provides reliable 

predictions on three preorganized ligands sp-1-67, sp-1-79, and sp-1-99 (Figure 4-5). The 

R2 between the model predictions and experimental observations of log D in these three 

preorganized ligands are 0.85, 0.70, and 0.74 supporting strong correlations; the MAE of 

predictions are 0.42, 0.58, and 0.50. It is predictive for our model to have great performance 

on ligands sp-1-67 and sp-1-79, since sp-1-67 is a BLPhen ligand and sp-1-79 is a BAPhen 

ligand which have analogs in the training dataset. Ligand sp-1-99 belongs to an extremely 

new classification the conjugation in the middle is reduced and no similar core structure is 

used for training. So, the successful prediction on sp-1-99 is proof in our model that even 

if only partial structure has been learned, accurate predictions can be achieved by the 

FCNN. 
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Figure 4-5. Predictions on new preorganized ligands sp-1-67, sp-1-79, sp-1-99. 

 

Our model can be further improved by incorporating more data into the training 

dataset as they become available, especially for new ligand systems that are not represented 

in this work. This will help increase the accuracy (R2) and lower the uncertainty (MAE) of 

the predicted logD values. More importantly, the trained model will allow us to rapidly 

evaluate new ligands for Ln(III) separation. Recent advances in the automatic generation 

of molecular structures based on string-based representations40, 41 provide opportunities to 

create a large ligand database that can be fed into our ML model for high-throughput 

screening of new ligands for REE separations. In addition, our approach can be potentially 

extended to biomolecule-based ligands42 and biogenic materials.43 

In principle, our approach can also be used to screen extraction conditions. There 

are, however, some practical difficulties, with the main one being that researchers tend to 

report good extraction conditions while the less desirable conditions were not reported. As 

a result, the reported extraction conditions usually show limited coverage of the parameter 

space and there is insufficient data coverage in the extraction conditions in our data set. 

We think that high-throughput and automated experimentation of extraction conditions 
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would alleviate this insufficiency and make the future effort of predicting optimal 

extraction conditions with ML highly worthwhile. 

4.5 Summary and conclusions 

To advance the solvent-extraction separation of rare-earth elements, we have 

trained deep neural networks on the available experimental data of distribution coefficients 

measured for hundreds of ligands for 14 Ln(III) ions to accurately and quickly predict their 

distribution coefficients for a given ligand and the extraction conditions. To best represent 

the ligands, we found that a combination of molecular physicochemical descriptors and 

atomic extended-connectivity fingerprints yields the highest accuracy of the trained model 

on the validation set. We have further explored many combinations of hyperparameters 

that led to a set of optimal hyperparameters. The best trained model performed well on the 

validation set: R2 = 0.85 and RMSE = 0.53. To further test our model, we synthesized four 

new ligands by modifying the diglycolamide (DGA) backbone and side chains and 

measured their log D values for Ln(III) ions; we found that the predicted distribution 

coefficients from our trained neural network agree well with the measured values. One can 

envision that our neural network can now be used to quickly predict log D values of Ln(III) 

ions for thousands to hundreds of thousands of ligands once they are generated. These log 

D values can be further evaluated to screen ligands for separation factors, that is, the ratios 

of log D values. Therefore, this work paves the way for further high-throughput screening 

of ligands to accelerate the discovery of new ligands for REE separations. 
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Chapter 5. Machine Learning Based high-throughput Screenings on 

Ligands for Ln(III) Selective Separations 

5.1 Abstract 

Novel and highly selective separation ligands are increasingly desired as a result of 

the rising demand for high-purity individual rare-earth elements. Herein, we combine the 

machine learning model and molecular structure automatic generation instruments to 

achieve high-throughput screening of new effective ligands. Four amide-trizainyl-

phenanthroline ligands and several hexalkyl-nitrilotriacetamide (NTA) ligands are 

predicted with higher selectivity than the corresponding most selective analog reported in 

the literature. The more advanced investigation and evaluations of the structure-selectivity 

relationship on NTA ligands suggest that larger size and suitable dimethyl-hexyl group(s) 

at the terminal(s) of the substituents on amide groups can significantly improve the 

selectivity of this type of ligand. Symmetric NTA ligands with longer carbon chains could 

be the first set of synthesis targets given the difficulties in experimental synthesis. 

 

5.2 Introduction 

Lanthanides (Ln), as the main part of rare earth elements (REEs), have wide 

applications in the fuel industry, advanced materials, and life science as catalysis, 1-3 

electrodes,4 additive agents,5 etc., leading their high purity isolations to one of the burning 

topics in separation chemistry. Solvent extraction is the primary chemical means to 

separate different trivalent lanthanides according to the slight differences in radii since their 
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other physical and chemical properties are highly similar. Explorations from the discovered 

selective ligands such as diglycolamide (DGA),6-8 alkylated bis-triazinyl pyridines (BTP),9 

tributyl-phosphate (TBP),10 6,6′-bis-triazinyl-2,2′-bipyridine (BTBP),11 bis(2-ethylhexyl) 

phosphoric acid  (D2EHPA),12 2,9-bis-lactam-1,10-phenanthroline (BLPhen),13 and 2,9-

bis-triazinyl-1,10-phenanthroline (BTPhen).14, 15 Computational evaluations on the 

selectivity of designed ligands can suggest synthesis targets and focus on the ligands having 

higher potentials. Distribution coefficient (D), the ratio of Ln(III) concentrations in the 

organic phase and aqueous phase after extraction, is a noteworthy quantitative indicator.  

The traditional theoretical prediction on D or log D value originates from the 

thermodynamic theory for equilibrium constant and combines Gibbs free energy of 

multiple reactions, which requires great efforts on simulations for one predicted value.16, 17 

On the contrary, predictions from a well-trained machine learning (ML) model cost much 

shorter time and lower computational spending.18 A large ligand database that can be fed 

into a machine learning model for high-throughput screening19, 20 of new ligands for REE 

separations is also made possible by recent developments in the automatic generation of 

molecular structures based on string-based representations, such as simplified molecular-

input line-entry system (SMILES).21, 22 

Current automatic generation programs based on string-based representations are 

developed following two different principles: mutation and recombination. STONED-

SELFIES is an example of molecule mutation generation.22 It is a superfast traversal, 

optimization, novelty, exploration and discovery (STONED) algorithm for molecule 

generations by using self-referencing embedded strings (SELFIES).23 Mutations could 
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provide more chances to generate ligands with new core structures. However, it is more 

possible to detect some unstable or unusual substructures in new molecules, leading to low 

accuracy in predictions by the ML model because no such structural factors have been 

learned. Different from molecule mutations, more similarities could be found between the 

given ligands and the generated ones like the automatic molecule generative program used 

in this work: molecular generation by Fast Assembly of SMILES Fragments 

(FASMIFRA).21 With help from FASMIFRA some known selective ligands (fed-in 

ligands) will be cut into small fragments and the reorganizations on these fragments will 

lead to new molecules. Reliable predictions could be achieved by the ML model because 

of few changes in the core structures of the fed-in ligands. 

 

5.3 Methods 

Separation factor (SF), the ratio of two distribution coefficients, is usually used to 

evaluate the selectivity of ligands in the experimental aspect. Especially, the ratio between 

La and Lu (SFLa/Lu) could work as a criterion for the ligand’s general selectivity across the 

lanthanide series because the D value usually monotonously increases or decreases from 

La to Lu as decreasing of trivalent radii. Since our reported ML model directly outputs 

logD values,18 log SFLa/Lu is used for the following screenings. The overall workflow of 

ML-based high-throughput screenings for selective ligands in Ln(III) separations is shown 

in Figure 5-1a. Selective ligands from the lanthanide extraction database are used to 

generate new ligands for screening via FASMIFRA and some in-home scripts. Then, their 

predicted logD values on extracting La and Lu under different extraction conditions are 
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produced by the well-trained fully connected neural network (FCNN). Finally, their 

potentials in selective separations are compared by their calculated log SFLa/Lu values. 

Since seeking ligands with higher selectivity is the long-term aim in the lanthanide 

separation field, the best ligand belonging to different classifications reported in the 

literature is set as a reference ligand as shown in Figure 5-1b. According to stronger binding 

between light Ln(III) or heavy Ln(III), their log SFLa/Lu values could be positive or 

negative. New ligands are compared to their reference own ligands based on the core 

structure to determine if they have the potential to the improvement of selectivity. No cross-

comparison between the ligands favoring light Ln(III) and those favoring heavy Ln(III). 

 

Figure 5-1. (a) The Workflow of machine learning based high-throughput screenings for 

selective ligands in Ln(III) separations. (b) Chemical structures and experimental 

extraction data of reference ligands in the lanthanide dataset. 
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5.4 Results and discussion 

5.4.1 New database generated by FASMIFRA 

According to the experimental performance on La/Lu separations, 55 ligands in the 

lanthanide extraction database built up in our previous work were defined as effective 

selective ligands since the difference between their extraction coefficients on La and Lu is 

higher than one magnitude (|log SFLa/Lu| ≥ 1). All these 55 ligands are fed into FASMIFRA 

to generate new molecules. As a result, 2562 new and distinct molecules without abnormal 

substituents are obtained consisting of the dataset for screening. The distributions of 

different types of ligands in the published selective ligand database and FASMIFRA-

generated new ligand database (Figure 5-2) show more BAPhen, BLPhen, DGA and 

hexalkyl-nitrilotriacetamide (NTA) ligands are produced by FASMIFRA. Because of some 

new ligands containing two of these four structures at the same time, the total percentage 

in the FASMIFRA-generated database is larger than one hundred. All the new ligands 

within more than one core structure are fed into our well-trained neural network with 

different optimized extraction conditions. On the contrary, fewer DPA and MA ligands, 

and nearly no new BTBP and BTP ligands in the new ligand database, so further 

investigations are performed on new BAPhen, BLPhen, DGA and NTA ligands. However, 

the best DGA ligand reported has shown over 6 magnitudes on La/Lu separation (Figure 

5-1b), which is already a huge difference, leading to less potential in new DGA ligands 

with high selectivity. Hence, the screening results on BAPhen, BLPhen, and NTA ligands 

are discussed separately below. 
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Figure 5-2. Distributions of different types of ligands in published selective ligand 

database (green) and FASMIFRA-generated new ligand database (orange). 

 

5.4.2. New selective BAPhen-derivative ligands 

Since BLPhen ligand is also a derivative of BAPhen ligands, all FASMIFRA-

generated BAPhen, BLPhen and BAPhen derivatives are compared to the reference 

BAPhen ligand which has a log SFLa/Lu as 3.18. However, none of the new ligands strictly 

belonging to BAPhen or BLPhen shows a log SFLa/Lu higher than 3.18. Only four amide-

trizainyl-phenanthroline ligands (Figure 5-3) show little higher selectivity (2% ~ 20%) than 

the reference BAPhen. There are 80 new BAPhen-derivative ligands in the FASMIFRA-

generated dataset, including different replacements on one or two amide groups in the 

BAPhen, but only these four ligands are predicted with higher log SFLa/Lu indicating the 

possible importance of trizainyl group in the selectivity. Trizainyl group provides one N-

donor, so from all O-donor DGA ligands to N, O mixed BAPhen ligands, the ratio of N-
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donor and O-donor further increases. Although the investigations on this new type of 

ligands, such as the relationship between substituents on trizainyl group and the selectivity 

are limited by the challenging synthesis of its asymmetric backbone, it could provide more 

inspiration to design new N, O mixed selective ligands. 

 

Figure 5-3. New BAPhen-derivative ligands predicted with high selectivity by neural 

networks and their predicted log D and log SFLa/Lu values 

 

5.4.3 New selective NTA ligands 

More interesting than BAPhen-derivative ligands, more of the new NTA ligands 

produced by FASMIFRA show log SFLa/Lu values higher than 2.57 which is the 

measurement of the best reported NTA. In total, 184 new NTA ligands are predicted by 

our well-trained neural network, and 65 of them show higher predicted selectivity, 

increasing our attention to further explore this type of ligand and understand the 

determinative factors of their structures and selectivity. The reported selective NTA ligands 

are both symmetric in that their six substituents on three amide groups are the same, octyl 

or dodecyl. However, most FASMIFRA-generated NTA ligands are asymmetric, resulting 

in a more difficult synthesis but a more diverse structure-property relationship. Then we 

rank these 184 new NTA ligands by their log SFLa/Lu values and find that dimethyl-hexyl 

groups at the terminal of the substituents on amide groups significantly improve NTA 

ligand selectivity. 
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Among 65 NTA ligands with predicted higher selectivity, 20 of them have at least 

one dimethyl-hexyl group at the terminal, other 45 have all n-alkyl groups as the 

substituents on three amide groups. All these 20 NTA ligands within the dimethyl-hexyl 

group at the terminal are shown in Figure 5-4 together with their predicted extraction and 

separation data; the best 15 NTA ligands only n-alkyl groups as the substituents are shown 

in Figure 5-5, representatively. The new NTA ligand owning two dimethyl-hexyl groups 

has an extraordinary log SFLa/Lu than all others, 50% numerical increase compared to the 

reference NTA. Five NTA ligands within the dimethyl-hexyl group(s), 25% of all, display 

higher selectivity than all NTA ligands only consisting of n-alkyl groups. In the remaining 

119 new NTA ligands showing lower log SFLa/Lu values, no dimethyl-hexyl group is 

detected. Thus, the dimethyl-hexyl groups at the terminal of the substituents on amide 

groups have an important effect on NTA selectivity. In addition to the effect of substituent, 

we notice that most new ligands predicted with high selectivity have more carbon atoms 

than the reference NTA. So, the size of the NTA ligand could be another factor of its 

selectivity. 
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Figure 5-4. FASMIFRA-generated NTA ligands with dimethyl-hexyl group(s) at the 

terminal(s) of the substituents on amide groups and corresponding FCNN predicted 

selectivity. 
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Figure 5-5. Representative FASMIFRA-generated NTA ligands with n-alkyl groups as the 

substituents on amide groups and corresponding FCNN predicted selectivity. 

 

5.4.4 Tuning the selectivity of NTA ligands 

Since molecule generation from FASMIFRA is controlled by the inputs and there 

are limited ligands in the current lanthanide database, we apply some in-home scripts for 

further NTA generations. According to the reported symmetric NTA ligands, three series 

of NTA are generated separately: NTA-C8 series in which the total carbon atoms are 54 

same as the reference NTA; NTA-C10 series in which the total carbon atoms are 66 same 

as the symmetric decanoyl NTA; NTA-C12 series in which the total carbon atoms are 78 

same as the symmetric dodecyl NTA. Hundreds of new NTA ligands within different 
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numbers of dimethyl-hexyl groups are generated and screened out for log SFLa/Lu values. 

Based on different carbon atoms, the average log SFLa/Lu values of NTA ligands and the 

highest log SFLa/Lu in each series are compared in Table 5-1. No matter the average of the 

series or the highest performance, the NTA-12 series is better than the NTA-10 series better 

than the NTA-8 series. Their average log SFLa/Lu have approximately one magnitudes 

difference in sequence, which is an appreciable distinction for selective ligands in 

lanthanides separations. Hence, it is conclusive that NTA ligands like larger sizes to reach 

higher selectivity so that the extension on carbon chains could be considered as a starting 

point to improve their selectivity. 

Table 5-1. Selectivity of new NTA ligands according to different sizes. 

 NTA-8 series NTA-10 series NTA-12 series 

Average log SF
La/Lu

 2.19 ± 0.12 3.23 ± 0.26 4.24 ± 0.23 

Highest log SF
La/Lu

 2.57 3.52 4.49 

 

We further evaluate the effect of the number of dimethyl-hexyl groups on 

selectivity by ranking and statistics on different series of NTA ligands. In the NTA-C10 

series, 91 of 95 new ligands are predicted with higher log SFLa/Lu than the reference NTA 

and the highest three are shown in Figure 5-6a. The average and highest log SFLa/Lu of 

ligands with different numbers of dimethyl-hexyl groups in the NTA-C10 series are 

compared in Table 5-2. Starting from one dimethyl-hexyl group, the average and highest 

log SFLa/Lu keep decreasing, especially more than three dimethyl-hexyl groups the average 

only decreases by 0.04 from one to two dimethyl-hexyl groups and 0.13 from two to three 

but 0.26 from three to four. So, one or two dimethyl-hexyl groups are preferred by high 
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selective ligands in the NTA-C10 series, three is acceptable. In NTA-C12 series screenings, 

all new ligands show higher selectivity than the reference NTA based on FCNN predictions 

which double confirms the favor of large size. And the best three are shown in Figure 5-6b 

which can reach the magnitudes that the reference BLPhen ligand has. Then, similar 

statistics on the numbers of dimethyl-hexyl groups and selectivity are carried out on the 

NTA-12 series (Table 5-3). One or Two dimethyl-hexyl group(s) do not show an obvious 

difference in this series but a sharp decrease is found from three dimethyl-hexyl groups to 

four again: only 0.08 from two to three dimethyl-hexyl groups but 0.24 from three to four. 

Table 5-2. Selectivity of new ligands in NTA-10 series with different numbers of dimethyl-

hexyl groups 

Numbers of dimethyl-

hexyl groups 
1 2 3 4 5 

Average log SF
La/Lu

 3.43 3.39 3.26 3.00 2.62 

Highest log SF
La/Lu

 3.52 3.48 3.30 3.07 2.78 

 

Table 5-3. Selectivity of new ligands in NTA-12 series with different numbers of dimethyl-

hexyl groups 

Numbers of dimethyl-

hexyl groups 
1 2 3 4 5 

Average log SF
La/Lu

 4.38 4.39 4.31 4.07 3.74 

Highest log SF
La/Lu

 4.49 4.47 4.38 4.12 3.86 
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Figure 5-6. Representative high selective NTA ligands in (a) NTA-10 series (b) NTA-12 

series and corresponding FCNN predicted selectivity. 

 

Machine-learning-based high-throughput screenings on about 3,000 new ligands 

generated by FASMIFRA and in-home scripts suggest a few amide-trizainyl-

phenanthroline ligands and amounts of NTA ligands within high potential in lanthanides 

selective separations. Due to the difficulties in experimental synthesis, further verifications 

on these proposed ligands are still in process. Another factor that may have a little influence 

on the accuracy of our predictions is only the reference NTA ligand has all experimental 

log D values for all Ln(III) and has been used in the training set. Other NTA ligands 

involved in the training set only have log D of Eu(III) since they are reported in 

Eu(III)/Am(III) separation which is a typical model of lanthanide and actinide separation. 
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Although our model has proved the strong capacity of great predictions on the preorganized 

ligands that only partial structure has been learned, the prediction accuracy still depends 

on the amounts of similar ligands in the training set.  

 

5.5 Summary and conclusions 

Machine learning based high-throughput screenings on thousands of ligands 

generated by Fast Assembly of SMILES Fragments (FASMIFRA) suggest four amide-

trizainyl-phenanthroline ligands and over 60 hexalkyl-nitrilotriacetamide (NTA) ligands 

have a high possibility to improve the selective separations of Ln(III). Further 

computational investigations on hundreds of NTA ligands confirm two structure-activity 

relationships. One is a larger size preferred for an NTA ligand showing higher selectivity. 

The other is for the NTA ligands owning the same size, one or two dimethyl-hexyl group(s) 

at the terminal(s) of the substituents on amide groups can improve its selectivity. 

Considering challenges in experimental synthesis, symmetric NTA ligands with longer 

carbon chains could be the first series of synthesis targets. 
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Chapter 6. Separations of Lanthanides and Actinides via Machine 

Learning 

6.1 Abstract 

Lanthanides (Ln), which make up the majority of rare-earth elements, must be 

separated in order to fully fulfill their potential as vital components in several crucial 

technologies. The most practical rare-earth separation method, solvent extraction, still 

relies heavily on trial-and-error, a low throughput and inefficient method, to find novel 

ligands for improved rare-earth separations. It is necessary to develop a prediction model 

that enables high-throughput ligand screening in order to find the right ligands for 

improved separation performance. This work was motivated by several successful cases of 

ligands effective in Eu(III)/Am(III) separation could be further utilized in Ln(III) selective 

separations. We have trained deep neural networks to accurately and quickly predict 

distribution coefficients of trivalent lanthanides (Ln(III)) and actinides (Am (III)) for a 

given ligand and the extraction conditions. 194 ligands and measurements from over 2,000 

extractions make up the experimental data on distribution coefficients that are currently 

accessible. For the depiction of a ligand, atomic extended-connectivity fingerprints and 

molecular physicochemical descriptors are combined. The best trained model, with R2 = 

0.83 and MAE = 0.45, performed well on the validation set after testing and comparing 

several alternative combinations of hyperparameters. The trained neural network examines 

the behavior of ligands in the database that are solely employed for the Eu(III)/Am(III) 

separation. Some bis-phosphine oxide phenanthroline, dithiophosphinic acids and bis-

pyrazole phenanthroline show trustworthy high potentials in Ln(III) selective separations. 
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6.2 Introduction 

Fifteen lanthanides (Ln) along with Sc and Y are named as rare earth elements 

(REEs) due to their dispersed distributions in the earth’s crust and exceedingly tough 

exploitations at the early stage. Even after over 200 years’ development, separation and 

purification of REEs are still difficult because their minerals are always paragenetic in 

nature and their physical and chemical properties are extremely similar. On the other hand, 

lanthanides have wide applications in the fuel industry, new materials, and life science1, 2 

as catalysis,3-5 electrodes,6 additive agents,7 etc., making their high purity isolations one of 

the burning topics in separation chemistry. Solvent extraction is the primary chemical 

means to separate different lanthanides according to the different binding strengths of the 

trivalent lanthanides with the identical organic ligand. Certainly, more adjacent in the 

periodic table, more slight differences in radii of their trivalent cations, more challengeable 

for complete purifications. Based on functions, valid ligands could be classified into two 

major categories one of which is more sensitive to heavier lanthanides than the lighter, 

such as bis(2-ethylhexyl) phosphoric acid (D2EHPA),8 N,N,N’,N’-

tetraoctyldiglycolamide (TODGA),9-11 and trialkylphosphine oxides (e.g., Cyanex 923).12 

However, fewer ligands could extract light lanthanide(s) from the aqueous phase to the 

organic phase, like 2,9-bis-amide-1,10-phenathroline (BAPhen).13-15 A supreme extractant 

has huge differences in its binding strengths to fifteen Ln(III) is the desire of research. 

In the term of electron donors in the extractants used in industrial extractions, the 

most effective ones are oxygen-donor chelating ligands such tributyl-phosphate (TBP),16 

diglycolamide (DGA)17-19 and D2EHPA. Ligands with all soft N-donor atoms such as 
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alkylated bis-triazinyl pyridines (BTP),20 6,6′-bis-triazinyl-2,2′-bipyridine (BTBP),21 

and 2,9-bis-triazinyl-1,10-phenanthroline (BTPhen)22, 23 are another strategy of extractants 

for isolated Ln(III) in nitric acid. Recently, alternative ligands combining hard O-donor 

and soft N-donor atoms have been recognized as efficient separating agents and have 

attracted interest in that amide oxygen donors can provide stronger metal-ion binding. One 

example is 2,9-bis-lactam-1,10-phenanthroline (BLPhen)24 which was reported with 

unparalleled selectivity for light trivalent lanthanides.25 

 In fact, a lot of selective ligands in Ln(III) separations were utilized in lanthanide 

and actinide (An) separation because of larger differences in properties and more urgent 

requirements such as the advanced reprocessing of high-level waste.26, 27 For example, the 

BLPhen ligand was reported with exceptionally high efficiency to separate Am(III) over 

Eu(III) in 2016, then was applied for Ln(III) extractions. In other words, extractants used 

in separating Ln(III) and An(III) have a higher possibility than other molecules to be 

effective in Ln(III) separations. The first step to use the ligands in Ln(III)/An(III) 

separation to improve the separating efficiency of Ln(III)s is to process a computational 

model that could accurately predict ligand’s extraction properties such as distribution 

coefficient (D) on both Ln(III) and An(III). Certainly, the subsequent ligand design would 

be more efficient if the model can obtain some structure-function relationships during the 

simulations. Thus, in this work, by training deep neural networks on experimental data of 

observed D values and by adequately encoding ligands, Ln(III) or An(III), and 

experimental circumstances, we have created a predictive model that successfully predicts 

D values for a given ligand. 
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6.3 Computational Method 

Data collection. Lanthanide extraction data including 1,202 log D values come from our 

previous work.28 Additional 821 log D values of Eu (III) and trivalent actinides (Am, Cm, 

Bk, Cf, Es) in the database were collected from the scientific literature where a single 

neutral ligand was the only extractant used to extract An(III) from the aqueous phase to the 

organic phase consisting of one or two different solvents. For each data point, the inputs 

include sequentially the representation of the ligand, descriptors of the extraction 

conditions, descriptors of the lanthanide or actinides. 

Representation of ligands. The first 2,048 inputs of each data point are Extended-

Connectivity Fingerprints29 (ECFP) of the ligand; the next 208 inputs are RDKit 

descriptors.30 They are both generated from the simplified molecular-input line-entry 

system (SMILES) expression of the ligand by the DeepChem package.31 Chirality is 

considered in ECFP and other parameters use default settings: radius of fingerprint = 2; 

length of generated bit vector = 2,048; bond order considered; feature descriptors not used. 

RDKit descriptors use default parameters: binary descriptors of fragments like ‘fr_XXX” 

are returned; avg = True for the Ipc (information of polynomial coefficients) descriptor32 

to return the information content divided by the total population. The names of the 208 

descriptors returned by the RDKit module are listed in the Excel file, including molecular 

weight, number of valence electrons, partial charges, electrotopological state indexes, etc. 

Descriptors of lanthanides and actinides. Nine numerical descriptors available for all 14 

lanthanides and 5 actinides are used to characterize the metal in extraction: atomic number, 
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outer shell electrons of the atom, melting point (K) of the metal, boiling point (K) of the 

metal, Density (g/cm3) of the metal, covalent radius (Å) of the atom, Pauling 

electronegativity of the atom, ionic radius (Å) of trivalent ions and standard entropy  

(J·mol-1·K-1) of the metal at ambient conditions. 

Descriptors of the extraction conditions. These descriptors include the concentration of 

the ligand (mM), volume ratios of organic solvents a and b, descriptors of organic solvent 

a, descriptors of organic solvent b, the dipole moment of the inorganic acid in the aqueous 

phase (D), inorganic acid concentration (M), and Temperature (K) in sequence. For the 

one-component organic phase, the volume ratio of organic solvent a is 10, the volume ratio 

of organic solvent b is 0, and all descriptors of organic solvent b are set as 0. Descriptors 

of organic solvent a or b consist of seven numerical properties: molar mass (g/mol), density 

(g/mL), boiling point (K), melting point (K), dipole moment (D), solubility in water (g/L), 

and log P (P=[a]n-octanol/[a]water, partition coefficient in n-octanol/water at ambient 

temperature). For the extraction data which provides only the pH value of the aqueous 

phase, the inorganic acid concentration is determined by this pH value. 

Details of the deep learning model and the training process. The training of fully 

connected neural networks (FCNNs) is performed via the PyTorch package (version 

1.9.1)33 with L1 type loss function, SGD optimizer, and L2 regularization for weight decay. 

The weight initializations obey the default normal distributions. Mean-absolute-error 

(MAE), and coefficient of determination (R2) as calculated via the scikit-learn module were 

used as metrics for evaluation during the training process.34  
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6.4 Results and discussion 

6.4.1 Data and workflow 

The workflow of our ML approach is summarized in Figure 6-1a. The input data 

comprises three parts: Ln(III) or An(III), ligand, and solvent extraction conditions. First, 

the ligand, represented by a string-based name (SMILES), is fed into RDKit30 – a 

cheminformatics toolkit that automatically generates 208 descriptors for the ligand. The 

RDKit descriptors are then combined with the extended connectivity fingerprints 

(ECFPs)29 for a more detailed representation of the ligand. Nine descriptors are used for 

each Ln element; solvent extraction conditions such as temperature, the concentration of 

the ligand, and physical properties of organic solvents are also part of the input. In total, 

2286 inputs are used for each output logD value. 

In addition to 1,202 log D values of lanthanide extraction from our previous work,28 

821 log D values of Eu (III) and trivalent actinides (Am, Cm, Bk, Cf, Es) extracted by 85 

ligands are collected from literatures into our lanthanides and actinides database. More than 

diglycolamides (DGA),17, 18, 35, 36 alkylated bis-triazinyl pyridines (BTP),20 and 2,9-bis-

lactam-1,10-phenanthroline (BLPhen),24, 37 and other ligands used for Ln(III) 

separations,38-40 new classes of ligands only reported for Ln(III)/An(III) separations 

including benzoxazole,41 benzothiazole,41 bipyridine dicarboxamide (BPDA),42 tripyridine 

dicarboxamide (TPDA),43 bis-pyrazole phenanthroline (BPyPhen),44 dithiophosphinic 

acids,45  pyridine phosphine oxide (POPy),46 etc. enrich the diversity of the database. 

Meanwhile, more novel BAPhen and 2,9-bis-phosphineoxide-1,10-phenanthroline 

(BPPhen) ligands are involved in the new database than the lanthanides database because 
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of increasing reports on them in Eu(III)/Am(III) separation in recent year.47-49 Better 

predictions on BAPhen-derivative ligands could be expected due to the larger number in 

the training dataset. All SMILES expressions of the 194 ligands used in this work are listed 

in Appendix A, where the first 109 ligands were also used for previous work. 

 

Figure 6-1. (a) The workflow of predicting logD of Ln(III) and selected An(III) extracted 

by a ligand via fully connected neural networks with three hidden layers. (b) Chemical 

structures of ligands only used for Ln(III)/An(III) separation in the dataset. 
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6.4.2 Training and model performance 

Later, 200 data points randomly selected from our dataset, covering all 14 Ln(III) 

and including 52 Am(III) log D values are defined as the held-out validation set which is 

unknown to the neural networks until the training finishes. Fully connected neural networks 

(FCNNs) where every neuron in one layer is connected to every neuron in the next layer 

were used as the core of our approach for deep learning.50 The training of the FCNNs was 

performed with the PyTorch package.33 Plenty of FCNN models are evaluated and the best 

is achieved after 20,000 epochs with settings as 0.0001 learning rate, PReLU activation 

functions, 0.01 weight decay, three hidden layers, and numbers of neurons on each layer 

as 512, 128, and 16. The best FCNN model’s performance is shown in Figure 6-2 as the 

parity plot. Although there are some outliers when experimental log D is relatively small 

or large (< -2 or > 2), the R2 value of the training set based on 1834 data points reaches 

0.90 (Figure 6-2a) and MAE on 1834 data points is 0.28, a small value. Then, this best 

FCNN model also shows an excellent correlation (R2 = 0.83) between predicted log D and 

experimental log D on the held-out validation set (Figure 6-2b). The MAE on the validation 

set is 0.45 and 67% of the validation examples have prediction errors of less than 0.5 of 

log D units (in the range between cyan dash lines in Figure 6-2b). More interesting, the 

best FCNN model has consistent predictions on 52 Am(III) log D values and 148 Ln(III) 

log D values in the validation set that R2 is 0.79 and MAE is 0.45 for Am(III) only. 
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Figure 6-2. Performance of the best FCNN model. The parity plot between the predicted 

and experimental log D values: (a) training set and (b) validation set. 

 

6.4.3 From Ln(III)/An(III) separations to Ln(III) selective separations 

 Since 85 ligands in our database were only reported on Ln(III)/An(III) separations 

in literature and our FCNN model has consistent reliable predictions on Am(III) and Ln(III) 

log D values, we use our FCNN model to provide log DLa and log DLu values for these 85 

ligands to evaluate their potentials in Ln(III) selective separations. The extraction 

conditions for screenings on different classes of these 85 ligands are determined by their 

reported extraction conditions in Eu(III)/Am(III) separations. The separation factor, the 

ratio of distribution coefficients between two cations, is a measurable indicator of ligand 

selectivity. Since our FCNN model directly predicts log D values, log SFLa/Lu is used for 

evaluation, in which |log SFLa/Lu| ≥ 1 represents an effective selective separation and larger 

|log SFLa/Lu|, higher selectivity. 

 Some novel BPPhen ligands, as analogs of BAPhen ligands, are predicted with 

excellent selectivity as shown in the first row in Figure 6-3. The most selective BAPhen 
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ligand has been reported as a log SFLa/Lu as 3.18,25 and three BPPhen ligands screened out 

from selective ligands in Eu(III)/Am(III) separations show higher or close to that value. As 

a result, more modifications and expansion on BPPhen ligands could improve the Ln(III) 

selective separations. In addition to BPPhen ligands, two dithiophosphinic acids show log 

SFLa/Lu values larger than one (second row in Figure 6-3). Since dithiophosphinic acids 

have never been applied for Ln(III) selective separations, fewer understandings, and 

investigations on their structure-selectivity relationships so more opportunities to design, 

improve and explore this unique type of ligand. The other significant ligand in these 

screenings is a BPyPhen showing a log SFLa/Lu as 2.84. Although BPyPhen has a 

phenanthroline backbone as BAPhen, all electron donors are nitrogen so the hardness 

difference between nitrogen and oxygen could lead to a large difference in binding strength 

which quantitively affects ligand selectivity. As a result, although this BPyPhen does not 

show a higher |log SFLa/Lu| than the most selective BLPhen, its exclusive structure raises 

more inspirations of different types of phenanthroline derivatives in Ln(III) selective 

separations. 
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Figure 6-3. New ligands have high predictive potentials in Ln(III) selective separations 

which were previously reported in Eu(III)/Am(III) separations and their corresponding 

FCNN predicted selectivity. 

 

6.5 Summary and conclusions 

Inspired by several successful cases of ligands effective in Eu(III)/Am(III) 

separation could be furtherly utilized in Ln(III) selective separations, we have trained deep 

neural networks to accurately and quickly predict distribution coefficients of Ln(III) and 

Am(III) for a given ligand and the extraction conditions. The available experimental data 

of distribution coefficients involve 194 ligands and measurements over 2,000 extractions. 

A combination of molecular physicochemical descriptors and atomic extended-

connectivity fingerprints is used for the representation of a ligand. After trying and 

comparing many different combinations of hyperparameters, the best trained model 

performed well on the validation set: R2 = 0.83 and MAE = 0.45. The trained neural 

network screens ligands in the database that are only used for Eu(III)/Am(III) separation 

for their behaviors on the La(III)/Lu(III) separation. Several bis-phosphine oxide 
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phenanthrolines, dithiophosphinic acids, and bis-pyrazole phenanthrolines exhibit reliable 

high potentials in futural Ln(III) selective separations. 
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Chapter 7. All-Carboxylate-Protected Superatomic Silver Nanocluster 

with an Unprecedented Rhombohedral Ag8 Core 

7.1 Abstract  

Our collaborations with Kuan-Guan Liu group from Ningxia University report the 

first all-carboxylate-protected superatomic silver nanocluster. The [Ag8(pfga)6]
6− cluster 

has a rhombohedral Ag8
6+ core, with each of its faces protected by one dianionic 

perfluoroglutarate (pfga) ligand. Electronic-structure analysis from density functional 

theory confirms the stability of this two-electron cluster due to the shell closing of the 

superatomic orbital in the (1S)2 configuration and explains the optical absorption of the 

cluster in the visible region as the transition from 1S to 1P orbital. The [Ag8(pfga)6]
6− 

cluster emits bright green-yellow light in THF solution and bright orange light in the solid 

state. This work opens the door to using the widely available carboxylic acids to synthesize 

atomically precise Ag clusters of attractive properties. 

 

7.2 Introduction 

Atomically precise monolayer-protected coinage metal nanoclusters (CMNCs) 

have attracted intense interest for their structural diversity and intriguing properties.1-5 

Their formation and stabilization rely on both the electron count and the monolayers 

(organic/inorganic ligands), which play vital roles in determining their structures and 

properties.1-9 The classic theory of hard and soft acids and bases (HSAB) rationalizes the 

selection of soft-base ligands, such as phosphines,10, 11 thiolates,12-14 selenolates,15-17 and 
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alkynylides,18-22 to stabilize the soft-acid coinage metal atoms in forming the CMNCs. 

Many such Cu/Ag/Au clusters have been characterized by X-ray single-crystal analysis.  

In contrast, it is much more challenging to obtain atomically precise CMNCs with 

the hard-base ligands containing N and O donors, even though those ligands are often used 

in preparing larger coinage-metal nanoparticles.23, 24 Some recent successes in synthesizing 

hard-base-ligand-protected CMNCs suggested promising routes to overcome the 

challenge. For instance, Wang et al. reported all-nitrogen-donor-protected Ag21 and Ag22 

that showed interesting optical properties.25 More excitingly, DNA-stabilized (via nitrogen 

and oxygen donors on the bases) Ag8 and Ag16 nanoclusters with near-IR emitting 

properties were characterized by X-ray single-crystal analysis.26, 27 Using inorganic donors, 

Mizuno and co-workers reported [SiW10O36]
8− protected Ag6 and Ag27 clusters,28, 29 while 

Zhang et al. obtained two unprecedented Ag6@Ti16-oxo nanoclusters with Ti-oxo clusters 

as ligands.30  

Despite the extensive use of inorganic oxo groups, using organic oxygen-donors 

such as carboxylates to direct synthesis of atomically precise CMNCs has not been 

reported. The great availability, affordability, and variety of carboxylic groups would 

enable great tunability of the CMNCs, if a synthetic route to all-carboxylate-protected 

CMNCs could be opened. Herein, we report the synthesis and structure determination of 

the first all-carboxylate-protected superatomic silver nanocluster, hence opening the door 

to using carboxylate groups to synthesize atomically precise Ag clusters. The key to our 

success is the use of a flexible dicarboxylic acid (perfluoroglutaric acid) as a multidentate 

protecting agent, to overcome the challenge of using the monocarboxylate ligands to 
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construct CMNCs. The double carboxylate groups of each perfluoroglutarate (pfga) 

provide four oxygen donors for binding with multiple metal atoms. Moreover, when in the 

gauche form, pfga can bend into a staple shape, which helps lock adjacent metal atoms in 

place.31 In addition, the carboxylate O atoms are a strong hydrogen-bonding acceptor that 

can further help stabilizing metal clusters via supramolecular interactions.32 

 

7.3 Results and discussion 

7.3.1 Unique structure and stability  

Our collaborators prepared the cluster by heating a dimethylformamide solution of 

perfluoroglutaric acid and AgNO3 under alkaline conditions, yielding a single crystal. The 

crystal’s chemical formula is determined by single-crystal X-ray diffraction as 

[(CH3)2NH2]6[Ag8(pfga)6]·H2O·6DMF (1), containing the [Ag8(pfga)6]
6− center (Figure 7-

1a) with a unique rhombohedral Ag8
6+ core (Figure 7-1b). The Ag···Ag distances range 

from 2.768 to 2.868 Å, similar to those in other silver nanoclusters.27, 33, 34 Compared with 

the widely reported Ag6
4+ nanocluster cores,28, 33, 35-37 the Ag8

6+ core is rare and illuminated 

here for the first time. The rhombohedral Ag8 core (D3d point group) is also unprecedented 

among eight-atom coinage-metal clusters, as the M8 cores usually take a 

bicappedoctahedral,38, 39 cubic,40 tetracapped tetrahedral,41, 42 or edge-shared tetrahedron 

structure.43  

In the [Ag8(pfga)6]
6− anionic cluster (Figure 7-1a), each of the six pfga ligands 

protects the Ag8
6+ core in cis-μ4-η,1η,1η,1η1 coordination mode; the dihedral angle of the 

fluoroalkyl backbone (highlighted in black in Figure 7-1a) conforms to the gauche form.31, 
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44 Six pfga ligands cap six diamond-shaped faces of the rhombohedral Ag8
6+ core to form 

the anionic cluster [Ag8(pfga)6]
6−: each pfga’s two parallel carboxylate groups coordinate 

to two parallel edges of each face (Figure 7-1c). The use of the fluorinated pfga ligand is 

necessary to obtain the Ag8 cluster; we tried glutaric acid but failed to obtain the desired 

Ag8 product. In addition to the unique cis-μ4-η,1η1,η1,η1 coordination mode, fluorine groups 

on pfga withdraw electrons from the negatively charged cluster and more broadly distribute 

the negative charges, thereby stabilizing the whole cluster. The coordination mode and the 

electron-withdrawing fluorine groups enabled by pfga are also key to achieving the 

unprecedented rhombohedral Ag8 core. 

 

Figure 7-1. (a) Structure of the [Ag8(pfga)6]
6− cluster in the crystal (1). Inset: Microscope 

photograph of the rhombohedral crystals of [(CH3)2NH2]6[Ag8(pfga)6]·H2O·6DMF 1. 

Dashed lines represent silver−ligand coordination bonds (via Ag···O interactions). (b) 

Rhombohedral Ag8
6+ core of the cluster (Ag−Ag distances in Å). (c) Binding mode of pfga 

on the core surface. Ag, purple; O, red; C,gray; F, green. 
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7.3.2 Optical properties 

We next examine electronic structure and optical properties of the cluster. As 

shown in Figure 7-2, the UV−vis absorption spectrum of 1 in the THF solution exhibits 

two prominent peaks at 3.28 eV (α; 378 nm, εmax = 5.5 × 104 L·mol−1 cm−1) and 4.71 eV 

(β; 263 nm, εmax = 9.2 × 104 L·mol−1 cm−1), which were well reproduced in the simulated 

spectrum from time-dependent density functional theory showing two main peaks at 3.0 

and 4.4 eV. Orbital analysis showed that the α peak corresponds to the HOMO−LUMO 

transition, while the β peak includes multiple transitions but mostly of HOMO to LUMO+1 

transition (Figure 7-2b). [Ag8(pfga)6]
6− has two valence electrons according to the 

superatom model: n* = NAg − 2 × Npfga − z = 8 − 2 × 6 − (−6) = 2.45 Therefore, the 

superatomic electronic structure is in (1S)2 configuration. The three empty 1P orbitals split 

(Figure 7-2b) into a nondegenerate 1Pz (along the long axis of the rhombohedron; LUMO) 

and the higher-energy double-degenerate 1Px,y (LUMO+1). Indeed, one can see the P-type 

orbital character of the LUMO (Figure 7-2b), while the HOMO is not of regular S-type due 

to stronger hybridization of Ag states with the ligand states and the cluster’s nonspherical 

shape. The pfga ligands influence the superatomic electron structure of the Ag8 cluster as 

thiolate ligands do to the Au and Ag clusters: by localizing electrons from the metal center. 

Such superatomic state enhances the interaction between a conventional hard base 

(carboxylate) and soft acid (Ag); the fluorine groups on pfga further polarizes the 

carboxylate groups to have more covalent interaction with Ag (Figure 7-3). 
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Figure 7-2. (a) Experimental UV−vis absorption spectrum (blue) of 1 in THF and 

simulated spectrum of [Ag8(pfga)6]
6− from time-dependent density-functional theory 

(green). (b) Orbital diagram and frontier orbitals of [Ag8(pfga)6]
6−. 
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Figure 7-3. Electron-density difference (Δρ) isosurface for one pfga ligand binding on the 

[Ag8(pfga)6]
6- cluster surface (Δρ = ρ[Ag8(pfga)6]

6- - ρ[Ag8(pfga)5]
4- - ρ[pfga]2-). The 

magenta and yellow isosurfaces correspond to the regions of electron accumulation and 

depletion, respectively. Isovalue at 0.004 e/Å3. 

 

The successful use of carboxylic acids to synthesize an atomically precise silver 

nanocluster demonstrated here has blazed a path that could lead to a great vista of 

carboxylate-protected coinage metal nanoclusters. We envision that many other types of 

carboxylic acids including mono, nonfluorinated carboxylic acids and amino acids could 

be used and that clusters of higher electron counts such as 8 and 58 could be obtained. The 

high coordination number of carboxylate ligands around a surface Ag may be difficult to 

achieve when the cluster size becomes larger, but it may be overcome via strategies 

including use of a co-ligand (such as halides and phosphines), bulky carboxylates, or a 

core−shell construction (complexes of Ag+ and carboxylates protecting zerovalent Ag 

core). 
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The carboxylate-protected Ag clusters could have interesting 

chemical/electronic/optical properties for potential applications. One advantage of this 

cluster is that the carboxylate ligands can be removed rather easily at ambient conditions, 

due to the weaker Ag−COO bond than Ag-thiolate or Au-thiolate bond. Hence, it can be 

used as a precursor to prepare supported atomically precise Ag nanocluster catalysts or to 

produce assemblies of ultrathin Ag nanowires for electronics applications.46 Moreover, 

carboxylate groups could provide a key link to connect metal nanoclusters and 

metal−organic frameworks using organic carboxylate linkers, which might lead to 

interesting composite materials. 

 

7.4 Summary and conclusions  

In sum, the first example of an all-carboxylate-protected superatomic silver 

nanocluster, [Ag8(pfga)6]
6−, featuring a rhombohedral Ag8

6+ core and perfluoroglutarate 

(pfga) protecting ligands, was demonstrated. Each of the six diamond-shaped faces of 

Ag8
6+ core is “stapled” by the two parallel carboxylate groups of a pfga ligand. Optical 

absorption of the cluster and its electronic structure could be well understood from density 

functional theory and the superatomic model. The cluster is a strong luminophore both in 

solution and in the solid state at room temperature. This work opens up a new avenue of 

research in atomically precise nanochemistry that may lead to many new carboxylate-

protected coinage metal nanoclusters being discovered.  

 



 104 

References 

1. R. Jin, C. Zeng, M. Zhou and Y. Chen, Chem. Rev., 2016, 116, 10346-10413. 

2. J. Yan, B. K. Teo and N. Zheng, Acc. Chem. Res., 2018, 51, 3084-3093. 

3. I. Chakraborty and T. Pradeep, Chem. Rev., 2017, 117, 8208-8271. 

4. B. Bhattarai, Y. Zaker, A. Atnagulov, B. Yoon, U. Landman and T. P. Bigioni, 

Acc. Chem. Res., 2018, 51, 3104-3113. 

5. S. Sharma, K. K. Chakrahari, J.-Y. Saillard and C. Liu, Acc. Chem. Res., 2018, 

51, 2475-2483. 

6. C. P. Joshi, M. S. Bootharaju and O. M. Bakr, The journal of physical chemistry 

letters, 2015, 6, 3023-3035. 

7. X. Kang and M. Zhu, Chem. Soc. Rev., 2019, 48, 2422-2457. 

8. P. Liu, R. Qin, G. Fu and N. Zheng, J. Am. Chem. Soc., 2017, 139, 2122-2131. 

9. G.-G. Luo, Q.-L. Guo, Z. Wang, C.-F. Sun, J.-Q. Lin and D. Sun, Dalton Trans., 

2020, 49, 5406-5415. 

10. M. S. Bootharaju, R. Dey, L. E. Gevers, M. N. Hedhili, J.-M. Basset and O. M. 

Bakr, J. Am. Chem. Soc., 2016, 138, 13770-13773. 

11. J. Chen, Q.-F. Zhang, T. A. Bonaccorso, P. G. Williard and L.-S. Wang, J. Am. 

Chem. Soc., 2014, 136, 92-95. 

12. Y. Negishi, K. Nobusada and T. Tsukuda, J. Am. Chem. Soc., 2005, 127, 5261-

5270. 

13. H. Lee, S. M. Dellatore, W. M. Miller and P. B. Messersmith, science, 2007, 318, 

426-430. 

14. Q. Yao, T. Chen, X. Yuan and J. Xie, Acc. Chem. Res., 2018, 51, 1338-1348. 

15. W.-T. Chang, P.-Y. Lee, J.-H. Liao, K. K. Chakrahari, S. Kahlal, Y.-C. Liu, M.-

H. Chiang, J.-Y. Saillard and C. W. Liu, Angew. Chem. Int. Ed., 2017, 56, 10178-

10182. 

16. X. Kang and M. Zhu, Small, 2019, 15, 1902703. 

17. C. A. Hosier and C. J. Ackerson, J. Am. Chem. Soc., 2018, 141, 309-314. 



 105 

18. P. Maity, H. Tsunoyama, M. Yamauchi, S. Xie and T. Tsukuda, J. Am. Chem. 

Soc., 2011, 133, 20123-20125. 

19. P. Maity, S. Takano, S. Yamazoe, T. Wakabayashi and T. Tsukuda, J. Am. Chem. 

Soc., 2013, 135, 9450-9457. 

20. X.-K. Wan, Q. Tang, S.-F. Yuan, D.-e. Jiang and Q.-M. Wang, J. Am. Chem. Soc., 

2015, 137, 652-655. 

21. Y. Wang, H. Su, C. Xu, G. Li, L. Gell, S. Lin, Z. Tang, H. Häkkinen and N. 
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Chapter 8. Understanding the Interaction Between Carboxylates and 

Coinage Metals from First Principles 

8.1 Abstract 

Carboxylate groups have recently been explored as a new type of ligand to protect 

superatomic copper and silver nanoclusters, but little is known of the interfacial structure 

and bonding. Here, we employ density functional theory to investigate the interfaces of a 

model carboxylate group, CH3COO, on the coinage metal surfaces and clusters. We found 

that μ2-CH3COO is the most preferred binding mode on the three M(111) surfaces (M = 

Cu, Ag, and Au), while μ3-CH3COO is also stable on Cu(111) and Ag(111). The saturation 

coverage was found to be about seven CH3COO groups per nm2 for all surfaces. CH3COO 

has the strongest binding on Cu and weakest on Au. Moving from the flat surfaces to the 

icosahedral M13 clusters, we found that the eight-electron superatomic [M13(CH3COO)6]
− 

nanoclusters also prefer the μ2-CH3COO mode on the surface. The icosahedral kernel in 

[Cu13(CH3COO)6]
− and [Ag13(CH3COO)6]

− was well maintained after geometry 

optimization, but a larger deformation was found in [Au13(CH3COO)6]
−. Given the broad 

availability and variety of carboxylic acids including amino acids, our work suggests that 

carboxylate groups could be the next generation ligands to further expand the universe of 

atomically precise metal clusters, especially for Cu and Ag. 

 

8.2 Introduction 

Ligand-protected coinage metal nanoclusters find applications in microelectronics,1 

electrochemistry,2 energy conversion,3 pharmaceutical chemistry,4 sensing,5, 6 and 
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catalysis.7, 8 Great efforts of synthesis and characterization have been devoted to 

establishing their structure-property relationships. Generations of ligands from 

phosphines9 and thiolates10-13 to alkynyls14 and carbenes15, 16 have been used in protecting 

coinage metal nanoclusters. Meanwhile, first principles density functional theory (DFT) 

has provided insights into many fundamental questions such as structure, interfaces, 

formation, and reactions.17-19  

The confluence of efforts in the past decade has led to the new field of atomically 

precise nanochemistry, epitomized by ligand-protected coinage metal clusters. One 

important and common theme in this new field is the interfacial structure and bonding of 

ligands on the cluster surface and the impact of the curvature and cluster size on the 

interfacial motifs.20 Case in point is the famous staple motif of RS−Au−SR on the gold 

clusters10, 21 and surfaces.22 The analogous RCC-Au-CCR motif was also later found,23, 24 

opening up a new avenue of research that leads to many new structural, optical, and 

catalytic insights.25, 26 Hence, exploring new ligands is a long-lasting thrust in the field of 

atomically precise nanochemistry. 

Although carboxylates as a hard base were less explored for protecting soft acid 

ions of coinage metals, self-assembly monolayers (SAMs) of n-alkanoic carboxylates on 

copper and silver surfaces were investigated in 1990s.27-29 Recently, researchers were also 

interested in carboxylate chemistry on gold nanoparticles30 and gold surfaces.31 Lately, a 

new all-carboxylate-protected superatomic silver nanocluster, [Ag8(pfga)6]
6-, was 

discovered32 that has generated great interest in using carboxylic acids including amino 

acids for synthesizing coinage metal nanoclusters.33 The pfga (perfluoroglutarate) ligand 
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is a special chelate ligand with fluorination in the middle and two carboxylate groups at 

the ends. To fully take advantage of the great variety and availability of carboxylate ligands 

for protecting coinage metals, one wonders what the expected binding mode should be for 

a typical or more general carboxylate group at the interface with a coinage-metal cluster or 

surface. 

The recent discovery of carboxylate-protected Ag nanoclusters and the previous 

work of carboxylates on coinage metal nanoparticles and surfaces prompted us to examine 

in detail the structure and energetics of the carboxylate-metal interface for both a flat 

surface and a nanocluster for a general carboxylate group. To this end, herein we employ 

first-principles density functional theory (DFT) to first explore the interfacial structures of 

a model carboxylate group (namely, CH3COO group) on the (111) surfaces of Cu, Ag, and 

Au. Then we will probe the acetate group on icosahedral M13 clusters of Cu, Ag, and Au 

from the superatomic perspective.34 Below we first introduce the computational method. 

 

8.3 Computational Method 

Structure and energetics of the acetate group on the (111) surfaces of Cu, Ag, and Au were 

studied by using the Vienna ab initio simulation package (VASP).35 The ion−electron 

interaction is described with the projector augmented wave (PAW) method.36 Electron 

exchange-correlation is represented by the functional of Perdew, Burke, and Ernzerhof 

(PBE) of generalized gradient approximation (GGA).37 Cutoff energy of 450 eV was used 

for the plane-wave basis set. The convergence criteria were 10-4 eV in energy and 0.02 

eV/Å in force for all optimizations. As shown in Table 7-1, the optimized bulk lattice 
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parameters of fcc Cu, Ag, and Au show good agreement with experiment. Then, the M 

(111) (M=Au, Ag, Cu) surface slabs were modeled in a rectangular 3 × 2√3 supercell with 

atomic layers (16 atoms per layer) and their parameters were summarized in Table Ⅰ. The 

thickness of the vacuum layer between slab images was set to be 17 Å. The bottom two 

layers of the slab were fixed at the optimized bulk positions during structural relaxation.  

The Brillouin zone of the surface supercell was sampled by a Monkhorst-Pack k-point 

mesh of 4×4×1 grid. Bader charge analysis was done with the implementation of 

Henkelman et al.38  

Table 8-1. Bulk lattice parameters of the fcc metals and the surface lattice parameters of 

the rectangular 3 × 2√3 supercell of their (111) surfaces. 

Lattice parameters Cu Ag Au 

Exp. bulk (Å) 3.62 4.16 4.17 

DFT bulk (Å) 3.57 4.08 4.12 

DFT surface (Å) 10.27×8.89 11.81×10.23 11.79×10.27 

 

Structural optimizations of the acetate-protected M13 nanoclusters were carried out 

via the quantum chemistry program Turbomole V6.5.39 The TPSS (Tao, Perdew, 

Staroverov, and Scuseria) functional40 was used for electron exchange and correlation, with 

the def2-TZVP orbital and auxiliary basis sets.  Effective core potentials which have 19 

valence electrons were used for Ag and Au.41 The convergence criteria were 3×10-5 eV for 

energy and 5×10-3 eV/Å for force.  

The van der Waals interaction was included via the DFT-D3 approach with zero 

damping:42 for VASP, the coefficients used for the PBE functional are s6 = 1.0, sr,6 = 1.217, 
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and s8 = 0.722; for Turbomole, the coefficients used for the TPSS functional are s6 = 1.0, 

sr,6 = 1.166, and s8 = 1.105. 

 

8.4 Results and discussion 

8.4.1 Adsorption of one CH3COO group on the M(111) Surface 

The goal of the present work is to computationally assess the preferred binding 

mode and its associated binding energy of the acetate group on the coinage-metal surfaces 

and clusters. We started with a low-coverage scenario where there is only one CH3COO 

group on the surface supercell. We first computed the binding energy, defined as the energy 

needed to dissociate the CH3COO group as a radical into the gas phase away from the 

surface; we used this energy reference to avoid the complication if one were to study 

desorption of a charged group from a surface with periodic boundary conditions. As shown 

in Table 8-2 and Figure 8-1, the μ2 mode of the carboxylate O atoms anchoring on two 

neighboring metal sites is the preferred mode on all three surfaces. The μ3 motif on a 

surface M3 triangle (where one O atom of the COO moiety is at the bridge site of two 

neighboring metal atoms) is slightly higher in energy than μ2 but is also a local minimum 

on Cu(111) and Ag(111). The μ3 motif is not stable on Au(111) and relaxes to the μ2 mode. 

Comparing just the common μ2 mode on the three surfaces, one can see that the CH3COO 

group binds to Cu(111) the strongest, followed by Ag(111) and then Au(111). The stronger 

CH3COO-Cu(111) interaction is also reflected in the shorter Cu-O distance (2.00 Å; Figure 

8-2a). Interestingly, the Ag-O and Au-O distances (Figure 8-2c,e) are very close, but the 

CH3COO-Ag(111) interaction is 0.46 eV stronger than CH3COO-Au(111).  
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Figure 8-1. Bonding geometries of μ2-CH3COO (left panel) and μ3-CH3COO (right panel) 

on the (111) surfaces: (a), (b) Cu(111); (c), (d) Ag(111); (e) Au(111). Color code: H, white; 

C, grey; O, red; Cu, green; Ag, blue; Au, yellow. 
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Table 8-2. Binding energies (in eV) of a single CH3COO group, defined as the energy 

needed to dissociate the CH3COO group as a radical into the gas phase away from the 

surface, on the supercells of the (111) surfaces of Cu, Ag, and Au (see Table 8-1. for the 

supercell dimensions).   

Binding mode Cu Ag Au 

µ2 2.88 2.50 2.04 

µ3 2.76 2.44 - 

 

To further shed light on the interfacial bonding, we analyzed the charge transfer 

between CH3COO and the metal surfaces. First, we used Bader charge analysis and 

obtained the partial atomic charges on CH3COO. After summing up the atomic charges, 

we obtained the molecular charges of µ2-CH3COO and µ3-CH3COO on the three surfaces. 

As one can see from Table 8-3, the molecular charge correlates with the binding energy: 

the stronger the bonding, the more negative the CH3COO group. Using CH3COO-Ag(111) 

as an example, the charge-density-difference plot (Figure 8-2) clearly shows that electrons 

move from the metal surface and the C-O bonds (yellow) to the O-Ag bonds and O atoms 

(magenta). In the case of µ2-CH3COO, the C-C bond also accepts some transferred electron 

(Figure 8-2a). 

Table 8-3. Molecular charge (in e) of the CH3COO group on the (111) surfaces of Cu, Ag, 

and Au for the two different binding modes. 

Binding mode Cu Ag Au 

µ2 -0.65 -0.65 -0.50 

µ3 -0.63 -0.62  
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Figure 8-2. Charge density difference for (a) μ2-CH3COO and (b) μ3-CH3COO on Ag(111) 

(Ag atoms in blue). Magenta (electron accumulation) and yellow (electron depletion) 

isosurfaces are at contour levels of 0.003 e/Å3. 

 

The binding-energy trend can be further explained by the soft-hard acid base theory 

from a molecular perspective as well as by the electronegativity from the ligand-surface 

interaction perspective. Carboxylate is a hard base so has the weakest interaction with the 

softest acid of the three which is gold.43  On the surface, the carboxylate group will gain 

some electron from the surface (Table 8-3 and Figure 8-2); Au has the greatest 

electronegativity of the three and the least tendency to give away electrons to the 

carboxylate group, hence the weakest interaction. Unfortunately, we have not found any 

previous experimental work comparing all three coinage metals for the same carboxylate 

ligand(s) in terms of the binding strength. One difficulty we envision is the decomposition 

of the carboxylate group during the desorption process. In fact, a recent experimental study 

found that the carboxylate groups from adsorption of pyridine dicarboxylic acid on Cu(111) 

undergo decarboxylation during desorption with a measured activation energy of ~ 1.9 

eV.44  This is consistent with our finding of ~ 2.8 eV binding energy of a carboxylate group 

on Cu(111); in other words, the decarboxylation reaction tends to happen already before 

the desorption of the complete ligand. 
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8.4.2 Change of the binding energies with the CH3COO coverage on the M(111) 

Surfaces 

Both SAMs and ligand-protected metal nanoclusters usually have a complete layer 

of ligands covering the metal surfaces. Therefore, we next examine how the binding 

energies and interfacial motifs vary with the CH3COO coverage. We computed the 

differential binding energy as the energy needed to desorb just the newly adsorbed 

CH3COO group off the surface. As shown in Figure 8-3, the binding energies of CH3COO 

groups in the coverage of 1 nm-2 to 5 nm-2 are rather constant for each metal surface. The 

saturation coverage is similar for the three surfaces, at ~ 6.6 nm-2. Beyond this coverage, 

the binding energies turn negative, meaning that desorption is spontaneous and downhill 

in energy.  

The adsorption configurations of CH3COO groups with increasing coverage on 

Cu(111) are shown in Figure 8-4. One can see that the μ3 motif starts to appear when the 

coverage reaches about half of the saturation coverage (Figure 8-4c). At the saturation 

coverage, there is one μ3 and five μ2 CH3COO groups. But due to steric effect, the five μ2 

CH3COO groups are slightly tilted (Figure 8-4e).   
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Figure 8-3. Differential binding energy (DBE) versus the coverage of CH3COO on the 

(111) surfaces of Cu, Ag, and Au. DBE is defined as the energy needed to dissociate just 

one CH3COO group as a radical into the gas phase away from the surface at the specific 

coverage. 
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Figure 8-4. Adsorption configurations of CH3COO with increasing coverage on Cu(111): 

(a) 2; (b) 3; (c) 4; (d) 5; (e) 6 CH3COO groups per surface supercell. 

 

The structures of CH3COO groups on Ag(111) are shown in Figure 8-5. 

Interestingly, the μ3 motifs become more frequent especially in the intermediate coverages 

(Figure 8-5c,d). One reason for this more frequent appearance of the μ3 motifs is that the 

μ2 and μ3 motifs are much closer in energy on Ag(111) than on Cu(111) (Table 8-2).  At 

the saturation coverage, however, all the carboxylate group are in the μ2 mode on Ag(111); 

this is because now all the surface Ag atoms can be utilized to anchor the carboxylate group 

groups (Figure 8-5g). In the case of Au(111), the picture is simpler, because only μ2
 motif 

is stable on it, even at high coverages; in the full coverage (Figure 8-6), all surface Au 

atoms are bonded to carboxylates. 
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Figure 8-5. Adsorption configurations of CH3COO with increasing coverage on Ag(111): 

(a) 2; (b) 3; (c) 4; (d) 5; (e) 6; (f) 7; (g) 8 CH3COO groups per surface supercell. 
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Figure 8-6. Adsorption configuration of full coverage of CH3COO groups on Au(111). 

The dashed rectangle denotes the surface supercell. 

 

8.4.3. Carboxylate-protected superatomic M13 nanoclusters  

The interfacial structure and energetics of CH3COO on M(111) surfaces (M=Cu, 

Ag, Au) explored above now provide us a basis to further investigate the chemical bonding 

of CH3COO ligands on nanoclusters. The centered icosahedral M13 was chosen as the 

kernel because of its common appearance in ligand-protected metal clusters. Since there 

are 12 metal atoms at the surface of the icosahedral M13 core, six CH3COO groups are 

needed to fully protect the surface metal atoms in the μ2 mode. Then, according to the 

superatom model,34 an anionic cluster of the composition of [M13(CH3COO)6]
- would be 

an eight-electron superatom. To test this design idea, we explored a few different 

arrangements of the six ligands on each M13 core and the most stable structures are shown 
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in Figure 8-7. We found that the μ2 mode is preferred on the icosahedral M13 kernel of Cu 

and Ag; we tested cases with mixed μ2
 and μ3 CH3COO groups on Cu13 and Ag13 initially 

and found that μ3 CH3COO group changed to μ2 after relaxation. The optimized 

[Cu13(CH3COO)6]
- and [Ag13(CH3COO)6]

- are similar in structure and their icosahedral 

cores are well maintained after structural relaxation. Hence, both [Cu13(RCOO)6]
- and 

[Ag13(RCOO)6]
- could be viable targets for synthesis. In contrast, the icosahedral shell of 

[Au13(CH3COO)6]
- opened up after geometry optimization, indicating that such a geometry 

is unstable.  

The computed HOMO-LUMO gap of 1.06 eV for [Cu13(CH3COO)6]
- and 1.32 eV 

for [Ag13(CH3COO)6]
- is similar to other eight-electron superatoms in the (1S)2(1P)6 

configuration.45, 46  Indeed, the double degenerate HOMOs show the P character (the three 

1P orbitals split into a nondegenerate HOMO-1 and double-degenerate HOMO), while the 

triple degenerate LUMOs show clear D character (Figure 8-8). 

 

Figure 8-7. DFT-optimized structures of all-carboxylate-protected M13 nanoclusters: (a) 

[Cu13(CH3COO)6]
-; (b) [Ag13(CH3COO)6]

-; (c) [Au13(CH3COO)6]
-. 
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Figure 8-8. Orbital energy diagram and frontier orbitals of [Cu13(CH3COO)6]
-. 

 

In the structures of [Cu13(CH3COO)6]
- and [Ag13(CH3COO)6]

- in Figure 8-7, each 

surface metal atom is coordinated by one O atom from a CH3COO group. In general, the 

coordination number of O atoms around a surface Ag or Cu atom depends on both the 

surface coverage of ligands and the electron count of the cluster (hence the oxidation state 

of the metal atoms). Higher coverages of ligands and higher oxidation states of surface 

metal atoms can lead to higher coordination numbers.47 While keeping the electron count 

constant at 8, we tested the coverage effect by examining 7, 8, and 9 CH3COO groups on 

Ag13. We found that the AgO2 coordination (two CH3COO groups coordinate one Ag atom) 

is indeed present at these high coverages (Figure 8-9) but the AgO3 coordination either 

changed to AgO2 or was higher in energy. We expect that the AgO3 coordination mode 
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may be stabilized if we lower the total electron count (in other words, making the surface 

Ag atoms more positively charged). Same can be expected for Cu as well and a detailed 

further study is warranted. 

 

Figure 8-9. Most stable structures after DFT-optimization: (a) [Ag13(CH3COO)7]
2-; (b) 

[Ag13(CH3COO)8]
3-; (c) [Ag13(CH3COO)9]

4-. Arrows indicate some μ2-Ag atoms; the 

dashed circle shows the monodentate CH3COO group. 

 

 Another point to note is that the focus of the present work is on the ligand-metal 

interface, so we have not explored the global minima of the [M13(CH3COO)6]
- clusters 

beyond the assumed icosahedral core. To assess if this assumption is sound, we have tested 

a couple of popular minima of bare M13 (Cs and C2 symmetry) in addition to the icosahedral 

structure.48 The comparison is shown in supplementary material Figure 8-10. One can see 

that the [M13(CH3COO)6]
- cluster with the icosahedral core is much more stable than the 

other two cores for both Cu and Ag. Given our focus on the interface and the results in 

Figure 8-10, we think that using the icosahedral M13 core is a good initial model to simulate 

carboxylate-protected Ag and Cu clusters. 
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Figure 8-10. Comparison of the stability of the [M13(CH3COO)6]
- clusters with different 

core structures: (a) [Cu13(CH3COO)6]
-; (b) [Ag13(CH3COO)6]

-.  
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8.5 Summary and conclusions 

We have investigated the interfaces between a model carboxylate group, CH3COO, 

and the coinage metal surfaces and clusters by first principles density functional theory. 

The μ2-CH3COO mode was found to be the most stable configuration on all three M(111) 

surfaces (M=Cu, Ag, Au), while the μ3-CH3COO is also stable on Cu(111) and Ag(111). 

The binding energy of CH3COO correlates with the amount of charge transfer from the 

metal surface to the adsorbate; CH3COO binds with Cu(111) the strongest with the shortest 

interfacial Cu-O bonds and the largest amount of negative charge (~ -0.65 e). A distinct 

and similar saturation coverage of about 7 CH3COO groups per nm2 was found on all three 

surfaces. At the saturation coverage on the Ag(111) and Au(111) surfaces, all surface metal 

atoms are coordinated by μ2-CH3COO, while μ3-CH3COO modes appear in some 

intermediate coverages on Cu(111) and Ag(111). Geometry optimization of monolayer-

protected icosahedral M13 clusters with six CH3COO ligands found that the eight-electron 

superatomic [Cu13(CH3COO)6]
- and [Ag13(CH3COO)6]

- nanoclusters are stable and 

maintain the icosahedral kernel, but a larger deformation was found in the case of Au. Our 

work provides insights into the interface between carboxylate groups and coinage metals 

that could help design and synthesis of new atomically precise coinage-metal clusters.  
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Chapter 9. Summary and Outlook 

In this dissertation, we studied the selective ligands in solvent extraction to separate 

trivalent lanthanides (Ln) by using different computational approaches mainly including 

DFT and machine learning. Several novel ligands have been suggested as synthesis targets 

accessible for experimental study in the future, including but not limited to bis-lactam-

1,10-phenanthroline derived N-oxide ligands, hexalkyl-nitrilotriacetamide, and 

dithiophosphinic acids. According to different types of ligands, different effects of several 

factors have been individually studied, such as conjugation size, charge distribution, donor 

distance, molecule size, substituent type, etc. 

In Chapter 3, the relative aqueous La(III)/Ln(III) selectivity of a novel family of 

mixed N,O-donor ligands, generated from 2,9-bis-lactam-1,10-phenanthroline (BLPhen) 

and containing N-oxide functionalities, has been computationally assessed. In the selective 

separation of trivalent lanthanides, three new ligands were shown to be promising and 

empirically feasible targets. We discovered that key control factors that influence a ligand's 

selectivity for lanthanides include conjugation, O-O distance, planarity of the generated 

complex, and the electron density on the two O atoms. 

In Chapter 4, we have trained deep neural networks on the experimental data of 

distribution coefficients measured for hundreds of ligands for 14 Ln(III) ions to accurately 

and quickly predict their distribution coefficients for a given ligand and the extraction 

conditions, advancing the solvent-extraction separation of rare-earth elements. We 

discovered that the training model performed most accurately on the validation set when 

molecular physicochemical descriptors and atomic extended-connectivity fingerprints 
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were combined to best describe the ligands. We have further investigated several 

hyperparameter combinations, which resulted in a set of ideal hyperparameters. On the 

validation set, the best trained model did well: R2 = 0.85 and RMSE = 0.53. By modifying 

the diglycolamide (DGA) backbone and side chains when synthesizing four new ligands, 

we were able to further test our model by measuring the log D values of Ln(III) ions. We 

discovered that the predicted distribution coefficients from our trained neural network 

agree quite well with the measured values. Once ligands are synthesized, one can imagine 

that our neural network may be used to quickly forecast the log D values of Ln(III) ions 

for thousands to hundreds of thousands of them. 

In Chapter 5, four amide-trizainyl-phenanthroline ligands and more than 60 

hexalkyl-nitrilotriacetamide (NTA) ligands have a high potential to improve the selective 

separations of Ln(III), according to machine learning-based high-throughput screenings on 

thousands of ligands produced by Fast Assembly of SMILES Fragments (FASMIFRA). 

Two structure-activity connections have been confirmed by additional computational 

studies using hundreds of NTA ligands. For an NTA ligand with greater selectivity, one 

with a bigger size is desired. The other is that adding one or two dimethyl-hexyl groups to 

the terminals of the amide group substituents on NTA ligands with the same size will 

increase selectivity. 

In Chapter 6, inspired by several successful examples of ligands effective in 

Eu(III)/Am(III) separation that are able to be furtherly utilized in Ln(III) selective 

separations, we improve the work discussed in Chapter 4. We perform another machine 

learning model to accurately and quickly predict the distribution coefficients of Ln(III) and 
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Am(III) for a given ligand and the extraction conditions. The experimental data on 

distribution coefficients that are currently available include measurements from over 2,000 

extractions and 194 ligands. Atomic extended-connectivity fingerprints and molecular 

physicochemical descriptors are coupled to represent a ligand. After evaluating and 

contrasting many different combinations of hyperparameters, the best trained model, with 

R2 = 0.83 and MAE = 0.45, performed well on the validation set. The trained model 

analyzes the behavior of ligands used only for the Eu(III)/Am(III) separation in the 

database. Some bis-phosphine oxide phenanthrolines, dithiophosphinic acids, and bis-

pyrazole phenanthrolines have constant high potentials in future Ln(III) selective 

separations. 

In Chapters 7 and 8, in addition to rare-earth elements, several theoretical analyses 

based on the first principles for atomically precise ligand-protected nanoclusters were 

carried out to comprehend the interactions between metals and organic ligands. Our work 

provides insights into the interface between carboxylate groups and coinage metals that μ2-

CH3COO is the most stable on all three (111) surfaces; μ3-CH3COO is only stable on 

Cu(111) and Ag(111). And [Cu13(CH3COO)6]
− and [Ag13(CH3COO)6]

− nanoclusters are 

stable and maintain the icosahedral kernel, but a larger deformation was found in the case 

of Au. Given the broad availability and variety of carboxylic acids including amino acids, 

all our work suggests that carboxylate groups could be the next-generation ligands to 

further expand the universe of atomically precise metal clusters, especially for Cu and Ag. 

In conclusion, the most important, accurate and quick model for predicting 14 

Ln(III) distribution coefficients for a given ligand and the extraction conditions have been 
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established. And it is feasible to combine this model and molecule generation tools to 

accomplish the discovery of new selective ligands in Ln(III) separations. Hence, we have 

solved the two imperative questions presented in the Introduction Chapter on how to relate 

the simulation to the extraction property and how to use simulated results to expand the 

diversity of selective extracts. More data may be added to the training data set when it 

becomes available to further enhance this model, especially for new ligand systems, but 

the core approach is similar, leading to simple training and high efficiency. The other topic 

for the lanthanide selective extraction we make some efforts into is the structure-selectivity 

relationship. The current machine learning model can make some conclusions based on a 

large number of data and statistics, but the simulations via density functional theory 

provide more chemical insights such as partial charge and orbital information although the 

efficiency is limited.  The limited speed is caused by too many electrons in the lanthanide 

complexes, too many possible configurations caused by anions, etc. A machine learning 

model using an algorithm traceable to the structure information of inputs may provide more 

chemical understandings with high efficiency and effectiveness.  All in all, future 

chemistry in all areas will benefit from the machine learning approach with different core 

algorithms, not only the extractants of lanthanides and actinides, but also all the interactions 

between organic ligands and metal cations. Even a general model accessible for all 

chemical bindings in the coordinated metal complex can be expected which can 

revolutionarily evolve the methodology and knowledge in coordination chemistry, 

separation chemistry and all related fields. 
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Appendix A. SMILES of Ligands in the Dataset 

SMILES of 194 ligands used in Ln (III), Am(III), Cm(III), Bk(III), Cf(III), and Es(III) 

solvent extractions 

O=C(c1cccc(n1)C(=O)N(C)c1ccccc1)N(C)c1ccccc1 

C67=CC1=C(C2=C(C=C1)C=C3C(=N2)C(N(C(=C3C4=CC=CC=C4)C5=CC=CC=C5)

CCCCCC)=O)N=C6C(N(C(=C7C8=CC=CC=C8)C9=CC=CC=C9)CCCCCC)=O 

C12=NC5=C(C=C1C3C(N(C2=O)CCCCCC)C4CCC3C4)C=CC6=CC7=C(N=C56)C(N(

C8C7C9CCC8C9)CCCCCC)=O 

C12=CC=C(C(N(CCCCCCCC)CCCCCCCC)=O)N=C1C3=C(C=C2)C=CC(=N3)C(N(C

CCCCCCC)CCCCCCCC)=O 

C(C(=O)N(C)C1=CC=CC=C1)OCC(=O)N(C)C2=CC=CC=C2 

C(C(=O)N(CCCC)CCCC)OCC(=O)N(CCCC)CCCC 

CC(C)CN(CC(C)C)C(=O)COCC(=O)N(CC(C)C)CC(C)C 

C(C(=O)N(CCCCCC)CCCCCC)OCC(=O)N(CCCCCC)CCCCCC 

C(C(=O)N(CCCCCCCC)CCCCCCCC)OCC(=O)N(CCCCCCCC)CCCCCCCC 

C(C(=O)N(C)CCCCCCCC)OCC(=O)N(C)CCCCCCCC 

C(C(=O)N(C(CC)C)CCCCCCCC)OCC(=O)N(C(CC)C)CCCCCCCC 

O=C([C@H](C)O[C@H](C)C(=O)N(CCCCCCCC)CCCCCCCC)N(CCCCCCCC)CCC

CCCCC 

O=C([C@H](C)O[C@@H](C)C(=O)N(CCCCCCCC)CCCCCCCC)N(CCCCCCCC)CC

CCCCCC 

CN(C(=O)CC(=O)N(C)c1ccccc1)c1ccccc1 

CN(C(=O)COCC(=O)N(C)c1ccccc1)c1ccccc1 

CCCCCCOP(O)(=O)OCCCCCC 

O=C(C(CCOCCCCCC)C(=O)N(C)CCCCCCCC)N(C)CCCCCCCC 

O=C(COCC(=O)N(CCCCCCCCCC)CCCCCCCCCC)N(CCCCCC)CCCCCC 

CC12CCC(c3nnc(nc31)c1cccc(n1)c1nc3c(nn1)C1CCC3(C)C1(C)C)C2(C)C 

O=C(c1cccc(n1)c1cccc(n1)C(=O)N(CC)c1ccccc1)N(CC)c1ccccc1 
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O=C(c1cccc(n1)c1cccc(n1)C(=O)N(CC)c1cc(C)ccc1C)N(CC)c1cc(C)ccc1C 

O=C(c1cccc(n1)c1cccc(n1)C(=O)N(CC)c1ccc(C)cc1C)N(CC)c1ccc(C)cc1C 

O=C(c1cccc(n1)c1cccc(n1)C(=O)N(CC)c1cc(C)cc(C)c1)N(CC)c1cc(C)cc(C)c1 

CCCCCCCCN(CCCCCCCC)C(=O)c1ccc2ccc3cccnc3c2n1 

Cc1ccc(cc1)N(CCCCCCCC)C(=O)c1ccc2ccc3cccnc3c2n1 

Cc1cc(cc(C)c1)N(CCCCCCCC)C(=O)c1ccc2ccc3cccnc3c2n1 

Cc1cc(cc(C)c1)N(CCCCCCCC)C(=O)c1nc2c(cc1)ccc1ccc(nc12)C(=O)N(CCCCCCCC)

c1cc(C)cc(C)c1 

Cc1ccc(cc1)N(CCCCCCCC)C(=O)c1nc2c(cc1)ccc1ccc(nc12)C(=O)N(CCCCCCCC)c1c

cc(C)cc1 

CCCc1nnc(nc1CCC)c1cccc(n1)c1nc(CCC)c(CCC)nn1 

CCCCCc1nc(nnc1CCCCC)c1cccc(n1)c1cccc(n1)c1nc(CCCCC)c(CCCCC)nn1 

CCCCN(CCCC)C(=O)C(CC1=CC=CC=C1CC(C(=O)N(CCCC)CCCC)C(=O)N(CCCC)

CCCC)C(=O)N(CCCC)CCCC 

O=P(Cc1cccc(CP(=O)(CCCCCCCC)CCCCCCCC)[n+]1[O-

])(CCCCCCCC)CCCCCCCC 

CCCCN(CCCC)C(=O)CCC(=O)N(CCCC)CCCC 

CCc1ccc(cc1)N(CC)C(=O)c1nc2c(cc1)ccc1ccc(nc12)C(=O)N(CC)c1ccc(CC)cc1 

CCCCN(CCCC)C(=O)c1nc2c(cc1)ccc1ccc(nc12)C(=O)N(CCCC)CCCC 

O=C(O)CN(CC(=O)O)CCN(CCO)CC(=O)O 

O=C(O)CN(CC(=O)O)C1CCCCC1N(CC(=O)O)CC(=O)O 

O=C(c1cccc(n1)C(=O)N(CC)c1cc(C)ccc1)N(CC)c1cc(C)ccc1 

O=C(c1cccc(n1)C(=O)N(CC)c1ccc(C)cc1)N(CC)c1ccc(C)cc1 

O=C(c1cccc(n1)C(=O)N(CC)c1ccccc1C)N(CC)c1ccccc1C 

CCN(C(=O)c1cccc(c1)c1cccc(c1)C(=O)N(CC)c1ccccc1)c1ccccc1 

O=C(COCC(=O)N(CCCC)C(C)CCCCC)N(CCCC)CC(C)CCCC 

CN(CCCCCCCC)C(=O)COCC(=O)N(C)CCCCCCCC 

CCCCCCCCN(CCCCCCCC)C(=O)CN(CC(=O)N(CCCCCCCC)CCCCCCCC)CC(=O)

N(CCCCCCCC)CCCCCCCC 

Oc1ccc(cc1O)C=1Oc2cc(O)cc(O)c2C(=O)C=1O 
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CN(CCCCCCCCCCCC)C(=O)COCC(=O)N(C)CCCCCCCCCCCC 

O=C(COCC(=O)N(CCCCCCCCCCCC)CC)N(CC)CCCCCCCCCCCC 

O=C(COCC(=O)N(CCCCCCCCCCCC)CCC)N(CCC)CCCCCCCCCCCC 

O=C(COCC(=O)N(CCCCCCCCCCCC)CCCC)N(CCCC)CCCCCCCCCCCC 

CCCCCCCCP(=O)(CC(=O)N(CC(C)C)CC(C)C)C1=CC=CC=C1 

O=C(C(CCOCCCCCC)C(=O)N(C)CCCC)N(C)CCCC 

O=C(CC(=O)N(C)CCCC)N(C)CCCC 

CN(CCCCCCCC)C(=O)C(CCCCCC)C(=O)N(C)CCCCCCCC 

O=C(CC(=O)N(C)CCCCCCCC)N(C)CCCCCCCC 

O=C(CC(=O)N(C)CCCCCC)N(C)CCCCCC 

CCCCCCN(CCCCCC)C(=O)CC(=O)N(CCCCCC)CCCCCC 

CCCCCCCCN(CCCCCCCC)C(=O)CC(=O)N(CCCCCCCC)CCCCCCCC 

CCCCN(CCCC)C(=O)CC(=O)N(CCCC)CCCC 

O=C(c1nc(ccc1)C(=O)N1CCCC1)N1CCCC1 

O=C(c1nc(ccc1)c1cccc(n1)C(=O)N1CCCC1)N1CCCC1 

O=C(c1nc2c(cc1)ccc1ccc(nc12)C(=O)N1CCCC1)N1CCCC1 

O=P(c1ccccc1)(c1ccccc1)c1nc2c(cc1)ccc1ccc(nc12)P(=O)(c1ccccc1)c1ccccc1 

O=P(OCCCC)(OCCCC)c1nc2c(cc1)ccc1ccc(nc12)P(=O)(OCCCC)OCCCC 

CCCCc1cc(n[NH]1)c1ccc2ccc3ccc(nc3c2n1)c1cc(CCCC)[NH]n1 

CC(C)Cc1cc(n[NH]1)c1ccc2ccc3ccc(nc3c2n1)c1cc(CC(C)C)[NH]n1 

CCCCCCCCc1cc(n[NH]1)c1ccc2ccc3ccc(nc3c2n1)c1cc(CCCCCCCC)[NH]n1 

O=C(c1nc2c(ccc3c(Cl)cc(nc32)C(=O)N2CCCC2)c(Cl)c1)N1CCCC1 

O=C(c1cc(Cl)c2ccc3c(Cl)cc(nc3c2n1)C(=O)N1CCCCC1)N1CCCCC1 

Clc1cc(nc2c1ccc1c(Cl)cc(nc12)C(=O)N1CCc2ccccc21)C(=O)N1CCc2ccccc21 

Clc1cc(nc2c1ccc1c(Cl)cc(nc12)C(=O)N1CCCc2ccccc21)C(=O)N1CCCc2ccccc21 

Clc1cc(nc2c1ccc1c(Cl)cc(nc12)C(=O)n1c2ccccc2c2ccccc21)C(=O)n1c2ccccc2c2ccccc2

1 

CC1(C)CCC(C)(C)c2nnc(nc21)c1cccc(n1)c1cccc(n1)c1nc2c(nn1)C(C)(C)CCC2(C)C 
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O=P(CCCCCCCC)(CC(=O)N(CC(C)C)CC(C)C)c1ccccc1 

O=C(COCC(=O)N(CCCC)CCCC)N(CCCC)CCCC 

Cc1ccc(cc1)N(CC)C(=O)c1ccc2ccc3cccnc3c2n1 

O=C(COCC(=O)N(CCCCCCCC)CCCCCCCC)N(CCCCCCCC)CCCCCCCC 

O=C(COCC(=O)N(CCCCC)CCCCC)N(CCCCC)CCCCC 

O=C(COCC(=O)N(CCCCCC)CCCCCC)N(CCCCCC)CCCCCC 

O=C(COCC(=O)N(CC(CC)CCCC)CC(CC)CCCC)N(CC(CC)CCCC)CC(CC)CCCC 

O=C(COCC(=O)N(CCCCCCCCCCCC)CCCCCCCCCCCC)N(CCCCCCCCCCCC)CC

CCCCCCCCCC 

O=P(OCC)(OCC)c1nc2c(cc1)ccc1ccc(nc12)P(=O)(OCC)OCC 

CCCCCCCCN(CCCCCCCC)C(=O)COCC(=O)NCc1c(CC)c(NCC(=O)COCC(=O)N(CC

CCCCCC)CCCCCCCC)c(CC)c(NCC(=O)COCC(=O)N(CCCCCCCC)CCCCCCCC)c1C

C 

CCCCCCCCN(CCCCCCCC)C(=O)COCC(=O)NCCNC(=O)c1cc(cc(c1)C(=O)NCCNC(

=O)COCC(=O)N(CCCCCCCC)CCCCCCCC)C(=O)NCCNC(=O)COCC(=O)N(CCCCC

CCC)CCCCCCCC 

CCCCCCCCN(CCCCCCCC)C(=O)COCC(=O)NCCCOc1cc(OCCCNC(=O)COCC(=O)

N(CCCCCCCC)CCCCCCCC)cc(c1)OCCCNC(=O)COCC(=O)N(CCCCCCCC)CCCCC

CCC 

O=C(COCC(=O)N(CCCCCC)CCCCCC)N1CCCC1 

O=C(COCC(=O)N(CCCCCC)CCCCCC)N1CCCCC1 

O=C(COCC(=O)N(CCCCCC)CCCCCC)N1CCOCC1 

O=C(COCC(=O)N(CCCCCCCC)CCCCCCCC)N1CCCC1 

O=C(COCC(=O)N(CCCCCCCC)CCCCCCCC)N1CCCCC1 

O=C(COCC(=O)N(CCCCCCCC)CCCCCCCC)N1CCOCC1 

OC(=O)c1ccccc1C(=O)N(CCCC)CCCC 

C1COCCOCCOCCOCCOCCO1 

O1CCOCCOC2CCCCC2OCCOCCOC2CCCCC12 

C1COc2ccccc2OCCOCCOc2ccccc2OCCO1 

C1Oc2ccccc2OCCOCCOc2ccccc2OCc2cccc1n2 

CCCCP(=O)(c1ccccc1)c1ccc2ccc3cccnc3c2n1 
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CCCCP(=O)(c1ccccc1)c1nc2c(cc1)ccc1ccc(nc12)P(=O)(CCCC)c1ccccc1 

Cc1ccc(cc1)N(CC)C(=O)c1nc2c(cc1)ccc1ccc(nc12)C(=O)N(CC)c1ccc(C)cc1 

O=C(COCC(=O)N(CC(CC)CCCC)CCCCCCCC)N(CCCCCCCC)CC(CC)CCCC 

CN(CC(CC)CCCC)C(=O)COCC(=O)N(C)CC(CC)CCCC 

CN(CCCC(CCCC)CCCCCC)C(=O)COCC(=O)N(C)CCCC(CCCC)CCCCCC 

CN(CCCCC(C)CCCC(C)C)C(=O)COCC(=O)N(C)CCCCC(C)CCCC(C)C 

O=C(COCC(=O)N(CCCCCCCC)CC)N(CC)CCCCCCCC 

O=C(COCC(=O)N(CCCCCCCC)CCC)N(CCC)CCCCCCCC 

O=C(COCC(=O)N(CCCCCCCC)CCCCCCCC)N(C)C 

O=C(COCC(=O)N(CCCCCCCC)CCCCCCCC)N(C)CCCCCCCC 

O=C(COCC(=O)N(CCCCCCCCCCCC)CCCCCCCC)N(CCCCCCCC)CCCCCCCCCC

CC 

O=C(COCC(=O)N(CCC(C)CC(C)(C)C)CCCCCCCC)N(CCCCCCCC)CCC(C)CC(C)(C

)C 

O=C(COCC(=O)N(CCCC(CCCC)CCCCCC)CCCCCCCC)N(CCCCCCCC)CCCC(CCC

C)CCCCCC 

O=C(COCC(=O)N(CCCCC(C)CCCC(C)C)CCCCCCCC)N(CCCCCCCC)CCCCC(C)C

CCC(C)C 

O=C(COCC(=O)N1CC(C)C(CSC(C)(C)CCCCCCCC)C1)N1CC(C)C(CSC(C)(C)CCCC

CCCC)C1 

O=C(P(OCCCC)(OCCCC)=O)N(CC)CC 

O=P(OCCCC)(OCCCC)CC(N(CC)CC)=O 

O=P(OCCCC)(OCCCC)CP(OCCCC)(OCCCC)=O 

O=P(OCCCCCC)(OCCCCCC)CC(N(CC)CC)=O 

O=P(OC1=CC=CC=C1)(OCCCCCC)CC(N(CC)CC)=O 

O=P(OCCCCCC)(CC(N(CC)CC)=O)CCCCCC 

O=P(CCCCCC)(CC(N(CC)CC)=O)CCCCCC 

O=P(CC(CC)CC)(CC(N(CC)CC)=O)CC(CC)CC 

O=P(CC(N(CCCC)CCCC)=O)(CCCCCC)CCCCCC 

O=P(CC(N(CC(C)C)CC(C)C)=O)(CCCCCC)CCCCCC 
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O=P(CC(N(C(C)CC)C(C)CC)=O)(CCCCCC)CCCCCC 

O=P(OCCCCCC)(CCC(N(CC)CC)=O)OCCCCCC 

O=P(OCCCCCC)(CC(N(CC)CC)=O)OCCCCCC 

O=P(CCCCCCCC)(CC(N(CC(C)C)CC(C)C)=O)C1=CC=CC=C1 

O=P(CC(N(CC)CC)=O)(CC(CC)CC)CC(CC)CC 

O=P(CCCCCCCC)(CCCCCCCC)CC(N(CC(C)C)CC(C)C)=O 

CC(C)CN(CC(C)C)C(CP(C1CCCCC1)(C2CCCCC2)=O)=O 

O=P(CCCCCC)(CC(CC(C)C)=O)CCCCCC 

O=P(OCC)(OCC)C1=NC2=C(N=C(P(OCC)(OCC)=O)C=C3)C3=CC=C2C=C1 

O=C1N(CCCCCC)[C@@H]2[C@@H](C3CCC2C3)C(C1=C4)=CC5=C4C(C=C(C(N(C

CCCCC)[C@H]6C7CCC(C7)[C@@H]86)=O)C8=C9)=C9C=C5 

O=C1N(CCCCCC)C(c2ccccc2)C(C3=CC=CC=C3)C(C1=C4)=CC5=C4C(C=C(C(N(CC

CCCC)C(c6ccccc6)C7C8=CC=CC=C8)=O)C7=C9)=C9C=C5 

O=C1N(CCCCCC)C(CCC)C(CCC)C(C1=C2)=CC3=C2C(C=C(C(N(CCCCCC)C(CCC)

C4CCC)=O)C4=C5)=C5C=C3 

O=C(COCC(N(CCCCCCCC)CCCCCCCC)=O)N(CCCCCCCC)CCCCCCCC 

O=C(N(CCCCCCCC)CCCCCCCC)C1=NC(C2=CC=CC(C3=NC(C(N(CCCCCCCC)CC

CCCCCC)=O)=CC=C3)=N2)=CC=C1 

O=C(N(CCCC)CCCC)C1=NC(C2=CC=CC(C3=NC(C(N(CCCC)CCCC)=O)=CC=C3)=

N2)=CC=C1 

O=C(N(C1=CC=CC=C1)CC)C2=NC(C3=CC=CC(C4=NC(C(N(CC)C5=CC=CC=C5)=

O)=CC=C4)=N3)=CC=C2 

CC1=NC(C2=NC(C3=NC(C)=C(C)N=N3)=CC=C2)=NN=C1C 

CCC(N=N1)=C(CC)N=C1C2=CC=CC(C3=NN=C(CC)C(CC)=N3)=N2 

O=C(NC1=CC=CC=C1)C2=NC3=C(N=C(C(NC4=CC=CC=C4)=O)C=C5)C5=CC=C3

C=C2 

O=C(N(C)C1=CC=CC=C1)C2=NC3=C(N=C(C(N(C)C4=CC=CC=C4)=O)C=C5)C5=C

C=C3C=C2 

O=C(N(CC)C1=CC=CC=C1)C2=NC3=C(N=C(C(N(CC)C4=CC=CC=C4)=O)C=C5)C5

=CC=C3C=C2 

O=C(N(CCCCCCCC)C1=CC=CC=C1)C2=NC3=C(N=C(C(N(CCCCCCCC)C4=CC=C

C=C4)=O)C=C5)C5=CC=C3C=C2 
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O=P(OC(C)C)(OC(C)C)C1=CC=CC(P(OC(C)C)(OC(C)C)=O)=C1 

O=P(OC1CCCCC1)(OC2CCCCC2)C3=CC=CC(P(OC4CCCCC4)(OC5CCCCC5)=O)=

C3 

O=P(OCCCCC)(OCCCCC)C1=CC=CC(P(OCCCCC)(OCCCCC)=O)=C1 

O=P(OCC(CC)CCCC)(OCC(CC)CCCC)C1=CC=CC(P(OCC(CC)CCCC)(OCC(CC)CC

CC)=O)=C1 

O=C(N1CCCC2=C1C=CC=C2)C3=NC4=C(N=C(C(N5C(C=CC=C6)=C6CCC5)=O)C=

C7)C7=CC=C4C=C3 

O=C(N(CCCCCCCC)CCCCCCCC)CO 

O=C(COCC(N(CCCCCCCCCCCC)CCCCCCCCCCCC)=O)N(CCCCCCCCCCCC)CC

CCCCCCCCCC 

O=C(COCC(N(CCCCCCCCCC)CCCCCCCCCC)=O)N(CCCCCCCCCC)CCCCCCCC

CC 

O=C(COCC(N(CCCCCC)CCCCCC)=O)N(CCCCCC)CCCCCC 

O=C(COCC(N(CCCCC)CCCCC)=O)N(CCCCC)CCCCC 

O=C(COCC(N(CCCC)CCCC)=O)N(CCCC)CCCC 

O=C(COCC(N(CCC)CCC)=O)N(CCC)CCC 

O=C(COCC(N(C1=CC=CC=C1)C2=CC=CC=C2)=O)N(C3=CC=CC=C3)C4=CC=CC=

C4 

O=C(COCC(N(C1=CC=CC=C1)C)=O)N(C2=CC=CC=C2)C 

O=C(COCC(N(CC(CC)CCCC)CC(CC)CCCC)=O)N(CC(CC)CCCC)CC(CC)CCCC 

CC1(C)[C@]2(C(N3CCCCC3)=O)C4=NC(C5=NC6=C(N=C(C7=NN=C([C@H]8CC[C

@]9(C(N%10CCCCC%10)=O)C8(C)C)C9=N7)C=C%11)C%11=CC=C6C=C5)=NN=C

4[C@H]1CC2 

CCCCCC(C(CCCCC)=N1)=NN=C1C2=CC=CC(C3=CC=CC(C4=NC(CCCCC)=C(CC

CCC)N=N4)=N3)=N2 

O=C(C(CCCCCCCCCCCCCC)C(N(CCCC)C)=O)N(CCCC)C 

O=C(C(CCCCCCCCCCCCCC)C(N(C1=CC=C(Cl)C=C1)C)=O)N(C2=CC=C(Cl)C=C2)

C 

O=C(C(CCOCCCCCCCCCCCC)C(N(CCCC)C)=O)N(CCCC)C 

O=C(C(CCCOCCCCCCCCCCC)C(N(CCCC)C)=O)N(CCCC)C 

O=C(C(CCOCCCCCC)C(N(CCCCCCCC)C)=O)N(CCCCCCCC)C 
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O=P(OCCCC)(OCCCC)C1=NC(C(N=C(P(OCCCC)(OCCCC)=O)C=C2)=C2C=C3)=C3

C=C1 

SP(C1=CC=CC=C1)(CCCCCCCC)=S 

SP(C1=CC=CC=C1)(C2=CC=CC=C2C(F)(F)F)=S 

SP(CCCC)(CCCCCCCC)=S 

SP(C1=CC=CC=C1C(F)(F)F)(CCCCCCCC)=S 

SP(C1=CC=CC=C1C(F)(F)F)(C2=CC=CC=C2C(F)(F)F)=S 

CCCCCCCCC1=CC(C2=NC3=C(N=C(C4=NNC(CCCCCCCC)=C4)C=C5)C5=CC=C3

C=C2)=NN1 

CCCCC1=CC(C2=NC3=C(N=C(C4=NNC(CCCC)=C4)C=C5)C5=CC=C3C=C2)=NN1 

CC(C)(C)C1=CC(C2=NC3=C(N=C(C4=NNC(C(C)(C)C)=C4)C=C5)C5=CC=C3C=C2)

=NN1 

O=C(N1CCCC1)C2=NC(C(N=C(C(N3CCCC3)=O)C=C4Cl)=C4C=C5)=C5C(Cl)=C2 

O=P(C1=CC=CC=C1)(C2=CC=CC=C2)C3=NC(C(N=C(P(C4=CC=CC=C4)(C5=CC=C

C=C5)=O)C=C6)=C6C=C7)=C7C=C3 

O=C(C1=NC2=C(C=C1)C=CC3=C2N=C(C=C3)C(N4CCCC4)=O)N5CCCC5 

O=C(N1CCCC1)C2=NC(C3=NC(C(N4CCCC4)=O)=CC=C3)=CC=C2 

O=C(N1CCCC1)C2=CC=CC(C(N3CCCC3)=O)=N2 

O=P(C1=CC=CC=C1)(CCCC)C2=NC(C(N=C(P(C3=CC=CC=C3)(CCCC)=O)C=C4)=

C4C=C5)=C5C=C2 

O=P(C1=CC=CC=C1)(CCCC)C2=NC(C(N=CC=C3)=C3C=C4)=C4C=C2 

O=P(CC)(C1=NC2=C(C=C1)C=CC3=C2N=C(C=C3)P(C4=CC=CC=C4)(CC)=O)C5=C

C=CC=C5 

O=P(OCC)(C1=NC2=C(C=C1)C=CC3=C2N=C(C=C3)P(C4=CC=CC=C4)(OCC)=O)C

5=CC=CC=C5 

O=C(N1CCCC1)C2=NC(C(N=C(C(N3CCCC3)=O)C=C4)=C4C=C5)=C5C=C2 

O=C(N1C(C)CCC1)C2=NC(C(N=C(C(N3CCCC3C)=O)C=C4)=C4C=C5)=C5C=C2 

O=C(N1C(C)CCC1)C2=NC(C(N=C(C(N3CCCC3C)=O)C=C4Cl)=C4C=C5)=C5C(Cl)=

C2 

CCCCCCN1C2=C(C=CC=C2)N=C1C3=NC(C4=NC5=C(C=CC=C5)N4)=CC=C3 
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CCCCCCN1C2=C(C=CC=C2)N=C1C3=NC(C4=NC5=C(C=CC=C5)N4CCCCCC)=CC

=C3 

CCCCCCCCCCCCOC1=CC(C2=NC(C=CC=C3)=C3N2)=NC(C4=NC5=C(C=CC=C5)

N4)=C1 

CCCCCCCCCCCCOC1=CC(C2=NC(C=CC=C3)=C3S2)=NC(C4=NC5=C(C=CC=C5)S

4)=C1 

CCCCCCCCCCCCC(CCCCCCCCCC)COC1=CC(C2=NC(C=CC=C3)=C3O2)=NC(C4

=NC5=C(C=CC=C5)O4)=C1 

CCCCCCCCCCCCOC1=CC(C2=NC(C=CC=C3)=C3O2)=NC(C4=NC5=C(C=CC=C5)

O4)=C1 

CC(CCC1(C)C)(C)C(C1=N2)=NN=C2C3=CC=CC(C4=CC=CC(C5=CC=CC(C6=NC(C

(C)(C)CCC7(C)C)=C7N=N6)=N5)=N4)=N3 
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