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ABSTRACT OF THE THESIS

FPGA-Based Graph Convolutional Neural Network Acceleration

by

Zhuofu Tao

Master of Science in Electrical and Computer Engineering

University of California, Los Angeles, 2022

Professor Lei He, Chair

Graph Convolutional Networks (GCNs) have shown great results but come with large

computation costs and memory overhead. Recently, sampling-based approaches have been

proposed to alter input sizes, which allows large GCN workloads to align to hardware con-

straints. Motivated by this flexibility, this thesis proposes an FPGA-based GCN accelerator,

along with a novel sparse matrix format and multiple software-hardware co-optimizations

to improve training efficiency. First, all feature and adjacency matrices of GCN are quan-

tized from 32-bit floating point to 16-bit signed integers. Next, the non-linear operations are

simplified to better fit the FPGA computation, and reusable intermediate results are identi-

fied and stored to eliminate redundant computation. Moreover, a linear-time sparse matrix

compression algorithm is employed to further reduce memory bandwidth, while allowing ef-

ficient decompression on hardware. Finally, a unified hardware architecture is proposed to

process sparse-dense matrix multiplication (SpMM), dense matrix multiplication (MM) and

transposed matrix multiplication (TMM), all on the same group of PEs to maximize DSP

utilization on FPGA.

Evaluation is performed on a Xilinx Alveo U200 board. Compared with existing FPGA-
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based accelerator on the same network architecture, the new accelerator achieves up to 11.3×

speedup while maintaining the same training accuracy. It also achieves up to 178× and 13.1×

speedup over state-of-art CPU and GPU implementation on popular datasets, respectively.
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1 Introduction

Deep learning [5] have been one of the most popular research topics over recent years,

and have achieved amazing results across numerous fields. The powerful adaptability of

data-driven approach allows researchers to develop effective solutions for arbitrary problems

without having much expertise on them. In the earlier days of deep learning, vanilla deep

neural networks fail to achieve high performance on fields such as natural language process-

ing. However, the field adapted by proposing domain-specific variations of neural networks

for specific data formats. The introduction of convolutional neural networks (CNNs) [6] to

aggregate local data and recurrent neural networks (RNNs) [9] to track state over time were

both successful, and inspired many researcher to propose new variations to the algorithm.

Graph-based neural networks are a particularly interesting family of models, in the sense

that they eliminated a fundamental dependency on Euclidean data, which still exist in most

other deep learning models. The term “Euclidean” data refers to the ability to represent

a data tensor in a multi-dimensional Euclidean space. For most problems, individual cases

are examined separately, each case is represented by n features, which easily translate to an

n-dimensional feature vector to satisfy the Euclidean constraint. However, in some problem

settings, individual cases are highly correlated with each other and form a graph structure.

As the number of neighbors of each node (i.e. its degree) is variant, graphs are inherently

non-Euclidean, which poses a problem for traditional neural networks.

Motivated by this problem, researchers first proposed the idea of graph neural networks

[10], which started as an abstract class of models that incorporate graph information in

its computation. At first, the graph was only used as a regularization term to penalize

differences between prediction output on neighboring nodes [17]. While this was already

an improvement, the first direct use was not until much later, when T. Kipf et al. took

inspiration from convolutional neural networks and applied convolution on the graph fourier
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domain, and were able to propose the graph convolutional neural network (GCN) [4]. From

this point on, graph information was commonly represented as adjacency matrices, and

would directly participate in forward propagation as operands in matrix multiplications.

GCN and its variations [2, 12, 13] achieved marginally better prediction accuracy than

previous methods, however, they pose a challenge to the underlying computer architecture

that performs the computation. Previously, the two most common operations in neural

networks were dense matrix multiplication (MM) and convolution, both of which provide

many structural properties. The regular loop structures in MM and convolution allow easy

workload scheduling and parallelization, which then easily exploit the powerful parallel com-

putation capability in modern multi-core hardware. Although GCNs also process adjacency

matrices in matrix multiplications, the problem is that adjacency matrices are inherently

sparse. Many popular graph datasets come with adjacency matrices with over 99% sparsity,

and real-world datasets can be even sparser. Naively performing this matrix multiplica-

tion would result in many additions and multiplications with zero, and would be extremely

inefficient.

In order to acknowledge the sparsity in the adjacency matrix and perform a sparse-dense

matrix multiplication (SpMM), the method would have to first preprocess the adjacency

matrix into a compressed format, before tailoring data access and computation accordingly.

There are several popular compressed sparse matrix formats such as compressed sparse rows

(CSR), compressed sparse columns (CSC), and coordinate list (COO). Each of these formats

can effectively skip zero elements in sparse matrices, and their storage consumption is linear

to the number of non-zero elements. However, these formats result in irregular locations

for non-zero elements, which complicates data load operations. For example, in order to

read the first non-zero element of an arbitrary row in a CSR representation, the processor

must first read the start location of said row from the row indices vector, before translating

the index into an address to read the actual element. This complication often results in
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inefficient execution, and hinders the performance gains achieved by the compressed method

in the first place.

Furthermore, again due to the extreme sparsity of adjacency matrices, the other operand

matrix in the SpMM only gets to participate in a limited number of computation. In other

words, the data reuse rate is often as low as only 1-3 floating point operations per byte

(FLOPs/B), well below the data-bandwidth-compute ratio offered at DRAM level. This

results in a memory-bound problem. Although smaller caches usually provide higher band-

width and may support the low data reusage, their capacity is also very limited. Many

popular graph datasets such as Reddit and Yelp come with data in the gigabyte range, and

have trouble fitting on caches. Overall, it is difficult to construct a hardware architecture to

efficiently process GCNs.

There have been GCN-specific accelerators that seek to tackle this problem, and each

have achieved great improvements in their dedicated front. One of the earliest attempt

was HyGCN [14], which considered SpMM and MM two different operations, and deployed

each of them onto dedicated hardware modules to process. This approach opens the op-

portunity to split the compute units across modules, which reduces the data demand in

each individual module. Furthermore, data pipeline across modules are constructed through

on-chip SRAM, which generally provides a much higher bandwidth than off-chip DRAM,

consequently alleviates the memory bound. While the advantage was solid, this approach

had its own limitations as well. Despite the possibility to pipeline the two operations and

keep all modules active, the design is not adaptable. The workload ratio between SpMM

and MM depend directly on the dimensions and sparsity of input, which would vary across

different datasets. FPGA-based hardware design takes a long time (i.e. several hours) to

synthesize, it would be unfeasible to reconfigure a design and adjust module sizes to fit each

new dataset. This problem would persist in other works later on [1], which process SpMM

and MM on the same type of module, but still uses multiple pipelined modules across layers.
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Additionally, new graph datasets are coming into attention with such large sizes that would

not fit on-chip at all, and would cause further trouble for these methods.

Due to the large data sizes, most proposed accelerators would only target the inference

phase of GCN computation [1, 7, 8, 14], as the training phase would require storing inter-

mediate feature maps, posing more challenge to on-chip memory capacity. Interestingly, the

large graph sizes inspired sampling-based solutions which break down graphs into smaller

subgraphs. It have been shown in GraphSAINT [16] that with the proper normalization,

training and inference with the subgraphs would lead to the same outcome as the full graph.

This breakthrough resolved the capacity burden, and allowed the same authors to propose

the first GCN training accelerator [15] at the time. Nevertheless, there remains room for

improvement in terms of performance.

The GCN acceleration problem can be tackled from a different front. Since the most

challenging step is the memory-bound SpMM operation, and must involve sparse matrix

compression, it is sensible to optimize the compression format. This thesis will present a

customization on the COO format, designed to simplify decompression during computation

and resolve the need to access memory twice per non-zero element.
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2 Background

This chapter will first describe the vanilla GCN architecture, as well as the sampling-based

GraphSAINT architecture. This would naturally lead into workload scheduling on a FPGA-

based hardware architecture, which would then motivate the novel compression format to

be proposed in the next chapter.

2.1 Workload Breakdown

Graph convolutional network (GCN) [4] is first proposed as an approximation of spectral

graph convolution. The network consists of multiple graph convolution layers, the forward

propagation rule of which is shown in Equation 1:

Xl = ReLU(AXl−1Wl), (1)

where Xl and Xl−1 denote the feature map on layer l and l − 1 respectively, A denotes

the graph adjacency matrix, and Wl denotes the trainable parameters on the lth layer, also

known as the weight matrix. The layer number l is 1-indexed, and X0 would denote the

input feature map.

Since most graphs are not fully connected, the adjacency matrix A is sparse. In fact,

Table 1 that the adjacency matrix in many popular graph datasets is at least 99% sparse. On

the contrary, feature matrix Xl−1 and weight matrix Wl are usually dense. The dimension of

A, Xl−1, and Wl are N ×N , N ×Fl−1 and Fl−1×Fl, where N denotes the number of nodes

in the graph, and Fl denotes the feature dimension in layer l, respectively. Generally, in

both full graphs and sampled subgraphs, the number of nodes N is larger than the number

of input features F0, and the number of features per layer is non-increasing with Fl−1 ≥ Fl.
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Dataset Nodes (N) Edges (M) (Density) Input Features (F0) Classes (FL)

PPI 14755 225270 (0.1035%) 50 124
Reddit 232965 11606919 (0.0214%) 602 41
Yelp 716847 6977410 (0.0014%) 300 100

Table 1: Common graph datasets

These observations would then dictate the optimal operation order. Matrix multiplication

is associative, and therefore (AXl−1)Wl = A(Xl−1Wl), however, the number of floating point

operations is not the same. In the two cases, the number of multiplications and additions

required are MFl−1+NFl−1Fl and NFl−1Fl+MFl, respectively. HereM denotes the number

of edges in A. Since Fl−1 ≥ Fl most of the time, it is generally favourable to first compute

Xl−1Wl. In fact, in some other graph datasets, the input feature map X0 can be sparse as

well, computing AX0 would result in a sparse-sparse matrix multiplication, which is much

more difficult to perform efficiently.

The GraphSAINT [16] architecture, on the other hand, introduces several differences.

Firstly, it introduces the concept of “order”, and includes multiple graph convolution oper-

ations per layer. A layer with order o is defined in Equation 2:

Xl =

[
Xl−1Wl,0 AXl−1Wl,1 . . . AoXl−1Wl,o

]
(2)

where [.] indicate the column-wise concatenation of intermediate results. Each layer would

include multiple weight matrices from Wl,0 through Wl,o. In practice, the layer order used

in GraphSAINT was either 0 or 1, and therefore a layer is either a dense layer in a multiple-

layered perceptron (MLP) at order 0, or the column-wise concatenation of it and a vanilla

graph convolutional layer at order 1.

GraphSAINT also inserts an L2 normalization operation at the second last layer, as
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shown in Equation 3:

X ′
L−1 =

XL−1

||XL−1||2
(3)

where ||XL−1||2 denotes the column-wise L2 norm of XL−1.

For the training process of GCN and GraphSAINT, gradients are computed during back-

ward propagation before weights are updated via the Adam optimizer [3]. The gradients of

layer l − 1 for GCN are shown in Equation 4 and 5.

∂L
∂Xl−1

= 1Xl−1>0[W
T
l−1A

T ∂L
∂Xl

] (4)

∂L
∂Wl−1

= AT ∂L
∂Xl

XT
l−1, (5)

where the superscript T denotes matrix transpose. The basic operations during the backward

phase are also SpMM and MM. However, the input to an MM may be a transposed copy

of a previous feature map or weight, which requires a different data access pattern, this

case is termed “transposed matrix multiplication” (TMM). The gradients of layer l − 1 for

GraphSAINT are computed as follows:

[
∂L

∂Xl,a

∂L
∂Xl,b

]
=

∂L
∂Xl

, (6)

∂L
∂Xl−1

= 1Xl−1>0[W
T
l−1,a

∂L
∂Xl,a

+W T
l−1,bA

T ∂L
∂Xl,b

] (7)

∂L
∂Wl−1,a

=
∂L
∂Xl,a

XT
l−1,a (8)
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∂L
∂Wl−1,b

= AT ∂L
∂Xl,b

XT
l−1,b (9)

∂L
∂XL−1

=

∂L
∂X′

L−1

||XL−1||2
−XL−1

∑
(XL−1 × ∂L

∂X′
L−1

)

||XL−1||32

=

∂L
∂X′

L−1

||XL−1||2
− XL−1

||XL−1||2

∑
(

XL−1

||XL−1||2
×

∂L
∂X′

L−1

||XL−1||2
)

(10)

In Equation 4 - 10, L denotes the training loss, specifically categorical cross entropy loss

. The [.] on the left side of Equation 6 indicates a column-wise partitioning into two blocks

with equal number of columns, opposite of the concatenation step in Equation 2. After

computing the gradients, the Adam Optimizer is used to update weight matrices, as shown

in Equation 11:

mt = β1mt−1 + (1− β1)
∂L

∂Wt−1

vt = β2vt−1 + (1− β2)(
∂L

∂Wt−1

)2

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

Wt = Wt−1 − η
m̂t

v̂t + ϵ

(11)

where t denote the current epoch, mt and vt are persisted momentum variables throughout

training, β1 = 0.9 and β2 = 0.999 are weight constants to balance between current epoch

gradient vs previous epoch momentum, η = 0.01 is the learning rate, and ϵ = 10−12 is added

to prevent division by zero. During actual computation, the m̂t and v̂t steps can be skipped

without much effect on training accuracy or convergence time, and η = 1/128 is used instead

to simplify the division to a bitshift.
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2.2 Workload Scheduling On FPGA

MM is inherently structured with 3 rectangular loops, and is relatively simple to deploy

onto any hardware architecture. Typically, in an FPGA-based design, numerical operations

such as multiplications and additions are performed on digital signal processor (DSP) -based

compute units. In order to maximize efficiency, these operations would typically be pipelined

into several stages. Each multiplier or adder is capable of producing results at a throughput

of 1 output per cycle, but at a latency of 5-20 cycles. Since the innermost loop of matrix

multiplication is typically a dot product, individual multiplications over time are completely

independent, but additions depend directly on the result of the previous additions. The

adder would not produce the result of the current operation until several cycles later, and

would block the next addition from dispatching immediately. This results in an initiation

interval (II) of larger than 1, and is inefficient.

In order to achieve II=1 and eliminate idle time for compute units, accumulators are

used instead of adders. This way, multiple inputs can be sequentially injected into the same

accumulator over time, and the result can be read after the full dot product is complete.

While this design eliminates idle time, it imposes a restriction that every dot product must

be performed on the same accumulator, whereas previously any adder would be capable of

performing the computation. In a matrix multiplication, dot products are performed with

rows in the left input matrix and columns of the right input matrix. The following text will

use the term “assign” for mapping a row from the left matrix onto a compute unit.

In an SpMM, the computation is slightly different. The zeros from the left input matrix

must be skipped, and therefore the outer two loops from MM, as shown in Algorithm 1,

are merged into a single loop, as shown in Algorithm 2. Consequently, the only remaining

constant in the computation is number of columns (p) in the right input matrix. Since there

is no data dependency between different columns, they can be spatially mapped to different

9



Algorithm 1: MM

inputs: X ∈ Rm×n, W ∈ Rn×p, Y ← 0m×p;
for i in [0, m-1] do

for j in [0, p-1] do
for k in [0, n-1] do

Yi,j ← Yi,j +Xi,k ×Wk,j;
end

end

end
return Y

Algorithm 2: SpMM

inputs: X ∈ Rm×n, W ∈ Rn×p, Y ← 0m×p;
for Xi,k ̸= 0 in X do

for j in [0, p-1] do
Yi,j ← Yi,j +Xi,k ×Wk,j;

end

end
return Y

compute units. In the mean time, in order to reuse partial sums and avoid repeated data

access, individual rows from the left (sparse) input matrix can be scheduled sequentially on

the same compute units.

This work targets the larger FPGAs with thousands of DSPs available, which can be

configured into more compute units than typical column dimension in the right input matrix.

In order to fully utilize the compute availability, we must process multiple elements in the

outer loop in parallel. Since elements of the same row must be accumulated on the same

compute unit, we can only assign different rows spatially across compute units. This requires

simultaneous data access for non-zero elements in multiple rows. Unfortunately, this is very

difficult to achieve in standard sparse matrix formats, as shown in the next chapter. To make

matters worse, DRAM typically requires serial access in order to maximize bandwidth, and

it would be difficult to read data from arbitrary positions. In order to resolve this problem,

a novel sparse matrix format is proposed in the next chapter.

10



3 PCOO Format

This chapter will first explore the existing sparse matrix formats, before proposing the novel

packet-level column-only coordinate list format and the algorithm for its generation. This

chapter will also describe the potential bank conflicts faced during computation, as well as

its resolution during PCOO compression.

3.1 Sparse Matrix Formats

Table 1 shows that the adjacency matrix A is typically sparse. It is therefore crucial to

represent it as some compressed format in order to avoid storing the >99% zeros. A few

common sparse matrix formats include compressed sparse rows (CSR), compressed sparse

columns (CSC), and coordinate list (COO).

The CSR and CSC formats first flatten the entire sparse matrix into row-major / column-

major vectors, then they include a row / column pointer vector to store the start of each row

/ column as a position on the flattened vector. For an adjacency matrix of D-bit numbers

with N rows, N columns, and M non-zero elements, CSR / CSC require MD bits to store

the values, M log(N) bits to store the rows / columns, and N log(M) bits to store the row /

column pointers. On the other hand, the COO format stores a row index, a column index,

and the actual value. This requires a total of 2M log(N) +MD bits.

It would be evident that these standard formats achieve very high compression rates, as

they store little redundant information. However, the problem with these formats is that

data access become much more complicated. In an uncompressed matrix, reading an element

at row r and column c would simply involve calculating the position of the row and the offset

of the element, only one data access for the value is required. In a CSR format, the processor

must first read the row index, and then use the row index to compute the offset, before it is
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finally able to use the offset to access the value.

Single data access is difficult, vectorized access is even more complicated. As mentioned

in the previous chapter, in order to fully utilize the compute power of a large FPGA, multiple

rows from the sparse matrix must be processed in parallel. This involves a vectorized read

operation, and is most likely performed on the DRAM as smaller caches would not be able

to store the large adjacency matrices. Due to the nature of DRAM access, sequential access

can be done at approximately II=1, but it requires many cycles to locate an address for

non-sequential access, therefore it is important that the access direction in the processing

elements (PEs) match the storage direction in the DRAM. None of this is offered by existing

formats, which motivates a new format.

3.2 Packet-Level Column-Only Coordinate List (PCOO)

The new format to be proposed is termed “packet-level column-only coordinate list (PCOO)”,

and is designed to support required DRAM access patterns while maintaining a low storage

cost.

Each non-zero element in a vanilla COO format would contain a row index, a column

index, and a value. However, the row information can be kept implicit and tracked within

PEs. This way, only column information and element value require storage. The PE only

needs to be informed of row starts and ends, when it would need to increment the internal

row counter. This can be achieved via simple bitwise “headers”. The PCOO format uses a

three-bit header per element: start-of-row (SOR), end-of-row (EOR), and valid (VLD). The

SOR bit indicates whether an element is the first non-zero of its row, the EOR bit indicates

whether an element is the last non-zero of its row, and the VLD bit indicates whether an

element should participate in computation or only in index tracking.
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a
c

b

d
g
fe

0
1
2
3
4
5

Sparse Matrix
(val)

0, 0, a
0, 5, b
1, 2, c
3, 1, d
3, 2, e
3, 4, f
5, 4, g

COO

(row, col, val)

PCOO (2 PE)

(sor, eor, vld, col, val)

1,0,1,0,a
0,1,1,5,b

1,1,1,2,c

0 1 2 3 4 5

1,0,1,1,d
1,1,0,0,0

PE 0 PE 1

0,0,1,2,e
0,1,1,4,f1,1,1,4,g

0,0,0,0,0 1,1,0,0,0

Optimized PCOO (2 PE)

(sor, eor, vld) (col, val)

1,0,1
0,1,1

1,1,1
1,0,1

1,1,0

PE 0 PE 1

0,0,1
0,1,11,1,1

0,0,0 1,1,0

Header

0,a
5,b

2,c
1,d

PE 0 PE 1

2,e
4,f

4,g

Body

Figure 1: PCOO data format

In order to fully utilize the PE availability, multiple rows must be accessed in parallel.

In order to fully utilize the DRAM bandwidth, data access must be sequential. In order to

satisfy both these constraints, rows from the sparse input matrix are assigned to the PEs in

a round-robin scheme. Given P PEs, row r in the sparse input matrix would be assigned to

PE r mod P . Since the number of non-zero elements in the sparse matrix generally does not

correlate with the row index, this assignment ensures an identical distribution of non-zero

elements per PE, and consequently avoids idleness. In the rare case where the number of

non-zero elements does correlate with the row indices, the node indices can simply be shuffled

randomly. Since the graphs are unordered, this naturally would not affect the GCN results

in any way. It would be shown in later chapters that the PE idle times are roughly the same

in hundreds of randomly selected subgraphs. While it is possible for a more intelligent row

assignment scheme to further maximize PE utilization, these methods would likely require

larger preprocessing effort, and the marginal gains would be insignificant.

Now that each row is assigned to a given PE, non-zero elements in each row are packed

into a “packet”, and packets are concatenated sequentially for each PE. The workload for

all PEs are interleaved to allow vectorized data access. Each packet is extended to match

the length of the longest packet to preserve structural property. Figure 1 shows a PCOO

compression example with a toy sparse matrix of 7 non-zero (colored) elements a through g.

The solid borders in PCOO represent actual elements to participate in computation, while
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Dataset Nodes Edges COO Size PCOO Size Optimized PCOO Size

PPI 1992 41939 2.01Mb 4.89Mb 1.76Mb
Reddit 1977 10780 517Kb 1.65Mb 486Kb
Yelp 1959 7561 363Kb 1.98Mb 412Kb

Table 2: Compressed matrix sizes across datasets and algorithms
(Data from random-walk sampled subgraphs in GraphSAINT)

dashed-border elements with VLD=0 indicate injected elements as either empty rows or filler

elements to maintain length.

Finally, the PCOO format is optimized to eliminate empty columns and values, as they

consume the majority of data volume. As shown in “optimized PCOO” of Figure 1, only

valid columns and values in the packets are preserved. This optimization significantly reduces

redundant storage cost. Table 3.2 presents the average subgraph in the three datasets with

its node and edge counts, as well as compressed format size. On average, this optimization

preserves 71.2% of storage space that would have been expended for empty elements. Most

of these empty elements are due to storing empty rows, as the adjacency matrix must be

tiled to fit on-chip. Many nodes come with a degree of 1 or 2, resulting in many empty rows

in each tile, and many empty injected elements with SOR=EOR=1 and VLD=0 to advance

row pointers without affecting result.

This compression can be achieved in a simple algorithm with time complexity linear

to number of non-zero elements in the input sparse matrix, as presented in Algorithm 3.

Ideally, the resulting format is now ready to be easily decompressed on-chip and streamed

into computation. However, realistically, there is still one preprocessing step to complete

beforehand.
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Algorithm 3: Sparse matrix preprocessing

inputs: X ∈ Rm×n, T , K;
tiles, sor, eor, vld = [], T × 4, T × 2, T ;
for t← 0 to n− 1 by T do

rows ← [[] for 0:K];
for i← 0:m do

row ← [];
for j ← t:(t+ T − 1) do

if Xi,j ̸= 0 then
row.append(j % T + vld);

end

end
row ← [0] if row is empty else row;
row[0] ← row[0] + sor;
row[-1] ← row[-1] + eor;
rows[i % K].extend(row);

end
fill zeros until rows is rectangular;
tiles.append(rows.transpose());

end
return tiles;

3.3 Bank Conflict

After data is loaded from off-chip DRAM, it is typically cached in on-chip SRAM. While

the SRAM bandwidth and latency are much wider and shorter than DRAM, it still has its

own limitations. Data in SRAM is stored in multiple “banks”, each of which contains many

addresses (i.e. 16 for LUTRAM, 512 for BRAM, 4096 for URAM, 3 common versions of

on-chip caches on Xilinx FPGAs) and provides 1-2 ports. At any point in time, each port

only allows access for one of the addresses, therefore it is usually unfeasible to access multiple

addresses of the same bank in parallel. This phenomenon is known as “bank conflict”. Due

to the large data quantity in intermediate feature maps and weights, it is often necessary to

fully utilize all available addresses.

For dense MM, data access is usually structured and sequential, and it is possible to layout

data in a way that only a single address is required at a time. Unfortunately, such structural
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Algorithm 4: Collision detection

inputs: tile ∈ RN×K , depth d=16;
used, row ← [0 for 0:K], [-1 for 0:K];
result, share, block, j ← [], {}, {}, 0;
while sum(used) < N × T do

i ← usedj;
if tilei,j ∈ share or tilei,j % d ̸∈ block then

rowj ← tilei,j;
share.append(tilei,j);
block.append(tilei,j % d);
usedj ← usedj + 1;

else
rowj ← 0;

end
if min(row) ̸= -1 then

result.append(row);
row, share, block ← [-1 for 0:K], {}, {};

end
j ← (j + 1) % K;

end
fill zeros until result is rectangular;
return result;

property is not available for SpMM. Each non-zero element in the left sparse matrix would

map to a row on the right dense matrix. Since the column position of the sparse element

cannot be known in advance, it could demand any corresponding row from the dense matrix.

In order to process multiple elements from the sparse matrix in parallel, multiple rows from

the dense matrix must be accessed in parallel, resulting in frequent bank conflicts. Naively

accessing cached data without taking bank conflict into account would result in incorrect

results. Furthermore, detecting conflicts during runtime and react accordingly would result

in great complication on hardware.

In order to eliminate bank conflict, several design choices are made. First, since weight

data are relatively small compared to feature maps, they can typically fit in the small LU-

TRAMs, which come with low capacity but also lower address size and higher bandwidth.

The smaller address size and higher bandwidth allows mapping data horizontally across dif-
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ferent banks instead of vertically across different addresses on the same bank, this drastically

reduce bank conflict. Profiling data shows that the LUTRAM capacity is typically enough

to store multiple copies of weight matrices on-chip, this opens the possibility to replicate

the weight matrix. This way, even when accessing data that would have been on the same

address, it is possible to route to a different replica of the weight matrix on a different bank,

resolving the bank conflict problem. Finally, a collision detection algorithm is executed after

compression to fully eliminate remaining bank conflicts, as presented in Algorithm 4. Empty

elements are simply injected wherever there would be a bank conflict. Similar to the initial

compression algorithm, the collision detection algorithm also comes with a time complexity

linear to the number of non-zero elements in the sparse matrix.

The full preprocessing stage is implemented in C++, evaluation shows that the latency

of all preprocessing is similar to the time required to read data from file. At this point, the

adjacency matrix is ready to be processed on the hardware architecture, to be described in

the next chapter.
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4 Accelerator Architecture

In this chapter, the proposed accelerator architecture is discuss in detail, which efficiently

supports the training process of quantized GCN.

4.1 Quantization

Similar to many other deep learning algorithms, GCN is equipped with multiple thousand

parameters, a number generally more than enough to achieve maximum accuracy. The excess

in computation opens an opportunity for simplification, an easy method is quantization.

The industry standard number representation for machine learning is 32-bit floating point

numbers (FP32), a numerical format capable of representing up to approximately 1040 in

range and down to 10−40 in precision. However, in practice, most learned parameters tend

to center around zero with a standard deviation within 1 order of magnitude to 1. As a

result, a large portion of the representable space of FP32 is wasted. In other words, it is

often possible to represent the same numbers with smaller bit budgets without much loss of

accuracy. In addition to storage costs, using high precision also demands larger computation

units, which in turn consumes more DSPs to perform the same computation. In short, it

is more favourable to use smaller representations, from 32 bit to 16 bit, and from floating

point to fixed point.

In contrary from floating point numbers, fixed point numbers are simply integers, and

do not carry an exponent portion in their representation. Values in each matrix share an

implicit exponent, which allows integers to represent decimals to achieve higher precision.

The advantage of fixed point is that there is no need to perform two separate computation for

the floating point’s exponent segment and the mantissa segment, which significantly reduces

both area and energy cost per multiplier or accumulator. Naturally, the reduced representa-

18



tion comes at a cost in computation accuracy, which limits its usage. In GCN computation,

experiments show that it is possible to quantize a majority of computation to 16-bit fixed

point without any change in the algorithm, at an insignificant accuracy loss of within 1%

and no change in training convergence time. There remain two exceptions which must be

computed in FP32, including softmax and Adam update. Each of these operations require

either a square, square root, or exponent operation, all of which unfortunately demand high

precision. Detailed impact of quantization will be presented in the next chapter.

Quantization is performed via a simple algorithm. First, a fraction length F is set for

each input matrix. Next, each value x is raised to x(2F ) and rounded to the nearest integer.

Finally, each value x outside the representable range of 16-bit signed integer (SINT16) is

clipped to the nearest representable extreme (i.e. -215 or 215 − 1). This results in a matrix

of integers, which can now be type cast to SINT16. The fraction length F is determined

through trial and error in a toy iteration. For instance, the training algorithm is first run in

full precision for a single epoch on a single subgraph. Each feature map and weight matrix

is then quantized with every choice of F between -16 and 32. The quantization attempt

per F choice is then compared against the FP32 version to compute a mean squared error

(MSE), finally the F choice that yields the lowest MSE is assigned to the matrix. Similar

quantization methods have been previously proposed to improve GCN efficiency [11], and

have achieved even lower representations. However, they require changes to the network

structure, and is therefore less scalable than a native approach.

4.2 Overall Architecture

The GCN workload is split between the FPGA device and the CPU host. The MM and

SpMM in forward and backward propagation are quantized to SINT16 and computed on the

FPGA. The element-wise additions and multiplications are also performed on the FPGA as
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soon as the gradients are computed during the backward phase. On the other hand, since

softmax and the square / square-root portion of weight update require hardware expensive

units to compute accurately, they are assigned to the CPU. Other software processes, such as

graph sampling, data preprocessing, are also assigned to the CPU. The detailed scheduling

between CPU and FPGA will be discussed in Section 4.6.

Regarding workload assignment, the overall architecture is shown in Figure 2. The PE

Array Module performs all the operations in the forward and backward phases, while the

Weight Update Module subsequently updates the weights after gradients are obtained from

back-propagation. The Communication Module is responsible for the data transfer between

CPU and FPGA, between off-chip memory (DDR4) and FPGA, and also among different

PEs.

4.3 Unified PE Architecture

The performance of the training accelerator comes from both reducing the off-chip memory

access overhead, as well as increasing the utilization of computation resources. Since the

full input graph is sampled, and only one subgraph is trained at every point in time, it is
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possible to set the size of the subgraph appropriate so that all the data of a single subgraph

can be cached in the on-chip memory availability of the FPGA. This way, the FPGA only

requires access from the off-chip memory three times during training per subgraph. The first

access is to obtain the initial data for the forward pass. The second access is to send back

the results of the last layer to compute loss and gradients on CPU. Finally, the gradients of

the last layer for back-propagation must be streamed back to the FPGA to carry out the

remainder of back propagation.

To increase computation efficiency, a unified PE architecture is designed to perform each

step in each layer during the forward and backward phases, as shown in Figure 3 (a). As

previously mentioned, the main operations during forward and backward are SpMM, MM

and TMM, where the majority of basic operations are multiply-accumulate. In order to

support these operations, the accelerator is designed with an M ×N Multiply-Accumulator

(MACC) Array to spatially expand each MM version. Generally, a row from the right dense

matrix is routed to a row of MACC units, while a single element from the left sparse matrix

is multi-cast across said row. The challenge then becomes how to feed data into the MACCs

to maximize their efficiency under different workloads.
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SpMM

As discussed in previous chapters, the optimized PCOO format is used to compress sparse

matrices, before storing the compressed data (header, body and non-zero elements) into 3

separate RAMs, as shown in Figure 3 (a). During computation, the Header (SOR/EOR/VLD)

is flushed out from the Header RAM, when the “VLD” signal is used to enable the Address

Counter, which is in turn used to generate the address of the Body RAM. The output of

the Body RAM is the column position of the non-zero element in the sparse matrix, which

indicates the address of the corresponding dense data in the Multi-bank RAM. This sim-

plifies the decompression logic of the sparse matrices under the optimized PCOO format,

and can be implemented with several wires and a counter, as shown in Figure 3 (a). The

non-zero sparse data and corresponding dense data are then fed into the MACC Array, and

the “SOR” and “EOR” signals control when to start computation for a new row and when

to save the results. With the fully pipelined architecture, the MACC units remain active

during most cycles of SpMM computation, thus leading to a high DSP efficiency. Evaluation

details will be discussed in the next chapter.

4.3.1 MM and TMM

Although MM and TMM share the same computation operations, they require different

memory access patterns for ordinary matrices and transposed matrices. Moreover, the output

of one layer can be either used in standard arrangement or the transposed arrangement for

subsequent computations. To alleviate memory access burden and improve DSP efficiency,

the same memory load and store logic is performed for both MM and TMM. In contrast,

a Data Distribution Module is added to control the data needed by the MACC Array for

computing MM and TMM, as shown in Figure 3 (b). The row data of the left matrix in MM

or TMM is first fetched from the on-chip memory, before it is fed into the shift registers.
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Each shift register stores a single row and can be configured to output either one element or

all the elements in the row, according to the computation mode. When computing MM, each

shift register is first configured to output one element. Next, all the elements from different

shift registers are concatenated and fed into the N rows of the MACC Array, as shown with

the blue arrow in Figure 3 (b).

On the other hand, when computing TMM, each shift register is first configured to output

all the elements in one row. Then, the elements are selected one by one to feed into the N

rows of the MACC Array, as shown with the pink arrow in Figure 3 (b). By setting the data

width of the on-chip memory as N × N × 16 (for 16-bit signed integers), active data can

be streamed out every cycle for both MM and TMM to ensure the MACCs remain active,

consequently maintains high DSP utilization. Since the MACC row size N = 16 is set in the

accelerator, the data width of N ×N ×16 is easy to achieve by using block RAMs (BRAMs)

or ultra RAMs (URAMs) in Xilinx FPGA.

4.3.2 L2 normalization and its gradients

The L2 normalization operation and its gradient computation follow a MM in the forward

and backward phase respectively. Therefore, an extra module is designated to receive the

results of the MACC Array as inputs to pipeline the computation. The CORDIC IP and

division IP in Xilinx FPGA are used to compute square root and division needed by L2

normalization, respectively. As the L2 normalization and its gradients are computed in

serial, most of the computation units are reused to minimize resource utilization, as shown

in Figure 3 (c). All the multiplexers in Figure 3 (c) are selected by the signal indicating the

computation of L2 normalization or gradients. As expressed in Equation 3 and Equation 10,

the term ||Xl−1||2, which is produced by the square root module, is used in both computing

L2 normalization and its gradients. Therefore, the results of the square root module h are

buffered to eliminate redundant computation. Moreover,
∂L

∂Xl−1

||Xl−1||2
and Xl−1

||Xl−1||2
are also used
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several times in different computation steps for computing the gradients. Therefore, they

are buffered after the first computation and reuse them to save computation resources and

reduce latency.

4.4 Weight Update

Since the weights are updated after computing the gradients by TMM, a separate module is

designed to buffer the outputs of the PE array to fully pipeline the computation, as shown

in Figure 2. The square root and division operations in Adam are also computed by using

CORDIC and Division IPs in Xilinx FPGA. Moreover, the hyper parameters in Adam are

to the nearest power of 2 (i.e., learning rate η) to simplify the multiplications to a bitshift.

4.5 Data Communication

The Communication Module handles data transfer between external memory and FPGA

(both with CPU and DDR4), and among different PEs, as shown in Figure 2. The PCIe
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Gen3 X16 interface used for communication between CPU and FPGA, and only the initial

data, final results of the forward phase and the first gradients for the backward phase are

transferred via PCIe. DDR4 is also used as the external memory to save initial data for

different training epochs and on-chip buffers are designed to perform in ping-pong manner,

so that the communication time between DDR4 and FPGA can be hidden under the com-

putation time. Since the computation of one layer is allocated to perform in parallel on

different PEs (see allocation details in Section 4.6), data is also transferred among neighbor

PEs. Result gradient matrices from each weight matrix are streamed to the Weight Update

Module for updating weights after back-propagation. Considering the properties of FPGA

(i.e., constraints of the number of long connections between different super logic regions),

FIFOs are used in the PE Interface Modules to control the bandwidth between different PEs.

4.6 Allocation and Scheduling

This section will discuss the allocation of SpMM, MM and TMM onto different PEs, as well

as the computation scheduling between CPU and individual FPGA modules.

4.6.1 Allocation

For SpMM, MM and TMM, a round robin method is used to assign different rows of the left

matrix onto different rows of different PEs, as shown with a simple example in Figure 4. This

hides the row information of the non-zero elements in the sparse matrix under the row index

of the MACC Array in each PE, thus reducing the complexity and memory requirements

of the optimized PCOO format. Moreover, the element of each row in the left matrix is

fed into the MACCs one by one, and the element is accumulated to get the MM results.

Therefore, the elements of the right matrix are fed into the PEs row by row, as shown by the

blue arrow in Figure 4. Since it is beyond the capacity availability to perform computation

25



FPGA

Initial Sampling & Pre-process
for next epoches

Transfer &
Loss

Sampling & Pre-process
for next epoches

Forward current epoch Backward current epoch
& weight update

Time

CPU

Figure 5: Scheduling between CPU and FPGA.

of the full matrix, a row-wise partition in the left matrix and a column-wise partition in

the right matrix is performed to fit a single tile into the MACC Array of each PE. This

way, each PE can only receive a portion rows of the result matrix (in the example shown in

Figure 4, MACC Array 0 receives rows 0/1/4/5 of the result matrix while MACC Array 1

receives rows 2/3/6/7). Since each MACC Array only uses a portion of the rows in the left

matrix, the results are propagated within each PE if the result matrix is used as an input

in subsequent operations. Otherwise, they will be communicated among different PEs to

collect the full result matrix.

4.6.2 Scheduling

During the training of GCN, most of the computation expensive operations are assigned

to the FPGA while others are assigned to CPU. In order to improve the overall training

performance, most of the operations between CPU and FPGA are executed in parallel,

as shown in Figure 5. After the first data initialization, the CPU repeatedly sample and

preprocess data for the next epochs while the FPGA performs forward propagation in the

current epoch / subgraph. The CPU is interrupted to transfer forward results and compute

the softmax, cross-entropy loss and the corresponding gradients once the forward phase of

one epoch is finished on the FPGA. The gradients are then transferred back to the FPGA

for backward and the CPU is back to preparing data for next epochs. Once the data of one

epoch is prepared on the CPU, data will be transferred to the FPGA via PCIe and saved
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to the DDR4 for later use. In addition, the multi-core CPU can be set to work in parallel

because the subgraphs are independent to each other.

27



5 Evaluation

In this chapter, the proposed approach is evaluated with comprehensive experiments. The

proposed 16-bit signed integer training process is first evaluated on different datasets and

networks to show its effectiveness. The FPGA accelerator is then evaluated on GraphSAINT

with different configurations. Finally, a comparison against the state-of-the-art FPGA ac-

celerator with the same FPGA configurations is made to show overall effectiveness.

5.1 Experimental Setup

The accelerator design is implemented with Verilog HDL and deployed on a Xilinx Alveo

U200 board. In order to fully utilize the resource availability of the U200 board, eight

processing elements (PEs) are implemented, each PE is equipped with a 32 × 16 MACC

Array for SpMM, MM and TMM. The BRAMs and URAMs of the U200 board are used to

store all the data used. After synthesis and implementation with Vivado 2020.1, the overall

resource utilization is shown in Table 5.2. The accelerator relies heavily on on-chip memory

(LUTRAM, BRAM, and URAM) to buffer the graph data and thus satisfies bandwidth

constraints.

As shown in Table 1, three common graph datasets are used for evaluation. Since the

graph datasets are too large to buffer on board, the same sampling algorithms as Graph-

SAINT and GraphACT are used for fair comparison. All the results on CPU and GPU

are generated by using PyTorch Geometric and the open-sourced codes provided by Graph-

SAINT and GraphACT.
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Resource LUT LUTRAM BRAM URAM DSP

Used 1021386 183191 1338 598 4460
Available 1182240 591840 2160 960 6840
Utilization(%) 86.39 30.95 61.94 62.29 65.20

Table 3: Resource Utilization on Alveo U200 Board.

5.2 Training Accuracy and Latency

Figure 6 shows a training accuracy cross-comparison between three GraphSAINT implemen-

tations across three popular datasets. The original GraphSAINT configuration uses large

subgraphs (i.e., 8000 nodes) as proposed by the original authors. The simplified version uses

2000 node subgraphs to better fit the FPGA, and removes a portion of functionality includ-

ing dropout and batch normalization. The quantized version is executed on this accelerator,

mostly in 16-bit signed integer as mentioned in previous sections. Experiment results show

insignificant drops of approximately 0.5-0.7% in F1 score for Reddit and Yelp datasets. On

the other hand, the drop for PPI was significant at 8% because the PPI dataset is less robust

to smaller subgraph sizes during sampling, this was discussed in the original GraphSAINT

text, and this accuracy reduction would be eliminated with larger subgraph sizes (i.e. 4000

nodes).

The training latency under the same configurations is shown in Table 4. On average, this

accelerator achieves 53.5× and 1.7× speedup compared with the state-of-the-art PyTorch

Geometric implementation, executed on the Intel Xeon CPU and Nvidia Tesla P100 GPU,

respectively.

5.3 Comparison with State-of-the-art

Training latency is also compared with GraphACT to further show the effectiveness of our

approach. For a fair comparison, the experimental settings, including network architecture,
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Table 4: Comparison with GraphACT, CPU, GPU on GCN and GraphSAINT.
“-” indicates no reported results.
“*” indicates results directly taken from GraphACT

GraphACT CPU GPU Proposed

Data type Float32 Float32 Float32 SINT16
Frequency(GHz) 0.2 2.2 1.2 0.25
DSP/CPU/Cuda 5632 40 3584 4460

Total convergence time PPI - 352.5 8.3 7.1
on GraphSAINT (s) Reddit - 72.5 2.9 0.96

Yelp - 965.1 27.7 27.1

Total convergence time PPI 9.6* 151.4* 10.6* 0.85
on GCN (s) Reddit 7.6* 95.5* 11.4* 0.87

Yelp 23.4* 359.4* 30.4* 3.76

testing datasets and FPGA board are all set to match GraphACT reporting. The GCN

evaluated has two graph convolution layers and one MLP layer in the classifier, and the

hidden size is set to 256 for all graph convolution layers. As shown in Table 4, this accelerator

achieves speedup up to 11.3× compared with GraphACT across all datasets. On average,

8.7× speedup is achieved across PPI, Reddit, and Yelp datasets.

The advantages come from both the quantization-aware training algorithm, as well as

the unified PE architecture. Firstly, as mentioned in previous sections, precision is reduced

from 32-bit floating point to 16-bit signed integers with negligible accuracy loss, which in

turn greatly reduces the usage of DSPs (in Xilinx FPGA, each Float32 multiplier consumes

three DSPs while each INT16 multiplier-accumulator only consumes one DSP). Therefore,

more multipliers than GraphACT for computation with same number of DSPs. Secondly,

the design choice of a unified PE architecture dramatically increases the DSP efficiency. In

GraphACT, separate modules are used for feature aggregation and weight transformation.

Although its scheduling algorithm tries to overlap the operations of both modules, there are

still quantitative idle cycles for either of the two modules.
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5.4 Discussion

This section will discuss the DSP efficiency, which dramatically influence the overall training

latency. The DSP efficiency is defined as follows:

DSP EFF =
Lattheo
Lattest

, (12)

where Lattheo and Lattest indicate the theoretical latency and tested latency, respectively.

All the zeros in SpMM and the theoretical latency of SpMM and MM are then calculated

by using Equation 13 and 14.

LatSpMM
theo =

# of non− zero MAC ops

# of MAC units
. (13)

LatMM
theo =

# of MAC ops

# of MAC units
. (14)

Following the above definitions, the average DSP efficiency of training GCN on the Reddit

dataset is analyzed. As shown in Figure 7, the DSP efficiency for computing MM and TMM

can be as high as 98.3% for some cases. On the other hand, the DSP efficiency of SpMM

is only 71.2% because empty elements are injected to avoid bank conflicts, as mentioned in

PCOO compression. However, it has little influence on the total training latency because

SpMM only accounts for approximately 1% of the total computation workloads.
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6 Conclusion

In this work, a software-hardware co-optimized GCN accelerator on FPGA is proposed in or-

der to improve GCN training efficiency. The data representation graph inputs and trainable

parameters are first quantized from 32-bit floating point to 16-bit signed integer to reduce

computation and storage requirements. The non-linear operations are simplified and redun-

dant computations are eliminated, in order to better fit the computation on FPGA. Next, a

linear time sparse matrix compression algorithm is employed to further reduce memory band-

width while enabling efficient decompression on hardware. A unified hardware architecture

is then proposed to compute SpMM, MM and transposed MM to improve DSP efficiency.

Finally, evaluation shows that the simplified training approach can train the network with

negligible accuracy loss. In terms of efficiency, the new accelerator achieves up to 11.3×

speedup over existing FPGA-based accelerator while executing the same network structure

and maintaining the same training accuracy. It also achieves up to 178× and 13.1× speedup

over state-of-art CPU and GPU implementation, respectively.
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