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Multivariable Function Learning:
Applications of the Adaptive Regression Model to Intuitive Physics

Paul C. Price and David E. Meyer

Department of Psychology
University of Michigan
330 Packard Road
Ann Arbor, MI 48104-2994
paul price@um.cc.umich.edu
david meyer@um.cc.umich.edu

Abstract

We investigated multivariable function learning--the
acquisition of quantitative mappings between
multiple continuous stimulus dimensions and a
single continuous response dimension. Our subjects
learned to predict amounts of time that a ball takes to
roll down inclined planes varying in length and angle
of inclination. Performance with respect to the
length of the plane was quite good, even very early in
learning. On the other hand, performance with
respect to the angle of the plane was systematically
biased early in learning, but eventually became quite
good. An extention of Koh and Meyer’'s (1991)
adaptive regression model accounts well for the
results. Implications for the study of intuitive
physics more generally are discussed.

Introduction

Our research concerns function learning--the
acquisition of quantitative mappings between
continuous stimulus and response dimensions. In
tennis, for example, your distance from the net is a
continuous stimulus dimension, and the force with
which you should hit the tennis ball is a continuous
response dimension. Furthermore, there is a function
that relates your distance from the net to the
appropriate amount of force with which you should
hit the ball. You must learn this function if you are
to become a competent tennis player.

Of course, in reality optimal response magnitudes
are often functions of more than one stimulus
dimension. The amount of force with which you
should hit a tennis ball depends on more than just
your distance from the net. It is also, for example, a
function of the velocity with which the ball is
approaching you. The present article, therefore, is
about multivariable function learning--the acquisition
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of quantitative mappings between multiple
continuous stimulus dimensions and a continuous
response dimension.

Before presenting our results on multivariable
function learning, we will review some recent work
by Koh and Meyer (1989, 1991) on single-variable
function learning. The work by Koh and Meyer--
particularly their adaptive regression model of
function leaming--is highly relevant here because it
forms the basis for our current research on
multivariable function learning.

The Work of Koh and Meyer (1991)

Koh and Meyer (1991) studied the learning of a motor
response to a single dimension of a perceptual
stimulus. On each trial of their experiments, subjects
were presented with a stimulus consisting of two
vertical lines separated by some horizontal distance.
Given this distance, subjects had to make two
successive finger taps such that the amount of time
between the taps equalled a correct response duration,
which was a predetermined function of the stimulus
length. There were two types of stimulus-response
pairs: practice and test. At the end of each trial with a
practice stimulus-response pair, subjects received
auditory feedback consisting of two beeps, with the
amount of time between the beeps equalling the
correct response duration for the current stimulus.
Subjects were also informed about whether their
response durations had been too long or too short, and
given a point score between 0 and 100, depending on
how close their actual response duration had come to
the correct response duration. Subjects received no
feedback after trials with test stimulus-response pairs.

In each of three separate experiments performed by
Koh and Meyer (1991), the correct response duration
was related to the stimulus length by one of three
strictly monotone mappings: a power function with a
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positive exponent less than one, a logarithmic
function, or a linear function with a positive
intercept. Koh and Meyer (1991) found that
regardless of which function had to be learned,
subjects’ initial responses appeared to be a power
function of the stimulus length. This resulted in the
power function of Experiment 1 being learned quickly
and accurately, whereas the logaritmic and' linear
functions of Experiments 2 and 3 were learned only
after considerable practice.

This power-function bias is explained by Koh and
Meyer (1991) with an adaptive regression model of
function learning. According to the adaptive
regression model, the magnitudes of the stimulus
lengths and feedback about correct response durations
are transformed logarithmically and stored--along with
some noise--in a procedural memory. After each
learning trial, a polynomial regression of the
transformed responses onto the transformed stimuli is
performed. Subsequent responses are then chosen on
the basis of parameters derived from this regression.

Under the adaptive regression model, the regression
function is initially constrained to be linear in log-log
coordinates at the start of learning. This constraint
allows people to learn power functions quickly and
accurately, because such functions are linear in log-
log coordinates. Because other (non-power) functions
are not linear in log-log coordinates, the initial
linearity constraint imposed by the adaptive
regression model implies that they would be learned
less easily, consistent with Koh and Meyer's (1991)
results. As practice progresses, however, the adaptive
regression model assumes that the initial linearity
constraint is gradually relaxed, eventually allowing
various non-power functions to be learned accurately,
just as Koh and Meyer also found.

Mathematically, the adaptive regression model is
embodied in the four equations shown below.

k
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Here responses are chosen according to Equation 1,
where R is the current response duration to be
produced and S is the current stimulus length. The
coefficients of Equation 1, the ajs, are estimated
through the regression process so as to minimize the
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quantity L of Equation 2. As Equation 2 shows, L is
a weighted combination of components L and Ly,
whose values appear in Equations 3 and 4. L is
simply the sum of squared deviations between
predicted response durations and stored feedback about
values of correct response durations, and L represents
the degree of curvature of the fitted function,

Including Ly as part of minimizing L biases the
computed coefficients of the polynomial’s nonlinear
terms to have small absolute values whenever the
weight parameter A (which takes a value between 0
and 1) is much less than 1. Consequently, the
regression algorithm will tend initially to yield a
linear function in log-log coordinates. Nevertheless,
if A is significantly greater than zero, placing some
weight on Lj, the adaptive regression model can
overcome its initial tendencies. As more and more
stimulus-response pairs are experienced, the sum of
squared deviations in L will increase, eventually
overshadowing the curvature constraint Ly, which
remains essentially constant. With an appropriate
value of A, therefore, the model can closely mimic the
rate at which people learn non-power functions. (See
Koh & Meyer, 1991, for more details).

The Inclined-Plane Experiment

To study multivariable function learning and to
extend the adaptive regression model, we had subjects
learn to predict the amount of time that a ball takes to
roll from the top to the bottom of an inclined plane,
based on the length of the plane and its angle of
inclination. Our stimuli were presented on a video
display, and consisted of line segments varying in
length and angle of inclination. Responses consisted
of two key taps such that the amount of time between
the taps constituted a prediction about the motion
time of a ball on the displayed inclined plane. This
methodology is advantageous because it is
procedurally very similar to the work of Koh and
Meyer (1991), and conceptually very similar to prior
work with the inclined-plane task (e.g., Anderson,
1983; Bjorkman, 1965).

Method

Subjects. Three University of Michigan students
participated in the experiment. They were paid a base
wage of $5.00 per 75-minute session, plus a
performance bonus described below.

Design. Subjects learned the function

&) T =k [L/sin A]l/2,



Stimulus Length

Stimulus

Angle 1196 1847 2847 4397 67.83
80.00 300 372 463 575 714
39.66 372 463 575 714 887
2443 463 575 714 887 1102
15.54 575 714 887 1102 1370
10,00 714 887 1102 1370 1701

Table 1. Correct-Response Duration (ms) as a
Function of Stimulus Length (mm) and Stimulus
Angle (degrees from horizontal).

where T is the time that a ball takes to roll from the
top to the bottom of an inclined plane, k is a constant
of gravitation, L is the length of the plane, and A is
its angle of inclination. The stimuli were line
segments anchored in the lower left comer of a
Hewlett-Packard 1437a graphics display and extending
diagonally upward to the right. Each of five stimulus
lengths was combined with each of five stimulus
angles to form 25 unique stimuli. The constant k
was chosen so that the correct response times ranged
from 300 to 1701 ms (see Table 1).

The subjects participated in one 75-minute
experimental session per day over five consecutive
days. Each session began with four warm-up trials;
responses to the warm-up trials were highly variable
and were therefore not analyzed. The remainder of
each session was divided into 30 blocks of 25 trials
each. Each of the 25 stimuli was presented once per
block, in random order.

Procedure. At the start of each trial, one of the 25
stimuli was presented on the display screen. The
subject responded by tapping the slash ("/") key twice
so that the amount of time between the two taps was
his or her prediction about the amount of time that a
ball would take to roll down the displayed inclined
plane. After responding, subjects received three forms
of correct-response feedback. At 300 ms after the
second tap, the first of two short beeps (15 ms, 1000
Hz tones) occurred; a second beep followed. The time
between the two beeps was the correct response time.
The stimulus display was cleared at the onset of the
second beep, and the subject was presented with
additional information about the accuracy of his or her
response. One of three messages--"LONG,"
"SHORT," or "PERFECT"--was presented, depending
on whether the response was greater than, less than,
or equal to the correct response duration.
Accompanying this message was a numerical point
score, ranging from 0 to 100, which indicated how
close the subject's response duration had been to the
correct duration. This point score was calculated
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according to the equation P = 100 - .2 | T¢ - Ts |,
where P is the number of points, T is the correct
response duration, and T is the duration produced by
the subject. If P happened to be negative, a score of
zero points was awarded. The message and point
score were visible for 700 ms and were followed by a
500 ms intertrial interval.

After each trial block, the subject was presented
with his or her point total for the block and
cumulative point total for the session. Ultimately,
the cumulative point total was converted to a bonus
payment of $.05 per 1000 points earned. In general,
this resulted in a bonus of between $2.00 and $2.50
per session.

Results

Tables 2a and 2b show subjects’ mean response
durations for each inclined plane during sessions 1 and
5, respectively. To make the patterns in these tables
clearer, Figure 1 shows subjects’ mean response
durations for sessions 1 and 5 versus the log of the
stimulus length, averaged across the five stimulus
angles. Response durations have been transformed

—  StimulusTength
Stimulus
Angle 1196 1847 2847 4397 6783
80.00 324 451 498 557 597
39.66 434 567 630 734 794
2443 534 653 773 879 915
15.54 618 833 945 1024 1132
10.00 741 1032 1171 1328 1475

Table 2a. Subjects’ Mean Response Duration (ms)
as a Function of Stimulus Length (mm) and
Stimulus Angle (degrees from horizontal). Session
&

Stimulus Length
Stimulus
80.00 317 395 483 578 651
39.66 383 463 596 730 870
2443 464 571 743 865 1010
15.54 557 731 893 1010 1196
1000 744 948 1175 1277 1596

Table 2b. Subjects’ Mean Response Duration (ms)
as a Function of Stimulus Length (mm) and
Stimulus Angle (degrees from horizontal). Session
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Figure 1. Log Response Duration versus Log
Stimulus Length, Averaged over Subjects and
Stimulus Angles for Sessions 1 and 5, respectively.

logarithmically before averaging the data and making
the graphs, so as to produce a linear correct-response
function (the dashed lines in Figure 1).

Note that even during session 1, subjects’ mean
response durations appear to be a nearly log-linear
function of stimulus length; that is, they learned this
aspect of the inclined-plane task very quickly and
accurately. To confirm this, a log-polynomial
regression of mean response durations onto stimulus
length was performed separately for each subject,
session, and angle. Both linear and quadratic
coefficients were obtained. The mean value of the
linear coefficients was .48, which is not significantly
different from the optimal linear coefficient of .50
[(2) = 1.54, p > .05]. (Note: The optimal linear
coefficient equals 0.50 because of the square-root
exponent in Equation 5.) The mean value of the
quadratic coefficients was -.00003, which is not
significantly different from the optimal quadratic
coefficient of zero [t(2) = .03, p > .05]. This implies
that there was essentially no bias in subjects’

555

responses with respect to length even during session
L.

The linear coefficients, or slopes, were then treated
as the dependent variable in an ANOV A with session
number and stimulus angle as fixed factors and
subjects as a random factor. These coefficients did
not change significantly across sessions [F(4,8) =
.72, p > .05], nor did they differ significantly across
stimulus angles [F(4,8) = .71, p > .05]. In other
words, no significant learning took place with respect
to stimulus length after session 1, and performance
with respect to stimulus length did not depend on the
angle of the stimulus.

Figure 2 shows subjects’ mean log response
durations for sessions 1 and 5 versus the log of the
reciprocal of the sine of the stimulus angle. Again,
this produces a linear correct-response function (the
dashed lines in Figure 2).

7-2 —
Session 1
70| L
or 4 O
66| T
P
eal O
£ e.z[lj 7
T;E 6.0 ! ay
8 0 1 2
@
=
=]
(=5
S 72 .-
ﬁ ' Session 5
6.8 | j
¥ i
66 | /Ij
6.4 | [T
62l 7
S_OEIT 1 ]
0 1 2

Ln (1/Sine Stimulus Angle)

Figure 2. Log Response Duration versus the Log
of the Reciprocal of the Sine of the Stimulus Angle,
Averaged over Subjects and Stimulus Lengths for
Sessions 1 and 5, respectively.



Note that during session 1, there is a pronounced
curvature in the plotted response times. To confirm
this, a log-polynomial regression of mean response
duration onto the reciprocal of the sine of the angle
was performed for each subject, session, and stimulus
length. Both linear and quadratic coefficients were
obtained. The mean value of the linear coefficients
was .34, which again is not significantly different
from the optimal linear coefficient of .50 [t(2) = 1.80,
p > .05]. However, when the data were analyzed
separately for each subject, we found that each subject
produced linear coefficients that were significantly
less than the optimal linear coefficient of .50 [t(4) =
15.54, p < .05; t(4) = 12.46, p < .05; t(4) = 13.16, p
< .05).

The mean value of the quadratic coefficients was
-.013, which is not significantly different from zero
[t(2) = 1.64, p >.05). However, it is three orders of
magnitude larger than the mean quadratic coefficient
for length, and it is easily perceived as the downward
curvature in the top panel of Figure 2. Moreover,
analyzing these data separately for each subject reveals
that two out of the three subjects produced
significantly negative mean quadratic coefficients [t(4)
= 13.26, p < .05; t(4) = 8.26, p < .05), while the
third produced a non-significantly negative one [t(4) =
.00005, p > .05].

An ANOVA analogous to the one described earlier
showed that the linear coefficients increased
significantly across sessions [F(4,8) = 5.15, p < .05],
and the quadratic coefficients decreased somewhat
across sessions [F(4,8) = 2.34, p < .15]. Although
the latter change in the quadratic coefficients was not
significant at conventional levels, it was in the
direction predicted by the adaptive regression model
(see below). In other words, subjects’ initial response
biases with respect to angle did decrease with practice.
Neither the linear nor quadratic coefficients differed
across stimulus lengths (F(4,8) = 1.46, p > .05;
F(4,8) = .37, p > .05].

Extending the
Adaptive Regression Model

The adaptive regression model--as originally
formulated by Koh and Meyer (1991)--quite readily
explains performance with respect to stimulus length
in the present experiment. According to this model,
the relationship between the logarithmically
transformed stimulus length and response duration is
assumed to be linear. Because the relationship
between the length of an inclined plane and a ball’s
rolling time is in fact linear in log-log coordinates,
the model predicts that it should be learned quite
rapidly. This is, of course, exactly what was found in
the present experiment (Figure 1).
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Figure 3. Log Response Duration versus the Sine
of the Stimulus Angle, Averaged over Subjects for
Session 1.

The adaptive regression model can also be extended
to account for performance with respect to stimulus
angle. Our extended version of the model initially
assumes that the relationship between the transformed
stimulus angle and logarithmically transformed
response duration is linear. In the case of angle,
however, the transformation performed is not
logarithmic. Instead, the angle is transformed by
taking its sine. That subjects actually do assume an
initial linear relationship between the log of the
response duration and the sine of the angle can be
seen in Figure 3. This figure shows subjects’ mean
log response durations versus the sine of the stimulus
angle; the relationship is clearly linear (r2 = .994).

Our extended adaptive regression model assumes
further that the transformed response duration is an
additive combination of the two transformed stimulus
magnitudes: In L and sin A. Early performance in the
inclined-plane task, therefore, is characterized by the
equation

(6) InR=a+bInL +csinA,

where R is the subject's response duration, L is the
length of the inclined plane stimulus, and A is its
angle of inclination. Equation 6 accounts for 99.4%
of the variance in subjects’ mean response durations
during session 1. Finally, to explain how subjects’
performance with respect to stimulus angle improves
over sessions, our extended adaptive regression model
gradually adds non-zero, higher-order polynomial
terms for sine A into Equation 6 as practice
progresses, using the same sort of relaxation process
posited in Equations 1 through 4.



Discussion

It is especially interesting to consider the
implications of these results for the domain of
intuitive or "naive" physics. A number of studies
have demonstrated that people have faulty initial
intuitions about the behavior of objects in a variety
of simple physical situations (e.g., Bjorkman, 1965;
McCloskey, 1983). For example, people may not
realize that the mass of an object is irrelevant to the
amount of time that it takes to fall to the ground, and
therefore may predict that a heavier object should fall
faster than a lighter object.

Such faulty intuitions are usually attributed to a
lack of knowledge about the laws of physics.
However, the present results suggest that people may
have faulty initial intuitions about many such
physical situations for a very different reason.
Namely, the nature of the transformations that people
perform on stimulus variables, as well as their
preferred modes of psychologically combining those
variables, may lead to biased expectations and
predictions, as in the present experiment. If so, then
even the most highly educated physicists would
exhibit the same biases as naive subjects. Perhaps
this is a possibility worth exploring 'in future

experiments,
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