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ABSTRACT OF THE DISSERTATION

Microstructurally Controlled Composites with Optimal Elastodynamic Properties

Hossein Sadeghi

Doctor of Philosophy in Engineering Sciences (Applied Mechanics)
University of California, San Diego, 2016

Professor Sia Nemat-Nasser, Chair

Periodic composites (PCs) are artificial materials with specially designed
microstructure to manage stress waves. The objective of this dissertation is to study
various techniques for microstructural design of PCs for a desired elastodynamic

response. A mixed variational formulation is studied for band structure calculation of

XV



PCs. Dynamic homogenization is studied for calculation of the frequency dependent
effective properties of PCs. Optimization techniques are used together with mixed
variational formulation and dynamic homogenization to make a computational platform
for microstructural design of PCs. Several PCs are designed and fabricated, and various
tests are performed for experimental verification.

First, band-gap in one- and two-dimensional PCs is investigated experimentally.
Mixed variational formulation is used to design samples with band-gaps at frequencies
convenient to conduct experiment. Samples are fabricated and their transmission
coefficient is measured. Experimental data are compared with theoretical results for
evaluation of the band structure. Also, using constituent materials with temperature
dependent material properties, it is shown that band structure of PCs can be tuned by
changing the ambient temperature. Furthermore, dynamic homogenization is used to
design a one-dimensional PC for acoustic impedance matching. As a result, the reflection
of stress waves at the interface of two impedance matched media becomes zero. Samples
are fabricated and ultrasound tests are performed to measure the reflection coefficient for
experimental verification. In addition, a one-dimensional PC with metamaterial response
is designed to achieve a composite with both high stiffness-to-density ratio and high
attenuation at low frequency regime. Samples are fabricated and the attenuation
coefficient is measured for experimental verification.

Moreover, optimal design of PCs for shock wave mitigation is investigated. A
genetic algorithm is used to design the microstructure of a one-dimensional PC for
maximum band-gap bandwidth. To verify the theoretical calculation, samples are

fabricated and Hopkinson bar experiments are performed. In addition, negative refraction

XVvi



in two-dimensional PCs is investigated. Equifrequency surfaces of a two-dimensional PC
are calculated together with vectors of group velocity. Dynamic homogenization is used
to find overall elastodynamic properties of the two-dimensional PC. Energy refraction at

the interface of a homogenous half-space and the two-dimensional PC is studied.
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Chapter 1

Introduction

Periodic composites (PCs) are artificial materials with specially designed
microstructure to control stress waves. PCs exhibit band-gaps, where propagation of
stress waves is prohibited. This feature can be used to design acoustic filters, noise
insulators, and vibrationless environments. In addition, through microstructural design,
PCs can demonstrate metamaterial behavior, i.e. negative effective density and/or
negative effective stiffness, at certain frequency ranges [1, 2, 3]. Such features make PCs
strong candidates for design of structures with extraordinary elastic and dynamic
response. The objective of this dissertation is to study various techniques for
microstructural design of PCs for a desired elastodynamic response. A mixed variational
formulation is studied to calculate the band structure of one-, two-, and three-dimensional
PCs. In addition, dynamic homogenization is studied for calculation of the frequency
dependent effective material properties of PCs. Optimization techniques are used together
with mixed variational formulation and dynamic homogenization to make a
computational platform for microstructural design of PCs. Several PCs are designed for

(1) stress waves filtering, (ii) acoustic impedance matching, (iii) maximizing the



attenuation, and (iv) shock wave mitigation. Samples are fabricated and various tests are

performed for experimental verification of the computational platform.

1.1. Band-gap

Propagation of stress waves in PCs is prohibited within band-gaps, where
incoming stress waves get effectively reflected. The first study on analysis of stress wave
propagation in PCs is done by Rytov [4]. He developed an analytical solution for band
structure calculation of one-dimensional periodic composites. Applying the Bloch
boundary conditions, he derived the dispersion equation and showed that in certain
frequency ranges the propagation of the stress waves is forbidden. A mixed variational
method, originally developed by Nemat-Nasser [5], was developed in 1970’s for analysis
of stress wave propagation in PCs [6, 7, 8, 9, 10, 11]. Using this method, band structure
of one-, two-, and three-dimensional periodic elastic composites was calculated with high
accuracy. The power of this method is due to independent variation of displacements and
stresses within the composite. As a result, the continuity of tractions and displacements at
the interface of the matrix and inhomogeneities are satisfied automatically. For
illustration, they studied waves propagating normal to the layers in one-dimensional PCs
and normal to the fibers in fiber reinforced composites [8]. Nemat-Nasser and Minagawa
[8] presented explicit formulation for calculation of eigenfrequencies and eigenfunctions
of three-dimensional periodic composites with cuboidal and ellipsoidal inclusions. They
showed that mixed variational method is more accurate and faster than Rayleigh quotient

in predicting the band structure.



Kushwaha et al. [12, 13] developed plane wave expansion (PWE) method for
band structure calculation of PCs. In this method, the displacement is replaced by its
Fourier series expansion which satisfies the Bloch boundary conditions. Due to
periodicity, the density, and longitudinal and shear wave speeds in the composite are
represented by their Fourier series expansions as well. Substituting the displacement and
material properties with their Fourier series expansion, the equation of motion is reduced
to an eigenvalue problem which can be solved to find the band structure. Vasseur et al.
[14] used PWE to calculate the band structure of two-dimensional periodic arrays of solid
cylindrical inclusions in a solid matrix. In order to verify the theoretical calculations, they
presented experimental transmission results through a finite slab of the periodic
composite. They showed that the experimentally observed band-gaps match the
theoretical predictions. Although PWE has been used successfully in predicting band
structure of PCs in several cases, it has convergence problem when dealing with systems
of either very high or very low filling ratios, or of large elastic mismatch [15].

Multiple scattering technique (MST) was developed for band structure calculation
of PCs to overcome the limitations of PWE method [16, 17, 15]. In this method, the
displacements in each inhomogeneity (scatterer) are considered to be the summation of
displacements of (1) the incoming waves from all the other scatterers and (2) the
outgoing (scattered) waves. Applying the continuity of the displacements and tractions at
the interface of each scatterer and the matrix, a relation between the coefficients of
incoming and outgoing waves for each scatterer is found. Imposing the Bloch boundary
conditions, the equations reduce to an eigenvalue problem which can be solved for

eigenmodes and eigenfunctions. Kafesaki and Economou [16] presented multiple



scattering formulations for wave propagation in three-dimensional periodic composites.
They considered acoustic wave propagation in a periodic composite consisting of solid
spheres in a fluid host and calculated the dispersion curve and showed that PWE method
can not describe the composites with fluid matrix accurately. Mei et al. [15] presented
MST for elastic wave propagation in two-dimensional PCs. They calculated the band
structure for two-dimensional PCs with cylindrical solid inclusion in fluid matrix and
studied the convergence of the solution. They also observed that PWE can not describe
the response of PCs with fluid matrix accurately. Ke et al. [18] used MST to calculate the
equifrequency surface (EFS) of a two-dimensional PC made of triangular arrays of rods
in a liquid host. Using EFS they predicted negative refraction for all angles of incident
acoustic waves over the second mode. To demonstrate the negative refraction behavior,
they measured wave propagation through a finite slab of PC and verified their theoretical

through experiment.

1.2. Metamaterials

Acoustic/elastic metamaterials are specially designed PCs with overall negative
elastodynamic properties [1, 2, 3, 19]. Such extraordinary features are due to local
resonance inside the composite at certain frequencies. Liu et al. [1] designed a three-
dimensional metamaterial and showed that near the resonance frequencies, the
metamaterial behaves like a medium with effective negative stiffness. Their experimental
results show that at the resonance frequencies the transmission coefficient is very small
due to attenuation induced by local resonance. Li and Chan [2] showed the existence of

acoustic metamaterials in which both the effective density and bulk modulus are



simultaneously negative. They realized that double negativity in acoustic metamaterials is
a consequence of local resonance. Fang et al. [3] reported a class of ultrasonic
metamaterials consisting of an array of subwavelength Helmholtz resonators with
designed acoustic inductance and capacitance. These materials have an effective dynamic
modulus with negative values near the resonance frequency. They showed experimentally
that these metamaterials can convey acoustic waves with a group velocity antiparallel to
phase velocity. Fokin et al. [20] developed a method to extract effective material
properties from experimentally measured reflection and transmission coefficients. They
used this method to analyze various acoustic metamaterials and observed negative
effective properties at some frequencies.

Microstructure of acoustic/elastic metamaterials can also be designed to achieve
negative energy refraction [21, 22]. Li et al. [23] used the multiple scattering technique
and studied the negative refraction imaging in two-dimensional PCs. They showed that
localized resonance mechanism brings on a group of flat single-mode bands in low
frequency region which provides two equivalent frequency surfaces close to circular.
Croenne et al. [24] presented experimental evidence of negative refraction of longitudinal
waves in two-dimensional PCs with a solid matrix. They made a PC of triangular
arrangements of steel rods embedded in epoxy and carried out an experiment on a prism-
shaped PC inside an epoxy block and observed negative refraction experimentally.
Nemat-Nasser [25, 26] studied the anti-plane shear wave propagation in one- and two-
dimensional PCs using a mixed variational formulation. He showed that negative energy
refraction can be accompanied by positive phase-velocity refraction, and positive energy

refraction can be accompanied by negative phase-velocity refraction.



The attenuation of stress waves in metamaterials is large near the resonance
frequencies. Ho et al. [27] used several locally resonant materials with different
resonance frequencies and showed that each layer vibrates like an independent unit. Their
results show significant drop in transmission coefficient at resonance frequencies. Cheng
et al. [28] designed a one-dimensional ultrasonic metamaterial with both effective density
and effective bulk modulus simultaneously negative. They found the transmission
coefficient using acoustic transmission line method (ATLM), finite element method, and
experimental measurement and observed a substantial drop in transmission spectrum
around the resonance frequency. Wang et al. [29] studied the propagation of longitudinal
and transverse elastic waves in locally resonance one-dimensional metamaterials. They
showed that locally resonant one-dimensional PCs can be designed to show band-gap at
frequencies around a few hundreds of Hertz. Nemat-Nasser and Srivastava [30] showed
that three-phase, one-dimensional periodic composites with a heavy central layer and
compliant coating embedded in a polymer matrix can be designed to show negative
effective density and stiffness over the second mode. These studies suggest the possibility

of using metamaterials to design structural composites with tunable attenuation.

1.3. Dynamic homogenization

Due to interesting behavior of PCs, there has been growing interest to develop
techniques to calculate their overall elastodynamic properties [31, 32, 33, 34, 35, 36, 37].
Willis [38] developed a homogenization method based on an ensemble averaging
technique of Bloch reduced form of wave propagation in PCs. He showed that the mean

stress is coupled not only to the mean strain, but also to the mean velocity. Likewise, the



mean momentum is coupled not only to the mean velocity, but also to the mean strain.
Nasser et al. [39] developed a homogenization method based on integration of field
variables to calculate effective dynamic properties for Bloch waves in one-dimensional
PCs. They showed that the resulting effective parameters satisfy the overall field
equations and yield the exact dispersion relation. Nemat-Nasser and Srivastava [40]
presented a homogenization method for one-dimensional composites based on
micromechanical considerations. They provided explicit expressions for the effective
dynamic properties of one-dimensional PCs and systematically deduced the overall
constitutive relations for the homogenized elastic solid. Nemat- Srivastava and Nemat-
Nasser [41] developed a method for homogenization of three-dimensional PCs. They
provided explicit expressions to calculate the effective elastodynamic parameters for
three-dimensional periodic elastic composites. Nemat-Nasser and Srivastava [42] used a
dynamic homogenization to study the effective properties of layered metamaterials. They
observed that near the resonance frequency both the effective compliance and density
become singular and they can achieve negative values, simultaneously. Antonakakis et al.
[33] developed an asymptotic based homogenization technique for two-dimensional
periodic composites which is valid at high frequencies. They compared their calculations
with finite element simulations and observed that the periodic composites can exhibit
high anisotropy at certain frequency ranges. Torrent et al. [19] developed a method to
calculate the frequency dependent effective properties of two-dimensional periodic
composites at low frequency limit. They observed that the effective mass density and
stiffness tensor are in general anisotropic, and can become singular and achieve negative

values at certain frequency ranges. Due to recent advances in transformational acoustics,



which makes acoustic cloaking achievable [43], dynamic homogenization has become a
useful tool for microstructural design of the cloak [44]; which demands further

understanding of these techniques.

1.4. Organization of chapters

The manuscript is organized in the following manner. In chapter 2, theoretical
framework for analysis of stress wave propagation in PCs is studied. A mixed variational
method is studied for calculation of band structure of one-, two-, and three-dimensional
PCs. A dynamic homogenization is studied which allows for evaluation of effective
elastodynamic properties of PCs. In addition, transfer matrix method is considered to find
the exact solution for reflection and transmission coefficients at the interfaces of a one-
dimensional PC sandwiched by two homogenous half-spaces.

In chapter 3, band-gap in one-dimensional and two-dimensional PCs is
investigated experimentally. Mixed variational formulation is used to design samples
with band-gaps at frequencies convenient to conduct experiment. Samples are fabricated
and their transmission coefficient is measured for verification of the theoretical band
structure. In addition, tuning the band structure of periodic composites with change in
ambient temperature is studied. A one-dimensional PC with constituent materials which
have temperature dependent material properties is fabricated. Ultrasound measurements
are performed at different temperatures and transmission coefficient are measured and

compared with theoretical results for verification.



In chapter 4, dynamic homogenization is used for microstructural design of one-
dimensional PCs for acoustic impedance matching. As a result, the reflection of stress
waves at the interface of the two impedance matched media becomes zero. Ultrasonic
measurements and finite element simulation are performed to find the reflection
coefficient for verification. Furthermore, a one-dimensional metamaterial is designed for
stress wave attenuation in sonic range of frequency. The aim is to design the
microstructure of the metamaterial to achieve both high attenuation coefficient and high
in-plane stiffness-to-density ratio. To verify the theoretical calculation, laboratory
samples are fabricated and the attenuation coefficients are measured.

In chapter 5, design optimization of PCs for a desired elastodynamic response is
studied. Optimal design of one-, two-, and three-dimensional PCs with maximum band-
gap bandwidth is studied. In addition, optimal design of PCs for shock wave mitigation is
investigated. To verify the theoretical calculation, samples are fabricated and Hopkinson
bar experiments are performed. Furthermore, optimal design of one-dimensional PCs for
minimum reflection and maximum attenuation is investigated. Samples are fabricated and
ultrasound tests are performed to measure the reflection and attenuation coefficients for
evaluation of the theoretical results.

In chapter 6, negative refraction in two-dimensional PCs is investigated. Mixed
variational formulation is used to find the equifrequency surfaces of a two-dimensional
PC together with vectors of group velocity. Dynamic homogenization is used to calculate
frequency-dependent overall elastodynamic properties of the PC. Numerical results are
presented and energy refraction at the interface of a homogenous half-space and the PC is

studied.



Chapter 2

Stress wave propagation in periodic

composites

In this chapter, the theoretical framework for analysis of stress wave propagation
in PCs is studied. A mixed variational method is used for band structure calculation of
one-, two-, and three-dimensional PCs. Dynamic homogenization is studied for
calculation of effective elastodynamic properties of one- and two-dimensional PCs. In
addition, transfer matrix method is studied to provide an exact solution for calculating the
reflection and transmission coefficients at the interfaces of a one-dimensional composite

sandwiched by two homogenous half-spaces.

2.1. Mixed variational method
Mixed variation formulation provides an approximate solution for analysis of
stress wave propagation in one-, two-, and three-dimensional PCs [6, 9]. In this method

stress and displacement components can vary independently in order to satisfy the

10
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continuity of displacements and tractions at the interfaces of the matrix and

inhomogeneities.

2.1.1. One-dimensional periodic composites
Consider wave propagation in a one-dimensional elastic composite made of
infinite number of identical repeated unit cells. Figure 2-1, shows a typical unit cell of a

two-phase, one-dimensional PC. The periodicity condition can be expressed as

p(x +m'a) = p(x)
2.1)
E(x +m'a) = E(x)

where p, E, a, and m’ are the density, Young’s modulus, unit cell size, and an integer,

respectively. The equation of motion can be expressed as

2

5] 9]

p(x) ﬁu(x, t) = ﬂa(x, t) (2.2)
where o and u are stress and displacement, respectively. For one-dimensional linear
elastic materials the constitutive equation is given by

o(x,t) = E(x)e(x,t) (2.3)

where ¢ is the strain which can be written as

e(x, t) = aa—xu(x, t) (2.4)
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v

M M? M?!

Figure 2-1: Unit cell of a one-dimensional periodic composite

For a periodic medium the solution of equation of motion (2.2) has periodic coefficients

which can be expressed as

g(x +a) = g(x)e'® (2.5)
where g and g are the overall wave number and any of the field variables, respectively.

The Bloch boundary conditions for a unit cell can be expressed as

(2.6)

It can be shown that the eigenvalues of the problem can be found by rendering the

following functional stationary [5]

_ (0,0u/0x) + (0u/dx,c) — (Do, g)

o 2.7)

N

where
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(guj, vj) =fgujvfdﬂ (2.8)
Q

where * denotes the complex conjugate, and D = 1/FE is the compliance. Here, the stress

and displacement fields are varied independently in the following forms

M
i = Z U@ F@x) 2.9)
a=—M
M
5= Z S@ @@ (x) (2.10)
a=—M

where f (@ = gi(@Q+2amx/a iy which Q = ga is the normalized wave number, and U®
and S(® are unknown Fourier coefficients. Minimizing the functional in equation (2.7)
with respect to unknown coefficients U® and S(®, we get the following linear system of

equations

07 4 dp, @) = 0 @1

ou
= _ U )y = 2.12
(D7 ———,f@) =0 (2.12)

which can be written in matrix form as

HU+®dS=0
(2.13)
QU+ HS =0
where the U and S are vectors of unknown coefficients
U= {U_N, U—N+1' vy Uo, vy UN}T
(2.14)

S == {S—N’ S—N+1' ...,So, ...,SN}T
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The explicit form of the coefficient matrices €, @, and H are given in Appendix 2A. The

characteristic equation for linear system of equations (2.13) can be found as

det[H* — ®H1Q]=0 (2.15)
The solutions of this equation give the eigenfrequencies and eigenvectors of the

composite.

2.1.2. Two-dimensional periodic composites
Consider a two-dimensional periodic composite with elliptical fibers with a unit
cell shown in Figure 2-2. For a unit cell with the edges defined by I# (8 = 1,2), the

periodicity condition can be expressed as
Citemn (%) = Citemn (x + m'IF) (2.16)
p(x) = p(x +m'IP) (2.17)

where x is the position vector with components x;, (j = 1, 2), and Cjgmn (%), (j, k,m,n =

1, 2), are the components of the elasticity tensor.

sz

a

Figure 2-2: Unit cell of a two-dimensional periodic composite with elliptical inclusions
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The field quantities for a harmonic wave with frequency w (1 = w?) are proportional to

e+l and the field equations can be represented as

Ojkk + Apu; =0 (2.18)
where oj; and u; are components of stress tensor and displacement vector, respectively.
The constitutive relation can be written as
o

ik = Cjkmnum,n (2.19)

For harmonic waves with wave vector q = q;e; (i = 1,2), where e; is the unit vector

along x;-direction, the Bloch boundary conditions have the following form
w(x + I8) = uj(x)e?’ (2.20)
t;(x +IF) = —t;(x)ee?’ (2.21)

where t is the traction vector. It can be shown that the eigenvalues of the problem can be

found by rendering the following functional stationary [8]

_ {9 W) + (e Gjied = {Djiemn Tjs Tyrn) (2.22)

A
N (Puj’uj)

where Djym, represents the components of the elastic compliance tensor. Consider the

following expressions for the solution of the field equations (2.18)

M
7 = Z U f @B (x) (2.23)

a,f=—M
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M
=) SKPFEeP (2.24)
a,f=—M
where f@F)(x) (a,f = —M,...,M) are a sequence of orthogonal, continuous, and

continuously differentiable function which satisfy the Bloch boundary conditions (2.20)

and (2.21). Substituting equations (2.23) and (2.24) into equation (2.22) and setting the
derivatives of Ay with respect to the unknown coefficients, Ul.(aﬁ ) and Sj(,f A ), equal to

zero, the following set of linear homogenous equations can be obtained
(G + Anpiyy, f @) =0 (2.25)
(DjmnGmn — i, f @) = 0 (2.26)
For two-dimensional PCs the approximating function can be chosen to be

fap) = Q2+ Qo F2nh)G (2.27)

where a; and a, are the dimensions of the unit cell along the x;- and x,-axis (see
Figure 2-2), and Q; = q,a, and Q, = q,a, are the normalized wave numbers along x; -
and x,-directions, respectively. Substituting this relation for f(*#) in equations (2.25) and
(2.26), we find a matrix equations in the same form as given in equations (2.13) where U
and S are the vectors of the unknown coefficients in the approximate expressions for the
displacement vector and the stress tensor components, respectively; which can be
expressed as U = {U;, U,}T with components Ui(aﬁ)(i =12), a,=0,%1,.., M,

and S = {S11, S12,S22}" with components Sj(,f 2 (j, k = 1,2). The explicit expression for

the coefficient matrices Q, H, and @ are given in Appendix 2B. For nontrivial solution of
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this system of equations, the determinant of the coefficients matrix in equation (2.15)
should be set equal zero which gives the dispersion equation for a two-dimensional

periodic composite.

2.1.3. Three-dimensional periodic composites

Consider a unit cell of a three-dimensional periodic composite with ellipsoidal
inclusion as shown in Figure 2-3. For a unit cell with the edges defined by I# (8 =
1,2,3), the periodicity condition can be given by equations (2.16) and (2.17) with
j,k,m,n=1,2,3. Similarly, the field equations, constitutive relations, and Bloch
boundary conditions can be given by equations (2.18), (2.19), (2.20), and (2.21),
respectively. It can be shown that the eigenvalues of the problem can be found by
rendering the functional in equation (2.22) stationary. The approximate solution for stress

and displacement components are assumed in the following form

M
7 = Z U@ B (x) (2.28)
a,B,]/=—M
M
Ojic = z adeyacieley (2.29)
a,fy=—M

where

Flapy) = (@ 2mGHH(Qp 2By rzm 2] (2.30)

as
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Figure 2-3: Unit cell of a three-dimensional periodic composite with ellipsoidal inclusion

where a; and Q; (i=1..3) are the length of the unit cell side and normalized wave number
along the x;-direction, respectively. Following the same procedure as for the two-
dimensional PCs, the characteristic equation (2.15) can be solved to get the dispersion

equation of the PC, where the coefficient matrices Q, H, and ® are given in Appendix

2C.

2.2. Transfer matrix method
2.2.1. Band structure calculation

Transfer matrix method provides exact solution for calculating the band structure
of one-dimensional PCs [45]. Consider wave propagation in a one-dimensional PC made
of infinite number of identical repeated unit cells with a unit cell shown in Figure 2-4. In
this Figure, E D, pD and dV) are the elastic modulus, density, and thickness of j-th
layer, respectively. The general solution for equation of motion in each layer can be

expressed as the superposition of two longitudinal waves traveling in opposite directions
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u(x, t) = [AV ek Px 4 g0 -ikDx)g-int (2.31)

where k) = w/c®), ¢, AV and AY) are the wave number in j-th layer, the
longitudinal wave velocity, the amplitude of the waves traveling in positive and negative
x-direction in j-th layer, respectively. The displacement and stress in the j-th layer can be

expressed as

u(x)] _ Ag)e”‘@x
=B |+ ° (2.32)
o(x) 740 g-ikPx
where
I 1 1
Bj_[iz(j) _iz(i)] (2.33)

where Z0) = pWe* kD Let x/- and x/® denote the left and right boundaries of j-th

layer in the unit cell, respectively. Considering the relation x/R = x/t +d() and setting

D;(dV) = diag[e((kVdD) o(=ikDdD)] * equation (2.32) can be written as

W ..l | .. |
EW

—> p&

X
d
d

Figure 2-4: Unit cell of a one-dimensional periodic composite
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Iu(ij) 1 lu(ij) (2.34)
J

o(x/®)] o)

where T; = B;D j(d(j ))B]-"1 is the transfer matrix for j-th layer which can be expressed as

- [ cos(kPd0) Sin(k(j)d(j)) /Z(J')l (2.35)

—ZWDsin(kPd D) cos(kPWd)

Applying the continuity of displacement and stress between each two adjacent layers, the
displacement and stress at the left boundary of the first layer in the unit cell are related to

those at the right boundary of the N-th layer by

[u(xNR)] _r [u(le)

o (eR) o(eit) (2.36)

where T = Ty Ty_; ... T;is the cumulative transfer matrix of the unit cell. For Bloch type
waves the displacement and stress at a given point of the unit cell are related to the

corresponding point in the adjacent unit cell by

y(x + d) = ey (x) (2.37)

where y(x) = [Zgg and k is the Bloch-wave number. Equations (2.36) and (2.37) lead
to the following eigenvalue problem
T(w)y(x') = 2y(x') (2.38)

where A = exp(ikd) is the eigenvalue and y(x'L) is the eigenvector. Solutions of this
equation give the band structure for longitudinal wave propagation in an infinite one-

dimensional PC.
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2.2.2. Finite one-dimensional periodic composites

Transfer matrix method provides a solution for calculating the reflection and
transmission coefficients at the interfaces of a one-dimensional composite sandwiched by
two homogenous half-spaces. Consider m unit cells of a one-dimensional composite each

made of N individual layers sandwiched by two homogenous half-spaces, as shown in
Figure 2-5. Assume there is an incoming harmonic wave with amplitude A&O) moving

toward positive x-direction, and a reflected wave moving backward with amplitude A
in the incident medium. The displacement in the incident medium, M, can be expressed

as
u(x, t) = [AD ek x4 4O ¢-ikOx]p—ivt (2.39)

The displacement in each layer of the composite can be given by equation (2.31) and the

displacement in the transmission medium, M,,, 1, can be given by
u(x, t) = A D ik x-—wt) (2.40)

The field variables at the left boundary of the first layer in the first unit cell of the

composite are related to those at the right boundary of the N-th layer in the m-th unit cell

by
MO Mm +1
A S_O) A S_m+ 1)
—_
Incident medium Transmission medium —
A©

Figure 2-5: A finite one-dimensional periodic composite sandwiched by two
homogenous half-spaces
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) o [527) o

Applying the continuity of displacement and stress at the interfaces of the composite with

Mg and M, 4, the following relation can be found

(m+1) (0)
[A+0 ] —K tll?")l (2.42)

where K = L(m)_l(D)B(m“)_lTB(O), in which the matrices LO) and B are given by

, 1)
L) ()=| P (E) o (2.43)
0 exp(—ik@Px)
N 1
B(])_[iz(j) _iz(i)] (2.44)

Solving for the reflection coefficient, R, and the transmission coefficients, 7, we find

r AD Ky )4
- A(+°) Ky (245)
(m+1)
A KK
T==% =2 (2.46)

L © G
AS_O) H K22

In the absence of viscous dissipation, energy is conserved and the following relation

holds

RR*+TT* =1 (2.47)

which means the energy of the incident wave is either reflected or transmitted to the

transmission bar.
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2.3. Dynamic homogenization
2.3.1. One-dimensional periodic composites

2.3.1.1. Field variables averaging

Effective elastodynamic properties of one-dimensional PCs can be calculated
through homogenization by integration of field variables [39]. Consider Bloch waves in
an infinite layered elastic composite made of identical repeated unit cells 2 = {x: 0 <
x < d}. For harmonic waves with wave number ¢ and frequency w, the field variables

can be expressed as
o(x,t) = Z(x)expli(gx — wt)], e(x,t) = E(x)expli(qx — wt)]
u(x, t) = U)expli(gx — wt)], u(x,t) = U(x)exp[i(qx — wt)] (2.48)

p(x,t) = P(x)exp[i(qx — wt)]
where the variables p and @ are linear momentum and velocity, respectively; while Z(x),
E(x), P(x), U(x), and U(x) represent periodic parts of stress, strain, linear momentum,
displacement, and velocity, respectively. The conservation and kinetic relations are given
by equations (2.2) and (2.4) and the linear momentum-velocity relation can be given by
p = p(x)u. Multiplying equations (2.2) and (2.4) by e %X and using equations (2.48) to

replace for the field variables we get the following expressions

V(Z(x)eiq(x‘x)) + iwp(x)eiq(x—X) =0
(2.49)
V(U(x)eiq(x—X)) + in(x)eiq(x—X) -0

where V= ;—x + iq. Consider the change of variable y = x — X to obtain
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Vy(Z(X +y)e'?) + iwP(X + y)eld” =0
(2.50)
V,(UX +y)e) + iwE(X + y)ei® = 0

Average the above equations with respect to X over the unit cell to get

Vy()feiqy) +iwPel?Y =0
- 2.51)
Vy(Ueiqy) + iwEe'? =0

where any of the barred quantities are defined by
.1 (e
G = —f G(X)dX (2.52)

a —-a/2

Define the mean constitutive relations as

The averaged field quantities I, E, P, and U are used in equations (2.53) to calculate the
effective compliance, Dsr, and effective desnity, p.rr. Note that the overall field

variables defined by (2.52) satisfy the overall field equations as is ensured by equations

(2.51), from which we have

™M
+
ESHES
el
Il
=
(=g
+
ESHES
LT
Il
o

(2.54)

In order to have nontrivial solution for four linear and homogenous equations (2.53) and

(2.54) we must have

1 w\ 2
= (—) (2.55)
Derrperys q

which satisfies the dispersion relation.
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2.3.1.2. Micromechanical method

The effective elastodynamic properties of one-dimensional PCs can be calculated
through micromechanical modeling of a unit cell [40]. The solution to equation of motion
for a one-dimensional composite can be expressed as sum of the volume average and a

disturbance field due to the heterogeneities in the unit cell as
¢ =% + ¢ (2.56)

where ¢ represents any of the field variables, stress (), strain (£), momentum (p) or

velocity (11). For Bloch type waves the field variables can be written as

b (x,t) = Re[¢(x) exp[i(qx — wt)]] (2.57)

where ¢ represents the periodic parts of the field variables (o,&,p,u). The local

conservation and kinetic relations can be written in the following form

V.o =—iwp
(2.58)
Vil = —iwe
where V- V + iq. The local constitutive relations can be expressed as
e=D(x)o
(2.59)
p=pH)u

The heterogeneous unit cell is replaced by a homogenous one with uniform density p°
and compliance D°. Eigenstress, X (x), and eigenvelocity, U(x), are introduced such that
the pointwise values of the field variables are the same as the original heterogeneous

solid. Therefore, the consistency conditions can be expressed as
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e(x) = D(x)o(x) = D°(a(x) — Z(x))

(2.60)
p(x) = p()u(x) = p°(@(x) — U(x))
Averaging the consistency conditions (2.87) we obtain
() = D°[{0) — (2)]
(2.61)
(p) = p°[(@) — (U]
Using equations (2.58) and (2.60) we have
2
2 20 = v — vU
Véo +veo =v D0
(2.62)
. 2
V2 + v = vAU —- V2
iwp

where v? = w?p°DP. Since the field variables, ¢, are periodic they can be written in
p p Yy

terms of Fourier series

B0 = () + 9P = (@) + ) (e

&+0

1
# =5 pedx
@ (2.63)

$(@) == [, p)e #*dA
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where (¢) is the averaged value of the field variables over the unit cell and ¢P is the
local deviations from the average value. From equations (2.62) the Fourier coefficients

for stress and velocity fields are obtained

3 v? V(€ +9q) :
e () RN L L e DR
(2.64)
e v : V(£ +q)
B G A VL R D R
Therefore, the stress and velocity fields can be expressed as
. 1 .
W) = @+ ) el [A(E) 5| Tme ey
= 0
£ (2.65)
B(é)1 i _
+ 0 ﬁfn U)e fydyl
. 1 .
o) = (o) + ) el lA(E)E | zme ey
= 0
0 (2.66)
BO1( . -,
+ L) i U(y)e fydyl

To calculate (X) and (U) the unit cell is divided into @ subregions, Q,, and we average

the periodic parts over each subregion

(0P)g, = 0P% = > oPdx
alto,
(2.67)
1 , B(1 [ . .
= Zg“(f) [A(E)EL Z(y)e ¥¥dy + w(D(’?E ) U(y)e—ufydyl

&+0
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1
(uP)g, = uP*=—| uPdx
aJn,

1 .
= 9© |aorg [ s00eay

&+0

B 1

+
wp® N

f U(y)e-ffwy]
n

where g%(§) = Qifﬂ e®*dx. The integrals in equations (2.67) are replaced by their

equivalent finite sums as

1 .
a] Foeoy~ zﬁ:fﬁgﬁ(—f)Fﬁ

(2.68)
fP=0p/0, FFP=(F)y,
Equations (2.67) then yield
oP% = AaBZB - mBaﬁUﬁ
(2.69)
. ) 1
ubP® = AO!,BUB — a)_pOBaBZB
where the coefficient matrices are given by
Ay = ) g“©OfF g (—DAE)
&+0
(2.70)

Bap = ) g*“(©fF gP(-EBE

&+0
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Averaging the consistency conditions over each subregion and using equations (2.69) we

have

fa 0 1
fHo) = Iaﬁ'+—Da D06aﬁlzﬁ+ —5 BapUs
@.71)
“fay = f“

where /Taﬁ = f%Aup and EaﬁZf %Bgp- Equations (2.71) can be rewritten in matrix form

as

() = (@}(0) + o5 (¥))

(2.72)
: 1
{0} = 5{0}0) + (T}
where the coefficient matrices can be expressed as
1 T
(@} = [—[AD] +-31Bl[4,] [B]] 3
1 1 -1 - -1
(¥} =— [—[AD] + = [B1[4,] [B]] [B1[4,]" 1)
(2.73)

1

(0} = %[—[A,,] +=IB] [AD]-l[B]] [B1[4,]7(f)

{r} = [—[A,,] + viz [B] [AD]—l[B]l g

where
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faDO

[AD]O:B a,B 6a,8
(2.74)
f “p
[Ap]a 5= Aaﬁ+ 58up
The average consistency equations (2.61) can be expressed as
(e) = D(o) + S*(u)
(2.75)

(p) = S*(o) + p(i)
which are the final constitutive relations for the homogenized medium. The expression
for the effective parameters can be given by
D =-D°[1 - {f}{®}]
St=-{f}{¥}
(2.76)
§?=—{f}"{e}
p=p°[1—{f}{r}]
Now, consider an infinite homogenized elastic solid with layered microstructure, and
seek conditions under which it supports Bloch type waves of the form
(0)(x) = (o)e'®*
(@) (x) = (w)e'd™
(2.77)
(e)(x) = (e)e'®*

(p)(x) = (p)e'®*

The overall field equations then become
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d . .
—((0)ei) = —iwxp)ei®

(2.78)
d , . . ) ,
a((u)equ) = —jw(e)e'd*
which yield
q{o) = —w(p)
(2.79)
q(u) = —w(e)
These equations are combined with the constitutive equations (2.75) to get
K(qg,w)u=0 (2.80)

For nontrivial solutions to the above equation K(q, w) should be equal to zero which

produces the dispersion relation of the composite and it can be written as

(2)2 . 1+ v,5HA +v,5%)

EAS (2.81)
q Dp

where v, is the phase velocity.

2.3.2. Two-dimensional periodic composites

The effective elastodynamic properties of two-dimensional PCs can be calculated
through micromechanical modeling of a unit cell. The solution to the equations of motion
for a two-dimensional elastic composite can be expressed as the sum of the volume

average and a disturbation term due to heterogeneities in the unit cell as

¢ =¢°+¢? (2.82)
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where ¢ represents any of the field variables, stress (&), strain (£), momentum (P) or

velocity (it). For Bloch type waves the field variables can be written as

¢(x,t) = Re[p(x) expli(q.x — wt)]] (2.83)

where ¢ represents the periodic parts of the field variables (o, €, p, ). The local

conservation and kinetic relations can be written in the following form

V.o = —iwp
(2.84)
(Veu) = —iwe
sym
where V — V + iq. The local constitutive relations can be expressed as

e=D:o
(2.85)

p =pu

where D(x) is the compliance tensor and p(x) is the density. The heterogeneous unit cell
is replaced by a homogenous one with uniform density p® and compliance D°.
Eigenstrains, E(x), and eigenmomentums, P(X), are introduced such that the pointwise
values of the field variables are the same as the original heterogeneous solid. Therefore,

the consistency conditions can be expressed as
e=D:0=D%0c—E
(2.86)
p=pu=p°u—P

Using equations (2.85) and (2.86), equations (2.84) can be written as

v.co (v®u)sym + w?p°u = w?P + iw(V.C%E) (2.87)
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C:[Ve(V.0)] . +w?p’0 = w?p°C*:E +iwC’(VQP)_
Since the field variables, ¢, are periodic they can be written in terms of Fourier series

$() = (P + B7 = (P)+ ) p(E)eis (288)

§+0

(@) = <[, d(x)d4,

1 .
6 =5 | dwetaa (2:89)
2 0
nmoo. .
N =4a4a,, E=¢e, &= — = 1,2, n; integers

where (¢h) is the averaged value of the field variables over the unit cell and ¢? is the
local deviations from the average value. Using equation (2.88), equations (2.87) is written

as

{.C% ({®W)sym + w?p°ut = w?P + iw({.C°:E)

(2.90)
—C%: [{®(¢. G)]sym + w?p’0 = w?p°C%E — C‘)CO({®P)sym
where { = & + q. For the case of an isotropic reference material
Chi = 2061611 + 1o (881 + 818j1) (2.91)

where p, is the shear modulus and Aj is defined as uy(3 — kg)/(ko —1) in which
Ko = 3 —4v, for plane strain and k, = (3 —v,)/(1+v,) for plane stress. Using
equation (2.91), Fourier coefficients for components of displacement and stress tensor

can be written as
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u($) = ®(4).P($) + 0(9):E(5)
0(§) =¥(.P(§) + I'():E($)

(2.92)

where the coefficient tensors @, @, ¥, and I' are given in Appendix 2D. Using equations

(2.92) the stress and velocity fields can be expressed as

. 1 .
aw(x) = (it) + Z eié [<p(c).5 f P(y)e~#7dA,
)

£20

1 .
+o05 E(y)e-‘f-ydAy]
n

(2.93)
. 1 .
o(x) = () + ) el [a"(c).ﬁ | Poreeraa,
&0 2
1 .
+IQ):—= f E(y)e—lf-YdAyl
2,
The consistency equations can therefore be written as
£(x) = D(x): [(0) + o?] = D% [(0) + 6P] — E
(2.94)
p(x) = p(x)[(&) + UP] = p°[(@) + wP] — P
Equations (2.94) are averaged over a unit cell and written as
() = D% (o) — (E)
(2.95)

(p) = p°() — (P)
In order to calculate (E) and (P), the unit cell is divided into @ subregions, £,, and the

periodic part of the field variables are averaged over each subregion
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1
(aP)g, = 0P =— | oPdA,
aJn,

1 .
= Z 9% l‘l’(()-ﬁfn P(y)e %YdA,

&+0

1 )
o E(y)e-lf-ydAy]

0
(2.96)

1
@P),, = uP% = — | uPdA,
ato,

1 .
= g°® [¢(<’)-5 |, Preiivaa,

£20

1 ,
+o05 E(y)e-'f-ydAy]
n

where g’)‘(f)=ni ) 0 e¥*dA,. The integrals in equations (2.96) are replaced by their

equivalent finite sums as

1 .
5| Foreiaa, =Y fgh -
B (2.97)

fP=0,/0, FF=(F),

which is used to write equations (2.96) as
pa — 1 aff ppB aB. gB
o —f—a["’ PP + % EF|
(2.98)

ure = fia[(D“B.Pﬁ + 0% EF]

where the coefficient tensors in these equations are defined by
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M= .0 f4 9% () fF g (=HM(Q) (2.99)

Using equations (2.98) and averaging the consistency conditions over each subregion we

get
f*o) = —I'%F:EF — pab pF

fE(u) = —@* pp — @*F. EF

_ 2.100
ra'ﬁ — [I"a[)’ + 6aﬁfa(Da _ DO)—l: DO] ( )

0

p

D — 2
o = [prF + 1( )p“—po

6aﬁfa

Equations (2.98) can be averaged and inverted to write the averaged eigenfields in terms

of average velocity and stress tensors

(E) = A: (0) + A. (1)
(2.101)
(P) = Z: (o) + 2.(P)

where the expressions for matrices 4, 4, £, and £ are given in appendix B. The averaged
consistency conditions (2.95) can now be expressed as
(g) = D: (o) + SL.(u)

(2.102)
(p) = §%: (o) + p.(0)

where

D = D° — (4)
(2.103)
St =—(A)
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p=p°1-(Q)
where D and p are the overall effective compliance and density of the composite; and St

and §? are the coupling terms.

Consider an infinite homogenized elastic solid with periodic microstructure, and

seek conditions under which it supports Bloch waves of the following form
(0)(x) = (g)e'a™

(@) (x) = (ie'r*

(2.104)
(e)(x) = (g)e'r*
(p)(x) = (p)e'?™
The averaged field equations can be expressed as
q.{o) = —w(p)
(2.105)
q®(u) = —w(e)
These equations are combined with the constitutive equations (2.102) to get
K(q,w).(u)=0 (2.106)

For nontrivial solutions to the above equation, the determinant of matrix K should be set

equal to zero which produces the dispersion relation of the composite.
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Appendix 2A
For a one-dimensional PC the coefficient matrices Q, ®, and H in equation (2.13)

can be expressed as

~ sin(%b) sin(?)
p Ap Ap B —
Q=w?|Ap sin(%) p Ap Sin(%) (2.107)
s s
sin(?) sin(%b) B
Ap 21 Ap s P
H = diagé{Q —2nN,Q — 2n(N — 1), ...,0Q, ...,Q + 2nN} (2.108)

Matrix @ can be obtained by replacing w?p in the matrix & by D and w?Ap by AD,

respectively. Also the following notation is used
Ap=p,—p1, AD=D,—D

p =mnip; +ny0,, D=mnD; +n,D, (2.109)

_a-b _b
nm=—- =7

where p, p,, D;, and D, are the density and compliance of the first and second phase,

respectively.

Appendix 2B
For a two-dimensional PC, the coefficient matrices £, H, and ® in characteristic

equation (2.13) can be expressed as follows. Define
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L=>(@+1+M)+(B+M)(Q2M+ 1),
Lh=@+1+M)+(+M)(2M + 1), (2.110)
L=L+2M+1)2 ,=/1+02M+1)2
where a, 8,y,6 = 0,%1, ..., £ M. The matrix Q can be given as

2 -1 myJ;(R)

ifa #yand/orf # 6

Q] = d ny + 1,0 2R
1 ifa=y,F=6 (2.111)
Oy, J2) = Q4. J1), QU4 J2) = Q3 J1) =0
The matrix H = —HT can be expressed as
— _ . (Qi+2ny ifa=yandf =96
AL T = l{ 0 ifa=yorf+46
_ _ . [Qx+2mbny ifa=yandB =6 (2.112)
H(l2,J1) = l{ 0 ifa#tyorB+6

H(Iz'fz) = H(Ipfl): H(Is’]z) = H(12:]1)a H(Ilsz) = H(I3']1) =0

The matrix @ is defined as follows: ®(I;,/;) can be obtained from equation (2.111) if
one replaces (6 —1)/(; +71,0) by (Y1111 — 1)/(A; + A3¥1111) and omits vZ/d;
®(1,,],) can be found from equation (2.111) if one replaces (vZ/d)(0 — 1)/(7; + 71,0)
by 4(Y1212 — DRi212/ (M + N2¥1111); P4, J3) can be obtained from (I, /;) if one
replaces in the latter 4R;,1, and Y4212 by Rq122 and Y4125, respectively; for the other

components of matrix ® one has

(I3, J1) = P11, )3) (2.113)
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D(l5,/3) = @y, ]1) = P, J3) = ®(3,];) = 0.
where the following notation is used

2,25
, waip
v =

C1111

= _ (5 ) ~ —_ r = @) =
p=pPa;+p@a,,  Ciiqr = Ciip + Ci11q72
- — - T ble _ p(Z)
ny = 1 Ny, Ny, = 4 aiay = p@
b b 1
n2=—1,m2=—2,n0=ﬂ,d=f
a; a a C1111D1111 (2.114)
(2) 1)
__ “Jjkim __ “jklm
Vikim = 1 Rjklm NG
jklm D11

P=(a—y)2+[(ﬁ—6)%]2

= 1) - 2) —
Di111 = D1(1)11n1 + D1(1)11n2

where, the superscript ) over a quantity indicates the corresponding value for the
material number i (i=1, 2); with i=1 indicating the matrix and /=2 indicating the

inclusion.

Appendix 2C

For a three-dimensional PC, the coefficient matrices €, H, and & in characteristic

equation (2.13) can be expressed as
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H, H, H, 0 0 0
H=|0 #, 0 %, H; 0 (2.115)
0 0 H;, 0 H, H;
where H,;, H, and H; are (2M + 1)3 X (2M + 1)3 matrices defined as: fora = §,8 =

pand y = 7, and with Q; = q;a;,

Hi(y,];) = —i(Qq + 2ma), H,(I1,]1) = —i(Q; + 2mP)n,

(2.116)
Hs(1y,]1) = —i(Qs + 2my)m,
Fora #6,f #pandy #1
iy, J1) = Moy, J1) = H3(1y,)1) =0 (2.117)
where L=>@+1+M)+B+MCM+1)+GF+MQECM+1)? 6,u1t=
0,+1,%£2,...,,£M. Also, matrices Q and ® can be given by
Q 0 0
Q=0 Q 0 (2.118)
0 0 Q
and
Aq111 0 0 Aq122 0 Aq133]
0 471515 0 0 0 0
0 0 47,313 0 0 0
b = 2.119
Az O 0 Ay 0 Ay (-119)
0 0 0 0 4A,5,5 0
[Ay133 0 0 Ajz33 0 Aj333]

where Q and A; jr are (2M + 1)3 x (2M + 1) matrices defined in the following manner

for composites with ellipsoidal inclusions



1 if a=6,=puy=r;

Q] = (2)3/2 0 —1 nymylyJ3,,(R)
2/ ny;+n,0 R3/2

otherwise
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(2.120)

where J3/, is a Bessel function of the first kind of order 3/2 and its argument R is given

by

R = n[n,2(@ — 6)% + my? (B — w? + L2 (y - 07"

(2.121)

For I # J;, Ayji 1s obtained if one substitutes (¥;jx; — DR;jii/ (M + N20Y1111) for

(6 — 1)/(7, + 711,0) in the expression for Q(Iy, /;), and for I; = J; one has

(Mg + 120V k) Rijk
(Mg +120¥1111)

Ajjig =

The following notation is used in the above expressions

2. 2=
w~a;"p  _ _ _ = 1) —
v = C , p=pWn, +p@n,, Ci111 = C1(1)11n1 +C
1111
_ 1—7 _ 7hybybs P(Z) by
nn=1-n, n,=——, =—, n,=—, m,=
! 2 2 6a,a,;a; p® 2 ay 2
)
l—b3 n—al m—al y _Djklm
2 — 7 0o— 0o— _ jklm_T
a3 a2 a3 iklm
(€Y) 1
_ _Jkim _ D _ n@ = (2
Rjkim = —7y—» d = .. D yD1111 = Dy33,7 + Di7i, 10
Dii1q 1111Y1111
Appendix 2D

(2.122)

(2.123)

For a two-dimensional PC the coefficient tensors @, @, ¥, and I' in equation (2.92)

can be given in component form as



w? 012 — c? 1
(DP}' = p_o (0)2 2)((1)2 )51’(] Cgcz SPJ'
2¢2(c — cz) 02 — 2c2
Opij = 2 l(wz — c2{%)(w? — )cl(P{J 2(2 8:¢p
Cz
- 2c2(c? - c2) c2 — 2c¢?
qjijp = 2 l(wz — (? (2)(0)2 )lepzj c12{2 51'1'(19
Cz
Ljpq = ClimnSmniiChipg
1 1
Smnkl = F m (5nk€mcl + 6010mCk + milnli + 5mk(n(l)
ct — 2c?
2c2 (3¢ — 4c3) Omn S
2 —c2 1
+ ((1)2 _ Clzzz)(wz _ C%(z) Zm(k(n{l 2 (5mk6nl

+ 5m16nk)

where ¢; = /() + 2p0)/p° is the longitudinal wave velocity and c;,

shear wave velocity.
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(2.124)

= \/Uo/p° is the



Chapter 3

Experimental verification of band-gap in

periodic elastic composites

3.1. Introduction

Propagation of stress waves in PCs is prohibited within band-gaps, where
incoming stress waves get effectively reflected. This feature can be used to design
acoustic filters, noise insulators, and vibrationless environments. In this chapter, band-
gap in one- and two-dimensional PCs is investigated experimentally. Mixed variational
formulation is used to design samples with band-gaps at frequencies convenient to
conduct experiment. Samples are fabricated and their transmission coefficient is
measured. Experimental data are compared with theoretical results for verification of the
band structure. In addition, controlling the band structure of PCs by changing the ambient
temperature is studied. The essential idea is to fabricate a PC with constituent materials
which has temperature dependent material properties. As temperature is changed, such a
composite exhibits a band structure which changes with the change in temperature.

Ultrasound measurements are performed over a range of frequency at different

44
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temperatures. Experimental transmission spectrum at each temperature is compared with
the theoretical band structure for verification.

In the recent years, there have been many efforts for tuning the band structure of
PCs. Ruzzene and Baz [46] used shape memory alloys to make a one-dimensional PC
and showed that by changing the thermal activation of a shape memory alloy, the width
and location of the band-gaps can be modified. Goffaux and Vigneron [47] tuned the
band-gaps of a two-dimensional PC made of square rods by changing the geometry of the
system. They showed that by increasing the rotation angle of the square rods with respect
to the lattice orientation, band-gaps can be widened. Zou et al. [48] showed that band-
gaps of two-dimensional PCs consisting of rectangular piezoelectric ceramics placed in
epoxy matrix can be controlled with changing the filling fraction and the length to width
ratio of the rods. Wu et al. [49] used dielectric elastomer layers in a one-dimensional
periodic composite consisting of layers of aluminum and PMMA to make a tunable
acoustic filter. They showed that the band structure of the composite can be controlled by
changing the applied electric voltage on the dielectric layers. Zou et al. [50] showed that
in-plane band-gaps in two-dimensional PCs made of piezoelectric inclusions can be tuned
by controlling the propagation of out-of-plane elastic waves. They realized that the width
and starting frequency of band-gaps at high frequency range can be controlled by the

filling fraction and the composite’s piezoelectricity.

3.2. Ultrasonic setup
Figure 3-1(a, b) show a schematic drawing and a photograph of the ultrasonic

setup used in this study. A wave packet envelop made of 10 sine waves at the carrier
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frequency, f, multiplied by a half-period of another sinusoidal of 1/20 carrier frequency is

generated through the wave generator and is sent to the amplifier [51] (see Figure 3-1 (c))
u(0,t) = Asin(2uft)sin(2nft/20) where 0 < t < 10/f (3.1)

The amplified signal is sent through a contact piezoelectric transducer to the sample and
is received by a similar transducer on the other side. The transmitted signal is received
and stored by oscilloscope. Couplant is used between the transducers and the sample for
better transmission of the signal at the interfaces. The transducers used in this study and

their specifications are shown in Table 3-1.

Amplifier < Wave Generator
(Ritec GA-2500A) (Agilent 33220A)

Oscilloscope
(Tektronix DPO 3014)
[ ]
Y A

(c) v

(b)

Figure 3-1: (a) Schematic drawing and (b) photograpgh of the ultrasonic setup, and (c)
the shape of the incident wave packet
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Table 3-1: Transducers used in the ultrasonic measurements

Type Frequency (MHz) Diameter (inch)
Panametric V103 | Longitudinal 1.0 0.5
Panametric V153 Shear 1.0 0.5
NDT CHRFO18 | Longitudinal 1.0 1.0

In order to design a PC, the wave velocity and attenuation in each constituent
material is measured experimentally. Two tests are performed on two samples with
different thicknesses as shown in Figure 3-2(a). Assume the arrival time of the signals
transmitted through each sample is t; and t, with their amplitudes being A; and A,,
respectively, as shown in Figure 3-2(b). The longitudinal wave velocity, c¢;, and

attenuation coefficient per unit thickness, a, can be calculated as

- (3.2)

1 A, (3.3)

— TSI
— TS2

(a) b

Figure 3-2: (a) Two samples with different thicknesses between transducers and (b)
transmitted signals through the samples
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where At = t, — t; is the difference between the arrival time of the signals through the
samples with thickness d; and d,. It can be shown that for a homogenous linear
viscoelastic material the real and imaginary parts of the complex modulus can be

expressed as [52]

, _pci(1—1?)
T (1471?2)2 (34
B = 2pcir (3.5)
(147122

where the dimensionless parameter 7 is given by:

w (3.6)

3.3. One-dimensional steel/polyurea periodic composite
3.3.1. Sample

A one-dimensional PC made of periodic layers of steel and polyurea (PU) is
designed and fabricated. The thicknesses of the steel and polyurea layers are given by
tss = 1.15 mm and tpy = 1 mm, respectively. The properties of the constituent materials
are given by cg = 5130m/s, pg = 7820kg/m3, cpy = 1693 m/s, and ppy =
1100 kg/m3 for the wave velocity and density of steel and polyurea (at 20 °C),
respectively. A sample made of two unit cells of the steel/PU PC is fabricated. The
frequency of the incident wave is changed to sweep over a range of frequency and the

transmitted signal is measured. Figure 3-3 show a drawing of the steel/PU sample.
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St PU St

tst/z tPU tst/z

Figure 3-3: Unit cell of the one-dimensional steel/PU sample

3.3.2. Results

Figure 3-4 shows the theoretical band structure of the steel/PU sample at 20 °C. It
can be seen that the first two band-gaps of the composite occur at 251-811 kHz and 892-
1588 kHz, respectively. Figure 3-5 shows the normalized amplitude of the transmitted
longitudinal wave through the sample. Experimental results are normalized with respect
to amplitude of the transmitted wave in a transducer to transducer test. It can be seen that
the theoretical and experimental data are in good agreement. However, it is observed that
the pass bands are slightly wider than the theoretical calculations. For example the
theoretical second pass band occurs at 811-892 kHz, while the experimentally observed
second pass band occurs at 797-907 kHz. There are at least two possibilities for this
difference between the theoretical calculations and experimental results (i) material
properties of the constituents slightly change with frequency and (ii) the sample is in
cylindrical shape which results in dispersion while the one-dimensional calculations do

not take this into account.
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Figure 3-4: Theoretical dispersion curve for the one-dimensional steel/PU sample
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Figure 3-5: Normalized transmission through the one-dimensional steel/PU sample
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3.4. Two-dimensional brass/epoxy periodic composite
3.4.1. Sample

A two-dimensional PC made of periodic arrays of cylindrical brass rods
embedded in the epoxy matrix is designed and fabricated. The unit cell of the sample is
square with sides being ¢=1.5 mm long and diameter of the rods being d=0.8 mm (see
Figure 3-6(a)). The Young modulus, Poisson ratio, and density of epoxy and brass are
given by E., =5.1GPa,ve, = 0.35, pe, = 1090 kg/m3, Ep,, =110 GPa, vy, =
0.35, p,, = 8500 kg/m3, respectively. Figure 3-6(b) shows a photograph of 4 unit

cells of the sample.

@ ||

<

(a) a

(b)
Figure 3-6: (a) Unit cell of the two-dimensional brass/epoxy periodic composite and
(b) a photograph of the sample

3.4.2. Results

Figure 3-7 shows the theoretical band structure for the two-dimensional
brass/epoxy sample. Figure 3-8 and Figure 3-9 show the mode shapes for the first mode,
acoustic SV-mode, and the second mode, acoustic P-mode, at O=(1, 0), respectively.
Third and fourth modes are quasi-shear; while fifth and sixth modes are longitudinal and

quasi-longitudinal modes, respectively. It can be seen that there is a longitudinal band-
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gap at 442-763 kHz; while for the SV-waves, the first band-gap occurs at 242-434 kHz

and the second band-gap occurs at 535-761 kHz.
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Figure 3-8: Displacement mode shapes of the two-dimensional brass/epoxy PC for
acoustic SV-mode at Q=(1,0) (a) real(u,), (b) imag(u,)
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Figure 3-8: Displacement mode shapes of the two-dimensional brass/epoxy PC for
acoustic SV-mode at Q=(1,0), continued (c) real(u,), (d) imag(u,)
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Figure 3-9: Displacement mode shapes of the two-dimensional brass/epoxy PC for
acoustic P-mode at Q=(1,0) (a) real(u,), (d) imag(u,), (c) real(u,), and (d) imag(u,)

Normalized amplitude of the transmitted wave as a function of frequency is

shown in Figure 3-10(a) and Figure 3-11(a) for P-wave and SV-wave, respectively. The
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attenuation in the sample is also calculated and shown in Figure 3-10(b) and
Figure 3-11(b) for P-wave and SV-wave, respectively. It can be observed that there is a
longitudinal band-gap at 423-695 kHz which is in close agreement with theoretical
prediction. For the shear waves, the first and second band-gaps are observed at 222-347
kHz and 481-634 kHz, respectively. Although, the location of the first SV band-gap is in
good agreement with theoretical calculations, due to higher dissipation of shear waves in
the epoxy at high frequencies, the transmitted SV-wave is small above 600 kHz and it is
difficult to make any meaningful observation. Several local peaks are observed in
Figure 3-11 above 600 kHz which could probably be due to the mixed modes. Also, it
can be observed that for both longitudinal and shear waves the beginning of the band-
gaps are slightly shifted to lower frequencies. Although, the bandwidth of the P-wave
band-gap matches the theoretical calculations, for the SV-wave the experimental first
band-gap bandwidth is slightly less than the theoretical prediction. There are at least two
possibilities for this difference between the theoretical calculations and experimental
results (i) material properties of the constituents slightly change with frequency and (ii)
the sample is in cylindrical shape which results in dispersion in propagation of the waves

while theoretical calculations do not take this into account.
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Figure 3-10: (a) Normalized transmission and (b) attenuation of the P-wave through the

two-dimensional brass/epoxy sample
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Figure 3-11: (a) Normalized transmission and (b) attenuation of the SV-wave through the

two-dimensional brass/epoxy sample
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3.5. Temperature tuning of band structure of PCs

Controlling the band structure of PCs by changing the ambient temperature is
investigated experimentally. The essential idea is to fabricate a periodic composite with
constituent materials which have temperature dependent material properties. As
temperature is changed, such a composite exhibits a band structure which changes with
the change in temperature. A two-phase composite with periodic layers of polyurea and
steel is designed and fabricated. Measurements are performed over a range of frequency
at different temperatures. Experimental transmission spectrum at each temperature is

compared with the theoretical band structure for verification.

3.5.1. Test procedure and results

The sample designed for this study is a one-dimensional PC made of steel and
polyurea with dimensions and properties given in section 3.3.1. The longitudinal wave
velocity of polyurea changes with temperature which is measured experimentally. The
sample and transducers are placed in a temperature control chamber to keep their
temperature constant during the measurements. The transducers used here are CHRFO18
NDT Systems transducers with nominal diameter of 1 in and nominal center frequency
1.0 MHz. Figure 3-12 shows the longitudinal wave velocity and attenuation coefficient of
polyurea as a function of temperature at 1.0 MHz. The real and imaginary parts of the
modulus of polyurea are calculated and used to calculate the theoretical band structure of
the steel/PU sample at each temperature. In order to study the changes in the band
structure, the sample is tested at different temperatures from -20 °C to 60 °C with a step

size of 20 °C. At each step the system is left for 15 minutes to reach the state of thermal
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equilibrium. At each temperature, ultrasonic measurements are performed over the

frequency range from 0.15 to 2.2 MHz and the transmitted signal is recorded.
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Figure 3-12: Longitudinal wave velocity and attenuation coefficient per unit thickness of
polyurea as a function of temperature at 1.0 MHz

Figure 3-13 shows the normalized amplitude of the transmitted waves as a
function of frequency through two unit cells of the sample at different temperatures. In
the frequency range that measurements are done, the first three pass bands of the
composite are captured. It is observed that as the temperature is changed from -20 °C to
60 °C the band structure changes significantly. Figure 3-14 shows the comparison of
temperature dependent experimental and theoretical frequencies at the beginning of the
first pass band (£2*, f£™) as well as experimental and theoretical frequencies at the center
of the second and third pass bands (£5%, fi%, ££%, f*). It can be seen that the

experimental results match well with the theoretical calculations. Furthermore, it is
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observed that the value of the transmitted signal at higher pass bands is smaller compared
to lower pass bands, which is due to higher viscous dissipation at higher frequencies.
Also, the first three modes move to lower frequencies when the temperature is increased.
This is attributed to the reduction in the elastic stiffness of polyurea as the temperature is
increased. It can be seen that the difference between the theoretical and experimental
results is more significant at higher frequencies compared to lower frequencies. The main

reason for this difference is possibly due to higher dispersion at higher frequencies.
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Figure 3-13: Normalized amplitude of transmitted wave through 2 unit cells of the
PU/steel sample as a function of frequency at different temperatures
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3.6. Summary

Band-gap in one- and two-dimensional periodic elastic composites is investigated
experimentally. Mixed variational formulation is used to design samples with band-gaps
at frequencies convenient to conduct experiment. A one-dimensional PC made of layers
of polyurea and steel is fabricated and longitudinal ultrasound measurements are
performed. The transmission coefficient is measured and the results are compared with
theoretical band structure. Furthermore, a two-dimensional PC made of epoxy matrix
with brass rod inclusions is fabricated and longitudinal and shear ultrasound test are
performed. The transmission coefficients are measured and the results are compared with

theoretical band structure and good agreement is observed.
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Furthermore, controlling the band structure of PCs by changing the ambient
temperature is studied. Ultrasonic measurements are performed at different temperatures
on a sample made of periodic layers of steel and polyurea. Temperature dependent elastic
properties of polyurea are measured experimentally and used to calculate the band
structure of the steel/PU sample. It is observed that the calculated band structures are in
good agreement with the experimental results at different temperatures. This shows
tunable acoustic filters can be designed at a target frequency with a desired bandwidth
through reverse engineering once the corresponding properties are identified using here

proposed experimental tool.



Chapter 4

Design and experimental evaluation of PCs
with minimal reflection and maximal

attenuation

4.1. Introduction

Stress waves can be manipulated through microstructural design of PCs to
achieve a desired elastodynamic response. In this chapter, dynamic homogenization is
used to design the microstructure of a one-dimensional PC to match its acoustic
impedance with impedance of a homogenous medium. As a result, the reflection of stress
waves at the interface of the two impedance matched media becomes zero. For
experimental verification, samples are fabricated and ultrasound tests are performed to
measure the reflection coefficient. Theoretical reflection coefficient is compared with the
experimental values for evaluation of the theoretical calculations. In addition, a one-
dimensional metamaterial is designed in order to make a composite with both high

stiffness-to-density ratio and high attenuation coefficient. Samples are fabricated and
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attenuation coefficients are measured at different frequencies. The experimental
attenuation coefficient is compared with theoretical values for verification.

Acoustic impedance matching in ultrasonic transducers has been of great interest
due to the importance of efficient power transmission from the transducer to sample [53,
54]. When the acoustic impedance of two adjacent media is matched, the reflection of
incoming acoustic waves at their interface becomes zero. Different techniques have been
used to design materials for acoustic impedance matching [53, 54, 55, 56]. Quarter
wavelength transformer has been conventionally used to design ultrasonic transducers for
better energy transmission to the sample [53]. In this method a matching layer with
thickness equal to Y4 of its wavelength at the frequency of interest is designed to be
placed between the piezoelectric element and the test sample. Tapered impedance
matching [55, 56] was later developed for increasing acoustic energy transmission. In this
method a composite is made from many closely packed microrods with smooth
continuous transition of effective impedance which increases the energy transfer from the
transducer and a test sample. A microstructured porous aluminum [57] was also
developed for matching the acoustic impedance between the transducer active element
and the test sample. Using this technique the microstructure of porous aluminum can be
designed with varying the porosity of the layer to control its acoustic impedance.

Acoustic metamaterials are highly attenuative near the resonance frequency. This
feature can be used to make materials with tunable attenuation coefficient. Liu et al [1]
designed a three-dimensional sonic metamaterial and showed that near the resonance
frequencies the metamaterial behaves like a medium with effective negative stiffness.

Their experimental results show that at the resonance frequencies the transmission
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coefficient is very small due to attenuation induced by local resonance. Ho et al. [27]
used several locally resonant materials with different resonance frequencies and showed
that each layer vibrates like an independent unit. Their results show significant drop in
transmission coefficient at resonance frequencies. Cheng et al. [28] designed a one-
dimensional ultrasonic metamaterial with both effective density and effective bulk
modulus simultaneously negative. They found the transmission coefficient using acoustic
transmission line method (ATLM), finite element method, and experimental
measurement and observed a substantial drop in transmission spectrum around the
resonance frequency.

Elastic/acoustic noise is undesirable in many applications and isolating
mechanical systems from external noise is generally necessary for their robust
performance. But, an inherent limitation in properties of existing engineering materials is
that increase in the attenuation coefficient usually appears at the expense of decrease in
their stiffness. For example, polymers have high attenuation coefficient while they have
low stiffness; whereas, metals have high stiffness but low attenuation coefficient.
Furthermore, at low frequencies (i.e. a few tens of kHz), the wavelength in materials can
become very large and large structures are needed for stress wave attenuation. Therefore,
design and development of stiff materials with high attenuation coefficient at low

frequencies is an engineering challenge.

4.2. Acoustic impedance matching
Dynamic homogenization is used to design a one-dimensional PC which is

impedance matched with aluminum at 300 kHz. To verify the calculations, five unit cells
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of the composite sandwiched by two homogenous aluminum half-spaces are considered.
Transfer matrix method is used to calculate the exact solution for the reflection
coefficient. FE modeling and ultrasonic measurement are performed to find the reflection

coefficient for verification.

4.2.1. Sample and test setup

The sample designed for this study is a one-dimensional composite made of
periodic layers of steel and PMMA. The thickness of steel and PMMA layers are given
by tg = 0.6 mm and tppypya = 0.2 mm, respectively. The longitudinal wave speed and
density of steel, PMMA, and aluminum are given by c¢g =5130m/s, pg =
7820 kg/m3, cpyma = 2560 m/s, ppyma = 1180 kg/m3, c, = 5100m/s, and
pa = 2700 kg/m3, respectively. Figure 4-1 shows the test fixture designed for this
experiment together with the sample and the transducers. The fixture is designed to apply
a precompression using a spring-nut system at the end of the fixture. Incident wave is
sent through a piezoelectric transducer to the incident bar and is received by a similar
transducer on the other end of the transmission bar. A piezoelectric sensor is attached to
the surface of the incident aluminum bar in the middle to measure the incident and

reflected waves.



66

Transducer Piezo Patch Designed composite Receiver

Figure 4-1: Test setup and the steel/PMMA sample sandwiched by two aluminum bars

4.2.2. Finite element simulation

Commercial FEM code, LS-DYNA, is used to perform three-dimensional finite
element simulation of five unit cells of the steel/PMMA composite sandwiched by two
aluminum bars. The geometry of the aluminum bars and the composite are same as
described in the previous section. The boundary condition imposed on the left end of the
incident bar is a prescribed displacement in the form of a wave packet with 10 sine waves
at 300 kHz. The lateral sides and the right end of the transmission aluminum bar are
traction free. The interfaces between each two adjacent layers are modeled as frictionless
tied automatic contact interfaces. Linear elastic material model and standard 8-node solid
brick elements are used. The mesh size is reduced until a mesh-independent solution is
achieved. The time step is calculated by the smallest mesh size in the model to guarantee

numerical stability.
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4.2.3. Results

Figure 4-2 shows the theoretical band structure of the steel/ PMMA composite.
Figure 4-3 (a, b) show the effective compliance, effective density, and effective acoustic
impedance of the composite over the first pass band. It can be seen that effective
impedance of the composite is equal to impedance of aluminum (Z4; = 13.7 MRayls) at
300 kHz. Due to the matched impedance of the composite and aluminum at 300 kHz, the

reflection at their interface becomes zero.
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Figure 4-2: Theoretical band structure of the steel PMMA sample
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Figure 4-3: (a) Effective density and compliance and (b) effective acoustic impedance of
the steel/PMMA sample over the first mode

Figure 4-4 shows the variation of the total energy in the aluminum bars at 300
kHz as a function of time obtained from the finite element simulation. The energy in the
incident bar increases due to the work done by the external applied force at the left
boundary, until it reaches a maximum value. The wave packet then travels inside the

incident bar while its total energy remains constant. Then, it reaches the composite and
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most of it gets transmitted to the transmission bar; while only 4.2% of its energy gets
reflected. Although, transfer matrix calculation predicts zero reflection at 300 kHz, three-
dimensional FE analysis gives slightly different results. This is mainly because the
calculated effective impedance and reflection coefficient are based on one-dimensional
assumption, while finite element analysis is a three-dimensional modeling of the system
including the effect of dispersion.

Figure 4-5 shows the experimental reflection coefficient over 200-400 kHz which
is compared to transfer matrix calculation. Although, the experimental reflection
coefficient is small, the results are slightly different than the theoretical calculations. One
of the main reasons for this difference is due to one-dimensional assumption in
calculating the effective impedance and also the reflection coefficient through the transfer
matrix method. Therefore, there are at least three possibilities for this difference (i) the
sample is in cylindrical shape which results in dispersion, (ii) properties of the material
constituents change with frequency, and (iii) the bonding at the interface of the layers and

also at the interface of the piezoelectric sensor and the incident bar may not be perfect.
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4.3. Metamaterial design for stress wave attenuation

A metamaterial is designed that attenuates stress waves effectively at low
frequency range while it maintains high stiffness-to-density ratio. The essential idea is to
design a one-dimensional metamaterial which has local resonance over its second mode,
and also has a wide second band-gap. Dynamic homogenization is used to design a one-
dimensional metamaterial and to calculate its effective elastodynamic properties. Transfer
matrix method is used to calculate the attenuation coefficient of the composite. Samples
are fabricated and their attenuation is measured experimentally and the data are compared

with the theoretical results.

4.3.1. Sample geometry and composition

The sample designed for this study is a three-phase, one-dimensional composite
which is made of periodic layers of carbon fiber reinforced polymer (CFRP), polyester
foam, and steel. Figure 4-6 (a, b) show a schematic drawing and a photograph of one unit
cell of the sample. The size of each layer is given by t; = 7.0 mm, t, = 3.2 mm, and
t; = 0.5 mm for thickness of CFRP, foam, and steel, respectively. The through-thickness
longitudinal wave speed and density of CFRP, polyester foam, and steel are given by
ccrrp = 1980m/s,  pcrrp = 1530 kg/m3, ¢, =230m/s, p,r =360 kg/m>,

cse = 5130 m/s, and pg; = 7820 kg/m3, respectively.
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Figure 4-6: (a) Unit cell and (b) a photograph of the CFS metamaterial sample

4.3.2. Theoretical calculation

Figure 4-7 (a) shows the theoretical band structure for the CFRP/foam/steel (CFS)
sample. In this figure the imaginary part of the normalized wave number represents the
attenuation in the composite. It can be seen that the imaginary part of the wave number is
small over 0 to 3.9 kHz; and therefore the wave propagates through the composite with
small attenuation. However, from 3.9 to 20 kHz the imaginary part of the wave number is
large and the wave attenuation in the composite is significant. Figure 4-7 (b, c) show the
effective density and compliance of the composite over the first two pass bands. It can be
seen that there is a discontinuity in the value of the effective density at 9.1 kHz which is
due to presence of local resonance. This band structure is induced by the presence of the
heavy central steel layer which is sandwiched between two soft foam layers and
embedded in a CFRP matrix. With this microstructure it was possible to: (i) move the end
of the first pass band to sonic frequency range, (ii) widen the second stop band, and (iii)

create a local resonance over the second pass band.



73

T T T
| | |
” ” ”
| | |
N | | |
. ” ”
N ” |
LY | I
\\\\\\\ L\I\I\\\\L\\\\\\L\\\\\\\
SN ”
| T | |
| \ | |
| v |
s N
= \ |
2| \ |
S| — LS SR .
= ‘B! Y I
5 g LY .
& B Y VA
LN I 1 A
_ 1| Jv Y
ll , Y
, ” L e
e} v (e v
(@\] — —
(zHY) Kouanbaryg

O=kd

(2)

(53
(=]
P T T T T (=
s | | | | [\l
| | | |
| | | |
p ” ” | S—— |
| | | )
| | | | [
R [ R (=3
| | | | m
| | | |
| | | |
| | | |
| | | |
” ” ” ”
ISR S IS N S P
” ” ” ”
| | | |
” ” ” ”
| | | |
I I I I o
| | | | S
Y [ (=)
| | | | .I_.
| | | |
| | | |
” ” ” ”
| | | |
| | | | (==
| | | | (=
=) 1) © < N o]
(zHY) Aouanbaiyg

Py (ke/m’)

(b)

(zHY) Kouanbaig

-1
Deff (GPa™)

(c)
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one-dimensional CFS metamaterial sample



74

4.3.3. Experimental results

Figure 4-8 shows the normalized transmission through 2 unit cells of the CFS
sample. The experimental data are normalized with respect to transmitted amplitude in a
transducer-to-transducer test. To show that the high attenuation coefficient in the sample
is in fact due to the metamaterial response, the results for three different reference
samples are also presented: (i) CF: the sample is made by removing the steel layer from
the CFS sample, (ii) CS: the sample is made by removing the foam layers from the CFS
sample, and (iii) C: the sample is made of CFRP with the same thickness as the CFS
sample. It can be seen that the transmission through the CFS sample is significantly lower
than C and CS samples over the entire frequency range. While up to 16 kHz the
transmission in CFS and CF samples are close, above 16 kHz the transmission through
CFS sample is significantly lower. Figure 4-9 shows the experimental attenuation per unit
length in the CFS sample as a function of frequency. Theoretical attenuation is also
shown in this figure for comparison. It is seen that the experimental results are in good
agreement with the theoretical calculations. Also, it can be observed that above 4 kHz the
attenuation per unit length is more than 500 dB/m and increases with increasing
frequency. The difference between the theoretical and experimental data in Figure 4-9
stems mainly from the frequency dependence of the properties of the foam and the
polymer components of the composite, and perhaps more significantly, from the sample
geometry, i.e., the dispersion due to the cylindrical shape of the sample.

Figure 4-10 shows a dynamic Ashby chart, depicting attenuation coefficient vs.
in-plane stiffness-to-density ratio, for various engineering materials, as well as that from

the metamaterial design. Overall static in-plane stiffness-to-density ratio of the CFS
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sample is calculated using the volume averages. In this figure it can be seen that polymers
have high attenuation coefficient but small stiffness-to-density ratio, while metals have
high stiffness-to-density ratio with small attenuation coefficient, whereas our
metamaterial maintains both a large attenuation coefficient and also a large in-plane
stiffness-to-density ratio. This kind of behavior cannot be achieved through any natural
material at sonic frequency range which demonstrates the significance of the current

metamaterial design.
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4.4. Summary

Dynamic homogenization is used to design a one-dimensional PC which is
impedance matched with aluminum at 300 kHz. To verify the theoretical calculation, the
reflection from five unit cells of the composite sandwiched by two homogenous
aluminum half-spaces is studied. Transfer matrix method and finite element method are
used to find the reflection coefficient theoretically. Samples are fabricated and ultrasonic
tests are performed to measure the reflection coefficient experimentally. Experimental
results are compared with theoretical calculations and reasonable agreement is observed.
This approach can be used to design a layered composite with desired acoustic
impedance serving as the matching layer in ultrasound transducers for efficient power
transmission to test sample. In addition, a metamaterial is designed that attenuates stress
waves effectively with a minimal thickness at low frequency range; while it maintains
high stiffness-to-density ratio. Experimental measurements show that the attenuation per

unit length in the metamaterial is in good agreement with theoretical calculations.
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Chapter 5

Experimental verification for design

optimization of PCs

5.1. Introduction

When the microstructure of a periodic composite is known, its elastodynamic
response can be directly calculated. However, finding the microstructure of a composite
for a desired elastodynamic response is an inverse problem, which requires using
optimization methods. In this chapter, optimization techniques are used together with
mixed variational formulation and dynamic homogenization to make a computational
platform for microstructural design of PCs. Constrained optimization problems are
considered and a genetic algorithm is used to find the optimal design. Design
optimization of one-, two-, and three-dimensional PCs with maximum band-gap
bandwidth is first studied as an example. For evaluation of the computational platform,
optimal design of PCs for shock wave mitigation is studied. The microstructure of a one-
dimensional PC is designed which maximizes the band-gaps bandwidth in the frequency

range of interest. To verify the theoretical calculation, a sample is fabricated and
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Hopkinson bar experiments are performed. In addition, optimal design of one-
dimensional PCs for minimum reflection and maximum attenuation is studied. Samples
are fabricated and ultrasound measurements are performed for experimental verification.

In the recent years, there has been growing interest in using optimization
techniques for microstructural design of PCs. Hussein et al. [58] used a genetic algorithm
for design of one-dimensional PCs for an optimal frequency band structure. They
illustrated examples which optimized the performance of layered PCs for acoustic
filtering. Meng et al. [59] performed optimization to enhance the underwater sound
absorption of an acoustic metamaterial slab. They illustrated the feasibility of combining
several layers with different resonance frequencies to achieve a broadband underwater
sound absorber. Wang et al. [60] studied the design of one-dimensional metamaterials to
maximize the frequency range where a metamaterials exhibits negative effective
elastodynamic properties. They used a genetic algorithm for optimization and illustrated
that such an approach provides satisfactory results.

In the last few decades, there has been some interest to develop different
techniques for sonar stealth; where an underwater object becomes invisible to sonar
waves. The idea behind the passive sonar stealth is to cover the underwater object with a
coating that absorbs most of incoming sonar waves. Therefore, the reflected waves off
the surface of the object become small and it becomes difficult to detect the object. One
of the most popular materials which has been used for this purpose is a synthetic rubber
with specially designed micro voids. The issue with using this material is that the micro
voids collapse in deep water due to high pressure. Here, designing a coating from PCs for

sonar stealth of underwater objects is investigated. The idea is to design a PC which is
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impedance matched with water to minimize the reflection at the interface of the
surrounding water and the coating. The microstructure of the PC is then designed so that
it has a high attenuation coefficient. Therefore most the waves transmitted to the PC
coating are dissipated. Due to difficulties to perform underwater tests, aluminum is
chosen here as the surrounding medium and experiments are performed to present as a
proof of concept.

There have been several efforts to investigate the behavior of layered materials
under shock loading. Zhuang et al. [61] investigated finite amplitude shock propagation
in one-dimensional PCs experimentally. They observed that the shock speed in the
composite is lower than the shock speed in its constituent materials. Chen and Chandra
[62] considered the effect of heterogeneity in one-dimensional composites under impact
loading. They studied the effect of impedance mismatch, thickness ratio, and interface
density on the response of one-dimensional composites under impact loading. Luo et al.
[63] studied stress wave propagation in two and three layer structures under an impulsive
load. They showed that when an incident pulse passes through a one-dimensional
structure, a reduced stress amplitude and elongated pulse duration can be obtained
through the proper selection of materials and dimensions. Schimizze et al. [64] studied
blast-induced shock wave mitigation in sandwich structures. They observed that the
density and acoustic impedance mismatch are of primary importance in shock wave

mitigation in sandwich structures.
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5.2. Optimization

Consider an optimization problem of the form

Minimize f(x)
Subjectto g;(x) =0 (i=1..m) (5.1)
hi(x) >0 (j=1..n)
where f(x) is the objective function, g;(x) = 0 are equality constraints, and h;(x) > 0
are inequality constraints. This constrained optimization problem can be reduced to the

following unconstrained one using the quadratic penalty method and log barrier method

[65]

Minimize Fy, 5, (x) = f(x) + 4, 2121 9:(x)* — A, X7 log(h;(x))
(5.2)
(i=1..m, j=1..n)
where F; ;.is the new objective function, and A; and A, are constant coefficient

parameters. It can be shown that the global minimum of F;_ ; is the solution of (5.1) as

A4 goes to infinity and A, goes to zero [65].

5.3. Genetic algorithm

Any global optimization method can be used to find the optimal solution of
equation (5.2). Here genetic algorithm (GA) [66] is adopted which is a global
optimization method and has been used successfully in several engineering problems.
The GA begins by defining M arrays of N random variables within the design space. The
value of objective function (cost) for each array is calculated and they are sorted from the

lowest to highest cost. From the M designs, only the top Myeep, are kept for mating and
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the rest are discarded. Two designs (parent) out of the top Myeep designs are chosen
based on a certain probability to mate, where the probability assigned to each design is
inversely proportional to its cost (selection). Once the parents are chosen, their variables
are swapped randomly to generate M — Mycop, new designs (crossover). Then, My,
designs are chosen randomly and replaced with new random designs (mutation). The cost
functions for the new designs are calculated and the process is repeated until convergence
is achieved. Figure 5-1 shows a flow chart of the genetic algorithm used here. To increase
the speed of calculations, computations are performed in parallel on different CPUs.
GPUs are also used in matrix calculations when the dimensions of the matrices are large

(typically above 2000x2000) to decrease the calculation time.

Define cost function, variables,
design space, and GA parameters

y

| Generate initial population |

—)| Find cost for each chromosome |

Select mates

_| Convergence check |

done

Figure 5-1: Flowchart of a genetic algorithm
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5.4. Optimal design of elastic filters

As an example, GA is used to design the microstructure PCs with maximum
band-gap bandwidth. One-, two-, and three-dimensional PCs with epoxy matrix and steel
inclusions are considered. Figure 5-2 shows a unit cell of one-dimensional, two-
dimensional, and three-dimensional PCs. For two- and three-dimensional PCs the
inclusions are assumed to be in elliptical and ellipsoidal shapes, respectively. The Young
modulus, Poisson ratio, and density of epoxy and steel are given by E,,, = 5 GPa, vep, =
0.35, pep = 1200 kg/m>, Eg = 200GPa, vs =03, and ps = 8000 kg/m>,
respectively. The central frequency for the maximum band-gap is set to be 500 kHz
which is applied as an equality constraint. The dimensions for the optimal one-
dimensional design are given by de, = 1.26 mm and dg = 0.98 mm for thickness of
epoxy and steel, respectively. For the two-dimensional PCs, the dimensions of the
optimal design are given by a; = 2.21 mm, a, = 1.88 mm, b; = 1.83 mm, and
b, = 1.51 mm for the sides of epoxy and axes of steel inclusion, respectively. For three-
dimensional case, the dimensions of the optimal design are given by a; = 2.10 mm,
a, = 2.02mm, a; = 2.61 mm, b; = 1.82 mm, b, = 1.81 mm, and b; = 2.46 mm for
sides of epoxy and axes of steel inclusion, respectively. Figure 5-3 shows the optimal
band structure for all three cases, where their corresponding normalized bandwidth, band-
gap bandwidth over central frequency ratio, Af/f,, is 1.14, 0.62, and 0.43. It can be
observed that by increasing the dimensions of the problem, from one- to three-
dimensional, achieving higher bandwidth becomes more difficult due to the appearance

of new modes at higher dimensions.
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Figure 5-3: Band structure of (b) tow-dimensional and (c) three-dimensional PCs with
maximum band-gap bandwidth (matrix: epoxy and inclusion: steel), continued

5.5. Optimal design of PCs for shock mitigation
Optimal design of PCs for shock wave mitigation is investigated experimentally.
The frequency spectrum of a shock with a sharp rise-time is calculated, and the frequency

range that carries the majority of the shock energy is identified as the target frequency
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range. A genetic algorithm is used to design the microstructure of a one-dimensional PC
for maximum band-gap bandwidth. A constraint is introduced into the optimization
problem to limit the total thickness of the composite. To verify the theoretical calculation,

samples are fabricated and Hopkinson bar experiments are performed.

5.5.1. Design optimization

The objective is to determine the microstructure of a one-dimensional PC which
maximizes the band-gaps over a target frequency range, f; to f,. The band-gap ratio
(BR) is defined as the ratio of sum of the band-gaps frequency ranges divided by the total

frequency range

® )]
p = 20— A9 53)

fi—H

where fl(i) and fz(i) are the frequencies where the i-th band-gap begins and ends,
respectively. A constraint is introduced to limit the total unit cell size of the composite to
be equal to a prescribed value, D. The objective function is defined as inverse of the

band-gap ratio and the optimization problem is expressed as

A
inimize Tf@))
X, - (5.4)
Subject to Z ,dD =D
In order to find the solution of (5.4) we define
2
F(d) = f(l) &l Z dU) — (5.5)
X, A )

where F) is the new objective function and A is a positive coefficient.
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5.5.2. Hopkinson bar setup

Figure 5-4 and Figure 5-5 show a schematic representation and a photograph of
the Hopkinson bar setup used in this study, respectively. A mini gas chamber is designed
and fabricated for this experiment to better control the speed of the projectile in order to
keep the stresses in the sample within elastic limit. The striker bar hits end A of the
incident bar at a given velocity which produces a compressive pulse traveling along the
incident bar. The sample is sandwiched between end B of the incident bar and end C of
the transmission bar. When the pulse reaches the sample, a portion of the pulse is
transmitted to the transmission bar, and a portion of it is reflected back into the incident
bar. Strain gauges, S1 and S2, measure the strain, £(t), in the middle of the incident and
transmission bars as a function of time. The incident, transmission, and striker bars are all
made of steel with common diameter of 1.27 cm. The length of both the incident and
transmission bars are 1.22 m, and the length of the striker bar is 10.16 cm. The particle

velocity, V' (t), and axial stress, o(t), in the bars can be calculated as [67]

V(t) = cye(t)

a(t) = pcoV (¢)

(5.6)

where ¢, and p are the wave speed and the density of the bars, respectively. The total

energy carried by a pulse can be calculated as
E=e, [, V(t)dr (5.7)

where e is a constant coefficient.
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Figure 5-4: Schematic of the Hopkinson bar setup

Figure 5-5: A photograph of the Hopkinson bar setup

5.5.3. Results

The incident bar is hit by the striker bar and the incident pulse is measured by
strain gauge S1. Fast Fourier transform (FFT) of the incident pulse is calculated and it is
observed that the majority of the pulse energy is carried by the pulse components with
frequencies within 0 to 100 kHz; which is chosen as the target frequency range. The
design space is chosen to be 0.1 cm < dY) < 1 cm for the thickness of each layer. The
total unit cell size, D, is chosen to be 2 cm. Here two-phase PCs with periodic layers of
polycarbonate and steel are considered and the number of layers in the unit cell, N, can
vary (see Figure 5-6). Without loss of generality, it is assumed that the first layer in the

unit cell is made of polycarbonate. The material properties of each phase are given by
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cse = 5064m/s, pg = 7810 kg/m3, c,. = 2236m/s, and p,. = 1193 kg/m> for
the wave speed and density of steel and polycarbonate, respectively.

Table 5-1 shows the optimal design and band-gap ratio for different values of N.
It can be seen that N = 3 yields the largest band-gap ratio and therefore is chosen as the
optimal design. It is understood that in this problem increasing the number of layers does
not necessarily produce wider band-gaps. Figure 5-7 (a) shows the corresponding band
structure for the optimal design. It can be seen that there is a wide band-gap from 28 to
104 kHz. Figure 5-7(b) shows the transmission and reflection spectra of five unit cells of
the composite sandwiched by two half-space steel bars. It can be seen that components of
the pulse with frequency content over the band-gaps are completely reflected. Also, a
significant portion of the wave energy with frequencies over the pass bands is reflected. It
should be noted that part of the reflection is due to the impedance mismatch between the

incident bar and the sample.

Table 5-1: Optimal design for shock wave mitigation (polycarbonate/steel)

N d9 (j = 1..N) (mm) BR%
2 14.6,5.4 59.5
3 4.0,9.6, 6.4 73.2
4 1.1,3.9,8.7,6.3 61.5

5 22,73,42,1.1,5.2 62.1
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Figure 5-6: Unit cell of a two-phase, one-dimensional polycarbonate/steel PC
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Figure 5-7: (a) Band structure of the polycarbonate/steel sample and (b) reflection and
transmission spectra of the sample sandwiched by two steel half-spaces
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Figure 5-8 (a) shows the experimentally measured transmitted and incident pulses
(pulses are shifted in time for comparison purposes). It can be seen that the rise time of
transmitted pulse is 77, = 62.5 us, which is 4.3 times larger than the incident pulse rise
time. Also, the maximum stress of the transmitted pulse is o7, = 37.1 MPa, which is 3.4
times less than that of the incident pulse. Figure 5-8 (b) shows the FFT of the incident
and transmitted pulses. It can be seen that the components of the incident pulse with
frequencies above 28 kHz, which are within the band-gaps of the composite, are not
transmitted. Furthermore, using the arrival time of the transmitted pule, the wave speed in
the sample is measured to be 1538 m/s which is 45.4% less than the wave speed in
polycarbonate. The energy of the incident and transmitted pulses is calculated and it is
observed that only 9.7% of the incident pulse energy gets transmitted. The increase in the
rise time and the decrease in the maximum stress of the transmitted pulse compared to
those of the incident pulse are mainly due to: (i) a significant portion of the incident pulse
getting reflected over the stopbands, (ii) components of the pulse within the pass bands
being dispersed due to multiple reflections occurring within the composite, (iii) viscous
dissipation in polycarbonate, and (iv) reflections at the interface of the steel bars and the
composite due to impedance mismatch. It is important to note that the first two
attenuation mechanisms are absent in homogenous materials, which leads to higher
attenuation in the sample. The in-plane quasi-static stiffness of the composite is
calculated to be 99.1 GPa. This shows the significance of this design leading to both high
in-plane stiffness and high attenuation simultaneously; which are essential for shock

wave mitigation.
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Figure 5-8: (a) Experimentally measured incident and transmitted pulses of the
steel/polycarboate sample in Hopkinson bar test and (b) FFT of the incident and
transmitted pulses

5.6. Microstructural design for minimum reflection and maximum attenuation

Consider a finite slab of a one-dimensional PC, sandwiched by two homogenous
half-spaces as shown in Figure 5-9. The objective is to design the microstructure of the

PC to minimize the reflected waves energy and maximize the attenuation in the
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composite. The target frequency range is chosen to be from 0 to f,. The objective
function is defined as the inverse of the attenuation in the composite. In order to
minimize the reflection over the target frequency range, the composite is impedance
matched with the half-spaces over its first mode. To achieve this (i) the end of target
frequency, f,, should be within the first pass band and (ii) the effective impedance of

composite, Z,r, should not deviate from the impedance of the half-spaces, Z,, within a

certain acceptable percentage, p. These two conditions are formulated as inequality
constraints: (1) hy(x) =f; —fo >0 and (i) hy(x) =pZy—|Zess — Zo| > O,
respectively. See Figure 5-10(a, b) for graphical description of these constrains. The
optimization problem can therefore be expressed as
Minimize f(x) =1/D
Subjectto hy(x) =fi—fo >0 (5.8)

h,(x) = pZy — |Zeff —Zy| >0

where D is dissipation in the composite at f;,. This constrained optimization problem can

be reduced to the following unconstrained one

Minimize F(x) = 1/D — A(log(fy — fo) + 1og(pZo — |Zesr — Zo))) (5.9)
MO %x Mm+1
0 1
AP A
Incident medium Transmission medium E—
A©

Figure 5-9: A one-dimensional PC sandwiched by two homogenous half-spaces
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Figure 5-10: Graphical description of the constraints for impedance matching (a) band
structure and (b) effective impedance over the first pass band

5.6.1. Sample

Here, three-phase, one-dimensional PCs are considered and the thicknesses of
each phase are the design parameters. The target frequency is chosen to be f, =50 kHz,
constant coefficient p to be %S5, and the half-spaces are made of aluminum. The
constituent materials of the three-phase composite are chosen to be brass, polycarbonate,
and steel for the first, second, and third phases, respectively. Figure 5-11 shows a
schematic photograph of the unit cell where t;, t,, and t; are the thicknesses of brass,
polycarbonate, and steel, respectively. The design space is chosen to be 0.1 mm < t; <
5 mm for thickness of each phase. The material properties for each phase are given by
c; = 4021 m/s, p, =8476kg/m3, «c,=2224m/s, p, =1193kg/m3, ;=
5173 m/s, and p; = 7830kg/m3® for the wave velocity and density of brass,
polycarbonate, and steel, respectively. The loss tangent for polycarbonate is measured to
be tan(d,) = 3.3%, while the loss in the other two constituent materials is negligible.

The effect of the constant coefficient A, is studied and it is observed that as A, increases,
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the constraints are imposed more strictly, which results in less reflected energy. This
comes at the expense of lowering the dissipation. It is observed that A = 0.1/log(f,)
yields reasonable results in terms of both maximizing the attenuation and minimizing the
reflection, and therefore is selected as the optimal parameter. In order to evaluate the
performance of the optimal design, two reference samples with the same unit cell size
and the same constituent materials but different microstructures are fabricated. Table 5-2
shows the microstructure of the optimal design (design 1) together with the two reference

samples (design 2 and 3).

Figure 5-11: Unit cell of a three-phase, one-dimensional PC

Table 5-2: Optimal design (design 1) and two reference designs with the same unit cell
size for mininum reflection and maximum attenuation

Design 1 Design 2 Design 3

(t1, ty ts) (1.22,0.74, 4.05) (0.50, 1.46, 4.05) (1.72, 1.24, 2.05)

5.6.2. Test procedure and results

Figure 5-12 shows the experimental setup designed for this experiment. The
sample is sandwiched by two 4 ft long aluminum bars. Stress waves are sent from the left
end of the incident bar using a piezoelectric transducer. The waves travel through the

incident bar and reach the sample; where parts of them get transmitted to the transmission



96

bar. The transmitted wave is received by another transducer at the right end of the
transmission bar. The receiving transducer is connected to a spring-nut system to apply a
precompression, required for good transmission of the stress waves through the
interfaces. A semiconductor strain gauge is attached to the surface of the incident bar to
measure the incident and reflected waves. The setup is calibrated performing a test with
no sample in between the incident and transmission aluminum bars.

Figure 5-13 shows the reflection and transmission coefficients of the samples. It
can be observed that the dissipation in the optimal design is higher than the other two
samples over the entire frequency range. Also, it can be seen that the reflection
coefficient of the optimal design is significantly lower than that of sample 3. Although,
the reflection of the optimal design is slightly more than the reflection coefficient of
sample 2 in some frequencies, the difference between their values is negligible. This
shows that the optimal design has superior response over the two reference samples both

in terms of minimizing the reflection and maximizing the dissipation.

Waves Incident (=) and Transmitted
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Figure 5-12: Experimental setup used for measurement of reflection and transmission
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Figure 5-13: Experimental reflection and attenuation spectra of the samples for minimal
refelction and maximum dissipation

5.7. Summary

Design optimization of PCs for a desired elastodynamic response is studied.
Optimal design of one-, two-, and three-dimensional PCs with maximum band-gap
bandwidth is first studied as an example. It is observed that by increasing the dimension
of the problem, i.e. from one- to three-dimensional, achieving high bandwidth becomes
more difficult. In addition, optimal design of one-dimensional PCs for shock wave
mitigation is studied. A genetic algorithm is used to design the microstructure of a one-
dimensional PC for maximum band-gap bandwidth. To verify the theoretical calculations,
samples are fabricated and Hopkinson bar experiments are performed. It is observed that
only a small portion of energy of the incident pulse gets transmitted and the maximum
stress of the transmitted pulse drops significantly. In addition, optimal design of one-
dimensional PCs for minimum reflection and maximum attenuation of stress waves is

investigated. Two reference samples with the same unit cell size and same constituent
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materials but different microstructures are fabricated for comparison. It is observed that
the optimal design exhibits superior performance over the two reference samples, both in

terms of minimizing the reflection and maximizing the attenuation.



Chapter 6

Energy refraction in two-dimensional

periodic composites

6.1. Introduction

Microstructure of a PC can be designed to achieve negative energy refraction at
the interface of the PC and a homogenous medium at certain frequency ranges. This
feature can be used to focus stress waves in a focal point in order to make flat acoustic
lens for applications like ultrasound imaging. Furthermore, due to recent advances in
transformational acoustics, which makes acoustic cloaking achievable [43], dynamic
homogenization has become a powerful tool for microstructural design of the cloak [44].
This demands further understanding of dynamic homogenization techniques and their
limitations. In this chapter, mixed variational formulation is used together with dynamic
homogenization to study energy refraction in two-dimensional PCs. Equifrequency
surfaces (EFS) of a two-dimensional PC made of epoxy matrix with steel inclusions are

calculated. Frequency-dependent overall elastodynamic properties of the PC are obtained

99
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through dynamic homogenization. Vectors of group velocity are studied and energy
refraction at the interface of a homogenous half-space and the PC is investigated.

In the recent years, there have been many efforts to study negative energy
refraction behavior in PCs. Yang et al. [68] presented a combined experimental and
theoretical study of negative refraction in three-dimensional PCs. They showed that
three-dimensional PCs can be used to focus a diverging ultrasound beam into a narrow
focal spot. Li et al. [23] used the multiple scattering technique and studied the negative
energy refraction of acoustic waves in two-dimensional phononic crystals. They showed
that local resonance mechanism brings on a group of flat bands in low frequency region
which provides two EFS’s close to circular leading to negative refraction. Croenne et al.
[24] presented experimental evidence of negative refraction of longitudinal waves in two-
dimensional PCs with a solid matrix. They fabricated a PC made of triangular
arrangements of steel rods embedded in epoxy and carried out an experiment on a prism-
shaped PC inside an epoxy block and observed negative refraction experimentally.
Nemat-Nasser [25, 26] studied anti-plane shear wave propagation in one- and two-
dimensional PCs using a mixed variational formulation. He showed that negative energy
refraction can be accompanied by positive phase-velocity refraction, and positive energy

refraction can be accompanied by negative phase-velocity refraction.

6.2. Unit cell properties
Consider a two-dimensional PC with square unit cell and dimensions given by
a; = a, = 3 cm, and square inclusions with dimensions b; = b, = 1 cm, as shown in

Figure 6-1. The matrix is made of epoxy and the inclusions are made of steel with
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material properties given by E,, =3 GPa, v,, = 0.35, p,, = 1100 kg/m3, E; =
200 GPa, v; = 0.3, and p; = 8000 kg/m?3 for the Young’s modulus, Poisson ratio, and

density of epoxy and steel, respectively.

Figure 6-1: Unit cell of the epoxy/steel two-dimensional PC

6.3. Frequency band structure

Mixed variational method, described in chapter 2, is used to calculate the
frequency band structure of the two-dimensional epoxy/steel PC for plane stress
condition. Figure 6-2 (a, b) show the band structure of the epoxy/steel PC and a three-
dimensional plot of the first three eigenmodes, respectively. In this figure, the lower two
modes are acoustic shear vertical mode (SV-mode) and acoustic longitudinal mode (L-
mode), respectively. It can be seen that the first three modes of the PC have no

intersection which makes it possible to study each mode separately.
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Figure 6-2: (a) Frequency band structure and (c) three-dimensional eigenmodes of the
two-dimensional epoxy/steel PC
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6.4. Dynamic homogenization

The micromechanical method, described in chapter 2, is used to calculate the
effective elastodynamic properties of the two-dimensional epoxy/steel PC. Figure 6-3
shows the comparison between the band structures calculated from the mixed variational
formulation as well as from the micromechanical method as a function of Q; for a fixed
value of Q, = 2. In this figure, 10% — 1 Fourier expansion terms and 10? subdomains are
used in micromechanical calculations. Also, 9% Fourier expansion terms are used for
calculating the band structure using mixed variational method. It can be seen that the
band structures obtained from these two methods are in good agreement. Also, it is
observed that as the frequency increases, the difference between the results obtained from
these two methods increases. For example, while the first two modes are in very close
agreement, the third and fourth modes obtained from micromechanical method are

slightly different than the results obtained from variational method.
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Figure 6-3: Comparison between the band structure calculated from mixed variational
formulation as well as from the micromechanical method for the epoxy/steel PC
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6.4.1. Acoustic shear mode

Figure 6-4 (a) shows the equifrequency surfaces (EFS) of the epoxy/steel PC in
kHz for the acoustic SV-mode together with vectors of group velocity in the (Qq, Q5)-
space. It can be seen that the components of group velocity vectors along the x;- and x,-
axes are in the same direction as those of the phase velocity’s. Figure 6-4 (b-h) show the
non-zero effective properties of the PC in the (Qq, Q;)-space. The values of effective
density, effective compliance, and coupling terms are given in terms of kg/m3,
(Pa™1) x 10711, and (s/m) x 1075, respectively. The values of py,, Dyy, Dyy, S3,, S34,
and Si, are transpose of py;, Dii, Dip, Siy, Sk, and S%, in the (Q, Q,)-space,
respectively, and are not shown here for the sake of brevity. It can be seen that all the

effective properties are continuous over the first BZ for the acoustic S-mode.
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Figure 6-4: Contours of, continued (g) S, and (h) S3; over the acoustic SV-mode for the
two-dimensional epoxy/steel PC

6.4.2. Acoustic longitudinal mode

Figure 6-5 (a) shows the EFS contours of the epoxy/steel PC for the acoustic L-
mode together with the corresponding group velocity vectors. It can be seen that
depending on the value of (Q,, Q,), components of group velocity vectors along the x; -
and x,-axes can be parallel or antiparallel to those of the phase velocity’s. For example,
at Q,=(2.307, 2.307) the EFS contour is quasi-circular with anti-parallel phase and group
velocities resulting in negative energy refraction. Figure 6-5 (b-h) show the non-zero
effective properties of the PC for the acoustic L-mode. In these figures, there are certain
regions where the effective properties become singular. For better demonstration of the
singularities, values of p;;, D;;, and S}, along the Q,-axis are shown in Figure 6-6 for a

fixed value of Q,= 2.7. In addition, it can be seen that p;; achieves negative values in the
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vicinity of the singularity. For example, at @=(1, 2.79) the value of effective density
along the x,-direction becomes p;; = —3916.9 kg/m?3. Furthermore, it is observed that
even though the unit cell and inclusions are square and symmetric, the homogenized
medium is anisotropic leading to different effective properties along the x;- and x,-
directions. For example, at @=(2.730, 0) the anisotropy ratio for the effective density is
P11/ P22 = 26.77. This feature could be used for design of the cloak for acoustic cloaking
where unit cells with high anisotropy are essential [43, 44].

Comparing EFS contours with contours of effective properties, it is understood
that negative energy refraction can be accompanied by either positive or negative
effective properties. For example, at both Q5=(0.214, 2.827) and Q.=(0.513, 2.717), the
x; component of phase and group velocities are in opposite directions (negative energy
refraction). While at Qp all the effective properties are positive, the effective density at
Q. is negative. Figure 6-7 shows a schematic diagram for negative energy refraction at

the interface of a homogenous half-space solid with a two-dimensional PC. In this figure

kiL”, kzef , k;ef , v;i7 , and vf are vectors of incident longitudinal wave, reflected
longitudinal wave, reflected shear wave, transmitted longitudinal group velocity, and
transmitted longitudinal phase velocity, respectively. In should be noted that at Q4, Qp,
and Q. the eigenfrequencies are 15.76 kHz, 17.02 kHz, and 16.46 kHz, respectively,
which are within the shear wave band-gap regime and therefore no SV-wave can
propagate. This feature can be used to focus acoustic/pressure waves in a focal point in
order to make flat acoustic lens for applications like ultrasound imaging; or to focus high

intensity ultrasound acoustic/pressure waves for cancer treatment.
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Figure 6-5: Contours of (a) EFS, (b) p;1, (¢) D14, and (d) D;, over acoustic L-mode for

the two-dimensional epoxy/steel PC
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Figure 6-7: Negative refraction at the interface of a homogenous solid and a two-
dimensional PC

6.5. Summary

Mixed variational formulation is used together with dynamic homogenization to
study elastic wave propagation in two-dimensional PCs. Numerical results for a two-
dimensional PC made of epoxy matrix with steel inclusions are presented. It is observed
that over the acoustic longitudinal mode components of the effective density and

effective compliance tensors can become singular and achieve negative values near the
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singularities. In addition, vectors of group velocity are studied and it is observed that
negative energy refraction can occur at some frequencies over the acoustic longitudinal
mode; which can be accompanied by either positive or negative effective properties. This
feature can be used to focus longitudinal stress waves in a focal point in order to make
flat acoustic lens for applications like ultrasound imaging. Furthermore, it is observed
that the PC exhibits a high anisotropy ratio for the effective density at some frequencies
over the acoustic longitudinal mode; which could be used for design of cloak for acoustic

cloaking where unit cells with high anisotropy are essential.
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