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Periodic composites (PCs) are artificial materials with specially designed 

microstructure to manage stress waves. The objective of this dissertation is to study 

various techniques for microstructural design of PCs for a desired elastodynamic 

response. A mixed variational formulation is studied for band structure calculation of 
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PCs. Dynamic homogenization is studied for calculation of the frequency dependent 

effective properties of PCs. Optimization techniques are used together with mixed 

variational formulation and dynamic homogenization to make a computational platform 

for microstructural design of PCs. Several PCs are designed and fabricated, and various 

tests are performed for experimental verification. 

First, band-gap in one- and two-dimensional PCs is investigated experimentally. 

Mixed variational formulation is used to design samples with band-gaps at frequencies 

convenient to conduct experiment. Samples are fabricated and their transmission 

coefficient is measured. Experimental data are compared with theoretical results for 

evaluation of the band structure. Also, using constituent materials with temperature 

dependent material properties, it is shown that band structure of PCs can be tuned by 

changing the ambient temperature. Furthermore, dynamic homogenization is used to 

design a one-dimensional PC for acoustic impedance matching. As a result, the reflection 

of stress waves at the interface of two impedance matched media becomes zero. Samples 

are fabricated and ultrasound tests are performed to measure the reflection coefficient for 

experimental verification. In addition, a one-dimensional PC with metamaterial response 

is designed to achieve a composite with both high stiffness-to-density ratio and high 

attenuation at low frequency regime. Samples are fabricated and the attenuation 

coefficient is measured for experimental verification. 

Moreover, optimal design of PCs for shock wave mitigation is investigated. A 

genetic algorithm is used to design the microstructure of a one-dimensional PC for 

maximum band-gap bandwidth. To verify the theoretical calculation, samples are 

fabricated and Hopkinson bar experiments are performed. In addition, negative refraction 
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in two-dimensional PCs is investigated. Equifrequency surfaces of a two-dimensional PC 

are calculated together with vectors of group velocity. Dynamic homogenization is used 

to find overall elastodynamic properties of the two-dimensional PC. Energy refraction at 

the interface of a homogenous half-space and the two-dimensional PC is studied. 
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Chapter 1  

 

Introduction 

 

Periodic composites (PCs) are artificial materials with specially designed 

microstructure to control stress waves. PCs exhibit band-gaps, where propagation of 

stress waves is prohibited. This feature can be used to design acoustic filters, noise 

insulators, and vibrationless environments. In addition, through microstructural design, 

PCs can demonstrate metamaterial behavior, i.e. negative effective density and/or 

negative effective stiffness, at certain frequency ranges [1, 2, 3]. Such features make PCs 

strong candidates for design of structures with extraordinary elastic and dynamic 

response. The objective of this dissertation is to study various techniques for 

microstructural design of PCs for a desired elastodynamic response. A mixed variational 

formulation is studied to calculate the band structure of one-, two-, and three-dimensional 

PCs. In addition, dynamic homogenization is studied for calculation of the frequency 

dependent effective material properties of PCs. Optimization techniques are used together 

with mixed variational formulation and dynamic homogenization to make a 

computational platform for microstructural design of PCs. Several PCs are designed for 

(i) stress waves filtering, (ii) acoustic impedance matching, (iii) maximizing the 
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attenuation, and (iv) shock wave mitigation. Samples are fabricated and various tests are 

performed for experimental verification of the computational platform. 

 

1.1. Band-gap 

Propagation of stress waves in PCs is prohibited within band-gaps, where 

incoming stress waves get effectively reflected. The first study on analysis of stress wave 

propagation in PCs is done by Rytov [4]. He developed an analytical solution for band 

structure calculation of one-dimensional periodic composites. Applying the Bloch 

boundary conditions, he derived the dispersion equation and showed that in certain 

frequency ranges the propagation of the stress waves is forbidden. A mixed variational 

method, originally developed by Nemat-Nasser [5], was developed in 1970’s for analysis 

of stress wave propagation in PCs [6, 7, 8, 9, 10, 11]. Using this method, band structure 

of one-, two-, and three-dimensional periodic elastic composites was calculated with high 

accuracy. The power of this method is due to independent variation of displacements and 

stresses within the composite. As a result, the continuity of tractions and displacements at 

the interface of the matrix and inhomogeneities are satisfied automatically. For 

illustration, they studied waves propagating normal to the layers in one-dimensional PCs 

and normal to the fibers in fiber reinforced composites [8]. Nemat-Nasser and Minagawa 

[8] presented explicit formulation for calculation of eigenfrequencies and eigenfunctions 

of three-dimensional periodic composites with cuboidal and ellipsoidal inclusions. They 

showed that mixed variational method is more accurate and faster than Rayleigh quotient 

in predicting the band structure. 
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Kushwaha et al. [12, 13] developed plane wave expansion (PWE) method for 

band structure calculation of PCs. In this method, the displacement is replaced by its 

Fourier series expansion which satisfies the Bloch boundary conditions. Due to 

periodicity, the density, and longitudinal and shear wave speeds in the composite are 

represented by their Fourier series expansions as well. Substituting the displacement and 

material properties with their Fourier series expansion, the equation of motion is reduced 

to an eigenvalue problem which can be solved to find the band structure. Vasseur et al. 

[14] used PWE to calculate the band structure of two-dimensional periodic arrays of solid 

cylindrical inclusions in a solid matrix. In order to verify the theoretical calculations, they 

presented experimental transmission results through a finite slab of the periodic 

composite. They showed that the experimentally observed band-gaps match the 

theoretical predictions. Although PWE has been used successfully in predicting band 

structure of PCs in several cases, it has convergence problem when dealing with systems 

of either very high or very low filling ratios, or of large elastic mismatch [15]. 

Multiple scattering technique (MST) was developed for band structure calculation 

of PCs to overcome the limitations of PWE method [16, 17, 15]. In this method, the 

displacements in each inhomogeneity (scatterer) are considered to be the summation of 

displacements of (1) the incoming waves from all the other scatterers and (2) the 

outgoing (scattered) waves. Applying the continuity of the displacements and tractions at 

the interface of each scatterer and the matrix, a relation between the coefficients of 

incoming and outgoing waves for each scatterer is found. Imposing the Bloch boundary 

conditions, the equations reduce to an eigenvalue problem which can be solved for 

eigenmodes and eigenfunctions. Kafesaki and Economou [16] presented multiple 
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scattering formulations for wave propagation in three-dimensional periodic composites. 

They considered acoustic wave propagation in a periodic composite consisting of solid 

spheres in a fluid host and calculated the dispersion curve and showed that PWE method 

can not describe the composites with fluid matrix accurately. Mei et al. [15] presented 

MST for elastic wave propagation in two-dimensional PCs. They calculated the band 

structure for two-dimensional PCs with cylindrical solid inclusion in fluid matrix and 

studied the convergence of the solution. They also observed that PWE can not describe 

the response of PCs with fluid matrix accurately. Ke et al. [18] used MST to calculate the 

equifrequency surface (EFS) of a two-dimensional PC made of triangular arrays of rods 

in a liquid host. Using EFS they predicted negative refraction for all angles of incident 

acoustic waves over the second mode. To demonstrate the negative refraction behavior, 

they measured wave propagation through a finite slab of PC and verified their theoretical 

through experiment. 

 

1.2. Metamaterials 

Acoustic/elastic metamaterials are specially designed PCs with overall negative 

elastodynamic properties [1, 2, 3, 19]. Such extraordinary features are due to local 

resonance inside the composite at certain frequencies. Liu et al. [1] designed a three-

dimensional metamaterial and showed that near the resonance frequencies, the 

metamaterial behaves like a medium with effective negative stiffness. Their experimental 

results show that at the resonance frequencies the transmission coefficient is very small 

due to attenuation induced by local resonance. Li and Chan [2] showed the existence of 

acoustic metamaterials in which both the effective density and bulk modulus are 
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simultaneously negative. They realized that double negativity in acoustic metamaterials is 

a consequence of local resonance. Fang et al. [3] reported a class of ultrasonic 

metamaterials consisting of an array of subwavelength Helmholtz resonators with 

designed acoustic inductance and capacitance. These materials have an effective dynamic 

modulus with negative values near the resonance frequency. They showed experimentally 

that these metamaterials can convey acoustic waves with a group velocity antiparallel to 

phase velocity. Fokin et al. [20] developed a method to extract effective material 

properties from experimentally measured reflection and transmission coefficients. They 

used this method to analyze various acoustic metamaterials and observed negative 

effective properties at some frequencies. 

Microstructure of acoustic/elastic metamaterials can also be designed to achieve 

negative energy refraction [21, 22]. Li et al. [23] used the multiple scattering technique 

and studied the negative refraction imaging in two-dimensional PCs. They showed that 

localized resonance mechanism brings on a group of flat single-mode bands in low 

frequency region which provides two equivalent frequency surfaces close to circular. 

Croenne et al. [24] presented experimental evidence of negative refraction of longitudinal 

waves in two-dimensional PCs with a solid matrix. They made a PC of triangular 

arrangements of steel rods embedded in epoxy and carried out an experiment on a prism-

shaped PC inside an epoxy block and observed negative refraction experimentally. 

Nemat-Nasser [25, 26] studied the anti-plane shear wave propagation in one- and two-

dimensional PCs using a mixed variational formulation. He showed that negative energy 

refraction can be accompanied by positive phase-velocity refraction, and positive energy 

refraction can be accompanied by negative phase-velocity refraction. 
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The attenuation of stress waves in metamaterials is large near the resonance 

frequencies. Ho et al. [27] used several locally resonant materials with different 

resonance frequencies and showed that each layer vibrates like an independent unit. Their 

results show significant drop in transmission coefficient at resonance frequencies. Cheng 

et al. [28] designed a one-dimensional ultrasonic metamaterial with both effective density 

and effective bulk modulus simultaneously negative. They found the transmission 

coefficient using acoustic transmission line method (ATLM), finite element method, and 

experimental measurement and observed a substantial drop in transmission spectrum 

around the resonance frequency. Wang et al. [29] studied the propagation of longitudinal 

and transverse elastic waves in locally resonance one-dimensional metamaterials. They 

showed that locally resonant one-dimensional PCs can be designed to show band-gap at 

frequencies around a few hundreds of Hertz. Nemat-Nasser and Srivastava [30] showed 

that three-phase, one-dimensional periodic composites with a heavy central layer and 

compliant coating embedded in a polymer matrix can be designed to show negative 

effective density and stiffness over the second mode. These studies suggest the possibility 

of using metamaterials to design structural composites with tunable attenuation. 

 

1.3. Dynamic homogenization 

Due to interesting behavior of PCs, there has been growing interest to develop 

techniques to calculate their overall elastodynamic properties [31, 32, 33, 34, 35, 36, 37]. 

Willis [38] developed a homogenization method based on an ensemble averaging 

technique of Bloch reduced form of wave propagation in PCs. He showed that the mean 

stress is coupled not only to the mean strain, but also to the mean velocity. Likewise, the 
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mean momentum is coupled not only to the mean velocity, but also to the mean strain. 

Nasser et al. [39] developed a homogenization method based on integration of field 

variables to calculate effective dynamic properties for Bloch waves in one-dimensional 

PCs. They showed that the resulting effective parameters satisfy the overall field 

equations and yield the exact dispersion relation. Nemat-Nasser and Srivastava [40] 

presented a homogenization method for one-dimensional composites based on 

micromechanical considerations. They provided explicit expressions for the effective 

dynamic properties of one-dimensional PCs and systematically deduced the overall 

constitutive relations for the homogenized elastic solid. Nemat- Srivastava and Nemat-

Nasser [41] developed a method for homogenization of three-dimensional PCs. They 

provided explicit expressions to calculate the effective elastodynamic parameters for 

three-dimensional periodic elastic composites. Nemat-Nasser and Srivastava [42] used a 

dynamic homogenization to study the effective properties of layered metamaterials. They 

observed that near the resonance frequency both the effective compliance and density 

become singular and they can achieve negative values, simultaneously. Antonakakis et al. 

[33] developed an asymptotic based homogenization technique for two-dimensional 

periodic composites which is valid at high frequencies. They compared their calculations 

with finite element simulations and observed that the periodic composites can exhibit 

high anisotropy at certain frequency ranges. Torrent et al. [19] developed a method to 

calculate the frequency dependent effective properties of two-dimensional periodic 

composites at low frequency limit. They observed that the effective mass density and 

stiffness tensor are in general anisotropic, and can become singular and achieve negative 

values at certain frequency ranges. Due to recent advances in transformational acoustics, 
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which makes acoustic cloaking achievable [43], dynamic homogenization has become a 

useful tool for microstructural design of the cloak [44]; which demands further 

understanding of these techniques. 

 

1.4. Organization of chapters 

The manuscript is organized in the following manner. In chapter 2, theoretical 

framework for analysis of stress wave propagation in PCs is studied. A mixed variational 

method is studied for calculation of band structure of one-, two-, and three-dimensional 

PCs. A dynamic homogenization is studied which allows for evaluation of effective 

elastodynamic properties of PCs. In addition, transfer matrix method is considered to find 

the exact solution for reflection and transmission coefficients at the interfaces of a one-

dimensional PC sandwiched by two homogenous half-spaces. 

In chapter 3, band-gap in one-dimensional and two-dimensional PCs is 

investigated experimentally. Mixed variational formulation is used to design samples 

with band-gaps at frequencies convenient to conduct experiment. Samples are fabricated 

and their transmission coefficient is measured for verification of the theoretical band 

structure. In addition, tuning the band structure of periodic composites with change in 

ambient temperature is studied. A one-dimensional PC with constituent materials which 

have temperature dependent material properties is fabricated. Ultrasound measurements 

are performed at different temperatures and transmission coefficient are measured and 

compared with theoretical results for verification. 
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In chapter 4, dynamic homogenization is used for microstructural design of one-

dimensional PCs for acoustic impedance matching. As a result, the reflection of stress 

waves at the interface of the two impedance matched media becomes zero. Ultrasonic 

measurements and finite element simulation are performed to find the reflection 

coefficient for verification. Furthermore, a one-dimensional metamaterial is designed for 

stress wave attenuation in sonic range of frequency. The aim is to design the 

microstructure of the metamaterial to achieve both high attenuation coefficient and high 

in-plane stiffness-to-density ratio. To verify the theoretical calculation, laboratory 

samples are fabricated and the attenuation coefficients are measured. 

In chapter 5, design optimization of PCs for a desired elastodynamic response is 

studied. Optimal design of one-, two-, and three-dimensional PCs with maximum band-

gap bandwidth is studied. In addition, optimal design of PCs for shock wave mitigation is 

investigated. To verify the theoretical calculation, samples are fabricated and Hopkinson 

bar experiments are performed. Furthermore, optimal design of one-dimensional PCs for 

minimum reflection and maximum attenuation is investigated. Samples are fabricated and 

ultrasound tests are performed to measure the reflection and attenuation coefficients for 

evaluation of the theoretical results. 

In chapter 6, negative refraction in two-dimensional PCs is investigated. Mixed 

variational formulation is used to find the equifrequency surfaces of a two-dimensional 

PC together with vectors of group velocity. Dynamic homogenization is used to calculate 

frequency-dependent overall elastodynamic properties of the PC. Numerical results are 

presented and energy refraction at the interface of a homogenous half-space and the PC is 

studied. 
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Chapter 2  

 

Stress wave propagation in periodic 

composites 

 

In this chapter, the theoretical framework for analysis of stress wave propagation 

in PCs is studied. A mixed variational method is used for band structure calculation of 

one-, two-, and three-dimensional PCs. Dynamic homogenization is studied for 

calculation of effective elastodynamic properties of one- and two-dimensional PCs. In 

addition, transfer matrix method is studied to provide an exact solution for calculating the 

reflection and transmission coefficients at the interfaces of a one-dimensional composite 

sandwiched by two homogenous half-spaces. 

 

2.1. Mixed variational method 

Mixed variation formulation provides an approximate solution for analysis of 

stress wave propagation in one-, two-, and three-dimensional PCs [6, 9]. In this method 

stress and displacement components can vary independently in order to satisfy the 
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continuity of displacements and tractions at the interfaces of the matrix and 

inhomogeneities. 

 

2.1.1. One-dimensional periodic composites 

Consider wave propagation in a one-dimensional elastic composite made of 

infinite number of identical repeated unit cells. Figure  2-1, shows a typical unit cell of a 

two-phase, one-dimensional PC. The periodicity condition can be expressed as 

ݔሺߩ ൅ ݉ᇱܽሻ ൌ  ሻݔሺߩ

ݔሺܧ ൅ ݉ᇱܽሻ ൌ  ሻݔሺܧ

( 2.1)  

where ܧ ,ߩ, ܽ, and ݉ᇱ are the density, Young’s modulus, unit cell size, and an integer, 

respectively. The equation of motion can be expressed as 

ሻݔሺߩ
߲ଶ

ଶݐ߲
,ݔሺݑ ሻݐ ൌ

߲
ݔ߲

,ݔሺߪ ሻ ( 2.2)ݐ  

where ߪ and ݑ are stress and displacement, respectively. For one-dimensional linear 

elastic materials the constitutive equation is given by 

,ݔሺߪ ሻݐ ൌ ,ݔሺߝሻݔሺܧ ሻ ( 2.3)ݐ

where ߝ is the strain which can be written as 

,ݔሺߝ ሻݐ ൌ
߲
ݔ߲

,ݔሺݑ ሻ ( 2.4)ݐ
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Figure  2-1: Unit cell of a one-dimensional periodic composite 
 

For a periodic medium the solution of equation of motion ( 2.2) has periodic coefficients 

which can be expressed as 

݃ሺݔ ൅ ܽሻ ൌ ݃ሺݔሻ݁௜௤௔ ( 2.5)

where ݍ and ݃ are the overall wave number and any of the field variables, respectively. 

The Bloch boundary conditions for a unit cell can be expressed as 

ݑ ቀ
ܽ
2
ቁ ൌ ݑ ቀെ

ܽ
2
ቁ ݁௜௤௔ 

ߪ ቀ
ܽ
2
ቁ ൌ ߪ ቀെ

ܽ
2
ቁ ݁௜௤௔ 

( 2.6)

It can be shown that the eigenvalues of the problem can be found by rendering the 

following functional stationary [5] 

ேߣ ൌ
〈σ, 〈ݔ߲/ݑ߲ ൅ ,ݔ߲/ݑ߲〉 σ〉 െ ,ߪܦ〉 〈ߪ

,ݑߩ〉 〈ݑ
 ( 2.7)

where 

a

x

b

ଵܯ ଶܯ ଵܯ
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,௝ݑ݃〉 〈௝ݒ ൌ න ௝ݒ௝ݑ݃
∗݀Ω

ஐ

 ( 2.8)

where * denotes the complex conjugate, and ܦ ൌ  is the compliance. Here, the stress ܧ/1

and displacement fields are varied independently in the following forms 

തݑ ൌ ෍ ܷሺఈሻ݂ሺఈሻሺܠሻ

ெ

ఈୀିெ

 ( 2.9) 

തߪ ൌ ෍ ܵሺఈሻ݂ሺఈሻሺܠሻ

ெ

ఈୀିெ

 ( 2.10)

where ݂ሺఈሻ ൌ ݁௜ሺொାଶఈగሻ௫/௔, in which ܳ ൌ  is the normalized wave number, and ܷሺఈሻ ܽݍ

and ܵሺఈሻ are unknown Fourier coefficients. Minimizing the functional in equation ( 2.7) 

with respect to unknown coefficients ܷሺఈሻ and ܵሺఈሻ, we get the following linear system of 

equations 

〈
തߪ߲
ݔ߲

൅ ,തݑߩேߣ ݂
ሺఈሻ〉 ൌ 0 ( 2.11)

തߪܦ〉 െ
തݑ߲
ݔ߲

, ݂ሺఈሻ〉 ൌ 0 ( 2.12)

which can be written in matrix form as 

ࢁ∗ࡴ ൅ࡿࢶ ൌ ૙ 

ષࢁ ൅ࡿࡴ ൌ 0 

( 2.13)

where the ࢁ and ࡿ are vectors of unknown coefficients 

ࢁ ൌ ሼܷିே, ܷିேାଵ, … , ܷ଴, … , ܷேሽ் 

ࡿ ൌ ሼܵିே, ܵିேାଵ, … , ܵ଴, … , ܵேሽ் 

( 2.14)
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The explicit form of the coefficient matrices ષ, ઴, and ࡴ  are given in Appendix 2A. The 

characteristic equation for linear system of equations ( 2.13) can be found as 

det[ࡴ∗ െ ૚ષ]=0 ( 2.15)ିࡴࢶ

The solutions of this equation give the eigenfrequencies and eigenvectors of the 

composite. 

 

2.1.2. Two-dimensional periodic composites 

Consider a two-dimensional periodic composite with elliptical fibers with a unit 

cell shown in Figure  2-2. For a unit cell with the edges defined by ࡵఉ	ሺߚ ൌ 1, 2ሻ, the 

periodicity condition can be expressed as 

ሻ࢞௝௞௠௡ሺܥ ൌ ࢞௝௞௠௡൫ܥ ൅ ݉ᇱࡵఉ൯ ( 2.16)

ሻ࢞ሺߩ ൌ ࢞൫ߩ ൅ ݉ᇱࡵఉ൯ ( 2.17)

where ࢞ is the position vector with components ݔ௝, ሺ݆ ൌ 1, 2ሻ, and ܥ௝௞௠௡ሺܠሻ,	 ሺ݆, ݇,݉, ݊ ൌ

1, 2ሻ, are the components of the elasticity tensor. 

 

Figure  2-2: Unit cell of a two-dimensional periodic composite with elliptical inclusions 
 

ଵࡵ

ଵݔ

ଶݔ

ܽଵ

ଵܾ

ܾଶܽଶ

ଶࡵ
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The field quantities for a harmonic wave with frequency ߱	ሺߣ ൌ ߱ଶሻ are proportional to 

݁േ௜ఠ௧ and the field equations can be represented as 

௝௞,௞ߪ ൅ ௝ݑߩߣ ൌ 0 ( 2.18)

where ߪ௝௞ and ݑ௝ are components of stress tensor and displacement vector, respectively. 

The constitutive relation can be written as 

௝௞ߪ ൌ ௠,௡ ( 2.19)ݑ௝௞௠௡ܥ

For harmonic waves with wave vector ࢗ ൌ ሺ݅	௜ࢋ௜ݍ ൌ 1, 2ሻ, where ࢋ௜ is the unit vector 

along ݔ௜-direction, the Bloch boundary conditions have the following form 

࢞௝ሺݑ ൅ ఉሻࡵ ൌ ࡵ.ࢗሻ݁௜࢞௝ሺݑ
ഁ

 ( 2.20)

࢞௝൫ݐ ൅ ఉ൯ࡵ ൌ െݐ௝ሺ࢞ሻ݁௜ࡵ.ࢗ
ഁ

 ( 2.21)

where ࢚ is the traction vector. It can be shown that the eigenvalues of the problem can be 

found by rendering the following functional stationary [8] 

ேߣ ൌ
,௝௞ߪ〉 〈௝,௞ݑ ൅ ,௝,௞ݑ〉 〈௝௞ߪ െ ,௝௞ߪ௝௞௠௡ܦ〉 〈௠௡ߪ

,௝ݑߩ〉 〈௝ݑ
 

( 2.22)

where ܦ௝௞௠௡ represents the components of the elastic compliance tensor. Consider the 

following expressions for the solution of the field equations ( 2.18)  

ത௝ݑ ൌ ෍ ௜ܷ
ሺఈఉሻ݂ሺఈఉሻሺܠሻ

ெ

ఈ,ఉୀିெ

 ( 2.23)
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ത௝௞ߪ ൌ ෍ ௝ܵ௞
ሺఈఉሻ݂ሺఈఉሻሺܠሻ

ெ

ఈ,ఉୀିெ

 ( 2.24)

where ݂ሺఈఉሻሺܠሻ ሺߙ, ߚ ൌ െܯ,…  ሻ are a sequence of orthogonal, continuous, andܯ,

continuously differentiable function which satisfy the Bloch boundary conditions ( 2.20) 

and ( 2.21). Substituting equations ( 2.23) and ( 2.24) into equation ( 2.22) and setting the 

derivatives of ߣே with respect to the unknown coefficients, ௜ܷ
ሺఈఉሻ and ௝ܵ௞

ሺఈఉሻ, equal to 

zero, the following set of linear homogenous equations can be obtained 

ത௝௞,௞ߪ〉 ൅ ,ത௝ݑߩேߣ ݂
ሺఈఉሻ〉 ൌ 0 ( 2.25)

ത௠௡ߪ௝௞௠௡ܦ〉 െ ,ത௝,௞ݑ ݂
ሺఈఉሻ〉 ൌ 0 ( 2.26)

For two-dimensional PCs the approximating function can be chosen to be 

݂ሺఈఉሻ ൌ ݁
௜ሾ൫ܳ1൅2ߙߨ൯

1ݔ
ܽ1
൅ሺܳ2൅2ߚߨሻ

2ݔ
ܽ2 

( 2.27)

where ܽଵ and ܽଶ are the dimensions of the unit cell along the ݔଵ- and ݔଶ-axis  (see 

Figure  2-2), and ܳଵ ൌ ଵܽଵ and ܳଶݍ ൌ  -ଵݔ ଶܽଶ are the normalized wave numbers alongݍ

and ݔଶ-directions, respectively. Substituting this relation for ݂ሺఈఉሻ in equations ( 2.25) and 

( 2.26), we find a matrix equations in the same form as given in equations ( 2.13) where U 

and S are the vectors of the unknown coefficients in the approximate expressions for the 

displacement vector and the stress tensor components, respectively; which can be 

expressed as ܃ ൌ ሼ܃૚, ૛ሽ்  with components ௜ܷ܃
ሺఈఉሻሺ	݅ ൌ 1, 2ሻ, ߙ, ߚ ൌ 0,േ1,… ,േܯ; 

and ܁ ൌ ሼ܁૚૚, ,૚૛܁ ૛૛ሽ் with components ௝ܵ௞܁
ሺఈఉሻ	ሺ݆, ݇ ൌ 1,2ሻ. The explicit expression for 

the coefficient matrices ષ, ۶, and ઴ are given in Appendix 2B. For nontrivial solution of 
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this system of equations, the determinant of the coefficients matrix in equation ( 2.15) 

should be set equal zero which gives the dispersion equation for a two-dimensional 

periodic composite. 

 

2.1.3. Three-dimensional periodic composites 

Consider a unit cell of a three-dimensional periodic composite with ellipsoidal 

inclusion as shown in Figure  2-3. For a unit cell with the edges defined by ࡵఉ	ሺߚ ൌ

1, 2, 3ሻ, the periodicity condition can be given by equations ( 2.16) and ( 2.17) with 

݆, ݇,݉, ݊ ൌ 1, 2, 3. Similarly, the field equations, constitutive relations, and Bloch 

boundary conditions can be given by equations ( 2.18), ( 2.19), ( 2.20), and ( 2.21), 

respectively. It can be shown that the eigenvalues of the problem can be found by 

rendering the functional in equation ( 2.22) stationary. The approximate solution for stress 

and displacement components are assumed in the following form 

ത௝ݑ ൌ ෍ ௜ܷ
ሺఈఉఊሻ݂ሺఈఉఊሻሺܠሻ

ெ

ఈ,ఉ,ఊୀିெ

 ( 2.28)

ത௝௞ߪ ൌ ෍ ௝ܵ௞
ሺఈఉఊሻ݂ሺఈఉఊሻሺܠሻ

ெ

ఈ,ఉఊୀିெ

 ( 2.29)

where 

݂ሺఈఉఊሻ ൌ ݁
݅ሾ൫ܳ1൅2ߙߨ൯

1ݔ
ܽ1
൅൫ܳ2൅2ߚߨ൯

2ݔ
ܽ2
൅ሺܳ3ାଶగఊሻ

௫య
௔య
ሿ
 

( 2.30)
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Figure  2-3: Unit cell of a three-dimensional periodic composite with ellipsoidal inclusion 
 

where ܽ௜ and ܳ௜ (i=1..3) are the length of the unit cell side and normalized wave number 

along the ݔ௜-direction, respectively. Following the same procedure as for the two-

dimensional PCs, the characteristic equation ( 2.15) can be solved to get the dispersion 

equation of the PC, where the coefficient matrices ષ,۶, and ઴ are given in Appendix 

2C. 

 

2.2. Transfer matrix method 

2.2.1. Band structure calculation 

Transfer matrix method provides exact solution for calculating the band structure 

of one-dimensional PCs [45]. Consider wave propagation in a one-dimensional PC made 

of infinite number of identical repeated unit cells with a unit cell shown in Figure  2-4. In 

this Figure, ܧሺ௝ሻ,  ሺ௝ሻ, and ݀ሺ௝ሻ are the elastic modulus, density, and thickness of j-thߩ

layer, respectively. The general solution for equation of motion in each layer can be 

expressed as the superposition of two longitudinal waves traveling in opposite directions 

ଵݔ

ଶݔ

ଷݔ

ଵܾ

ܽଵ

ଶܾܽଶ

ܽଷ
ଷܾ
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,ݔሺݑ ሻݐ ൌ ሾܣା
ሺ௝ሻ݁௜௞

ሺೕሻ௫ ൅ ሺ௝ሻ݁ି௜௞ିܣ
ሺೕሻ௫ሿ݁ି௜ఠ௧ ( 2.31) 

where ݇ሺ௝ሻ ൌ ߱/ܿሺ௝ሻ, ܿሺ௝ሻ, ܣା
ሺ௝ሻ and ିܣ

ሺ௝ሻ are the wave number in j-th layer, the 

longitudinal wave velocity, the amplitude of the waves traveling in positive and negative 

x-direction in j-th layer, respectively. The displacement and stress in the j-th layer can be 

expressed as 

൤
ሻݔሺݑ
ሻ൨ݔሺߪ ൌ ۰௝ ቈ

ାܣ
ሺ௝ሻ݁௜௞

ሺೕሻ௫

ሺ௝ሻ݁ି௜௞ିܣ
ሺೕሻ௫

቉ ( 2.32) 

where 

۰௝=ቂ
1 1

ܼ݅ሺ௝ሻ െܼ݅ሺ௝ሻ
ቃ ( 2.33) 

where ܼሺ௝ሻ ൌ ሺ௝ሻܿሺ௝ሻߩ
మ
݇ሺ௝ሻ.  Let ݔ௝௅ and ݔ௝ோ  denote the left and right boundaries of j-th 

layer in the unit cell, respectively. Considering the relation ݔ௝ோ ൌ  ௝௅  +݀ሺ௝ሻ and settingݔ

۲௝൫݀
ሺ௝ሻ൯ ൌ diagሾ݁൫௜௞

ሺೕሻௗሺೕሻ൯, ݁൫ି௜௞
ሺೕሻௗሺೕሻ൯ሿ,   equation ( 2.32) can be written as 

 

Figure  2-4: Unit cell of a one-dimensional periodic composite 
 

(N)…(j)…(1)

x
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ቈ
௝ோሻݔሺݑ
௝ோሻݔሺߪ

቉ ൌ T௝ ቈ
௝௅ሻݔሺݑ
௝௅ሻݔሺߪ

቉ 
( 2.34) 

where ܂௝ ൌ ۰௝۲௝൫݀
ሺ௝ሻ൯۰௝

ିଵ is the transfer matrix for j-th layer which can be expressed as 

௝܂ ൌ ቈ
cosሺ݇ሺ௝ሻ݀ሺ௝ሻሻ sin൫݇ሺ௝ሻ݀ሺ௝ሻ൯ /ܼሺ௝ሻ

െܼሺ௝ሻsinሺ݇ሺ௝ሻ݀ሺ௝ሻሻ cosሺ݇ሺ௝ሻ݀ሺ௝ሻሻ
቉ ( 2.35) 

Applying the continuity of displacement and stress between each two adjacent layers, the 

displacement and stress at the left boundary of the first layer in the unit cell are related to 

those at the right boundary of the N-th layer by 

൤
ேோሻݔሺݑ
ேோሻݔሺߪ

൨ ൌ ܂ ൤
ଵ௅ሻݔሺݑ
ଵ௅ሻݔሺߪ

൨ ( 2.36) 

where ܂ ൌ ேିଵ܂ே܂  ଵis the cumulative transfer matrix of the unit cell. For Bloch type܂…

waves the displacement and stress at a given point of the unit cell are related to the 

corresponding point in the adjacent unit cell by 

ݔሺܡ ൅ ݀ሻ ൌ ݁௜௞ௗܡሺݔሻ ( 2.37) 

where ܡሺݔሻ ൌ 	 ൤
ሻݔሺݑ
 ሻ൨ and ݇ is the Bloch-wave number. Equations ( 2.36) and ( 2.37) leadݔሺߪ

to the following eigenvalue problem 

ଵ௅ሻݔሺܡሺ߱ሻ܂ ൌ  ଵ௅ሻ ( 2.38)ݔሺܡߣ

where ߣ ൌ exp	ሺ݅݇݀ሻ  is the eigenvalue and  ܡሺݔଵ௅ሻ is the eigenvector. Solutions of this 

equation give the band structure for longitudinal wave propagation in an infinite one-

dimensional PC. 
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2.2.2. Finite one-dimensional periodic composites 

Transfer matrix method provides a solution for calculating the reflection and 

transmission coefficients at the interfaces of a one-dimensional composite sandwiched by 

two homogenous half-spaces. Consider m unit cells of a one-dimensional composite each 

made of N individual layers sandwiched by two homogenous half-spaces, as shown in 

Figure  2-5. Assume there is an incoming harmonic wave with amplitude ܣା
ሺ଴ሻ moving 

toward positive x-direction, and a reflected wave moving backward with amplitude ିܣሺ଴ሻ 

in the incident medium. The displacement in the incident medium, M0, can be expressed 

as 

,ݔሺݑ ሻݐ ൌ ሾܣା
ሺ଴ሻ݁௜௞

ሺబሻ௫ ൅ ሺ଴ሻ݁ି௜௞ିܣ
ሺబሻ௫ሿ݁ି௜ఠ௧ ( 2.39) 

The displacement in each layer of the composite can be given by equation ( 2.31) and the 

displacement in the transmission medium, M݉൅1, can be given by 

,ݔሺݑ ሻݐ ൌ ାܣ
ሺ௠ାଵሻ݁௜ሺ௞

ሺ೘శభሻ௫ିఠ௧ሻ ( 2.40) 

The field variables at the left boundary of the first layer in the first unit cell of the 

composite are related to those at the right boundary of the N-th layer in the m-th unit cell 

by 

Figure  2-5: A finite one-dimensional periodic composite sandwiched by two 
homogenous half-spaces 

 

M0 Mm+1

ାܣ
௠ାଵ

Incident medium Transmission medium

x

ାܣ
଴

଴ିܣ
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൤
ேோ,௠ሻݔሺݑ
ேோ,௠ሻݔሺߪ

൨ ൌ ௠܂ ൤
ଵ௅,ଵሻݔሺݑ
ଵ௅,ଵሻݔሺߪ

൨ ( 2.41) 

Applying the continuity of displacement and stress at the interfaces of the composite with 

M0 and M௠ାଵ, the following relation can be found 

൤ܣା
ሺ௠ାଵሻ

0
൨ ൌ ۹ ቈ

ାܣ
ሺ଴ሻ

ሺ଴ሻିܣ
቉ ( 2.42)

where ۹ ൌ  ሺ௝ሻ and ۰ሺ௝ሻ are given byۺ ۰ሺ଴ሻ, in which the matrices܂ሻ۰ሺ௠ାଵሻିଵܦሺ௠ሻିଵሺۺ

ሻ=ቈݔሺ௝ሻሺۺ
expሺ݅݇ሺ௝ሻݔሻ 0

0 expሺെ݅݇ሺ௝ሻݔሻ
቉ ( 2.43)

۰ሺ௝ሻ=ቂ 1 1
ܼ݅ሺ௝ሻ െܼ݅ሺ௝ሻ

ቃ ( 2.44)

Solving for the reflection coefficient, R, and the transmission coefficients, T, we find 

ܴ ൌ
ሺ଴ሻିܣ

ାܣ
ሺ଴ሻ ൌ െ

۹ଶଵ

۹ଶଶ
 ( 2.45)

ܶ ൌ
ାܣ
ሺ௠ାଵሻ

ାܣ
ሺ଴ሻ ൌ ۹ଵଵ െ

۹ଵଶ۹ଶଵ

۹ଶଶ
 ( 2.46) 

In the absence of viscous dissipation, energy is conserved and the following relation 

holds 

ܴܴ∗ ൅ ܶܶ∗ ൌ 1 ( 2.47)

 which means the energy of the incident wave is either reflected or transmitted to the 

transmission bar. 
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2.3. Dynamic homogenization 

2.3.1. One-dimensional periodic composites 

2.3.1.1. Field variables averaging 

Effective elastodynamic properties of one-dimensional PCs can be calculated 

through homogenization by integration of field variables [39]. Consider Bloch waves in 

an infinite layered elastic composite made of identical repeated unit cells ߗ ൌ ሼ:ݔ	0 ൑

ݔ ൏ ݀ሽ. For harmonic waves with wave number q and frequency ߱, the field variables 

can be expressed as 

,ݔሺߪ ሻݐ ൌ Σሺݔሻ݁݌ݔ	ሾ݅ሺݔݍ െ ,ሻሿݐ߱ ,ݔሺߝ ሻݐ ൌ ݔݍሾ݅ሺ݌ݔሻ݁ݔሺܧ െ  ሻሿݐ߱

,ݔሺݑ ሻݐ ൌ ܷሺݔሻ݁݌ݔ	ሾ݅ሺݔݍ െ ሶݑ					,ሻሿݐ߱ ሺݔ, ሻݐ ൌ ሶܷ ሺݔሻ݁݌ݔ	ሾ݅ሺݔݍ െ  ሻሿݐ߱

,ݔሺ݌ ሻݐ ൌ ܲሺݔሻ݁݌ݔሾ݅ሺݔݍ െ  ሻሿݐ߱

( 2.48) 

where the variables ݌ and	ݑሶ  are linear momentum and velocity, respectively; while Σሺݔሻ, 

ሻ, and ሶܷݔሻ,  ܷሺݔሻ, ܲሺݔሺܧ ሺݔሻ represent periodic parts of stress, strain, linear momentum, 

displacement, and velocity, respectively. The conservation and kinetic relations are given 

by equations ( 2.2) and ( 2.4) and the linear momentum-velocity relation can be given by 

݌ ൌ ሶݑሻݔሺߩ . Multiplying equations ( 2.2) and ( 2.4) by ݁ି௜௤௑ and using equations ( 2.48) to 

replace for the field variables we get the following expressions 

ሻ݁௜௤ሺ௫ି௑ሻ൯ݔ൫Σሺ׏ ൅ ݅߱ܲሺݔሻ݁௜௤ሺ௫ି௑ሻ ൌ 0

൫׏ ሶܷ ሺݔሻ݁௜௤ሺ௫ି௑ሻ൯ ൅ ሻ݁௜௤ሺ௫ି௑ሻݔሺܧ߱݅ ൌ 0 
( 2.49) 

where ׏ൌ డ

డ௫
൅ ݕ Consider the change of variable .ݍ݅ ൌ ݔ െ ܺ to obtain 
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௬൫Σሺܺ׏ ൅ ሻ݁௜௤௬൯ݕ ൅ ݅߱ܲሺܺ ൅ ሻ݁௜௤௬ݕ ൌ 0

௬൫׏ ሶܷ ሺܺ ൅ ሻ݁௜௤௬൯ݕ ൅ ሺܺܧ߱݅ ൅ ሻ݁௜௤௬ݕ ൌ 0 
( 2.50) 

Average the above equations with respect to ܺ over the unit cell to get 

௬൫Σത݁௜௤௬൯׏ ൅ ݅߱ തܲ݁௜௤௬ ൌ 0

௬ቀ׏ ሶܷഥ݁௜௤௬ቁ ൅ ത݁௜௤௬ܧ߱݅ ൌ 0 
( 2.51) 

where any of the barred quantities are defined by 

ܩ̅ ൌ
1
ܽ
න ሺܺሻ݀ܺܩ
௔/ଶ

ି௔/ଶ
 ( 2.52) 

Define the mean constitutive relations as 

തܧ ൌ ,௘௙௙Σതܦ തܲ ൌ ௘௙௙ߩ ሶܷഥ ( 2.53) 

The averaged field quantities Σത, ܧത, തܲ, and ሶܷഥ are used in equations ( 2.53) to calculate the 

effective compliance, ܦ௘௙௙, and effective desnity, ߩ௘௙௙. Note that the overall field 

variables defined by ( 2.52) satisfy the overall field equations as is ensured by equations 

( 2.51), from which we have 

Σത ൅
߱
ݍ
തܲ ൌ 0, ሶܷഥ ൅

߱
ݍ
തܧ ൌ 0 ( 2.54) 

In order to have nontrivial solution for four linear and homogenous equations ( 2.53) and 

( 2.54) we must have 

1
௘௙௙ߩ௘௙௙ܦ

ൌ ൬
߱
ݍ
൰
ଶ

 ( 2.55) 

which satisfies the dispersion relation. 
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2.3.1.2. Micromechanical method 

The effective elastodynamic properties of one-dimensional PCs can be calculated 

through micromechanical modeling of a unit cell [40]. The solution to equation of motion 

for a one-dimensional composite can be expressed as sum of the volume average and a 

disturbance field due to the heterogeneities in the unit cell as 

߶෠ ൌ ߶଴ ൅ ߶ௗ ( 2.56)

where ߶෠ represents any of the field variables, stress (ߪො), strain (̂ߝ), momentum (̂݌) or 

velocity (ݑሶ෠). For Bloch type waves the field variables can be written as 

߶෠ሺݔ, ሻݐ ൌ ܴ݁ሾ߶ሺݔሻ ݔݍሾ݅ሺ݌ݔ݁ െ ሻሿሿݐ߱ ( 2.57)

where ߶ represents the periodic parts of the field variables (ߪ, ,ߝ ,݌ ሶݑ ). The local 

conservation and kinetic relations can be written in the following form 

෩.׏ ߪ ൌ െ݅߱݌ 

ሶݑ෩׏ ൌ െ݅߱ߝ 

( 2.58)

where ׏෩→ ׏ ൅  The local constitutive relations can be expressed as .ݍ݅

ߝ ൌ  ߪሻݔሺܦ

݌ ൌ ሶݑሻݔሺߩ  
( 2.59)

The heterogeneous unit cell is replaced by a homogenous one with uniform density ߩ଴ 

and compliance ܦ଴. Eigenstress, (ݔ)ߑ, and eigenvelocity, ሶܷ  are introduced such that ,(ݔ)

the pointwise values of the field variables are the same as the original heterogeneous 

solid. Therefore, the consistency conditions can be expressed as 
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ሻݔሺߝ ൌ ሻݔሺߪሻݔሺܦ ൌ ሻݔሺߪ଴ሺܦ െ  ሻሻݔሺߑ

ሻݔሺ݌ ൌ ሶݑሻݔሺߩ ሺݔሻ ൌ ሶݑ଴ሺߩ ሺݔሻ െ ሶܷ  ((ݔ)

( 2.60)

Averaging the consistency conditions ( 2.87) we obtain 

〈ߝ〉 ൌ 〈ߪ〉଴ሾܦ െ  ሿ〈ߑ〉

〈݌〉 ൌ ሶݑ〉଴ൣߩ 〉 െ 〈 ሶܷ 〉൧ 
( 2.61)

Using equations ( 2.58) and ( 2.60) we have 

ߪଶ׏ ൅ ߪଶߥ ൌ ߑଶߥ െ
ଶߥ

଴ܦ߱݅ ׏ ሶܷ  

ሶݑଶ׏ ൅ ሶݑଶߥ ൌ ଶߥ ሶܷ െ
ଶߥ

଴ߩ߱݅
 ߑ׏

( 2.62)

where ߥଶ ൌ ߱ଶߩ଴ܦ଴. Since the field variables, ߶, are periodic they can be written in 

terms of Fourier series 

߶ሺݔሻ ൌ 〈߶〉 ൅ ߶௣ ൌ 〈߶〉 ൅෍߶ሺߦሻ݁௜క௫

కஷ଴

 

〈߶〉 ൌ
1
ߗ
න ߶ሺݔሻ݀ݔ
ఆ

 

 ߶ሺߦሻ ൌ ଵ

ఆ
׬ ߶ሺݔሻ݁ି௜క௫݀ܣఆ  

ߦ ൌ ∓
ߨ2݊
ܽ

, ݊ ് 0 

( 2.63)
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where 〈߶〉 is the averaged value of the field variables over the unit cell and ߶௣ is the 

local deviations from the average value. From equations ( 2.62) the Fourier coefficients 

for stress and velocity fields are obtained 

ሻߦሺߪ ൌ
ଶߥ

ଶߥ െ ሺߦ ൅ ሻଶݍ
ሻߦሺߑ െ

ߦଶሺߥ ൅ ሻݍ
ଶߥ଴ሺܦ߱ െ ሺߦ ൅ ሻଶሻݍ

ሶܷ ሺߦሻ 

ሶݑ ሺߦሻ ൌ
ଶߥ

ଶߥ െ ሺߦ ൅ ሻଶݍ
ሶܷ ሺߦሻ െ

ߦଶሺߥ ൅ ሻݍ
ଶߥ଴ሺߩ߱ െ ሺߦ ൅ ሻଶሻݍ

 ሻߦሺߑ

( 2.64)

Therefore, the stress and velocity fields can be expressed as 

ሶݑ ሺݔሻ ൌ ሶݑ〉 〉 ൅෍݁௜క௫

కஷ଴

ቈܣሺߦሻ
1
ߗ
න ݕሻ݁ି௜క௬݀ݕሺߑ
ఆ

൅
ሻߦሺܤ
଴ߩ߱

1
ߗ
න ሶܷ ሺݕሻ݁ି௜క௬݀ݕ
ఆ

቉ 

( 2.65)

ሻݔሺߪ ൌ 〈ߪ〉 ൅෍݁௜క௫

కஷ଴

ቈܣሺߦሻ
1
ߗ
න ݕሻ݁ି௜క௬݀ݕሺߑ
ఆ

൅
ሻߦሺܤ
଴ܦ߱

1
ߗ
න ሶܷ ሺݕሻ݁ି௜క௬݀ݕ
ఆ

቉ 

( 2.66)

To calculate 〈ߑ〉 and 〈 ሶܷ 〉 the unit cell is divided into ߙത subregions, Ωఈ, and we average 

the periodic parts over each subregion 

ఆഀ〈௣ߪ〉 ൌ ௣ఈߪ ൌ
1
ఈߗ

න ݔ௣dߪ
ఆഀ

ൌ෍݃ఈሺߦሻ
కஷ଴

ቈܣሺߦሻ
1
ߗ
න ݕሻ݁ି௜క௬dݕሺߑ
ఆ

൅
ሻߦሺܤ

଴ܦ߱

1
ߗ
න ሶܷ ሺݕሻ݁ି௜క௬݀ݕ
ఆ

቉ 

( 2.67)
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ሶݑ〉 ௣〉ఆഀ ൌ ሶݑ ௣ఈ ൌ
1
ఈߗ

න ሶݑ ௣dݔ
ఆഀ

ൌ෍݃ఈሺߦሻ
కஷ଴

ቈܣሺߦሻ
1
ߗ
න ݕሻ݁ି௜క௬݀ݕሺߑ
ఆ

൅
ሻߦሺܤ

଴ߩ߱
1
ߗ
න ሶܷ ሺݕሻ݁ି௜క௬݀ݕ
ఆ

቉ 

where ݃ఈሺߦሻ ൌ ଵ

ఆഀ
׬ ݁௜క௫dݔఆഀ

. The integrals in equations ( 2.67) are replaced by their 

equivalent finite sums as 

1
ߗ
න ݕሻ݁ି௜క௬dݕሺܨ
ఆ

ൎ෍݂ఉ݃ఉሺെߦሻܨఉ

ఉ

݂ఉ ൌ ఉߗ ⁄ߗ ఉܨ       , ൌ  ఆഁ〈ܨ〉

( 2.68)

Equations ( 2.67) then yield 

௣ఈߪ ൌ ఉߑఈఉܣ െ
1

଴ܦ߱ ఈఉܤ ሶܷఉ 

ሶݑ ௣ఈ ൌ ఈఉܣ ሶܷఉ െ
1
଴ߩ߱

 ఉߑఈఉܤ

( 2.69)

where the coefficient matrices are given by 

ఈఉܣ ൌ෍݃ఈሺߦሻ݂ఉ

కஷ଴

݃ఉሺെߦሻܣሺߦሻ 

ఈఉܤ ൌ෍݃ఈሺߦሻ݂ఉ

కஷ଴

݃ఉሺെߦሻܤሺߦሻ 

( 2.70)
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Averaging the consistency conditions over each subregion and using equations ( 2.69) we 

have 

݂ఈ〈ߪ〉 ൌ െ ቈ̅ܣఈఉ ൅
݂ఈܦ଴

ఈܦ െ ଴ܦ ఈఉ቉ߜ ఉߑ ൅
1

଴ܦ߱ തఈఉܤ ሶܷఉ 

݂ఈ〈ݑሶ 〉 ൌ
1
଴ߩ߱

ఉߑതఈఉܤ െ ቈ̅ܣఈఉ ൅
݂ఈߩ଴

ఈߩ െ ଴ߩ
ఈఉ቉ߜ ሶܷఉ 

( 2.71)

where ̅ܣఈఉ ൌ ݂ఈܣఈఉ and ܤതఈఉ=݂ఈܤఈఉ. Equations ( 2.71) can be rewritten in matrix form 

as 

ሼࢳሽ ൌ ሼ઴ሽ〈ߪ〉 ൅
1
଴ܦ ሼશሽ〈ݑሶ 〉 

൛ࢁሶ ൟ ൌ
1
଴ߩ
ሼદሽ〈ߪ〉 ൅ ሼડሽ〈ݑሶ 〉 

( 2.72)

where the coefficient matrices can be expressed as 

ሼ઴ሽ ൌ ቈെሾࡰ࡭ሿ ൅
1
ଶߥ
ሾ࡮ሿൣ࡭ఘ൧

ିଵ
ሾ࡮ሿ቉

ିଵ

ሼ݂ሽ 

ሼશሽ ൌ
1
߱
ቈെሾࡰ࡭ሿ ൅

1
ଶߥ
ሾ࡮ሿൣ࡭ఘ൧

ିଵ
ሾ࡮ሿ቉

ିଵ

ሾ࡮ሿൣ࡭ఘ൧
ିଵ
ሼ݂ሽ 

ሼદሽ ൌ
1
߱
ቈെൣ࣋࡭൧ ൅

1
ଶߥ
ሾ࡮ሿሾࡰ࡭ሿିଵሾ࡮ሿ቉

ିଵ

ሾ࡮ሿሾ࡭஽ሿିଵሼ݂ሽ 

ሼડሽ ൌ ቈെൣ࣋࡭൧ ൅
1
ଶߥ
ሾ࡮ሿሾࡰ࡭ሿିଵሾ࡮ሿ቉

ିଵ

ሼ݂ሽ 

( 2.73)

where 
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ሾࡰ࡭ሿఈఉ ൌ +ఈఉܣ̅
௙ഀ஽బ

஽ഀି஽బ
 ఈఉߜ

൧ఈఉ࣋࡭ൣ ൌ +ఈఉܣ̅
௙ഀఘబ

ఘഀିఘబ
 ఈఉߜ

( 2.74)

The average consistency equations ( 2.61) can be expressed as 

〈ߝ〉 ൌ 〈ߪ〉ഥܦ ൅ ܵ̅ଵ〈ݑሶ 〉 

〈݌〉 ൌ ܵ̅ଶ〈ߪ〉 ൅ ሶݑ〉ߩ̅ 〉 

( 2.75)

which are the final constitutive relations for the homogenized medium. The expression 

for the effective parameters can be given by 

ഥܦ ൌ െܦ଴ሾ1 െ ሼ݂ሽ்ሼ઴ሽሿ 

ܵ̅ଵ= െሼ݂ሽ்ሼશሽ 

ܵ̅ଶ= െሼ݂ሽ்ሼદሽ 

ߩ̅ ൌ ଴ሾ1ߩ െ ሼ݂ሽ்ሼડሽሿ 

( 2.76)

Now, consider an infinite homogenized elastic solid with layered microstructure, and 

seek conditions under which it supports Bloch type waves of the form 

ሻݔሺ〈ߪ〉 ൌ  ௜௤௫݁〈ߪ〉

ሶݑ〉 〉ሺݔሻ ൌ ሶݑ〉 〉݁௜௤௫ 

ሻݔሺ〈ߝ〉 ൌ  ௜௤௫݁〈ߝ〉

ሻݔሺ〈݌〉 ൌ  ௜௤௫݁〈݌〉

( 2.77)

The overall field equations then become 
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݀
ݔ݀

൫〈ߪ〉݁௜௤௫൯ ൌ െ݅߱〈݌〉݁௜௤௫ 

݀
ݔ݀

൫〈ݑሶ 〉݁௜௤௫൯ ൌ െ݅߱〈ߝ〉݁௜௤௫ 

( 2.78)

which yield 

〈ߪ〉ݍ ൌ െ߱〈݌〉 

ሶݑ〉ݍ 〉 ൌ െ߱〈ߝ〉 
( 2.79)

These equations are combined with the constitutive equations ( 2.75) to get 

,ݍሺܭ ߱ሻݑሶ ൌ 0 ( 2.80)

For nontrivial solutions to the above equation ܭሺݍ, ߱ሻ should be equal to zero which 

produces the dispersion relation of the composite and it can be written as 

൬
߱
ݍ
൰
ଶ

ൌ ௣ଶݒ ൌ
ሺ1 ൅ ௣ܵ̅ଵሻሺ1ݒ ൅ ௣ܵ̅ଶሻݒ

ߩഥ̅ܦ
 ( 2.81)

where ݒ௣ is the phase velocity. 

 

2.3.2. Two-dimensional periodic composites 

The effective elastodynamic properties of two-dimensional PCs can be calculated 

through micromechanical modeling of a unit cell. The solution to the equations of motion 

for a two-dimensional elastic composite can be expressed as the sum of the volume 

average and a disturbation term due to heterogeneities in the unit cell as 

෡ࣘ ൌ ࣘ଴ ൅ ࣘௗ ( 2.82)
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where ෡ࣘ  represents any of the field variables, stress (࣌ෝ), strain (ࢿො), momentum (࢖ෝ) or 

velocity (࢛ሶ෡). For Bloch type waves the field variables can be written as 

߶෠ሺ࢞, ሻݐ ൌ ܴ݁ሾ߶ሺ࢞ሻ .ࢗሾ݅ሺ݌ݔ݁ ࢞ െ ሻሿሿݐ߱ ( 2.83)

where ࣘ represents the periodic parts of the field variables (࣌, ,ࢿ ,࢖ ሶ࢛ ). The local 

conservation and kinetic relations can be written in the following form 

સ.෩ ࣌ ൌ െ݅߱࢖ 

൫સ෩⨂࢛ሶ ൯
ୱ୷୫

ൌ െ݅߱ࢿ 
( 2.84)

where સ෩ → સ ൅  The local constitutive relations can be expressed as .ܙ݅

ࢿ ൌ ۲:  ࣌

࢖ ൌ ሶ࢛ߩ  
( 2.85)

where ۲(ܠ) is the compliance tensor and ߩሺܠሻ is the density. The heterogeneous unit cell 

is replaced by a homogenous one with uniform density ߩ଴ and compliance ۲଴. 

Eigenstrains, ۳(ܠ), and eigenmomentums, (ܠ)۾, are introduced such that the pointwise 

values of the field variables are the same as the original heterogeneous solid. Therefore, 

the consistency conditions can be expressed as 

ࢿ ൌ ۲: ࣌ ൌ ۲૙: ࣌ െ ۳ 

࢖ ൌ ሶ࢛ߩ ൌ ሶ࢛଴ߩ െ  ۾

( 2.86)

Using equations ( 2.85) and ( 2.86), equations ( 2.84) can be written as 

સ.෩ ۱଴: ൫સ෩⨂࢛ሶ ൯
ୱ୷୫

൅ ߱ଶߩ଴࢛ሶ ൌ ߱ଶ۾ ൅ ݅߱൫સ.෩ ۱଴: ۳൯ ( 2.87)
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۱଴: ൣસ෩⨂൫સ.෩ ൯൧࣌
ୱ୷୫

൅ ߱ଶߩ଴࣌ ൌ ߱ଶߩ଴۱଴: ۳ ൅ ݅߱۱଴൫સ෩⨂۾൯
ୱ୷୫

 

Since the field variables, ࣘ, are periodic they can be written in terms of Fourier series 

ࣘሺ࢞ሻ ൌ 〈ࣘ〉 ൅ ࣘ௣ ൌ 〈ࣘ〉 ൅෍ࣘሺࣈሻ݁࢞.ࣈ࢏

ஷ૙ࣈ

 ( 2.88)

〈ࣘ〉 ൌ ଵ

ఆ
׬ ࣘሺ࢞ሻdܣ௫ఆ    

ࣘሺࣈሻ ൌ
1
ߗ
න ࣘሺ࢞ሻ݁ି࢞.ࣈ࢏dܣ
ఆ

 

ߗ ൌ 4ܽଵܽଶ,   ࣈ ൌ ௜ߦ    ,௜ࢋ௜ߦ ൌ
௡೔గ

௔೔
,  ݅ ൌ 1,2, ݊௜ integers 

( 2.89)

where 〈ࣘ〉 is the averaged value of the field variables over the unit cell and ࣘ௣ is the 

local deviations from the average value. Using equation ( 2.88), equations ( 2.87) is written 

as 

.ࣀ ۱଴: ሺ࢛⨂ࣀሶ ሻୱ୷୫ ൅ ߱ଶߩ଴࢛ሶ ൌ ߱ଶ۾ ൅ ݅߱ሺࣀ. ۱଴: ۳ሻ 

െ۱଴: ሾࣀ⨂ሺࣀ. ሻሿୱ୷୫࣌ ൅ ߱ଶߩ଴࣌ ൌ ߱ଶߩ଴۱଴: ۳ െ ߱۱଴ሺ۾⨂ࣀሻୱ୷୫ 

( 2.90)

where ࣀ ൌ ࣈ ൅  For the case of an isotropic reference material .ࢗ

௜௝௞௟ܥ
଴ ൌ ଴ߣ

ᇱ ௞௟ߜ௜௝ߜ ൅ ௝௟ߜ௜௞ߜ଴൫ߤ ൅ ௝௞൯ ( 2.91)ߜ௜௟ߜ

where ߤ଴ is the shear modulus and ߣ଴
ᇱ  is defined as ߤ଴ሺ3 െ ଴ߢ଴ሻ/ሺߢ െ 1ሻ in which 

଴ߢ ൌ 3 െ ଴ߢ ଴ for plane strain andߥ4 ൌ ሺ3 െ ଴ሻ/ሺ1ߥ ൅  ଴ሻ for plane stress. Usingߥ

equation ( 2.91), Fourier coefficients for components of displacement and stress tensor 

can be written as 
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ሶ࢛ ሺࣈሻ ൌ .ሻࣀሺࢶ ሻࣈሺ۾ ൅ :ሻࣀሺࢨ ۳ሺࣈሻ 

ሻࣈሺ࣌ ൌ .ሻࣀሺࢸ ሻࣈሺ۾ ൅ :ሻࣀሺࢣ ۳ሺࣈሻ 
( 2.92)

where the coefficient tensors ࢸ ,ࢨ ,ࢶ, and ࢣ are given in Appendix 2D. Using equations 

( 2.92) the stress and velocity fields can be expressed as 

ሶ࢛ ሺ࢞ሻ ൌ ሶ࢛〉 〉 ൅෍݁࢞.ࣈ࢏

ஷ૙ࣈ

ቈࢶሺࣀሻ.
1
ߗ
න ௬ܣd࢟.ࣈ࢏ሻ݁ି࢟ሺࡼ
ఆ

൅ :ሻࣀሺࢨ
1
ߗ
න ௬ܣd࢟.ࣈ࢏ሻ݁ି࢟ሺࡱ
ఆ

቉ 

ሻ࢞ሺ࣌ ൌ 〈࣌〉 ൅෍݁࢞.ࣈ࢏

ஷ૙ࣈ

ቈࢸሺࣀሻ.
1
ߗ
න ௬ܣd࢟.ࣈ࢏ሻ݁ି࢟ሺࡼ
ఆ

൅ :ሻࣀሺࢣ
1
ߗ
න ௬ܣd࢟.ࣈ࢏ሻ݁ି࢟ሺࡱ
ఆ

቉ 

( 2.93)

The consistency equations can therefore be written as 

ሻ࢞ሺࢿ ൌ ۲ሺ࢞ሻ: ሾ〈࣌〉 ൅ ௣ሿ࣌ ൌ ۲૙: ሾ〈࣌〉 ൅ ௣ሿ࣌ െ ۳  

ሻ࢞ሺ࢖ ൌ ሶ࢛〉ሻሾ࢞ሺߩ 〉 ൅ ሶ࢛ ௣ሿ ൌ ሶ࢛〉଴ሾߩ 〉 ൅ ሶ࢛ ௣ሿ െ  ۾

( 2.94)

Equations ( 2.94) are averaged over a unit cell and written as 

〈ࢿ〉 ൌ ۲૙: 〈࣌〉 െ 〈۳〉 

〈࢖〉 ൌ ሶ࢛〉଴ߩ 〉 െ  〈۾〉
( 2.95)

In order to calculate 〈۳〉 and 〈۾〉, the unit cell is divided into ߙത subregions, ߗఈ, and the 

periodic part of the field variables are averaged over each subregion 
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ఆഀ〈௣࣌〉 ൌ ௣ఈ࣌ ൌ
1
ఈߗ

න ௫ܣ௣d࣌
ఆഀ

ൌ෍݃ఈሺࣈሻ
ஷ૙ࣈ

ቈࢸሺࣀሻ.
1
ߗ
න ௬ܣd࢟.ࣈ࢏ሻ݁ି࢟ሺࡼ
ఆ

൅ :ሻࣀሺࢣ
1
ߗ
න ௬ܣd࢟.ࣈ࢏ሻ݁ି࢟ሺࡱ
ఆ

቉ 

ሶ࢛〉 ௣〉ఆഀ ൌ ሶ࢛ ௣ఈ ൌ
1
ఈߗ

න ሶ࢛ ௣dܣ௫
ఆഀ

ൌ෍݃ఈሺࣈሻ
ஷ૙ࣈ

ቈࢶሺࣀሻ.
1
ߗ
න ௬ܣd࢟.ࣈ࢏ሻ݁ି࢟ሺࡼ
ఆ

൅ :ሻࣀሺࢨ
1
ߗ
න ௬ܣd࢟.ࣈ࢏ሻ݁ି࢟ሺࡱ
ఆ

቉ 

( 2.96)

where ݃ఈሺࣈሻ=	 ଵ
ఆഀ
׬ ௫ఆഀܣd࢞.ࣈ࢏݁

. The integrals in equations ( 2.96) are replaced by their 

equivalent finite sums as 

1
ߗ
න ௬ܣd࢟.ࣈ࢏ሻ݁ି࢟ሺࡲ
ఆ

ൎ෍݂ఉ݃ఉሺെࣈሻࡲఉ

ఉ

 

݂ఉ ൌ ఈߗ ⁄ߗ ఉࡲ       , ൌ  ఆഁ〈ࡲ〉

( 2.97)

which is used to write equations ( 2.96) as 

௣ఈ࣌ ൌ
1
݂ఈ

.ఈఉࢸൣ ఉ۾ ൅ :ఈఉࢣ ۳ఉ൧ 

ሶ࢛ ௣ఈ ൌ
1
݂ఈ

.ఈఉࢶൣ ఉ۾ ൅ :ఈఉࢨ ۳ఉ൧ 

( 2.98) 

where the coefficient tensors in these equations are defined by 
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∑=ఈఉۻ ݂ఈ݃ఈሺࣈሻ݂ఉࣈஷ૙ ݃ఉሺെࣈሻۻሺࣀሻ ( 2.99)

Using equations ( 2.98) and averaging the consistency conditions over each subregion we 

get 

݂ఈ〈࣌〉 ൌ െࢣഥఈఉ: ۳ఉ െ .ఈఉࢸ  ఉ۾

݂ఈ〈࢛ሶ 〉 ൌ െࢶഥఈఉ. ఉ۾ െ :ఈఉࢨ ۳ఉ 

ഥఈఉࢣ ൌ ఈఉࢣൣ ൅ ఈఉ݂ఈሺ۲ఈߜ െ ۲଴ሻିଵ: ۲଴൧ 

ഥఈఉࢶ ൌ ቈࢶఈఉ ൅ ૚ሺ૛ሻ
଴ߩ

ఈߩ െ ଴ߩ
 ఈఉ݂ఈ቉ߜ

( 2.100)

Equations ( 2.98) can be averaged and inverted to write the averaged eigenfields in terms 

of average velocity and stress tensors 

〈۳〉 ൌ :ࢤ 〈࣌〉 ൅ .ࢫ ሶ࢛〉 〉  

〈۾〉 ൌ :ࢮ 〈࣌〉 ൅ .ࢹ  〈۾〉
( 2.101)

where the expressions for matrices ࢤ, ,ࢫ  are given in appendix B. The averaged ࢹ and ,ࢮ

consistency conditions ( 2.95) can now be expressed as 

〈ࢿ〉 ൌ ۲ഥ: 〈࣌〉 ൅ .ഥ૚ࡿ ሶ࢛〉 〉  

〈࢖〉  ൌ :ഥ૛ࡿ 〈࣌〉 ൅ .ഥ࣋ ሶ࢛〉 〉 

( 2.102)

where 

۲ഥ ൌ ۲଴ െ   〈ࢤ〉

ഥ૚ࡿ  ൌ െ〈ࢫ〉 
( 2.103)
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ഥ૛ࡿ ൌ െ〈ࢮ〉 

ഥ࣋ ൌ ଴૚ߩ െ  〈ࢹ〉

where ۲ഥ  and ࣋ഥ are the overall effective compliance and density of the composite; and ࡿഥ૚ 

and ࡿഥ૛ are the coupling terms. 

Consider an infinite homogenized elastic solid with periodic microstructure, and 

seek conditions under which it supports Bloch waves of the following form 

ሻ࢞ሺ〈࣌〉 ൌ  ࢞.ࢗ௜݁〈࣌〉

ሶ࢛〉 〉ሺ࢞ሻ ൌ ሶ࢛〉  ࢞.ࢗ࢏݁〈

ሻ࢞ሺ〈ࢿ〉 ൌ  ࢞.ࢗ࢏݁〈ࢿ〉

ሻ࢞ሺ〈࢖〉 ൌ  ࢞.ࢗ࢏݁〈࢖〉

( 2.104)

The averaged field equations can be expressed as 

.ࢗ 〈࣌〉 ൌ െ߱〈࢖〉 

ሶ࢛〉⨂ࢗ 〉 ൌ െ߱〈ࢿ〉 
( 2.105)

These equations are combined with the constitutive equations ( 2.102) to get 

.ሻ߱,ࢗሺࡷ ሶ࢛〉 〉 ൌ 0 ( 2.106)

For nontrivial solutions to the above equation, the determinant of matrix ࡷ should be set 

equal to zero which produces the dispersion relation of the composite. 
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Appendix 2A 

For a one-dimensional PC the coefficient matrices ષ, ઴, and  ࡴ  in equation ( 2.13) 

can be expressed as 

ષ ൌ ߱ଶ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

ߩ̅ Δߩ
sinሺܾܽߨ ሻ

ߨ
Δߩ

sinሺ2ܾܽߨ ሻ

ߨ2
…

Δߩ
sin	ሺ

ܾߨ
ܽ ሻ

ߨ
ߩ̅ Δߩ

sin	ሺ
ܾߨ
ܽ ሻ

ߨ

Δߩ
sin	ሺ2ܾܽߨ ሻ

ߨ2
Δߩ

sin	ሺܾܽߨ ሻ

ߨ
ߩ̅

⋮ ⋱ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 ( 2.107)

ࡴ ൌ ݀݅ܽ݃
݅
ܽ
ሼܳ െ ܳ,ܰߨ2 െ ሺܰߨ2 െ 1ሻ,… , ܳ,… , ܳ ൅ ሽ ( 2.108)ܰߨ2

Matrix ઴ can be obtained by replacing ߱ଶ̅ߩ in the matrix ષ by ܦഥ and ߱ଶΔߩ by Δܦ, 

respectively. Also the following notation is used 

Δߩ ൌ ଶߩ െ ܦଵ,      Δߩ ൌ ଶܦ െ  ଵܦ

ߩ̅ ൌ ݊ଵߩଵ ൅ ݊ଶߩଶ,     ܦഥ ൌ ݊ଵܦଵ ൅ ݊ଶܦଶ 

݊ଵ ൌ
௔ି௕

௔
,    ݊ଶ ൌ

௕

௔
 

( 2.109)

where ߩଵ, ߩଶ, ܦଵ, and ܦଶ are the density and compliance of the first and second phase, 

respectively. 

 

Appendix 2B 

For a two-dimensional PC, the coefficient matrices ષ, ۶, and ઴ in characteristic 

equation ( 2.13) can be expressed as follows. Define 
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ଵܫ ൌ ሺߙ ൅ 1 ൅ܯሻ ൅ ሺߚ ൅ܯሻሺ2ܯ ൅ 1ሻ, 

ଵܬ ൌ ሺߛ ൅ 1 ൅ܯሻ ൅ ሺߜ ൅ܯሻሺ2ܯ ൅ 1ሻ, 

ଶܫ ൌ ଵܫ ൅ ሺ2ܯ ൅ 1ሻ ଶ, ଶܬ ൌ ଵܬ ൅ ሺ2ܯ ൅ 1ሻ ଶ. 

( 2.110)

where ߙ, ,ߚ ,ߛ ߜ ൌ 0,േ1,… ,േܯ. The matrix ષ can be given as 

Ωሺܫଵ, ଵሻܬ ൌ
ଶߥ

݀
ቐ

ߠ െ 1
ത݊ଵ ൅ ത݊ଶߠ

݉ଶܬଵሺܴሻ

2√ܴ
if ߙ ് ߛ and/or ߚ ് ߜ

1																								if	ߙ ൌ ,ߛ ߚ ൌ 			ߜ
 

Ωሺܫଶ, ଶሻܬ ൌ Ωሺܫଵ, ,ଵܫଵሻ,     Ωሺܬ ଶሻܬ ൌ Ωሺܫଶ, ଵሻܬ ൌ 0 

( 2.111)

The matrix ۶ ൌ െ۶ഥ் can be expressed as 

Hഥሺܫଵ, ଵሻܬ ൌ െ݅ ൜
ܳଵ ൅ ߛߨ2 ݂݅ ߙ ൌ ߛ ܽ݊݀ ߚ ൌ ߜ
0 ݂݅ ߙ ് ߛ ݎ݋ ߚ ് ߜ  

Hഥሺܫଶ, ଵሻܬ ൌ െ݅ ൜
ܳଶ ൅ ߙ	݂݅			଴݊ߜߨ2 ൌ ߚ	݀݊ܽ	ߛ ൌ ߜ
ߙ	݂݅																			0 ് ߚ	ݎ݋	ߛ ് ߜ  

,ଶܫഥሺܪ ଶሻܬ ൌ ,ଵܫഥሺܪ 	,ଵሻܬ ,ଷܫഥሺܪ ଶሻܬ ൌ ,ଶܫഥሺܪ ,ଵܫഥሺܪ  ,ଵሻܬ ଶሻܬ ൌ ,ଷܫഥሺܪ ଵሻܬ ൌ 0 

( 2.112)

The matrix ઴ is defined as follows: Φሺܫଵ,  ଵሻ can be obtained from equation ( 2.111) ifܬ

one replaces ሺߠ െ 1ሻ ሺ ത݊ଵ ൅ ത݊ଶߠሻ⁄  by ሺߛଵଵଵଵ െ 1ሻ ሺ ത݊ଵ ൅ ത݊ଶߛଵଵଵଵሻ⁄  and omits ߥଶ ݀⁄ ; 

Φሺܫଶ, ߠଶ/݀ሻሺߥଶሻ can be found from equation ( 2.111) if one replaces ሺܬ െ 1ሻ ሺ ത݊ଵ ൅ ത݊ଶߠሻ⁄  

by 4ሺߛଵଶଵଶ െ 1ሻܴଵଶଵଶ ሺ ത݊ଵ ൅ ത݊ଶߛଵଵଵଵሻ⁄ ; Φሺܫଵ, ,ଶܫଷሻ can be obtained from Φሺܬ  ଶሻ if oneܬ

replaces in the latter 4ܴଵଶଵଶ and ߛଵଶଵଶ by ܴଵଵଶଶ and ߛଵଵଶଶ, respectively; for the other 

components of matrix ઴ one has 

Φሺܫଷ, ଵሻܬ ൌ Φሺܫଵ, ଷሻ ( 2.113)ܬ
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Φሺܫଷ, ଷሻܬ ൌ Φሺܫଵ, ଵሻܬ ൌ Φሺܫଶ, ଷሻܬ ൌ Φሺܫଷ, ଶሻܬ ൌ 0. 

where the following notation is used 

ଶߥ ൌ
߱ଶܽଵ

ଶ̅ߩ
ଵଵଵଵܥ̅

 

ߩ̅ ൌ ሺଵሻߩ ത݊ଵ ൅ ሺଶሻߩ ത݊ଶ,     ̅ܥଵଵଵଵ ൌ ଵଵଵଵܥ
ሺଵሻ ത݊ଵ ൅ ଵଵଵଵܥ

ሺଶሻ ത݊ଶ 

ത݊ଵ ൌ 1 െ ത݊ଶ, ത݊ଶ ൌ
గ

ସ

௕భ௕మ
௔భ௔మ

ߠ   , ൌ ఘሺమሻ

ఘሺభሻ
 

݊ଶ ൌ
௕భ
௔భ
, ݉ଶ ൌ

௕మ
௔మ
, ݊଴ ൌ

௔భ
௔మ

,  ݀ ൌ ଵ

஼భ̅భభభ஽ഥభభభభ
 

௝௞௟௠ߛ ൌ
௝௞௟௠ܦ
ሺଶሻ

௝௞௟௠ܦ
ሺଵሻ ,			 ௝ܴ௞௟௠ ൌ

௝௞௟௠ܦ
ሺଵሻ

ଵଵଵଵܦ
ሺଵሻ 	 

ܲ ൌ ሺߙ െ ሻଶߛ ൅ ൤ሺߚ െ ሻߜ
݉ଶ

݊ଶ
൨
ଶ

 

ഥଵଵଵଵܦ ൌ ଵଵଵଵܦ
ሺଵሻ ത݊ଵ ൅ ଵଵଵଵܦ

ሺଶሻ ത݊ଶ 

( 2.114)

where, the superscript (i) over a quantity indicates the corresponding value for the 

material number i (i=1, 2); with i=1 indicating the matrix and i=2 indicating the 

inclusion. 

 

Appendix 2C 

For a three-dimensional PC, the coefficient matrices ષ,۶, and ઴ in characteristic 

equation ( 2.13) can be expressed as 
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ࡴ ൌ ൥
࣢ଵ ࣢ଶ ࣢ଷ 0 0 0
0 ࣢ଵ 0 ࣢ଶ ࣢ଷ 0
0 0 ࣢ଵ 0 ࣢ଶ ࣢ଷ

൩ ( 2.115)

where ࣢ଵ, ࣢ଶ and ࣢ଷ are ሺ2ܯ ൅ 1ሻଷ ൈ ሺ2ܯ ൅ 1ሻଷ matrices defined as: for ߙ ൌ ,ߜ ߚ ൌ

ߛ and ߤ ൌ ߬, and with ܳ௝ ൌ ௝ݍ ௝ܽ, 

࣢ଵሺܫଵ, ଵሻܬ ൌ െ݅ሺܳଵ ൅ ,ሻߙߨ2 ࣢ଶሺܫଵ, ଵሻܬ ൌ െ݅ሺܳଶ ൅ 	ሻ݊଴ߚߨ2

࣢ଷሺܫଵ, ଵሻܬ ൌ െ݅ሺܳଷ ൅  ሻ݉଴ߛߨ2
( 2.116)

For ߙ ് ,ߜ ߚ ് ߛ and ߤ ് ߬ 

࣢ଵሺܫଵ, ଵሻܬ ൌ ࣢ଶሺܫଵ, ଵሻܬ ൌ ࣢ଷሺܫଵ, ଵሻܬ ൌ 0 ( 2.117)

where ܫଵ ൌ ሺߙ ൅ 1 ൅ܯᇱሻ ൅ ሺߚ ൅ܯሻሺ2ܯ ൅ 1ሻ ൅ ሺߛ ൅ܯሻሺ2ܯ ൅ 1ሻଶ; ,ߜ		 ,ߤ ߬ ൌ

0,േ1,േ2,… , , േܯ. Also, matrices ષ and ઴ can be given by 

ષ ൌ ൥
ષഥ 0 0
0 ષഥ 0
0 0 ષഥ

൩ ( 2.118)

and 

઴ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ઢଵଵଵଵ ૙ ૙ ઢଵଵଶଶ ૙ ઢଵଵଷଷ
૙ 4ઢଵଶଵଶ ૙ ૙ ૙ ૙
૙ ૙ 4ઢଵଷଵଷ ૙ ૙ ૙

ઢଵଵଶଶ ૙ ૙ ઢଶଶଶଶ ૙ ઢଶଶଷଷ
૙ ૙ ૙ ૙ 4ઢଶଷଶଷ ૙

ઢଵଵଷଷ ૙ ૙ ઢଶଶଷଷ ૙ ઢଷଷଷଷے
ۑ
ۑ
ۑ
ۑ
ې

 ( 2.119)

where ષഥ  and ઢ௜௝௞௟ are ሺ2ܯ ൅ 1ሻଷ ൈ ሺ2ܯ ൅ 1ሻଷ matrices defined in the following manner 

for composites with ellipsoidal inclusions 
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ષഥሺܫଵ, ଵሻܬ ൌ ቐ
	1				 ݂݅ ߙ ൌ ,ߜ ߚ ൌ ,ߤ ߛ ൌ ߬;

ቀ
ߨ
2
ቁ
ଷ/ଶ ߠ െ 1

ത݊ଵ ൅ ത݊ଶߠ

݊ଶ݉ଶ݈ଶܬଷ/ଶሺܴሻ

ܴଷ/ଶ
otherwise

 ( 2.120)

where ܬଷ/ଶ is a Bessel function of the first kind of order 3/2 and its argument ܴ is given 

by 

ܴ ൌ ߙଶଶሺ݊ൣߨ െ ሻଶߜ ൅ ݉ଶ
ଶሺߚ െ ሻଶߤ ൅ ݈ଶ

ଶሺ ߛ െ ߬ሻଶ൧
ଵ/ଶ

 ( 2.121)

For ܫଵ ് ௜௝௞௟ߛଵ, ઢ௜௝௞௟ is obtained if one substitutes ሺܬ െ 1ሻܴ௜௝௞௟/ሺ ത݊ଵ ൅ ത݊ଶߛߠଵଵଵଵሻ for 

ሺߠ െ 1ሻ/ሺ ത݊ଵ ൅ ത݊ଶߠሻ in the expression for ષഥሺܫଵ, ଵܫ ଵሻ, and forܬ ൌ  ଵ one hasܬ

ઢ௜௝௞௟ ൌ
ሺ ത݊ଵ ൅ ത݊ଶߛߠ௜௝௞௟ሻܴ௜௝௞௟
ሺ ത݊ଵ ൅ ത݊ଶߛߠଵଵଵଵሻ

 ( 2.122)

The following notation is used in the above expressions 

ଶߥ ൌ
߱ଶܽଵଶ̅ߩ
ଵଵଵଵܥ̅

,			 ߩ̅ ൌ ሺଵሻߩ ത݊ଵ ൅ ሺଶሻߩ ത݊ଶ, ଵଵଵଵܥ̅ ൌ ଵଵଵଵܥ
ሺଵሻ ത݊ଵ ൅ ଵଵଵଵܥ

ሺଶሻ ത݊ଶ	

ത݊ଵ ൌ 1 െ ത݊ଶ,				 ത݊ଶ ൌ
ଵܾଶܾଷܾߨ
6ܽଵܽଶܽଷ

ߠ			,	 ൌ
ሺଶሻߩ

ሺଵሻߩ
	,			݊ଶ ൌ

ܾଵ
ܽଵ
,					݉ଶ ൌ

ܾଶ
ܽଶ
	

݈ଶ ൌ
ܾଷ
ܽଷ
,					݊଴ ൌ

ܽଵ
ܽଶ
,				݉଴ ൌ

ܽଵ
ܽଷ
௝௞௟௠ߛ			, ൌ

௝௞௟௠ܦ
ሺଶሻ

௝௞௟௠ܦ
ሺଵሻ 	

௝ܴ௞௟௠ ൌ
௝௞௟௠ܦ
ሺଵሻ

ଵଵଵଵܦ
ሺଵሻ ,			݀ ൌ

1

ഥଵଵଵଵܦଵଵଵଵܥ̅
, ഥଵଵଵଵܦ ൌ ଵଵଵଵܦ

ሺଵሻ ത݊ଵ ൅ ଵଵଵଵܦ
ሺଶሻ ത݊ଶ 

( 2.123)

 

Appendix 2D 

For a two-dimensional PC the coefficient tensors ࢸ ,ࢨ ,ࢶ, and ࢣ in equation ( 2.92) 

can be given in component form as 
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௣௝ߔ ൌ
߱ଶ

଴ߩ
ቈ

ܿଵ
ଶ െ ܿଶ

ଶ

ሺ߱ଶ െ ܿଵ
ଶߞଶሻሺ߱ଶ െ ܿଶ

ଶߞଶሻ
௝ߞ௣ߞ ൅

1
߱ଶ െ ܿଶ

ଶߞଶ
 ௣௝቉ߜ

௣௜௝߆ ൌ
െ߱
2
ቈ

2ܿଶ
ଶሺܿଵ

ଶ െ ܿଶ
ଶሻ

ሺ߱ଶ െ ܿଵ
ଶߞଶሻሺ߱ଶ െ ܿଶ

ଶߞଶሻ
௝ߞ௣ߞ௜ߞ ൅
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( 2.124)

where ܿଵ ൌ ඥሺߣ଴
ᇱ ൅ ଴ሻߤ2 ⁄଴ߩ  is the longitudinal wave velocity and ܿଶ ൌ ඥߤ଴ ⁄଴ߩ  is the 

shear wave velocity. 
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Chapter 3  

 

Experimental verification of band-gap in 

periodic elastic composites 

 

3.1.  Introduction 

Propagation of stress waves in PCs is prohibited within band-gaps, where 

incoming stress waves get effectively reflected. This feature can be used to design 

acoustic filters, noise insulators, and vibrationless environments. In this chapter, band-

gap in one- and two-dimensional PCs is investigated experimentally. Mixed variational 

formulation is used to design samples with band-gaps at frequencies convenient to 

conduct experiment. Samples are fabricated and their transmission coefficient is 

measured. Experimental data are compared with theoretical results for verification of the 

band structure. In addition, controlling the band structure of PCs by changing the ambient 

temperature is studied. The essential idea is to fabricate a PC with constituent materials 

which has temperature dependent material properties. As temperature is changed, such a 

composite exhibits a band structure which changes with the change in temperature. 

Ultrasound measurements are performed over a range of frequency at different 
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temperatures. Experimental transmission spectrum at each temperature is compared with 

the theoretical band structure for verification. 

In the recent years, there have been many efforts for tuning the band structure of 

PCs. Ruzzene and Baz [46] used shape memory alloys to make a one-dimensional PC 

and showed that by changing the thermal activation of a shape memory alloy, the width 

and location of the band-gaps can be modified. Goffaux and Vigneron [47] tuned the 

band-gaps of a two-dimensional PC made of square rods by changing the geometry of the 

system. They showed that by increasing the rotation angle of the square rods with respect 

to the lattice orientation, band-gaps can be widened. Zou et al. [48] showed that band-

gaps of two-dimensional PCs consisting of rectangular piezoelectric ceramics placed in 

epoxy matrix can be controlled with changing the filling fraction and the length to width 

ratio of the rods. Wu et al. [49] used dielectric elastomer layers in a one-dimensional 

periodic composite consisting of layers of aluminum and PMMA to make a tunable 

acoustic filter. They showed that the band structure of the composite can be controlled by 

changing the applied electric voltage on the dielectric layers. Zou et al. [50] showed that 

in-plane band-gaps in two-dimensional PCs made of piezoelectric inclusions can be tuned 

by controlling the propagation of out-of-plane elastic waves. They realized that the width 

and starting frequency of band-gaps at high frequency range can be controlled by the 

filling fraction and the composite’s piezoelectricity. 

 

3.2. Ultrasonic setup 

Figure  3-1(a, b) show a schematic drawing and a photograph of the ultrasonic 

setup used in this study. A wave packet envelop made of 10 sine waves at the carrier 
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where Δݐ ൌ ଶݐ െ  ଵ is the difference between the arrival time of the signals through theݐ

samples with thickness ݀ଵ and ݀ଶ. It can be shown that for a homogenous linear 

viscoelastic material the real and imaginary parts of the complex modulus can be 

expressed as [52] 

ᇱܧ ൌ
௅ܿߩ

ଶሺ1 െ ଶሻݎ
ሺ1 ൅ ଶሻଶݎ

 ( 3.4) 

ᇱᇱܧ ൌ
௅ܿߩ2

ଶݎ
ሺ1 ൅ ଶሻଶݎ

 
( 3.5) 

where the dimensionless parameter r is given by: 

ݎ ൌ
௅ܿߙ
߱

 
( 3.6) 

 

3.3. One-dimensional steel/polyurea periodic composite 

3.3.1. Sample 

A one-dimensional PC made of periodic layers of steel and polyurea (PU) is 

designed and fabricated. The thicknesses of the steel and polyurea layers are given by 

௦௧ݐ ൌ 1.15	mm and ݐ௉௎ ൌ 1	mm, respectively. The properties of the constituent materials 

are given by ܿ௦௧ ൌ ୱ୲ߩ			,ݏ/݉	5130 ൌ 7820	kg/݉ଷ, ܿ௉௎ ൌ ୔୙ߩ and ,ݏ/݉	1693 ൌ

1100	kg/݉ଷ for the wave velocity and density of steel and polyurea (at 20 oC), 

respectively. A sample made of two unit cells of the steel/PU PC is fabricated. The 

frequency of the incident wave is changed to sweep over a range of frequency and the 

transmitted signal is measured. Figure  3-3 show a drawing of the steel/PU sample. 
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Figure  3-3: Unit cell of the one-dimensional steel/PU sample 
 

3.3.2. Results 

Figure  3-4 shows the theoretical band structure of the steel/PU sample at 20 oC. It 

can be seen that the first two band-gaps of the composite occur at 251-811 kHz and 892-

1588 kHz, respectively. Figure  3-5 shows the normalized amplitude of the transmitted 

longitudinal wave through the sample. Experimental results are normalized with respect 

to amplitude of the transmitted wave in a transducer to transducer test.  It can be seen that 

the theoretical and experimental data are in good agreement. However, it is observed that 

the pass bands are slightly wider than the theoretical calculations. For example the 

theoretical second pass band occurs at 811-892 kHz, while the experimentally observed 

second pass band occurs at 797-907 kHz. There are at least two possibilities for this 

difference between the theoretical calculations and experimental results (i) material 

properties of the constituents slightly change with frequency and (ii) the sample is in 

cylindrical shape which results in dispersion while the one-dimensional calculations do 

not take this into account. 

St PU St
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Figure  3-4: Theoretical dispersion curve for the one-dimensional steel/PU sample 

 

Figure  3-5: Normalized transmission through the one-dimensional steel/PU sample 
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gap at 442-763 kHz; while for the SV-waves, the first band-gap occurs at 242-434 kHz 

and the second band-gap occurs at 535-761 kHz. 

 
Figure  3-7: Theoretical dispersion curve for the two-dimensional brass/epoxy sample 

 

(a)  (b)  

Figure  3-8: Displacement mode shapes of the two-dimensional brass/epoxy PC for 
acoustic SV-mode at Q=(1,0) (a) ݈ܽ݁ݎሺݑଵሻ, (b) ݅݉ܽ݃ሺݑଵሻ 
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(c)  (d)  

Figure 3-8: Displacement mode shapes of the two-dimensional brass/epoxy PC for 
acoustic SV-mode at Q=(1,0), continued (c) ݈ܽ݁ݎሺݑଶሻ, (d) ݅݉ܽ݃ሺݑଶሻ 

 

(a)  
(b)  

(c)  (d)  

Figure  3-9: Displacement mode shapes of the two-dimensional brass/epoxy PC for 
acoustic P-mode at Q=(1,0) (a) ݈ܽ݁ݎሺݑଵሻ, (d) ݅݉ܽ݃ሺݑଵሻ, (c) ݈ܽ݁ݎሺݑଶሻ, and (d) ݅݉ܽ݃ሺݑଶሻ 
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attenuation in the sample is also calculated and shown in Figure  3-10(b) and 

Figure  3-11(b) for P-wave and SV-wave, respectively. It can be observed that there is a 

longitudinal band-gap at 423-695 kHz which is in close agreement with theoretical 

prediction. For the shear waves, the first and second band-gaps are observed at 222-347 

kHz and 481-634 kHz, respectively. Although, the location of the first SV band-gap is in 

good agreement with theoretical calculations, due to higher dissipation of shear waves in 

the epoxy at high frequencies, the transmitted SV-wave is small above 600 kHz and it is 

difficult to make any meaningful observation. Several local peaks are observed in 

Figure  3-11 above 600 kHz which could probably be due to the mixed modes. Also, it 

can be observed that for both longitudinal and shear waves the beginning of the band-

gaps are slightly shifted to lower frequencies. Although, the bandwidth of the P-wave 

band-gap matches the theoretical calculations, for the SV-wave the experimental first 

band-gap bandwidth is slightly less than the theoretical prediction. There are at least two 

possibilities for this difference between the theoretical calculations and experimental 

results (i) material properties of the constituents slightly change with frequency and (ii) 

the sample is in cylindrical shape which results in dispersion in propagation of the waves 

while theoretical calculations do not take this into account. 
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(a)  

(b)  

Figure  3-10: (a) Normalized transmission and (b) attenuation of the P-wave through the 
two-dimensional brass/epoxy sample 
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(a)  

(b)  

Figure  3-11: (a) Normalized transmission and (b) attenuation of the SV-wave through the 
two-dimensional brass/epoxy sample 
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3.5. Temperature tuning of band structure of PCs 

Controlling the band structure of PCs by changing the ambient temperature is 

investigated experimentally. The essential idea is to fabricate a periodic composite with 

constituent materials which have temperature dependent material properties. As 

temperature is changed, such a composite exhibits a band structure which changes with 

the change in temperature. A two-phase composite with periodic layers of polyurea and 

steel is designed and fabricated. Measurements are performed over a range of frequency 

at different temperatures. Experimental transmission spectrum at each temperature is 

compared with the theoretical band structure for verification. 

 

3.5.1. Test procedure and results 

The sample designed for this study is a one-dimensional PC made of steel and 

polyurea with dimensions and properties given in section 3.3.1. The longitudinal wave 

velocity of polyurea changes with temperature which is measured experimentally. The 

sample and transducers are placed in a temperature control chamber to keep their 

temperature constant during the measurements. The transducers used here are CHRFO18 

NDT Systems transducers with nominal diameter of 1 in and nominal center frequency 

1.0 MHz. Figure  3-12 shows the longitudinal wave velocity and attenuation coefficient of 

polyurea as a function of temperature at 1.0 MHz. The real and imaginary parts of the 

modulus of polyurea are calculated and used to calculate the theoretical band structure of 

the steel/PU sample at each temperature. In order to study the changes in the band 

structure, the sample is tested at different temperatures from -20 oC to 60 oC with a step 

size of 20 oC. At each step the system is left for 15 minutes to reach the state of thermal 
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equilibrium. At each temperature, ultrasonic measurements are performed over the 

frequency range from 0.15 to 2.2 MHz and the transmitted signal is recorded. 

 

Figure  3-12: Longitudinal wave velocity and attenuation coefficient per unit thickness of 
polyurea as a function of temperature at 1.0 MHz 
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observed that the value of the transmitted signal at higher pass bands is smaller compared 

to lower pass bands, which is due to higher viscous dissipation at higher frequencies. 

Also, the first three modes move to lower frequencies when the temperature is increased. 

This is attributed to the reduction in the elastic stiffness of polyurea as the temperature is 

increased. It can be seen that the difference between the theoretical and experimental 

results is more significant at higher frequencies compared to lower frequencies. The main 

reason for this difference is possibly due to higher dispersion at higher frequencies.  

 

Figure  3-13: Normalized amplitude of transmitted wave through 2 unit cells of the 
PU/steel sample as a function of frequency at different temperatures 
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Figure  3-14: Comparison of the experimental and theoretical frequency at the end of the 
first pass band as well as at the center of the second and third pass bands in the PU/steel 

sample at different temperatures 
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Furthermore, controlling the band structure of PCs by changing the ambient 

temperature is studied. Ultrasonic measurements are performed at different temperatures 

on a sample made of periodic layers of steel and polyurea. Temperature dependent elastic 

properties of polyurea are measured experimentally and used to calculate the band 

structure of the steel/PU sample. It is observed that the calculated band structures are in 

good agreement with the experimental results at different temperatures. This shows 

tunable acoustic filters can be designed at a target frequency with a desired bandwidth 

through reverse engineering once the corresponding properties are identified using here 

proposed experimental tool. 
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Chapter 4  

 

Design and experimental evaluation of PCs 

with minimal reflection and maximal 

attenuation 

 

4.1. Introduction 

Stress waves can be manipulated through microstructural design of PCs to 

achieve a desired elastodynamic response. In this chapter, dynamic homogenization is 

used to design the microstructure of a one-dimensional PC to match its acoustic 

impedance with impedance of a homogenous medium. As a result, the reflection of stress 

waves at the interface of the two impedance matched media becomes zero. For 

experimental verification, samples are fabricated and ultrasound tests are performed to 

measure the reflection coefficient. Theoretical reflection coefficient is compared with the 

experimental values for evaluation of the theoretical calculations. In addition, a one-

dimensional metamaterial is designed in order to make a composite with both high 

stiffness-to-density ratio and high attenuation coefficient. Samples are fabricated and 
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attenuation coefficients are measured at different frequencies. The experimental 

attenuation coefficient is compared with theoretical values for verification. 

Acoustic impedance matching in ultrasonic transducers has been of great interest 

due to the importance of efficient power transmission from the transducer to sample [53, 

54]. When the acoustic impedance of two adjacent media is matched, the reflection of 

incoming acoustic waves at their interface becomes zero. Different techniques have been 

used to design materials for acoustic impedance matching  [53, 54, 55, 56]. Quarter 

wavelength transformer has been conventionally used to design ultrasonic transducers for 

better energy transmission to the sample [53]. In this method a matching layer with 

thickness equal to ¼ of its wavelength at the frequency of interest is designed to be 

placed between the piezoelectric element and the test sample. Tapered impedance 

matching [55, 56] was later developed for increasing acoustic energy transmission. In this 

method a composite is made from many closely packed microrods with smooth 

continuous transition of effective impedance which increases the energy transfer from the 

transducer and a test sample. A microstructured porous aluminum [57] was also 

developed for matching the acoustic impedance between the transducer active element 

and the test sample. Using this technique the microstructure of porous aluminum can be 

designed with varying the porosity of the layer to control its acoustic impedance. 

Acoustic metamaterials are highly attenuative near the resonance frequency. This 

feature can be used to make materials with tunable attenuation coefficient. Liu et al [1] 

designed a three-dimensional sonic metamaterial and showed that near the resonance 

frequencies the metamaterial behaves like a medium with effective negative stiffness. 

Their experimental results show that at the resonance frequencies the transmission 
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coefficient is very small due to attenuation induced by local resonance. Ho et al. [27] 

used several locally resonant materials with different resonance frequencies and showed 

that each layer vibrates like an independent unit. Their results show significant drop in 

transmission coefficient at resonance frequencies. Cheng et al. [28] designed a one-

dimensional ultrasonic metamaterial with both effective density and effective bulk 

modulus simultaneously negative. They found the transmission coefficient using acoustic 

transmission line method (ATLM), finite element method, and experimental 

measurement and observed a substantial drop in transmission spectrum around the 

resonance frequency. 

Elastic/acoustic noise is undesirable in many applications and isolating 

mechanical systems from external noise is generally necessary for their robust 

performance. But, an inherent limitation in properties of existing engineering materials is 

that increase in the attenuation coefficient usually appears at the expense of decrease in 

their stiffness. For example, polymers have high attenuation coefficient while they have 

low stiffness; whereas, metals have high stiffness but low attenuation coefficient. 

Furthermore, at low frequencies (i.e. a few tens of kHz), the wavelength in materials can 

become very large and large structures are needed for stress wave attenuation. Therefore, 

design and development of stiff materials with high attenuation coefficient at low 

frequencies is an engineering challenge. 

4.2. Acoustic impedance matching 

Dynamic homogenization is used to design a one-dimensional PC which is 

impedance matched with aluminum at 300 kHz. To verify the calculations, five unit cells 
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of the composite sandwiched by two homogenous aluminum half-spaces are considered. 

Transfer matrix method is used to calculate the exact solution for the reflection 

coefficient. FE modeling and ultrasonic measurement are performed to find the reflection 

coefficient for verification. 

 

4.2.1. Sample and test setup 

The sample designed for this study is a one-dimensional composite made of 

periodic layers of steel and PMMA. The thickness of steel and PMMA layers are given 

by ݐ௦௧ ൌ 0.6	݉݉ and ݐ௉ெெ஺ ൌ 0.2	݉݉, respectively. The longitudinal wave speed and 

density of steel, PMMA, and aluminum are given by ܿ௦௧ ൌ ௦௧ߩ ,ݏ/݉	5130 ൌ

7820	 ݇݃ ݉ଷ⁄ , ܿ௉ெெ஺ ൌ ௉ெெ஺ߩ ,ݏ/݉	2560 ൌ 1180	 ݇݃ ݉ଷ⁄ , ஺ܿ௟ ൌ  and ,ݏ/݉	5100

஺௟ߩ ൌ 2700	 ݇݃ ݉ଷ⁄ , respectively. Figure  4-1 shows the test fixture designed for this 

experiment together with the sample and the transducers. The fixture is designed to apply 

a precompression using a spring-nut system at the end of the fixture. Incident wave is 

sent through a piezoelectric transducer to the incident bar and is received by a similar 

transducer on the other end of the transmission bar. A piezoelectric sensor is attached to 

the surface of the incident aluminum bar in the middle to measure the incident and 

reflected waves. 
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4.2.3. Results 

Figure  4-2 shows the theoretical band structure of the steel/PMMA composite. 

Figure  4-3 (a, b) show the effective compliance, effective density, and effective acoustic 

impedance of the composite over the first pass band. It can be seen that effective 

impedance of the composite is equal to impedance of aluminum ( ஺ܼ௟ ൌ 13.7	MRayls) at 

300 kHz. Due to the matched impedance of the composite and aluminum at 300 kHz, the 

reflection at their interface becomes zero. 

 

Figure  4-2: Theoretical band structure of the steel/PMMA sample 
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(a)  

(b)  

Figure  4-3: (a) Effective density and compliance and (b) effective acoustic impedance of 
the steel/PMMA sample over the first mode 

 

Figure  4-4 shows the variation of the total energy in the aluminum bars at 300 

kHz as a function of time obtained from the finite element simulation. The energy in the 

incident bar increases due to the work done by the external applied force at the left 

boundary, until it reaches a maximum value. The wave packet then travels inside the 

incident bar while its total energy remains constant. Then, it reaches the composite and 
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most of it gets transmitted to the transmission bar; while only 4.2% of its energy gets 

reflected. Although, transfer matrix calculation predicts zero reflection at 300 kHz, three-

dimensional FE analysis gives slightly different results. This is mainly because the 

calculated effective impedance and reflection coefficient are based on one-dimensional 

assumption, while finite element analysis is a three-dimensional modeling of the system 

including the effect of dispersion.  

Figure  4-5 shows the experimental reflection coefficient over 200-400 kHz which 

is compared to transfer matrix calculation. Although, the experimental reflection 

coefficient is small, the results are slightly different than the theoretical calculations. One 

of the main reasons for this difference is due to one-dimensional assumption in 

calculating the effective impedance and also the reflection coefficient through the transfer 

matrix method. Therefore, there are at least three possibilities for this difference (i) the 

sample is in cylindrical shape which results in dispersion, (ii) properties of the material 

constituents change with frequency, and (iii) the bonding at the interface of the layers and 

also at the interface of the piezoelectric sensor and the incident bar may not be perfect. 
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Figure  4-4: Total energy of the incident and transmission aluminum bars at 300 kHz 
calculated from finite element simulation 

 

 

Figure  4-5: Comparison of reflection coefficient obtained from ultrasonic measurement 
and transfer matrix method for impedance matching verification 
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4.3. Metamaterial design for stress wave attenuation 

A metamaterial is designed that attenuates stress waves effectively at low 

frequency range while it maintains high stiffness-to-density ratio. The essential idea is to 

design a one-dimensional metamaterial which has local resonance over its second mode, 

and also has a wide second band-gap. Dynamic homogenization is used to design a one-

dimensional metamaterial and to calculate its effective elastodynamic properties. Transfer 

matrix method is used to calculate the attenuation coefficient of the composite. Samples 

are fabricated and their attenuation is measured experimentally and the data are compared 

with the theoretical results. 

 

4.3.1. Sample geometry and composition 

The sample designed for this study is a three-phase, one-dimensional composite 

which is made of periodic layers of carbon fiber reinforced polymer (CFRP), polyester 

foam, and steel. Figure  4-6 (a, b) show a schematic drawing and a photograph of one unit 

cell of the sample. The size of each layer is given by ݐଵ ൌ ଶݐ ,݉݉	7.0 ൌ 3.2	݉݉, and 

ଷݐ ൌ 0.5	݉݉ for thickness of CFRP, foam, and steel, respectively. The through-thickness 

longitudinal wave speed and density of CFRP, polyester foam, and steel are given by 

ܿ஼ிோ௉ ൌ ஼ிோ௉ߩ ,ݏ/݉	1980 ൌ 1530	 ݇݃ ݉ଷ,⁄  ܿ௣௙ ൌ ௣௙ߩ ,ݏ/݉	230 ൌ 360	 ݇݃ ݉ଷ⁄ , 

ܿ௦௧ ൌ ௦௧ߩ and ,ݏ/݉	5130 ൌ 7820	 ݇݃ ݉ଷ⁄ , respectively. 
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(a)  

(b)  

(c)                                
Figure  4-7: (a) Band structure, (b) effective density, and (c) effective compliance of the 

one-dimensional CFS metamaterial sample 
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4.3.3. Experimental results 

Figure  4-8 shows the normalized transmission through 2 unit cells of the CFS 

sample. The experimental data are normalized with respect to transmitted amplitude in a 

transducer-to-transducer test. To show that the high attenuation coefficient in the sample 

is in fact due to the metamaterial response, the results for three different reference 

samples are also presented: (i) CF: the sample is made by removing the steel layer from 

the CFS sample, (ii) CS: the sample is made by removing the foam layers from the CFS 

sample, and (iii) C: the sample is made of CFRP with the same thickness as the CFS 

sample. It can be seen that the transmission through the CFS sample is significantly lower 

than C and CS samples over the entire frequency range. While up to 16 kHz the 

transmission in CFS and CF samples are close, above 16 kHz the transmission through 

CFS sample is significantly lower. Figure  4-9 shows the experimental attenuation per unit 

length in the CFS sample as a function of frequency. Theoretical attenuation is also 

shown in this figure for comparison. It is seen that the experimental results are in good 

agreement with the theoretical calculations. Also, it can be observed that above 4 kHz the 

attenuation per unit length is more than 500 dB/m and increases with increasing 

frequency. The difference between the theoretical and experimental data in Figure  4-9 

stems mainly from the frequency dependence of the properties of the foam and the 

polymer components of the composite, and perhaps more significantly, from the sample 

geometry, i.e., the dispersion due to the cylindrical shape of the sample. 

Figure  4-10 shows a dynamic Ashby chart, depicting attenuation coefficient vs. 

in-plane stiffness-to-density ratio, for various engineering materials, as well as that from 

the metamaterial design. Overall static in-plane stiffness-to-density ratio of the CFS 
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sample is calculated using the volume averages. In this figure it can be seen that polymers 

have high attenuation coefficient but small stiffness-to-density ratio, while metals have 

high stiffness-to-density ratio with small attenuation coefficient, whereas our 

metamaterial maintains both a large attenuation coefficient and also a large in-plane 

stiffness-to-density ratio. This kind of behavior cannot be achieved through any natural 

material at sonic frequency range which demonstrates the significance of the current 

metamaterial design. 

 

Figure  4-8: Normalized transmission through the metamaterials CFS sample as well as 
reference samples  
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Figure  4-9: Theoretical vs. experimental attenuation in the metamaterial CFS sample 

 

 

Figure  4-10: Dynamic Ashby chart for various engineering materials and comparison 
with optimally designed CFS (CFRP/foam/steel) sample (4-20kHz). 
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4.4. Summary 

Dynamic homogenization is used to design a one-dimensional PC which is 

impedance matched with aluminum at 300 kHz. To verify the theoretical calculation, the 

reflection from five unit cells of the composite sandwiched by two homogenous 

aluminum half-spaces is studied. Transfer matrix method and finite element method are 

used to find the reflection coefficient theoretically. Samples are fabricated and ultrasonic 

tests are performed to measure the reflection coefficient experimentally. Experimental 

results are compared with theoretical calculations and reasonable agreement is observed. 

This approach can be used to design a layered composite with desired acoustic 

impedance serving as the matching layer in ultrasound transducers for efficient power 

transmission to test sample. In addition, a metamaterial is designed that attenuates stress 

waves effectively with a minimal thickness at low frequency range; while it maintains 

high stiffness-to-density ratio. Experimental measurements show that the attenuation per 

unit length in the metamaterial is in good agreement with theoretical calculations. 
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Chapter 5  

 

Experimental verification for design 

optimization of PCs 

 

5.1. Introduction 

When the microstructure of a periodic composite is known, its elastodynamic 

response can be directly calculated. However, finding the microstructure of a composite 

for a desired elastodynamic response is an inverse problem, which requires using 

optimization methods. In this chapter, optimization techniques are used together with 

mixed variational formulation and dynamic homogenization to make a computational 

platform for microstructural design of PCs. Constrained optimization problems are 

considered and a genetic algorithm is used to find the optimal design. Design 

optimization of one-, two-, and three-dimensional PCs with maximum band-gap 

bandwidth is first studied as an example. For evaluation of the computational platform, 

optimal design of PCs for shock wave mitigation is studied. The microstructure of a one-

dimensional PC is designed which maximizes the band-gaps bandwidth in the frequency 

range of interest. To verify the theoretical calculation, a sample is fabricated and 
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Hopkinson bar experiments are performed. In addition, optimal design of one-

dimensional PCs for minimum reflection and maximum attenuation is studied. Samples 

are fabricated and ultrasound measurements are performed for experimental verification. 

In the recent years, there has been growing interest in using optimization 

techniques for microstructural design of PCs. Hussein et al. [58] used a genetic algorithm 

for design of one-dimensional PCs for an optimal frequency band structure. They 

illustrated examples which optimized the performance of layered PCs for acoustic 

filtering. Meng et al. [59] performed optimization to enhance the underwater sound 

absorption of an acoustic metamaterial slab. They illustrated the feasibility of combining 

several layers with different resonance frequencies to achieve a broadband underwater 

sound absorber. Wang et al. [60] studied the design of one-dimensional metamaterials to 

maximize the frequency range where a metamaterials exhibits negative effective 

elastodynamic properties. They used a genetic algorithm for optimization and illustrated 

that such an approach provides satisfactory results. 

In the last few decades, there has been some interest to develop different 

techniques for sonar stealth; where an underwater object becomes invisible to sonar 

waves. The idea behind the passive sonar stealth is to cover the underwater object with a 

coating that absorbs most of incoming sonar waves. Therefore, the reflected waves off 

the surface of the object become small and it becomes difficult to detect the object. One 

of the most popular materials which has been used for this purpose is a synthetic rubber 

with specially designed micro voids. The issue with using this material is that the micro 

voids collapse in deep water due to high pressure. Here, designing a coating from PCs for 

sonar stealth of underwater objects is investigated. The idea is to design a PC which is 
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impedance matched with water to minimize the reflection at the interface of the 

surrounding water and the coating. The microstructure of the PC is then designed so that 

it has a high attenuation coefficient. Therefore most the waves transmitted to the PC 

coating are dissipated. Due to difficulties to perform underwater tests, aluminum is 

chosen here as the surrounding medium and experiments are performed to present as a 

proof of concept. 

There have been several efforts to investigate the behavior of layered materials 

under shock loading. Zhuang et al. [61] investigated finite amplitude shock propagation 

in one-dimensional PCs experimentally. They observed that the shock speed in the 

composite is lower than the shock speed in its constituent materials. Chen and Chandra 

[62] considered the effect of heterogeneity in one-dimensional composites under impact 

loading. They studied the effect of impedance mismatch, thickness ratio, and interface 

density on the response of one-dimensional composites under impact loading. Luo et al. 

[63] studied stress wave propagation in two and three layer structures under an impulsive 

load. They showed that when an incident pulse passes through a one-dimensional 

structure, a reduced stress amplitude and elongated pulse duration can be obtained 

through the proper selection of materials and dimensions. Schimizze et al. [64] studied 

blast-induced shock wave mitigation in sandwich structures. They observed that the 

density and acoustic impedance mismatch are of primary importance in shock wave 

mitigation in sandwich structures. 
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5.2. Optimization 

Consider an optimization problem of the form 

Minimize  ݂ሺݔሻ 

Subject to   ݃௜ሺݔሻ ൌ 0							ሺ݅ ൌ 1. . ݉ሻ 

௝݄ሺݔሻ ൐ 0 ሺ݆ ൌ 1. . ݊ሻ 

( 5.1)

where ݂ሺݔሻ is the objective function, ݃௜ሺݔሻ ൌ 0 are equality constraints, and ௝݄ሺݔሻ ൐ 0 

are inequality constraints. This constrained optimization problem can be reduced to the 

following unconstrained one using the quadratic penalty method and log barrier method 

[65] 

Minimize  ܨఒభ,ఒభሺݔሻ ൌ ݂ሺݔሻ ൅ ଵߣ ∑ ݃௜ሺݔሻଶ
௠
௜ୀଵ െ ଶߣ ∑ logሺ ௝݄ሺݔሻሻ

௡
௝ୀଵ      

ሺ݅ ൌ 1. .݉, ݆ ൌ 1. . ݊ሻ 
( 5.2)

where ܨఒభ,ఒమis the new objective function, and ߣଵ and ߣଶ are constant coefficient 

parameters. It can be shown that the global minimum of ܨఒభ,ఒభ is the solution of ( 5.1) as 

 .ଶ goes to zero [65]ߣ ଵ goes to infinity andߣ

 

5.3. Genetic algorithm 

Any global optimization method can be used to find the optimal solution of 

equation ( 5.2). Here genetic algorithm (GA) [66] is adopted which is a global 

optimization method and has been used successfully in several engineering problems. 

The GA begins by defining ܯ arrays of ܰ random variables within the design space. The 

value of objective function (cost) for each array is calculated and they are sorted from the 

lowest to highest cost. From the ܯ designs, only the top ܯ୩ୣୣ୮ are kept for mating and 
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the rest are discarded. Two designs (parent) out of the top ܯ୩ୣୣ୮ designs are chosen 

based on a certain probability to mate, where the probability assigned to each design is 

inversely proportional to its cost (selection). Once the parents are chosen, their variables 

are swapped randomly to generate ܯ െܯ୩ୣୣ୮ new designs (crossover). Then, ܯ୫୳୲ 

designs are chosen randomly and replaced with new random designs (mutation). The cost 

functions for the new designs are calculated and the process is repeated until convergence 

is achieved. Figure  5-1 shows a flow chart of the genetic algorithm used here. To increase 

the speed of calculations, computations are performed in parallel on different CPUs. 

GPUs are also used in matrix calculations when the dimensions of the matrices are large 

(typically above 2000x2000) to decrease the calculation time. 

 

Figure  5-1: Flowchart of a genetic algorithm 

Define cost function, variables, 
design space, and GA parameters

Generate initial population

Find cost for each chromosome

Select mates
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Convergence check

done
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5.4. Optimal design of elastic filters 

As an example, GA is used to design the microstructure PCs with maximum 

band-gap bandwidth. One-, two-, and three-dimensional PCs with epoxy matrix and steel 

inclusions are considered. Figure  5-2 shows a unit cell of one-dimensional, two-

dimensional, and three-dimensional PCs. For two- and three-dimensional PCs the 

inclusions are assumed to be in elliptical and ellipsoidal shapes, respectively. The Young 

modulus, Poisson ratio, and density of epoxy and steel are given by ܧ௘௣ ൌ ୮ୣߥ	,ܽܲܩ	5 ൌ

0.35, ୮ୣߩ ൌ 1200	 ݇݃ ݉ଷ⁄ ௦௧ܧ , ൌ ௦௧ߥ ,ܽܲܩ	200 ൌ 0.3, and ߩ௦௧ ൌ 8000	 ݇݃ ݉ଷ⁄ , 

respectively. The central frequency for the maximum band-gap is set to be 500 kHz 

which is applied as an equality constraint. The dimensions for the optimal one-

dimensional design are given by ݀ୣ୮ ൌ 1.26	mm and ݀ୱ୲ ൌ 0.98	mm for thickness of 

epoxy and steel, respectively. For the two-dimensional PCs, the dimensions of the 

optimal design are given by ܽଵ ൌ 2.21	mm, ܽଶ ൌ 1.88	mm, ܾଵ ൌ 1.83	mm, and 

ܾଶ ൌ 1.51	mm for the sides of epoxy and axes of steel inclusion, respectively. For three-

dimensional case, the dimensions of the optimal design are given by ܽଵ ൌ 2.10	mm, 

ܽଶ ൌ 2.02	mm, ܽଷ ൌ 2.61	mm, ܾଵ ൌ 1.82	mm, ܾଶ ൌ 1.81	mm, and ܾଷ ൌ 2.46	mm for 

sides of epoxy and axes of steel inclusion, respectively. Figure  5-3 shows the optimal 

band structure for all three cases, where their corresponding normalized bandwidth, band-

gap bandwidth over central frequency ratio, ∆݂ ଴݂⁄ , is 1.14, 0.62, and 0.43. It can be 

observed that by increasing the dimensions of the problem, from one- to three-

dimensional, achieving higher bandwidth becomes more difficult due to the appearance 

of new modes at higher dimensions. 
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Figure  5-2: Unit cell of a (a) one-dimensional, (b) two-dimensional, and (c) three-
dimensional PCs 

 

(a)  

Figure  5-3: Band structure of (a) one-dimensional PC with maximum band-gap 
bandwidth (matrix: epoxy and inclusion: steel) 
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(b)  

(c)  

Figure 5-3: Band structure of (b) tow-dimensional and (c) three-dimensional PCs with 
maximum band-gap bandwidth (matrix: epoxy and inclusion: steel), continued 
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range. A genetic algorithm is used to design the microstructure of a one-dimensional PC 

for maximum band-gap bandwidth. A constraint is introduced into the optimization 

problem to limit the total thickness of the composite. To verify the theoretical calculation, 

samples are fabricated and Hopkinson bar experiments are performed. 

 

5.5.1. Design optimization 

The objective is to determine the microstructure of a one-dimensional PC which 

maximizes the band-gaps over a target frequency range, ଵ݂
ᇱ to ଶ݂

ᇱ. The band-gap ratio 

 is defined as the ratio of sum of the band-gaps frequency ranges divided by the total (ܴܤ)

frequency range 

ܴܤ ൌ
∑ሺ ଶ݂

ሺ௜ሻ െ ଵ݂
ሺ௜ሻሻ

ଶ݂
ᇱ െ ଵ݂

ᇱ  ( 5.3)  

where ଵ݂
ሺ௜ሻ and ଶ݂

ሺ௜ሻ are the frequencies where the ݅-th band-gap begins and ends, 

respectively. A constraint is introduced to limit the total unit cell size of the composite to 

be equal to a prescribed value, D. The objective function is defined as inverse of the 

band-gap ratio and the optimization problem is expressed as 

Minimize  
௙మ
ᇲି௙భ

ᇲ

∑ሺ௙మ
ሺ೔ሻି௙భ

ሺ೔ሻሻ
 

Subject to   ∑ ݀ሺ௝ሻ ൌ ேܦ
௝ୀଵ  

( 5.4)  

In order to find the solution of ( 5.4) we define 

ሻࢊఒሺܨ ൌ
ଶ݂
ᇱ െ ଵ݂

ᇱ

∑ሺ ଶ݂
ሺ௜ሻ െ ଵ݂

ሺ௜ሻሻ
൅ ቌ෍݀ሺ௝ሻߣ െ ܦ

ே

௝ୀଵ

ቍ

ଶ

 ( 5.5)  

where ܨఒ is the new objective function and ߣ is a positive coefficient. 
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5.5.2. Hopkinson bar setup 

Figure  5-4 and Figure  5-5 show a schematic representation and a photograph of 

the Hopkinson bar setup used in this study, respectively. A mini gas chamber is designed 

and fabricated for this experiment to better control the speed of the projectile in order to 

keep the stresses in the sample within elastic limit. The striker bar hits end A of the 

incident bar at a given velocity which produces a compressive pulse traveling along the 

incident bar. The sample is sandwiched between end B of the incident bar and end C of 

the transmission bar. When the pulse reaches the sample, a portion of the pulse is 

transmitted to the transmission bar, and a portion of it is reflected back into the incident 

bar. Strain gauges, S1 and S2, measure the strain, ߝሺݐሻ, in the middle of the incident and 

transmission bars as a function of time. The incident, transmission, and striker bars are all 

made of steel with common diameter of 1.27 cm. The length of both the incident and 

transmission bars are 1.22 m, and the length of the striker bar is 10.16 cm. The particle 

velocity, ܸሺݐሻ, and axial stress, ߪሺݐሻ, in the bars can be calculated as [67] 

ܸሺݐሻ ൌ ܿ଴ߝሺݐሻ 

ሻݐሺߪ ൌ  ሻݐ଴ܸሺܿߩ
( 5.6)

where ܿ଴ and ߩ are the wave speed and the density of the bars, respectively. The total 

energy carried by a pulse can be calculated as 

ܧ ൌ ݁଴ ׬ ܸሺ߬ሻଶ݀߬
௧
଴      ( 5.7) 

where ݁଴ is a constant coefficient. 
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ܿ௦௧ ൌ 5064݉ ⁄ݏ ௦௧ߩ , ൌ 7810	 ݇݃ ݉ଷ⁄ , ܿ௣௖ ൌ 2236݉ ⁄ݏ , and ߩ௣௖ ൌ 1193	 ݇݃ ݉ଷ⁄  for 

the wave speed and density of steel and polycarbonate, respectively.  

Table  5-1 shows the optimal design and band-gap ratio for different values of ܰ. 

It can be seen that ܰ ൌ 3 yields the largest band-gap ratio and therefore is chosen as the 

optimal design. It is understood that in this problem increasing the number of layers does 

not necessarily produce wider band-gaps. Figure  5-7 (a) shows the corresponding band 

structure for the optimal design. It can be seen that there is a wide band-gap from 28 to 

104 kHz. Figure  5-7(b) shows the transmission and reflection spectra of five unit cells of 

the composite sandwiched by two half-space steel bars. It can be seen that components of 

the pulse with frequency content over the band-gaps are completely reflected. Also, a 

significant portion of the wave energy with frequencies over the pass bands is reflected. It 

should be noted that part of the reflection is due to the impedance mismatch between the 

incident bar and the sample. 

 

Table  5-1: Optimal design for shock wave mitigation (polycarbonate/steel) 

ܰ ݀ሺ௝ሻ ሺ݆ ൌ 1. . ܰሻ (mm) ܴܤ% 

2 14.6, 5.4 59.5 

3 4.0, 9.6, 6.4 73.2 

4 1.1, 3.9, 8.7, 6.3 61.5 

5 2.2, 7.3, 4.2, 1.1, 5.2 62.1 
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Figure  5-6: Unit cell of a two-phase, one-dimensional polycarbonate/steel PC 

 

(a)   

(b)  

Figure  5-7: (a) Band structure of the polycarbonate/steel sample and (b) reflection and 
transmission spectra of the sample sandwiched by two steel half-spaces 
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Figure  5-8 (a) shows the experimentally measured transmitted and incident pulses 

(pulses are shifted in time for comparison purposes). It can be seen that the rise time of 

transmitted pulse is ߬௧௥∗ ൌ  which is 4.3 times larger than the incident pulse rise ,ݏߤ	62.5

time. Also, the maximum stress of the transmitted pulse is ߪ௧௥∗ ൌ  which is 3.4 ,ܽܲܯ	37.1

times less than that of the incident pulse. Figure  5-8 (b) shows the FFT of the incident 

and transmitted pulses. It can be seen that the components of the incident pulse with 

frequencies above 28 kHz, which are within the band-gaps of the composite, are not 

transmitted. Furthermore, using the arrival time of the transmitted pule, the wave speed in 

the sample is measured to be 1538	݉ ⁄ݏ  which is 45.4% less than the wave speed in 

polycarbonate. The energy of the incident and transmitted pulses is calculated and it is 

observed that only 9.7% of the incident pulse energy gets transmitted. The increase in the 

rise time and the decrease in the maximum stress of the transmitted pulse compared to 

those of the incident pulse are mainly due to: (i) a significant portion of the incident pulse 

getting reflected over the stopbands, (ii) components of the pulse within the pass bands 

being dispersed due to multiple reflections occurring within the composite, (iii) viscous 

dissipation in polycarbonate, and (iv) reflections at the interface of the steel bars and the 

composite due to impedance mismatch. It is important to note that the first two 

attenuation mechanisms are absent in homogenous materials, which leads to higher 

attenuation in the sample. The in-plane quasi-static stiffness of the composite is 

calculated to be 99.1 GPa. This shows the significance of this design leading to both high 

in-plane stiffness and high attenuation simultaneously; which are essential for shock 

wave mitigation. 
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(a)   

(b)  

Figure  5-8: (a) Experimentally measured incident and transmitted pulses of the 
steel/polycarboate sample in Hopkinson bar test and (b) FFT of the incident and 

transmitted pulses 
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composite. The target frequency range is chosen to be from 0 to ଴݂. The objective 

function is defined as the inverse of the attenuation in the composite. In order to 

minimize the reflection over the target frequency range, the composite is impedance 

matched with the half-spaces over its first mode. To achieve this (i) the end of target 

frequency, ଴݂, should be within the first pass band and (ii) the effective impedance of 

composite, ܼ௘௙௙, should not deviate from the impedance of the half-spaces, ܼ଴, within a 

certain acceptable percentage, ݌. These two conditions are formulated as inequality 

constraints: (i) ݄ଵሺݔሻ ൌ ଵ݂ െ ଴݂ ൐ 0 and (ii) ݄ଶሺ࢞ሻ ൌ ଴ܼ݌ െ หܼ௘௙௙ െ ܼ଴ห ൐ 0, 

respectively. See Figure  5-10(a, b) for graphical description of these constrains. The 

optimization problem can therefore be expressed as 

Minimize  ݂ሺݔሻ ൌ 1 ⁄ܦ  

Subject to   ݄ଵሺݔሻ ൌ ଵ݂ െ ଴݂ ൐ 0 

݄ଶሺݔሻ ൌ ଴ܼ݌ െ หܼ௘௙௙ െ ܼ଴ห ൐ 0 

( 5.8)

where D is dissipation in the composite at ଴݂. This constrained optimization problem can 

be reduced to the following unconstrained one 

Minimize  ܨሺ࢞ሻ ൌ 1 ⁄ܦ െ ൫logሺߣ ଵ݂ െ ଴݂ሻ ൅ logሺܼ݌଴ െ หܼ௘௙௙ െ ܼ଴หሻ൯ ( 5.9)

Figure  5-9: A one-dimensional PC sandwiched by two homogenous half-spaces 
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(a)  (b)  

Figure  5-10: Graphical description of the constraints for impedance matching (a) band 
structure and (b) effective impedance over the first pass band 

 

5.6.1. Sample 

Here, three-phase, one-dimensional PCs are considered and the thicknesses of 

each phase are the design parameters. The target frequency is chosen to be ଴݂ ൌ50 kHz, 

constant coefficient p to be %5, and the half-spaces are made of aluminum. The 

constituent materials of the three-phase composite are chosen to be brass, polycarbonate, 

and steel for the first, second, and third phases, respectively. Figure  5-11 shows a 

schematic photograph of the unit cell where ݐଵ,  ,ଷ are the thicknesses of brassݐ and	ଶ,ݐ

polycarbonate, and steel, respectively. The design space is chosen to be 0.1	݉݉ ൏ ௜ݐ ൏

5	݉݉ for thickness of each phase. The material properties for each phase are given by 

ܿଵ ൌ 4021	݉ ⁄ݏ ଵߩ , ൌ 8476݇݃ ݉ଷ⁄ , ܿଶ ൌ 2224݉ ⁄ݏ ଶߩ , ൌ 1193݇݃ ݉ଷ⁄ , ܿଷ ൌ

5173	݉ ⁄ݏ , and ߩଷ ൌ 7830݇݃ ݉ଷ⁄  for the wave velocity and density of brass, 

polycarbonate, and steel, respectively. The loss tangent for polycarbonate is measured to 

be tanሺߜଶሻ ൌ 3.3%, while the loss in the other two constituent materials is negligible. 

The effect of the constant coefficient ߣଶ is studied and it is observed that as ߣଶ increases, 
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the constraints are imposed more strictly, which results in less reflected energy. This 

comes at the expense of lowering the dissipation. It is observed that ߣ ൌ 0.1 log	ሺ ଴݂ሻ⁄  

yields reasonable results in terms of both maximizing the attenuation and minimizing the 

reflection, and therefore is selected as the optimal parameter. In order to evaluate the 

performance of the optimal design, two reference samples with the same unit cell size 

and the same constituent materials but different microstructures are fabricated. Table  5-2 

shows the microstructure of the optimal design (design 1) together with the two reference 

samples (design 2 and 3). 

 

Figure  5-11: Unit cell of a three-phase, one-dimensional PC 
 

Table  5-2: Optimal design (design 1) and two reference designs with the same unit cell 
size for mininum reflection and maximum attenuation 

 Design 1 Design 2 Design 3 

ሺݐଵ, ,ଶݐ  ଷ) (1.22, 0.74, 4.05) (0.50, 1.46, 4.05) (1.72, 1.24, 2.05)ݐ
 

 

5.6.2. Test procedure and results 

Figure  5-12 shows the experimental setup designed for this experiment. The 

sample is sandwiched by two 4 ft long aluminum bars. Stress waves are sent from the left 

end of the incident bar using a piezoelectric transducer. The waves travel through the 

incident bar and reach the sample; where parts of them get transmitted to the transmission 
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Figure  5-13: Experimental reflection and attenuation spectra of the samples for minimal 
refelction and maximum dissipation 

 

5.7. Summary 

Design optimization of PCs for a desired elastodynamic response is studied. 

Optimal design of one-, two-, and three-dimensional PCs with maximum band-gap 

bandwidth is first studied as an example. It is observed that by increasing the dimension 

of the problem, i.e. from one- to three-dimensional, achieving high bandwidth becomes 

more difficult. In addition, optimal design of one-dimensional PCs for shock wave 

mitigation is studied. A genetic algorithm is used to design the microstructure of a one-

dimensional PC for maximum band-gap bandwidth. To verify the theoretical calculations, 

samples are fabricated and Hopkinson bar experiments are performed. It is observed that 

only a small portion of energy of the incident pulse gets transmitted and the maximum 

stress of the transmitted pulse drops significantly. In addition, optimal design of one-

dimensional PCs for minimum reflection and maximum attenuation of stress waves is 

investigated. Two reference samples with the same unit cell size and same constituent 
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materials but different microstructures are fabricated for comparison. It is observed that 

the optimal design exhibits superior performance over the two reference samples, both in 

terms of minimizing the reflection and maximizing the attenuation. 
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Chapter 6  

 

Energy refraction in two-dimensional 

periodic composites 

 

6.1. Introduction 

Microstructure of a PC can be designed to achieve negative energy refraction at 

the interface of the PC and a homogenous medium at certain frequency ranges. This 

feature can be used to focus stress waves in a focal point in order to make flat acoustic 

lens for applications like ultrasound imaging. Furthermore, due to recent advances in 

transformational acoustics, which makes acoustic cloaking achievable [43], dynamic 

homogenization has become a powerful tool for microstructural design of the cloak [44]. 

This demands further understanding of dynamic homogenization techniques and their 

limitations. In this chapter, mixed variational formulation is used together with dynamic 

homogenization to study energy refraction in two-dimensional PCs. Equifrequency 

surfaces (EFS) of a two-dimensional PC made of epoxy matrix with steel inclusions are 

calculated. Frequency-dependent overall elastodynamic properties of the PC are obtained 
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through dynamic homogenization. Vectors of group velocity are studied and energy 

refraction at the interface of a homogenous half-space and the PC is investigated. 

In the recent years, there have been many efforts to study negative energy 

refraction behavior in PCs. Yang et al. [68] presented a combined experimental and 

theoretical study of negative refraction in three-dimensional PCs. They showed that 

three-dimensional PCs can be used to focus a diverging ultrasound beam into a narrow 

focal spot.  Li et al. [23] used the multiple scattering technique and studied the negative 

energy refraction of acoustic waves in two-dimensional phononic crystals. They showed 

that local resonance mechanism brings on a group of flat bands in low frequency region 

which provides two EFS’s close to circular leading to negative refraction. Croenne et al. 

[24] presented experimental evidence of negative refraction of longitudinal waves in two-

dimensional PCs with a solid matrix. They fabricated a PC made of triangular 

arrangements of steel rods embedded in epoxy and carried out an experiment on a prism-

shaped PC inside an epoxy block and observed negative refraction experimentally. 

Nemat-Nasser [25, 26] studied anti-plane shear wave propagation in one- and two-

dimensional PCs using a mixed variational formulation. He showed that negative energy 

refraction can be accompanied by positive phase-velocity refraction, and positive energy 

refraction can be accompanied by negative phase-velocity refraction. 

 

6.2. Unit cell properties 

Consider a two-dimensional PC with square unit cell and dimensions given by 

ܽଵ ൌ ܽଶ ൌ 3	ܿ݉, and square inclusions with dimensions ܾଵ ൌ ܾଶ ൌ 1	ܿ݉, as shown in 

Figure  6-1. The matrix is made of epoxy and the inclusions are made of steel with 
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material properties given by ܧ௠ ൌ ௠ߥ ,ܽܲܩ	3 ൌ ௠ߩ ,0.35 ൌ 1100	 ݇݃ ݉ଷ⁄ ௜ܧ , ൌ

௜ߥ ,ܽܲܩ	200 ൌ 0.3, and ߩ௜ ൌ 8000	 ݇݃ ݉ଷ⁄  for the Young’s modulus, Poisson ratio, and 

density of epoxy and steel, respectively. 

 

Figure  6-1: Unit cell of the epoxy/steel two-dimensional PC 
 

6.3. Frequency band structure 

Mixed variational method, described in chapter 2, is used to calculate the 

frequency band structure of the two-dimensional epoxy/steel PC for plane stress 

condition. Figure  6-2 (a, b) show the band structure of the epoxy/steel PC and a three-

dimensional plot of the first three eigenmodes, respectively. In this figure, the lower two 

modes are acoustic shear vertical mode (SV-mode) and acoustic longitudinal mode (L-

mode), respectively. It can be seen that the first three modes of the PC have no 

intersection which makes it possible to study each mode separately. 
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(a)  

(b)  

Figure  6-2: (a) Frequency band structure and (c) three-dimensional eigenmodes of the 
two-dimensional epoxy/steel PC 
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6.4. Dynamic homogenization 

The micromechanical method, described in chapter 2, is used to calculate the 

effective elastodynamic properties of the two-dimensional epoxy/steel PC. Figure  6-3 

shows the comparison between the band structures calculated from the mixed variational 

formulation as well as from the micromechanical method as a function of ܳଵ for a fixed 

value of ܳଶ ൌ 2. In this figure, 10ଶ െ 1 Fourier expansion terms and 10ଶ subdomains are 

used in micromechanical calculations. Also, 9ଶ Fourier expansion terms are used for 

calculating the band structure using mixed variational method. It can be seen that the 

band structures obtained from these two methods are in good agreement. Also, it is 

observed that as the frequency increases, the difference between the results obtained from 

these two methods increases. For example, while the first two modes are in very close 

agreement, the third and fourth modes obtained from micromechanical method are 

slightly different than the results obtained from variational method. 

 

Figure  6-3: Comparison between the band structure calculated from mixed variational 
formulation as well as from the micromechanical method for the epoxy/steel PC 
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6.4.1. Acoustic shear mode 

Figure  6-4 (a) shows the equifrequency surfaces (EFS) of the epoxy/steel PC in 

kHz for the acoustic SV-mode together with vectors of group velocity in the ሺܳଵ, ܳଶሻ-

space. It can be seen that the components of group velocity vectors along the ݔଵ- and ݔଶ-

axes are in the same direction as those of the phase velocity’s. Figure  6-4 (b-h) show the 

non-zero effective properties of the PC in the ሺܳଵ, ܳଶሻ-space. The values of effective 

density, effective compliance, and coupling terms are given in terms of ݇݃ ݉ଷ⁄ , 

ሺܲܽିଵሻ ൈ 10ିଵଵ, and ሺݏ ݉⁄ ሻ ൈ 10ିହ, respectively. The values of ̅ߩଶଶ, ܦഥଶଶ, ܦഥଶଵ, ܵଶ̅ଶ
ଵ , 	ܵଶ̅ଵ

ଵ , 

and ܵଷ̅ଶ
ଵ  are transpose of ̅ߩଵଵ, ܦഥଵଵ, ܦഥଵଶ, ܵଵ̅ଵ

ଵ , ܵଵ̅ଶ
ଵ , and ܵଷ̅ଵ

ଵ  in the ሺܳଵ, ܳଶሻ-space, 

respectively, and are not shown here for the sake of brevity. It can be seen that all the 

effective properties are continuous over the first BZ for the acoustic S-mode. 

Figure  6-4: Contours of (a) EFS and (b) ̅ߩଵଵ over the acoustic SV-mode for the two-
dimensional epoxy/steel PC 
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Figure 6-4: Contours of, continued (c) ܦഥଵଵ, (d) ܦഥଵଶ, (e) ܦഥଷଷ, and (f) ܵଵ̅ଵ
ଵ over the acoustic 

SV-mode for the two-dimensional epoxy/steel PC 
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Figure 6-4: Contours of, continued (g) ܵଵ̅ଶ
ଵ  and (h) ܵଷ̅ଵ

ଵ  over the acoustic SV-mode for the 
two-dimensional epoxy/steel PC 

 

6.4.2. Acoustic longitudinal mode 

Figure  6-5 (a) shows the EFS contours of the epoxy/steel PC for the acoustic L-

mode together with the corresponding group velocity vectors. It can be seen that 

depending on the value of ሺܳଵ, ܳଶሻ, components of group velocity vectors along the ݔଵ- 

and ݔଶ-axes can be parallel or antiparallel to those of the phase velocity’s. For example, 

at ࡽ஺=(2.307, 2.307) the EFS contour is quasi-circular with anti-parallel phase and group 

velocities resulting in negative energy refraction. Figure  6-5 (b-h) show the non-zero 

effective properties of the PC for the acoustic L-mode. In these figures, there are certain 

regions where the effective properties become singular. For better demonstration of the 

singularities, values of ̅ߩଵଵ, ܦഥଵଵ, and ܵଵ̅ଵ
ଵ  along the ܳଵ-axis are shown in Figure  6-6 for a 

fixed value of ܳଶ= 2.7. In addition, it can be seen that ̅ߩଵଵ achieves negative values in the 
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vicinity of the singularity. For example, at Q=(1, 2.79)  the value of effective density 

along the ݔଵ-direction becomes ̅ߩଵଵ ൌ െ3916.9	 ݇݃ ݉ଷ⁄ . Furthermore, it is observed that 

even though the unit cell and inclusions are square and symmetric, the homogenized 

medium is anisotropic leading to different effective properties along the ݔଵ- and ݔଶ-

directions. For example, at Q=(2.730, 0) the anisotropy ratio for the effective density is 

ଵଵߩ̅ ⁄ଶଶߩ̅ ൌ 26.77. This feature could be used for design of the cloak for acoustic cloaking 

where unit cells with high anisotropy are essential [43, 44]. 

Comparing EFS contours with contours of effective properties, it is understood 

that negative energy refraction can be accompanied by either positive or negative 

effective properties. For example, at both ࡽ஻=(0.214, 2.827) and ࡽ஼=(0.513, 2.717), the 

 ଵ component of phase and group velocities are in opposite directions (negative energyݔ

refraction). While at ࡽ஻ all the effective properties are positive, the effective density at 

 ஼ is negative. Figure  6-7 shows a schematic diagram for negative energy refraction atࡽ

the interface of a homogenous half-space solid with a two-dimensional PC. In this figure 

௅࢑
௜௡, ࢑௅

௥௘௙, ࢑ௌ
௥௘௙, ࢜௅

௚, and ࢜௅
௣ are vectors of incident longitudinal wave, reflected 

longitudinal wave, reflected shear wave, transmitted longitudinal group velocity, and 

transmitted longitudinal phase velocity, respectively. In should be noted that at ࡽ஺, ࡽ஻, 

and ࡽ஼ the eigenfrequencies are 15.76 kHz, 17.02 kHz, and 16.46 kHz, respectively, 

which are within the shear wave band-gap regime and therefore no SV-wave can 

propagate. This feature can be used to focus acoustic/pressure waves in a focal point in 

order to make flat acoustic lens for applications like ultrasound imaging; or to focus high 

intensity ultrasound acoustic/pressure waves for cancer treatment.  
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Figure  6-5: Contours of (a) EFS, (b) ̅ߩଵଵ, (c) ܦഥଵଵ, and (d) ܦഥଵଶ over acoustic L-mode for 
the two-dimensional epoxy/steel PC 



109 
 

 
 

 

 

Figure 6-5: Contours of, continued (e) ܦഥଷଷ, (f) ܵଵ̅ଵ
ଵ , (g) ܵଵ̅ଶ

ଵ , and (h) ܵଷ̅ଵ
ଵ  over acoustic L-

mode for the two-dimensional epoxy/steel PC 
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Figure  6-6: Values of (a) ̅ߩଵଵ, (b) ܦഥଵଵ, and (c) ܵଵ̅ଵ
ଵ  along the ܳଵ-axis for a fixed value of 

ܳଶ= 2.7 over the acoustic L-mode for the two-dimensional epoxy/steel PC 
 

 

Figure  6-7: Negative refraction at the interface of a homogenous solid and a two-
dimensional PC 

 

6.5. Summary 

Mixed variational formulation is used together with dynamic homogenization to 

study elastic wave propagation in two-dimensional PCs. Numerical results for a two-

dimensional PC made of epoxy matrix with steel inclusions are presented. It is observed 

that over the acoustic longitudinal mode components of the effective density and 

effective compliance tensors can become singular and achieve negative values near the 
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singularities. In addition, vectors of group velocity are studied and it is observed that 

negative energy refraction can occur at some frequencies over the acoustic longitudinal 

mode; which can be accompanied by either positive or negative effective properties. This 

feature can be used to focus longitudinal stress waves in a focal point in order to make 

flat acoustic lens for applications like ultrasound imaging. Furthermore, it is observed 

that the PC exhibits a high anisotropy ratio for the effective density at some frequencies 

over the acoustic longitudinal mode; which could be used for design of cloak for acoustic 

cloaking where unit cells with high anisotropy are essential. 
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