
Lawrence Berkeley National Laboratory
LBL Publications

Title
I/O Bottleneck Detection and Tuning: Connecting the Dots using Interactive Log Analysis

Permalink
https://escholarship.org/uc/item/9gx163gn

ISBN
9781665418379

Authors
Bez, Jean Luca
Tang, Houjun
Xie, Bing
et al.

Publication Date
2021-11-15

DOI
10.1109/pdsw54622.2021.00008
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9gx163gn
https://escholarship.org/uc/item/9gx163gn#author
https://escholarship.org
http://www.cdlib.org/


I/O Bottleneck Detection and Tuning:
Connecting the Dots using Interactive Log Analysis

Jean Luca Bez∗, Houjun Tang∗, Bing Xie†, David Williams-Young∗,
Rob Latham‡, Rob Ross‡, Sarp Oral†, Suren Byna∗

∗ Lawrence Berkeley National Laboratory, † Oak Ridge National Laboratory, ‡ Argonne National Laboratory

Abstract—Using parallel file systems efficiently is a tricky
problem due to inter-dependencies among multiple layers of I/O
software, including high-level I/O libraries (HDF5, netCDF, etc.),
MPI-IO, POSIX, and file systems (GPFS, Lustre, etc.). Profiling
tools such as Darshan collect traces to help understand the I/O
performance behavior. However, there are significant gaps in
analyzing the collected traces and then applying tuning options
offered by various layers of I/O software. Seeking to connect the
dots between I/O bottleneck detection and tuning, we propose
DXT Explorer, an interactive log analysis tool. In this paper,
we present a case study using our interactive log analysis tool
to identify and apply various I/O optimizations. We report an
evaluation of performance improvement achieved for four I/O
kernels extracted from science applications.

I. INTRODUCTION

The HPC I/O stacks deployed in large-scale computing cen-
ters expose a plethora of tunable parameters and optimization
techniques that can be accessed by API calls, both seeking
to improve performance. However, there is little guidance to
developers and end-users on how and when to apply them.
There is often a lack of knowledge that those options are
available or could help in a particular scenario. Furthermore,
there has not been a single set of instructions to compile
a set of tuning parameters. Coming up with a list of best
practices even for a single system is challenging due to various
factors, including the size of I/O requests, communication
and synchronization costs at the MPI-IO level, file system,
performance variability, and storage characteristics.

The tuning options and advanced APIs provided by the HPC
I/O stack are often unexplored. For instance, some options that
users often do not tune include the parallel file system (PFS)
striping settings, MPI-IO hints, and I/O library optimizations
[1]–[4]. If we look at Lustre (PFS), modifying the size in
which a file is striped with, or the number of storage servers
it is striped over to be the best for a given system is not
very often considered [5]. For instance, on the Cori system
at the National Energy Research Scientific Computing Center
(NERSC), Darshan logs from January 2019 report that ≈ 94%
of the files used the default 1 MB stripe size and ≈ 36%
are striped over a single storage server. MPI-IO can also take
advantage of hints provided by users to enable and tune the
I/O performance, such as collective buffering and data sieving.
High-level I/O libraries, such as HDF5, also expose APIs to
enable specific optimizations that users often fail to explore.

Between a performance bottleneck and its tuning solution,
there remain dots to be connected that are not fully addressed
by existing research efforts. For instance, collective buffering
and data sieving were implemented more than 20 years ago

[6], yet, we still find it challenging to choose the number of
aggregators, their placement, and matching them according to
the concurrency at the file system level. Furthermore, com-
bining optimization in multiple levels and finding the best set
of tunable parameters to achieve performance can be cumber-
some. That alone is the target of different approaches [2], [3],
[7], [8]. The challenge is not only the search space exploration
and time required to do it, but also the inter-dependencies
between various I/O software layers (i.e., HDF5, MPI-IO, and
file systems), and how to detect bottlenecks. However, we
found that an interactive exploration of the application’s profile
and traces using Darshan [9] logs already provides insights to
connect all the dots and bring the performance to another level.

In this paper, we propose an interactive log analysis
process of identifying I/O performance bottlenecks, map-
ping them to potential problems, and applying tuning op-
tions to obtain good I/O performance using DXT Explorer
(github.com/hpc-io/dxt-explorer). We present a
case study with four I/O kernels from HPC applications that
exercise various I/O tuning parameters and report the perfor-
mance. We also discuss the gaps in the process of connecting
the dots between bottleneck identification and tuning.

II. BACKGROUND

In this study, we used HPC I/O stacks that use HDF5
as a high-level I/O library, MPI-IO as the I/O middleware,
and two file systems (Lustre and GPFS) on two production
supercomputing systems: Cori at NERSC and Summit at
OLCF. We use Darshan profiling with extended tracing (DXT)
for analyzing I/O performance.

HDF5 (Hierarchical Data Format Version 5) is a well-
known self-describing file format and an I/O library [10] that
provides flexibility, extendibility, and portability. HDF5 is used
widely in many science domains as a de facto standard to
manage various data models [11]. MPI-IO featured as part
of the MPI-2 standard provides a comprehensive API and
optimization features such as collective buffering and data
sieving to perform efficient parallel I/O [6]. HDF5 uses the
MPI-IO layer to perform parallel I/O.

A. Parallel File Systems in Production Supercomputers

1) Lustre on Cori: Cori is a Cray XC40 supercomputer
deployed at NERSC. It is comprised of 2, 388 Intel Xeon
Haswell processor nodes and 9, 688 Intel Xeon Phi Knight’s
Landing (KNL) compute nodes, all connected to a Lustre
parallel file system capable of storing ≈ 30 PB and achieving
a peak I/O bandwidth of 744 GB/s. The parallel file system

https://github.com/hpc-io/dxt-explorer


is exposed as a single POSIX namespace with five Metadata
Servers (MDSes) and 244 Object Storage Servers (OSSes).
Each MDS is responsible for a portion of the global namespace
and each OSS manages one Object Storage Target (OST).

2) GPFS on Summit: Summit is an IBM-built supercom-
puting system deployed at OLCF, containing 4, 608 compute
nodes. Summit is connected to Alpine, a 250 PB Spectrum
Scale (GPFS) file system with a peak bandwidth of 2.5 TB/s.
Alpine is comprised of 154 Network Shared Disk (NSD)
servers, each NSD manages one GPFS Native RAID (GNR),
and serves as both a storage and metadata server. Alpine is
configured with a default block size is 16 MB, and unlike
Lustre, users cannot change this parameter.

B. I/O Tracing with Darshan

Darshan [9] is a popular tool to collect I/O profiling
information from applications. Darshan aggregates I/O profile
information to provide valuable insights without adding over-
head or perturbing application behavior. Darshan also provides
an extended tracing module (DXT) [12] to obtain a fine-grain
view of the application behavior to understand I/O perfor-
mance issues. Once enabled, DXT collects detailed traces
from the POSIX and MPI-IO layers reporting the operation
(write/read), the rank that issued the call, the segment, the
offset in the file, and the size of each request. It also captures
the start and end timestamps of all the operations issued by
each rank. In this paper, we harness the DXT module to help
us analyze and identify I/O performance issues.

III. INTERACTIVE EXPLORATION & OPTIMIZATION

While I/O profiling tools, such as Darshan [9] and Recorder
[13], can provide I/O traces, there is a significant gap between
the trace analysis and the tuning process. DXT logs provide
detailed information about the MPI-IO and POSIX calls.
However, there is a lack of tools to analyze the logs and
guide tuning parameters setting. Furthermore, existing tools
do not offer a straightforward way to analyze and interactively
visualize the I/O behavior reported in the DXT logs. The
collected trace can be huge for applications with numerous
small I/O requests or a long runtime, making them difficult
to explore and visualize. Darshan does not provide a way
to visualize DXT traces, and manual static plots to analyze
DXT logs are limited in the information they present due
to space constraints and pixel resolution, possibly hiding I/O
bottlenecks in plain sight. Though we can visualize traces
captured from Recorder in web-based plots using the recorder-
viz Python library1, this solution does not provide relevant
contextual information for the I/O operations in the plots. It
also does not allow users to explore the traces in time (and in
a coordinated way) when using POSIX and MPI-IO interfaces.

Toward filling this gap and aiding the process of I/O log
analysis, we introduce DXT Explorer, an interactive tool with
zoom-in/out capabilities. The tool provides a coarse-grain and
a fine-grain view of the observed I/O behavior from DXT logs.

1https://pypi.org/project/recorder-viz

I/O 
Problems

Applying 
I/O 

Tuning

Interactive 
Exploration

Trace 
Analysis

Mapping to 
Solutions

Trace 
Collection

if problem persists

Figure 1: Iterative workflow to identify I/O performance issues
based on the interactive visualization of DXT traces.

The global view of DXT Explorer makes it easy to pinpoint
issues related to collective data and metadata operations by
visual comparison of the behavior at the MPI-IO and POSIX
levels. It also offers an analysis process needed in connecting
the dots between the I/O problem detection to the tuning
strategies (as shown in Figure 1), by using interactive trace
exploration and analysis to map problems to existing solutions.

DXT Explorer takes a DXT log (.darshan file) as input
to parse and transform the traces into interactive web-based
visualizations using R with ggplot2 [14] and Plotly [15]
libraries. We show a high level output of the tool in Figure 2.
The interactive visualization allows a user to 1© dynamically
narrow down the plot to cover a time interval of interest or 2©
zoom into a subset of ranks to understand the I/O behavior.
We depict two synchronized facets: the first representing the
MPI-IO level, and the second, how it was translated into
the POSIX level. For each operation, by hovering over the
depicted interval, it is possible to inspect additional details
3© such as the type, runtime, MPI rank, and transfer size in
KB. The tool also allows to explore the spatiality of accesses
in the file and correlate the total transfer size with rank over
time. A few example interactive output plots are available at
jeanbez.gitlab.io/pdsw-2021.

By visualizing the application behavior, we are one step
closer to understand the existence of any performance bot-
tlenecks and to apply the most suitable set of optimization
techniques to improve performance. We emphasize that there
is a lack of a straightforward translation of the I/O bottlenecks

Figure 2: Features available in the interactive visualization of
Darshan DXT traces: 1© focus on time-intervals, 2© zoom into
a subset of ranks, and 3© check I/O information.

https://pypi.org/project/recorder-viz
https://jeanbez.gitlab.io/pdsw-2021


into potential tuning options. In this paper, we perform a
case study using four I/O kernels and demonstrate how the
interactive analysis paves the path to performance tuning,
albeit a manual effort. The remainder of this section briefly
describes a few optimizations that can be used in combination
(often misconfigured or disregarded by domain scientists and
those with domain knowledge) to improve I/O performance of
issues observed in HDF5 I/O kernels using DXT Explorer.

A. High-level I/O Library Optimizations

1) HDF5 Collective Metadata Operations: In HDF5, writ-
ing and reading HDF5 internal metadata that describes
HDF5 objects can result in many small I/O from some
or all MPI ranks, and may cause performance slowdown.
To avoid all the MPI ranks participate in the frequent
and costly metadata operations, the HDF5 library intro-
duced two API calls that perform metadata writes and
reads collectively: H5Pset_coll_metadata_write and
H5Pset_all_coll_metadata_ops. These calls allow
HDF5 to perform metadata operations by one rank [16].In the
DXT Explorer plots, we observe this issue when MPI ranks are
performing small I/O requests (often less than a few hundreds
of bytes) to the offset where HDF5 metadata is stored.

2) HDF5 Data Alignment: Parallel File systems typi-
cally allocate locks along specific boundaries, aligning file
access to the file system stripe size can improve perfor-
mance. HDF5 allows tuning the alignment properties using
the H5Pset_alignment function, which comprises of a
threshold and an alignment values. By default, HDF5 does
not set the alignment. In the interactive plots, we observe this
issue with unaligned I/O calls having a high latency.

3) Deferred HDF5 Metadata Flush: The HDF5 library
manages a per-file level cache of HDF5 internal metadata
and avoids frequent small I/O operations. HDF5 allows the
application to control when the entries are flushed or evicted
from the cache. The default cache setting may lead to many
small I/O requests when the application is operating on a
large number of objects. In the DXT Explorer plots, we find
this issue when small I/O request appear between data object
writes. Adjusting the HDF5 metadata cache configuration [17]
to increase the cache size and defer the metadata flush time
until file close can significantly improve I/O performance.

B. MPI-IO Level Optimizations

If a group of MPI ranks knows which parts of a file each
one is accessing, it becomes possible to merge these requests
into a smaller number of larger and more contiguous accesses
that span over a large portion of the file. When applied at the
client level, this optimization is described as two-phase I/O [6]
with collective buffering and data sieving. In our interactive
plots, we can observe all the ranks performing I/O requests
when these optimizations are not set.

1) Collective Buffering: Collective buffering seeks to re-
duce I/O time by making all file access large and contiguous,
even though it might require additional communication be-
tween the processes. ROMIO exposes two user-defined knobs

that can control the application of this technique: the number
of processes that actually issue the I/O requests in the I/O
phase (cb_nodes), often referred to as aggregators; and the
maximum buffer size on each process (cb_buffer_size).

2) Data Sieving: Data sieving aims to reduce I/O latency by
making as few requests to the PFS as possible. For read oper-
ations, when a process issues non-contiguous requests, instead
of reading each piece of data separately, ROMIO reads a single
contiguous chunk. ROMIO provides two user-defined param-
eters to control this optimization (ind_rd_buffer_size
and ind_wr_buffer_size) [6].

C. Parallel File System Level Optimizations

1) File Striping: In a PFS, a file is often partitioned into
a sequence of equal-sized data blocks. In Lustre, each block
is distributed across a number of OSTs in an operation called
data striping. Unlike GPFS, Lustre allows users to configure
stripe size and count to improve concurrency in accessing the
file system. On Cori, the default stripe count is 1 and the stripe
size is 1 MB. DXT Explorer can show the OST that an I/O
request accesses on Lustre.

2) Large block IO in GPFS: In GPFS, large files are
divided into equal-sized blocks and placed on different disks
following a round-robin approach. We observed setting this
large block IO parameter for GPFS [18] improving perfor-
mance when combined with HDF5 metadata optimizations.

IV. EVALUATION OF SCIENTIFIC I/O WORKLOADS

In this section, we present a case study of using interac-
tive exploration for identifying I/O performance bottlenecks
and tuning performance using the optimizations described
in §III-C2. We study four scientific I/O kernels: FLASH,
OpenPMD, E2E benchmarks, and block-cyclic I/O. We ran
each of these kernels with different configurations more than
5 times and show the best performing run.

A. FLASH-IO

FLASH-IO is an I/O benchmark that simulates the I/O be-
havior of FLASH [19] code. FLASH has HDF5 and PnetCDF
output formats and we focus on the HDF5 backend. We config-
ured FLASH-IO to write 250 3D datasets along with runtime
parameter metadata to a single HDF5 file per checkpoint, and
three datasets to a plot file. Each FLASH-IO run outputs 2
checkpoint files and 2 plot files. Our experiments on Summit
used 64 compute nodes, with 6 ranks per node, and a total of
384 MPI ranks. Each checkpoint file is ≈ 2.3 TB, and each
plot file is ≈ 14 GB.

Figure 3 illustrates a snapshot of the I/O behavior of the
baseline FLASH-IO execution on Summit, which uses the de-
fault spectrum-mpi/10.3.1.2-20200121 MPI module and HDF5
1.12.1. Using the interactive DXT Explorer plots, we found
that the default MPI module does not perform collective I/O
operations as expected, depicted as each MPI rank is writing its
own data ranging from 12.1 MB to 24.3 MB independently at
the POSIX level (excluding the small HDF5 metadata writes).
Enabling collective I/O using ROMIO hints with 1 aggregator



Figure 3: A DXT Explorer snapshot for original FLASH-IO.

Figure 4: A DXT Explorer snapshot for optimized FLASH-IO.

per node and 16 MB collective buffer size provides 3.2×
speedup (§III-B1). Notice the distinct behavior in POSIX and
MPI-IO layers in Figs. 3 and 4. Setting the HDF5 alignment
size to 16 MB provides an additional 1.18× speedup (§III-A2).
Finally, deferring the HDF5 metadata flush provides another
1.1× speedup (§III-A3). Overall, we observed a 4.1× speedup
(1495s in Fig. 3 vs. 361s in Fig. 4) to run FLASH-IO, and
7.9× speedup to write a checkpoint file (655s vs. 82s).

B. OpenPMD

OpenPMD [20] is an open meta-data schema targeting
particle and mesh data from scientific simulations and ex-
periments. The OpenPMD [21] library provides a reference
implementation of the openPMD-standard for file formats such
as HDF5 [10], ADIOS [22], and JSON [23]. In this work, we
focus on the HDF5 backend using openPMD-api 0.14.1.

On Summit we used 64 compute nodes, 6 ranks per node,
and a total of 384 processes. The total file size is ≈ 121GB,
with no compression set at the HDF5 level. We configured the
kernel to write a few meshes and particles in 3D. The meshes
are viewed as a grid of dimensions [64×32×32] of mini blocks
whose dimensions are [64×32×32]. Thus, the actual mesh size
is [65536×256×256]. The kernel runs for 10 iteration steps.
In Figure 5, we illustrate the baseline, which uses spectrum-
mpi/10.4.0.3-20210112 MPI and HDF5 develop version. The

baseline runs on 110.6s (avg. of 5 runs). When we enable the
romio_cb_write and romio_ds_write hints and use
a collective buffer of 16 MB with 1 aggregator per node (64
total) the runtime drops to 71.60s, 1.54× faster. Using GFPS’
large block I/O combined with collective HDF5 metadata
operations, makes the application run in 18.71s, 3.8× speedup
on top of the last optimization. Investigating the DXT Explorer
visualization, we also noticed that collective HDF5 metadata
were not actually collective due to an issue introduced in
HDF5 1.10.5. When using HDF5 1.10.4, the runtime of the
combined optimizations is 16.1s, a 6.8× speedup.

Figure 5: Best run of baseline OpenPMD write in Summit.

Figure 6: Best execution of OpenPMD after tuned for Summit.

C. 3D Domain Decomposition Kernel

The end-to-end (E2E) I/O kernels proposed by Lofstead et
at. [24] are based on domain decomposition problems. We
evaluate the 3D domain decomposition pattern with NetCDF4
in this suite that uses HDF5 internally, which was reported to
perform very poorly. On Cori, we used 64 compute nodes, with
16 ranks per node, and a total of 1024 MPI ranks. The E2E
kernel was configured so each process is represented by 32×
32×32 double precision floating points and the sizes represent
the number of doubles in each dimension. The 1024 processes
are arranged in a 32×32×16 (x by y by z) distribution. This
setup generates a ≈ 41 GB file. Based on NERSC file striping



Figure 7: Best execution of the original application behavior,
in Cori, where a significant time is spent by rank 0 sequentially
writing fill values to all variables when they are defined.

Figure 8: I/O behavior at the POSIX layer of the best execution
after setting the NOFILL option in Cori.
recommendations2, for a single shared filed between 10−100
GB one should set Lustre stripe count to 24 and keep the
default stripe size of 1 MB.

Figure 7 shows the write calls at POSIX level. This baseline
execution, without any tuning, runs in 80s (an average of
85.7s over 5 runs). In the plot, we can see that 70% of the
time is taken by rank 0 sequentially writing something in
the file. Looking at the application’s code, rank 0 is filling
values to all of the defined variables (10 in this workload).
In this initial phase, it issues over 40 thousand write requests
with median size of 1 MB. After explicitly disabling the data
filling behavior for each one of the 10 variables (i.e., calling
nc_def_var_fill() with the NC_NOFILL in NetCDF4),
we achieved a speedup of 10×. Figure 8 shows the runtime
of 8s for this optimized version (avg. of 13.8s in 5 runs).
On Summit, the same configuration with NC_NOFILL opti-
mization achieved 8× improvement from the baseline (runtime
reduction from 15.93s to 1.97s).

D. Block-cyclic I/O Pattern

The most commonly encountered data distribution pattern
leveraged in distributed memory linear algebra libraries, such
as ScaLAPACK [25], ELPA [26] and SLATE [27], is the 2D
block-cyclic format, which partitions the matrices into tiles of
a fixed dimension and distributes them round robin on a 2D
process grid [25]. The block-cyclic data format may be com-
pletely described by 6 integers: the number of process rows
(nr) and columns (nc) which describe the process grid, the
total number of rows (m) and columns (n) of the distributed
matrix, and the dimension of the row (mb) and column (nb)
blocking factors which define the local tile dimensions.

As the memory requirement for individual matrices can
exceed the capacity of a single compute node, it is desirable
to develop procedures which allow for the direct population

2https://docs.nersc.gov/performance/io/lustre

709

55.6

95.8

17

96.6

5.2

5

969

875

R
E

A
D

W
R

IT
E

0 250 500 750 1000

CB + Stripe

CB

Stripe

Baseline

CB + Stripe + Aligment

CB + Stripe

CB

Stripe + Aligment

Stripe

Time (seconds)

Figure 9: Runtime for the block-cyclic I/O kernel on Cori.

of block-cyclic data structures from disk. HDF5 offers an
attractive API for such developments through the (unioned)
selection of block-strided hyperslabs for the population of
memory-contiguous data structures from non-contiguous lo-
cations on disk.

The proxy application developed for this work examines
the I/O behaviour for a square matrix with m = n = 81250
with FP64 data (∼50 GiB). Results are presented for block-
cyclic data structures with mb = nb = 128 with 1024
processes arranged in a nr = nc = 32 process grid. By
using the DXT Explorer, we have applied Lustre striping
(§III-C1), MPI-IO collective buffering (§III-B1), and HDF5
alignment optimizations (§III-A2). As shown in Figure 9,
using a combination of all the optimizations achieves 41×
speedup for reads over the baseline I/O performance. For
writes, the baseline reached a time limit of 8 hours. Still,
compared to just applying striping (1 MB stripe over 128
OSTs), we observed a 193× speedup by combining it with
collective buffering and HDF5 data alignment.

V. CONCLUSION

In this paper, we proposed an interactive process of iden-
tifying I/O performance bottlenecks, mapping them to po-
tential problems, and applying the tuning options to im-
prove I/O performance. We presented a case study with
four different I/O kernels with distinct demands and be-
haviors that exercise various I/O tuning parameters and
benefit from existing optimizations. Our DXT Explorer
(github.com/hpc-io/dxt-explorer) tool adds an inter-
active component to Darshan trace analysis that could aid
researchers, developers, and end-users to visually inspect their
applications’ I/O behavior, zoom-in on areas of interest and
have a clear picture of where is the I/O problem.

As evidenced in tuning the four use cases above, applying
the available optimizations simply does not guarantee higher
I/O performance. Furthermore, the set of techniques used in
one application running in one system does not necessarily
translate into a fixed rule (neither for the workload nor for the
system). In this study, we targeted the gaps between collecting
the data to visualize what the application is doing, identifying
the bottlenecks, and re-shaping its I/O behavior to perform bet-
ter in the system. While our tuning using interactive and itera-
tive I/O performance analysis moves a step towards connecting

https://github.com/hpc-io/dxt-explorer


the dots between bottleneck detection and tuning, we note that
this is still a tedious process. The gaps of better reporting
and automatically mapping performance problems to tuning
options and the tools and models required for such mapping
need further R&D. Finally, we provide an online companion
website with the interactive plots and additional experiments
located at jeanbez.gitlab.io/pdsw-2021.

ACKNOWLEDGMENT

This research was supported by the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration.
This research used resources of the National Energy Research Scien-
tific Computing Center under Contract No. DE-AC02-05CH11231,
the Oak Ridge Leadership Computing Facility at the Oak Ridge
National Laboratory under Contract No. DE-AC05-00OR22725. This
work was supported in part by the U.S. Department of Energy, Office
of Science, Advanced Scientific Computing Research, under Contract
DE-AC02-06CH11357.

REFERENCES

[1] Y. Li, K. Chang, O. Bel, E. L. Miller, and D. D. E. Long, “CAPES: Un-
supervised Storage Performance Tuning Using Neural Network-Based
Deep Reinforcement Learning,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’17. New York, NY, USA: ACM, 2017.

[2] M. Agarwal, D. Singhvi, P. Malakar, and S. Byna, “Active Learning-
based Automatic Tuning and Prediction of Parallel I/O Performance,” in
2019 IEEE/ACM Fourth International Parallel Data Systems Workshop
(PDSW), 2019, pp. 20–29.

[3] B. Behzad, S. Byna, Prabhat, and M. Snir, “Optimizing I/O Performance
of HPC Applications with Autotuning,” ACM Trans. Parallel Comput.,
vol. 5, no. 4, Mar. 2019.

[4] T. Patel, S. Byna, G. K. Lockwood, and D. Tiwari, “Revisiting i/o be-
havior in large-scale storage systems: The expected and the unexpected,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’19. New York,
NY, USA: Association for Computing Machinery, 2019.

[5] B. Xie, H. Tang, S. Byna, J. Hanley, Q. Koziol, T. Li, and S. Oral, “Battle
of the Defaults: Extracting Performance Characteristics of HDF5 under
Production Load,” in CCGrid 2021, 2021.

[6] R. Thakur, W. Gropp, and E. Lusk, “Data sieving and collective i/o
in romio,” in Proceedings. Frontiers ’99. Seventh Symposium on the
Frontiers of Massively Parallel Computation, 1999, pp. 182–189.

[7] B. Behzad, H. V. T. Luu, J. Huchette, S. Byna, R. Aydt, Q. Koziol
et al., “Taming parallel I/O complexity with auto-tuning,” in SC’13:
Proceedings of the International Conf. on High Performance Computing,
Networking, Storage and Analysis. ACM, 2013, pp. 1–12.

[8] R. McLay, D. James, S. Liu, J. Cazes, and W. Barth, “A user-friendly
approach for tuning parallel file operations,” in SC ’14: Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’14. Piscataway, NJ, USA:
IEEE Press, 2014, pp. 229–236.

[9] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham,
and R. Ross, “Understanding and improving computational science
storage access through continuous characterization,” ACM Trans.
Storage, vol. 7, no. 3, Oct. 2011. [Online]. Available: https:
//doi.org/10.1145/2027066.2027068

[10] The HDF Group. (1997-) Hierarchical Data Format, version 5. [Online].
Available: http://www.hdfgroup.org/HDF5

[11] S. Byna, M. Breitenfeld, B. Dong, Q. Koziol, E. Pourmal, D. Robinson,
J. Soumagne, H. Tang, V. Vishwanath, and R. Warren, “ExaHDF5:
Delivering Efficient Parallel I/O on Exascale Computing Systems,”
JCST, vol. 35, pp. 145–160, 2020.

[12] C. Xu, S. Snyder, O. Kulkarni, V. Venkatesan, P. Carns, S. Byna,
R. Sisneros, and K. Chadalavada, “DXT: Darshan eXtended Tracing,”
1 2019. [Online]. Available: https://www.osti.gov/biblio/1490709

[13] C. Wang, J. Sun, M. Snir, K. Mohror, and E. Gonsiorowski, “Recorder
2.0: Efficient parallel I/O tracing and analysis,” in 2020 IEEE Inter-
national Parallel and Distributed Processing Symposium Workshops
(IPDPSW), May 2020, pp. 1–8.

[14] H. Wickham, Ggplot2: Elegant graphics for data analysis, 2nd ed., ser.
Use R! Cham, Switzerland: Springer Int. Publishing, Jun. 2016.

[15] P. T. Inc. (2015) Collaborative data science. Montreal, QC. [Online].
Available: https://plot.ly

[16] “HDF5 Collective Metadata I/O Documentation.” [On-
line]. Available: https://support.hdfgroup.org/HDF5/docNewFeatures/
NewFeaturesCollectiveMetadataIoDocs.html

[17] “HDF5 Fine-tuning the Metadata Cache Documentation.” [On-
line]. Available: https://support.hdfgroup.org/HDF5/docNewFeatures/
NewFeaturesFineTuningMetadataCacheDocs.html

[18] J.-P. Prost, R. Treumann, R. Hedges, B. Jia, and A. Koniges, “MPI-
IO/GPFS, an Optimized Implementation of MPI-IO on Top of GPFS,”
in Proceedings of the 2001 ACM/IEEE Conference on Supercomputing,
ser. SC ’01. New York, NY, USA: ACM, 2001, p. 17.

[19] A. Dubey, K. Antypas, A. Calder, B. Fryxell, D. Lamb, P. Ricker,
L. Reid, K. Riley, R. Rosner, A. Siegel et al., “The software development
process of flash, a multiphysics simulation code,” in 2013 5th Interna-
tional Workshop on Software Engineering for Computational Science
and Engineering (SE-CSE). IEEE, 2013, pp. 1–8.

[20] Huebl, Axel and Lehe, Remi and Vay, Jean-Luc and Grote, David P. and
Sbalzarini, Ivo F. and Kuschel, Stephan and Sagan, David and Mayes,
Christopher and Perez, Frederic and Koller, Fabian and Bussmann,
Michael. (2015) openPMD: A meta data standard for particle and mesh
based data. [Online]. Available: https://doi.org/10.5281/zenodo.1167843

[21] Koller, Fabian and Poeschel, Franz and Gu, Junmin and Huebl,
Axel. (2019) openPMD-api 0.10.3: C++ & Python API for Scientific
I/O with openPMD. DOI: 10.14278/rodare.209. [Online]. Available:
https://doi.org/10.14278/rodare.209

[22] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin,
“Flexible IO and integration for scientific codes through the adaptable
IO system (ADIOS),” in CLADE. NY, USA: ACM, 2008, pp. 15–24.

[23] F. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte, and D. Vrgoč, “”foun-
dations of json schema”,” in Proceedings of the 25th International
Conference on World Wide Web. International World Wide Web
Conferences Steering Committee, 2016, pp. 263–273.

[24] J. Lofstead, M. Polte, G. Gibson, S. Klasky, K. Schwan, R. Oldfield,
M. Wolf, and Q. Liu, “Six degrees of scientific data: Reading patterns
for extreme scale science io,” in Proceedings of the 20th International
Symposium on High Performance Distributed Computing, ser. HPDC
’11. New York, NY, USA: ACM, 2011, p. 49–60.

[25] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,
I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet et al.,
ScaLAPACK users’ guide. SIAM, 1997.

[26] A. Marek, V. Blum, R. Johanni, V. Havu, B. Lang, T. Auckenthaler,
A. Heinecke, H.-J. Bungartz, and H. Lederer, “The ELPA library:
scalable parallel eigenvalue solutions for electronic structure theory and
computational science,” Journal of Physics: Condensed Matter, vol. 26,
no. 21, p. 213201, 2014.

[27] M. Gates, A. Charara, J. Kurzak, A. YarKhan, M. A. Farhan, D. Sukkari,
and J. Dongarra, “SLATE Users Guide,” University of Tennessee, Tech.
Rep., 2020.

APPENDIX

We provide a companion website with additional DXT Explorer
snapshots and the interactive plots of this paper:

jeanbez.gitlab.io/pdsw-2021

Our companion repository also showcases two complementary
results: OpenPMD’s in Cori and E2E in Summit. For OpenPMD
in Cori, we saw a 77% performance improvement from the baseline
by combining MPI-IO two-phase I/O, collective metadata operations
in HDF5, deferred metadata writes, and paged allocation. E2E in
Summit demonstrated similar behavior as in Cori (a lot of the time
is taken by rank 0 sequentially writing fill values to all 10 variables.
Our website provides an interactive visualization of the baseline and
optimized version after explicitly disabling the data filling behavior.

https://jeanbez.gitlab.io/pdsw-2021
https://doi.org/10.1145/2027066.2027068
https://doi.org/10.1145/2027066.2027068
http://www.hdfgroup.org/HDF5
https://www.osti.gov/biblio/1490709
https://plot.ly
https://support.hdfgroup.org/HDF5/docNewFeatures/NewFeaturesCollectiveMetadataIoDocs.html
https://support.hdfgroup.org/HDF5/docNewFeatures/NewFeaturesCollectiveMetadataIoDocs.html
https://support.hdfgroup.org/HDF5/docNewFeatures/NewFeaturesFineTuningMetadataCacheDocs.html
https://support.hdfgroup.org/HDF5/docNewFeatures/NewFeaturesFineTuningMetadataCacheDocs.html
https://doi.org/10.5281/zenodo.1167843
https://doi.org/10.14278/rodare.209
https://jeanbez.gitlab.io/pdsw-2021

	Introduction
	Background
	Parallel File Systems in Production Supercomputers
	Lustre on Cori
	GPFS on Summit

	I/O Tracing with Darshan

	Interactive Exploration & Optimization
	High-level I/O Library Optimizations
	HDF5 Collective Metadata Operations
	HDF5 Data Alignment
	Deferred HDF5 Metadata Flush

	MPI-IO Level Optimizations
	Collective Buffering
	Data Sieving

	Parallel File System Level Optimizations
	File Striping
	Large block IO in GPFS


	Evaluation of Scientific I/O Workloads
	FLASH-IO
	OpenPMD
	3D Domain Decomposition Kernel
	Block-cyclic I/O Pattern

	Conclusion
	References



