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BACKGROUND: Communities with lower socioeconomic status and higher prevalence of racial/ethnic minority populations are often more exposed to
environmental pollutants. Although studies have shown associations between aircraft noise and property values and various health outcomes, little is
known about how aircraft noise exposures are sociodemographically patterned.

OBJECTIVE: Our aim was to describe characteristics of populations exposed to aviation noise by race/ethnicity, education, and income in the United
States.

METHODS: Aircraft noise contours characterized as day–night average sound level (DNL) were developed for 90 U.S. airports in 2010 for DNL
≥45 dBðAÞ in 1-dB(A) increments. We compared characteristics of exposed U.S. Census block groups at three thresholds (≥45, ≥55, and
≥65 dBðAÞ), assigned on the basis of the block group land area being ≥50% within the threshold, vs. unexposed block groups near study airports.
Comparisons were made across block group race/ethnicity, education, and income categories within the study areas (n=4,031–74,253). We per-
formed both multinomial and other various multivariable regression approaches, including models controlling for airport and models with random
intercepts specifying within-airport effects and adjusting for airport-level means.
RESULTS: Aggregated across multiple airports, block groups with a higher Hispanic population had higher odds of being exposed to aircraft noise.
For example, the multinomial analysis showed that a 10-percentage point increase in a block group’s Hispanic population was associated with an
increased odds ratio of 39% (95% CI: 25%, 54%) of being exposed to ≥65 dBðAÞ compared with block groups exposed to <45 dBðAÞ. Block groups
with higher proportions of residents with only a high school education had higher odds of being exposed to aircraft noise. Results were robust across
multiple regression approaches; however, there was substantial heterogeneity across airports.
DISCUSSION: These results suggest that across U.S. airports, there is indication of sociodemographic disparities in noise exposures. https://doi.org/
10.1289/EHP9307

Introduction
Communities with low socioeconomic status (SES) and high prev-
alence of racial/ethnic minority populations are often exposed to
greater numbers and concentrations of environmental hazards
(Mohai et al. 2009; Zwickl et al. 2014). In the United States, dis-
proportionate exposure may reflect procedural injustices in envi-
ronmental regulations, institutional and individual discrimination,
and racist housing policies manifesting in residential segregation and
suburbanization, as well as structural factors such as politics and eco-
nomics that affect facility siting and the racialization of labor markets
(McCartney et al. 2019;Morello-Frosch 2002).

One exposure for which disproportionate burdens may be felt is
aircraft noise due to a complex set of factors including land-use pat-
terns connected with airport economies and flight paths. Aircraft
noise is a major source of annoyance and complaints in communities
surrounding airports (Miller et al. 2021). In addition, studies have
related aircraft noise to sleep disturbance, impairments in children’s

cognition, negative birth outcomes, and cardiovascular disease out-
comes, as well as risk factors such as hypertension (reviewed by
Basner et al. 2017). An important first step to understanding potential
health impacts in the United States is to investigate aircraft
noise exposure patterning related to community sociodemo-
graphic characteristics.

A popular method for investigating population impacts of air-
craft noise is to evaluate its association with property values
(e.g., Nelson 2004); however, most of these analyses do not
directly evaluate the distribution of noise exposures as a function
of a community’s sociodemographic characteristics. A few stud-
ies have specifically investigated the distribution of sociodemo-
graphic characteristics around airports but, to our knowledge,
only around individual airports. Ogneva-Himmelberger and
Cooperman (2010) found a greater prevalence of racial/ethnic
minority and lower-income populations within areas with aircraft
noise levels >55 dBðAÞ compared with unexposed areas within a
21-km radius surrounding Boston’s Logan International Airport.
Similarly, Sobotta et al. (2007) reported that the primary predic-
tor of aviation noise around a commercial airport in Arizona was
race/ethnicity, followed by poverty. Most et al. (2004) investi-
gated patterns around St. Louis-Lambert Field and found a higher
prevalence of racial/ethnic minority and lower SES populations
living in areas of high noise levels [60–65 dB(A)]; however, they
found a lower prevalence of racial/ethnic minority and higher
SES populations in areas with even more highly elevated noise
levels [70–75 dB(A)]. AUK study in Birmingham (Brainard et al.
2004) found “only rather weak evidence” of an association
between combined transportation (i.e., road, rail, and airport)
noise exposure and ethnicity and socioeconomic deprivation.
Alternatively, a study in the Netherlands looking at transporta-
tion noise exposures separately found different relationships by
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noise exposure source, most relatedly, lower social inequality
associated with aircraft noise exposure (Kruize et al. 2007; WHO
Regional Office for Europe 2010). Dreger et al. (2019) performed
a systematic review of studies of environmental noise exposure
in the World Health Organization (WHO) European Region and
found mixed results in the eight studies they evaluated but an in-
dication of higher noise exposure in groups of lower socioeco-
nomic position; they proposed that mixed results could be due to
differences in how noise and social inequality were measured.
Although studies of individual airports are valuable, it is unclear
what the sociodemographic patterns of aircraft noise exposure
would be across and between multiple airports evaluated using
the same noise and sociodemographic measures.

Our objective was to investigate whether racial/ethnic minor-
ity and low-SES populations in the United States are dispropor-
tionately exposed to aircraft noise. To this end, we used spatially
resolved noise measures modeled using the method required for
environmental impact assessment and compliance for 90 U.S. air-
ports spanning all regions and various hub types. We paired these
data with U.S. Census and American Community Survey (ACS)
data to perform an investigation of the sociodemographic distri-
butions around U.S. airports. We also estimated associations with
sociodemographic characteristics controlling for distance to air-
port and evaluated between- and within-airport relationships.

Methods

Study Airports
Ninety airports with available noise modeling inputs were pro-
vided by the Federal AviationAdministration (FAA) for this study.
These airports comprised several hub types, categorized on the ba-
sis of percentage passenger enplanement (49 U.S. Code § 47102),
including 29 large, 27 medium, 29 small, and 5 nonhub airports
located in 40 of the 50 states (Figure 1). For 2010, total passenger
enplanements from these 90 airports represented 87% of all passen-
ger enplanements at U.S. airports (FAA n.d.). The majority of the
airports were located in urban/metropolitan areas—only eight

airports (9%) had a study area that included at least one rural census
tract as defined by the U.S. Department of Agriculture’s rural–
urban commuting area (USDA2019).

Noise and Population Data
Annual average noise levels from aircraft were estimated around
each of the 90 study airports for the decennial census year 2010. For
each period, both day–night average sound level [DNL; sound ≥45
dB(A)] and nighttime average sound level (LAeqN; sound
≥45 dBðAÞ) were modeled in 1-dB(A) increments. DNL is calcu-
lated as a 24-h annualized average noise level, based on an entire
year of operations modeled to a single average annual day, with a
10-dB(A) penalty for nighttime noise (noise from 2200 to 0700
hours). The U.S. Department of Transportation’s John A. Volpe
National Transportation Systems Center (Volpe) conducted the
noise computations using the FAA’s Aviation Environmental
Design Tool (AEDT; version 2d) from ground-track statistics. The
source of aircraft operations data was the Enhanced Traffic
Management System, which provided operations under Instrument
Flight Rules for the observed year, including the length of the mis-
sion (or stage length), time of the operation, as well as the
International Civil Aviation Organization aircraft type, excluding
helicopter operations. Operations were annualized using the follow-
ing groupings: Aircraft Noise and Performance aircraft type, day- or
nighttime, operation airport, and stage length. Volpe used the
dynamic grid capabilities to automatically determine the grid size.

Population data at the 2010 U.S. Census block group level
were acquired from the ACS (5-y estimates from 2008–2012)
(U.S. Census Bureau n.d.-a). A block group is the smallest statis-
tical unit for which the U.S. Census reports data; it is a cluster of
blocks within a census tract (a relatively permanent statistical
subdivision of U.S. counties) and can contain 600–3,000 people
(240–1,200 housing units) (U.S. Census Bureau n.d.-c). This
study accesses only public-use data from the U.S. Census/ACS,
which thus does not include individually identifiable data and is
not considered human subjects research.

Figure 1.Map of 90 study airports (represented as points in the figure) across the United States. Figure designed with ArcMap 10.6.
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We generated data tables on race/ethnicity, education, and SES
using raw data and SAS (SAS Institute Inc.) code downloaded
from the ACSwebsite (U.S. Census Bureau n.d.-d). Race/ethnicity
is collected in the census by self-identification from categories
based on social definitions recognized in the United States (U.S.
Census Bureau n.d.-b).We calculated the percentage of each of the
following characteristics for each block group population: a) race/
ethnicity: non-Hispanic white, non-Hispanic Asian, non-Hispanic
black, Hispanic, and other (all other non-Hispanic/non-white
races/ethnicities); b) education: no high school diploma or General
Education Development (GED), high school diploma or GED, and
education of at least some college; and c) household annual income
(in USD): <$25,000, $25,000 to <$50,000, $50,000 to <$75,000
and ≥$75,000. Hereafter, we consider the reference groups to be
non-Hispanic whites for race/ethnicity, education of at least some
college, and household incomes ≥$75,000, with the remaining
groups considered to be “socially vulnerable groups.”

To assess the reliability of the ACS block group data used in
the analyses, we calculated the coefficients of variation (CVs) for
each of our derived variables used during modeling, for each
block group. Following the ACS General Handbook (U.S.
Census Bureau 2020), the coefficient of variation (CV) was cal-
culated using Equation 1:

CV =
MOE
1:645

� �

Estimate
×100, (1)

where MOE is the associated margin of error for the estimate, and
Estimate is the derived estimate for the variable of interest within
each block group (U.S. Census Bureau 2020). Margins of error
accompany each block group estimate value but require additional

calculation if ACS estimates are aggregated. For our analysis, we
represented block group estimates as percentages relative to the
entire block group population; thus, we added the fractional
MOEs in quadrature [i.e., the square root of the sum of squares;
see Harvard University (n.d.)]. For any derived estimates that
were aggregated by summing individual ACS estimates, we added
the ACS MOEs in quadrature. Block group CVs were binned into
“high,” “medium,” and “low” data reliability as defined by Esri
whereby CVs ≤12% are “high,” CVs between 12% and 40% are
“medium,” and CVs >40% are “low” (Esri 2014).

Exposure Assignment
We grouped noise contours into three categories (i.e., ≥45 dBðAÞ,
≥55 dBðAÞ, and ≥65 dBðAÞ) to coincide with the WHO Regional
Office for Europe’s recommendation for noise and health (WHO
Regional Office for Europe 2018), the European Union Aviation
Safety Agency guideline (EASA 2021), and FAA regulations for
noise abatement funding (FAA n.d., 2000), respectively. Noise
contour data were provided in shapefile format, whichwe imported
into a Geographic Information System (GIS; ESRI ArcMap, ver-
sion 10.6). These grouped noise contours were overlaid onto 2010
Census block groups using ArcMap (ESRI). Block groups with
≥50% of their area inside the noise contour threshold being investi-
gated were assigned as “exposed,” and all others were assigned as
“unexposed.” The unexposed group was limited to block groups
within a certain distance from each study airport, termed the “max-
imum extent.” The maximum extent was different for each airport
and, similar to as used by Sobotta et al. (2007), was defined as the
maximumdistance a noise contour threshold reached from the cen-
ter of the airport (Figure 2). A buffer centered at the airport and

Figure 2. Example of a noise contour threshold around a fictional airport and assignment of exposed and unexposed block groups (i.e., underlying polygons).
The maximum extent is defined as the smallest radius of a circle centered on the airport that encompasses the entire noise contour. Block groups with ≥50% of
their area within the noise contour are assigned to the exposed group, and block groups not in the exposed group but with ≥50% of their area within the maxi-
mum extent are assigned to unexposed group. Block group layer from ArcMap 10.6. Note: DNL, day–night average sound level.
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extending out a radius equal to themaximum extent defined the ge-
ographic limit of the unexposed comparison group. Block groups
along this edge were included as long as ≥50% of their area was
within the buffer. Airport-specific maximum extents were calcu-
lated for each of the three noise contour thresholds; thus some
block groups assigned to the unexposed group for one noise thresh-
old could have been excluded completely for another. Water
bodies were removed from the block group GIS layer before any
area calculations; however, we kept all other land-use types in the
analysis given that our analysis was confined to near-airport areas
where we would not expect there to be much land area designated
asmore unpopulated thanwater bodies. To test this claim, we over-
laid the 2010 national green space layer [parks, gardens, and forests
(Esri 2021)] and calculated the additional land area that would be
removed from our analyses if green spaces were also excluded—it
amounted to <2–4% of the combined 45–65 dB(A) study areas.

To compare across increasingly higher exposure categories
(45 to<55, 55 to<65, and ≥65 dBðAÞ) relative to the base cate-
gory (<45 dBðAÞ), we included data from 74,253 block groups
surrounding the 90 airports. For comparison at thresholds, we
included only airports that had ≥100 block groups identified
within the airport group (threshold specific). As the noise thresh-
old increased, the total number of block groups included in the
analyses decreased—for the DNL thresholds of 45, 55, and
65 dB(A), analyses included data from 74,170 block groups (86
airports), 32,283 block groups (61 airports), and 4,031 block
groups (15 airports), respectively. Because LAeqN contours were
generally much smaller than the DNL contours, the number of
airports included in the LAeqN analyses were even fewer. For
LAeqN thresholds of 45, 55, and 65 dB(A), analyses included
data from 54, 10, and 0 airports, respectively (thus, no analyses
could be completed for the LAeqN 65-dB(A) contours).

Analytical Methods and Calculations
To understand whether socially vulnerable groups living near
U.S. airports were more or less exposed to aircraft noise than
socially advantaged groups in the same areas, we compared the
percentage of the socially vulnerable group exposed compared
with unexposed for each noise threshold using mean-difference
plots and various logistic modeling approaches. We displayed the
univariable comparisons using mean-difference plots to highlight
the variability across airports for the change in percentage for
each socially vulnerable grouping exposed as compared with the
entire airport group (exposed and unexposed) mean.

We performed both multinomial multivariable regression and
multivariable hybrid mixed-effect logistic regression (all airports

grouped together for both). Multinomial regression used ordered out-
come measures to determine the relationship of sociodemographic
characteristics at higher noise level categories (45 to<55, 55 to <65,
and ≥65 dBðAÞ) relative to the base category (<45 dBðAÞ).
Multivariable hybrid mixed-effect logistic regression with a random
intercept was used to separate within- and between-cluster (airport)
effects (Begg and Parides 2003; Neuhaus and Kalbfleisch 1998;
Schunck and Perales 2017), as given by Neuhaus and Kalbfleisch
(1998) in Equation 2:

logit prðYij =1jXij, aiÞ= ai + bB�Xi + bWðXij − �XiÞ, (2)

where Yij is the outcome exposure to aircraft noise at three thresh-
olds [≥45, ≥55, and ≥65 dBðAÞ]; i=1, 2, . . . ,k airports;
j=1, 2, . . . ,ni block groups within-airport i; a is the distribution
of the random effect; and between-airport is denoted as

�Xi =
Pni

j=1
Xij � ni and within-airport as ðXij − �XiÞ.

Sensitivity analyses using traditional multivariable logistic
regression with a categorical airport term (with both DNL and
LAeqN contours) and Bayesian multiple logistic regression with
a random intercept (with just the DNL contours) were conducted.
In addition, we tested if results changed by controlling for dis-
tance to the airport, which allowed us to investigate whether the
orientation of the noise contours (and flight patterns) led to expo-
sure disparities or not. It may be that being within a certain dis-
tance to an airport is seen as a disamenity regardless of actual
noise exposure. Airports could bring other disamenities, such as
road traffic and associated traffic noise and air pollution.
Univariable logistic models were generated for all variables
tested (with both DNL and LAeqN contours). All regression
modeling was conducted in R (version 3.6.3; R Development
Core Team) using the lme4 package. Bayesian regression in R
was conducted with the brms and rstan packages, which served
as an interface to Stan (version 2.21.2; Stan Development Team).

Results
Table 1 details the characteristics of block groups for the exposure
categories: unexposed, 45 to<55, 55 to<65, and ≥65 dBðAÞ.
Block groups included in our study had populations that were
mostly non-Hispanic white, had at least a high school education (or
GED), and had household incomes of ≥$75,000. The calculated
CVs for the block groups used in our analysis were categorized as
medium and low (Table 2).

Figure 3 shows the mean-difference plots for the DNL 55-dB
(A) threshold for all socially vulnerable race/ethnicity, educational

Table 1. Percentage of block group characteristics by exposure group.

Variables

Exposure group

<45 dBðAÞ 45 to <55 dBðAÞ 55 to<65 dBðAÞ ≥65 dBðAÞ
Race/ethnicity (%)
Non-Hispanic black 16.4 18.6 19.7 25.7
Non-Hispanic Asian 8.1 8.5 9.0 2.7
Hispanic 21.9 26.8 32.3 38.9
Non-Hispanic other 3.1 3.0 2.9 3.1
Non-Hispanic white 50.6 43.1 36.0 29.6
Education (%)
<High school diploma or GED 14.1 17.0 20.5 23.9
High school diploma or GED 23.5 25.6 27.4 29.3
>High school diploma or GED 62.4 57.4 52.1 46.8

Household income (%)
<$25,000 22.0 23.9 25.9 26.0
$25,000 to <$50,000 22.3 23.6 24.8 24.9
$50,000 to <$75,000 17.3 17.6 17.8 19.5
≥$75,000 38.5 34.9 31.4 29.6

Note: Educational attainment is based on the block group population ≥25 years of age. GED, General Education Development
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attainment, and annual household income groups investigated. The
socially vulnerable groupwith the largest mean of themean differen-
ces between the exposed block groups and the mean of all block
groups around the airport were Hispanics. On average, across
61 airports, the exposed groups’ percentageHispanic populationwas
3.1 [95% confidence interval (CI): 0.9, 5.3] percentage points higher
than themean of all block groups around the airport. The second larg-
est mean of the mean differences was that of the group with only a
high school education [2:9 (95% CI: 1.8, 3.9) percentage points
higher than the mean of all block groups around the airport]. The
mean of the mean differences was found to be above zero for all
socially vulnerable groups, except non-Hispanic Asian populations,
but therewas variability across airports. For the same socially vulner-
able group, some airports had positivemean differences (i.e., socially
vulnerable groups were more likely to be exposed), whereas others
had negative mean differences (i.e., socially vulnerable groups were
less likely to be exposed). Both the DNL 45-dB(A) (Figure S1) and
DNL 65-dB(A) (Figure S2) thresholds showed similar variability
across airports, with themean of themean differences >0 formost of
the socially vulnerable groups.

In multinomial multivariable analysis, odds ratio (OR) patterns
were generally nonmonotonic with increasing exposure levels.
Socially vulnerable groups tested had higher odds of being in block
groups exposed to noise levels of DNL 45 to<55 dBðAÞ compared
with block groups with DNL <45 dBðAÞ (Table 3). In addition, the
socially vulnerable groups tested had higher odds of being exposed
to DNL 55 to<65 and to ≥65 dBðAÞ, respectively, compared with
block groups exposed to <45 dBðAÞ (Table 3), except for the per-
centage non-Hispanic Asian population, which showed lower
odds at DNL ≥65 dBðAÞ. For example, each 10-percentage point
increase in a block group’s non-Hispanic Asian population was
associated with 13% (95 CI: 10%, 17%) increased odds of being
exposed to DNL 55 to<65 dBðAÞ and with 51% (95: 31%, 65%)
decreased odds of being exposed to ≥65 dBðAÞ, respectively,
compared with block groups exposed to <45 dBðAÞ. The largest
odds were for Hispanic populations, where, for example, each
10-percentage point increase in a block group’s Hispanic popula-
tion was associated with 39% (95 CI: 25%, 54%) increased odds
of being exposed to ≥65 dBðAÞ compared with block groups
exposed to <45 dBðAÞ. The odds were higher for block groups
with a higher percentage of the population having only a high
school diploma or GED and with annual household incomes of
$25,000 to<$50,000 and $50,000 to<$75,000 than for block
groups with a higher percentage of the population having less
than a high school diploma or GED or annual household incomes
of <$25,000, respectively.

Results from the multivariable hybrid mixed-effect logistic
model approach allowed us to determine which sociodemographic
predictors were most strongly associated with exposure disparities
and to separate within-airport effects from between-airport differen-
ces (Table 4). All socially vulnerable groups testedwere observed to
have higher odds of being exposed to noise levels at the DNL
≥45-dBðAÞ threshold (Table 4), similar to the multinomial model
for populations exposed to noise levels of DNL 45 to<55 dBðAÞ
compared with those exposed to DNL <45 dBðAÞ. Again, the larg-
est odds were for Hispanic populations, where each 10-percentage
point increase in a block group’s Hispanic population was associ-
ated with 13% (95 CI: 11%, 14%) increased odds of being exposed
to higher noise. In addition, each 10-percentage point increase in a
block group’s population with annual household incomes of
$25,000 to<$50,000 and $50,000 to<$75,000 were observed to
have 6% (95% CI: 4%, 8%) higher odds of being exposed to noise
levels at theDNL≥45-dBðAÞ threshold.

Regressions using the DNL 55-dB(A) threshold resulted in
generally similar trends as the DNL 45 dB(A) threshold, with non-
Hispanic Asian and Hispanic populations most highly exposed,
along with people with no college (Table 4). The largest odds were
for people with only a high school diploma or GED, where each
10-percentage point increase in a block group’s population with a
high school diploma or GED was associated with 21% increased
odds of being exposed to higher noise. Associations with house-
hold income were modest, as was the association with percentage
non-Hispanic black.

Analyses for the DNL 65-dB(A) threshold yielded ORs with
wider CIs, with positive associations remaining for Hispanic,
lower education, and lower-income populations (Table 4).We also
observed a strong inverse association with the percentage non-
Hispanic Asian population, unlike what was seen for the 45- and
55-dB(A) thresholds. For all thresholds, results generally did not
change even after controlling for a block group’s distance to the
airport (Table S1).

Our results were similar to those obtained by using alternative
modeling approaches [i.e., traditional multivariable regression
(Tables S2–S4) and Bayesian regression (Tables S5–S7)]. Again,
results generally did not change even after controlling for a block
group’s distance to the airport. We also tested the socially vulnera-
ble group terms with LAeqN thresholds of 45 and 55 dB(A) using
traditional multivariable logistic approaches (there were no airports
with ≥100 block groups available for analysis at the 65-dB(A)
threshold). Generally, these contours were smaller but of the same
shape as the DNL contours at the same airport. As such, the model
results for LAeqN 45 dB(A) (Table S8) were similar to the model

Table 2. Percentage of data classified as high, medium, and low reliability based on the coefficients of variation (CV) for all block groups used in analysis.

Variables High reliability (CV≤12%) Medium reliability (12%<CV≤40%) Low reliability (CV>40%) Not available

Race/ethnicity (%)
Non-Hispanic black 0.1 21.6 55.3 23.0
Non-Hispanic Asian <0:1 11.4 54.1 34.4
Hispanic 0.2 25.0 61.9 12.9
Non-Hispanic other <0:1 1.7 65.0 33.3
Non-Hispanic white 2.9 68.8 23.6 4.8
Education (%)
<High school diploma or GED <0:1 27.4 65.5 7.0
High school diploma or GED <0:1 62.0 36.7 1.3
>High school diploma or GED 2.0 87.0 10.6 0.4

Household income (%)
<$25,000 <0:1% 39.1 56.9 3.9
$25,000 to <$50,000 0.0 42.2 55.7 2.1
$50,000 to <$75,000 0.0 34.0 62.9 3.2
≥$75,000 0.3 61.4 35.1 3.2

Note: CV, coefficient of variation; GED, General Education Development.
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results for DNL 55 dB(A), and model results for LAeqN 55 dB(A)
(Table S9) were similar to the model results for DNL 65 dB(A).
However, there were some modest differences, including slightly
stronger associations with education for LAeqN. Univariable

models with DNL contours (Tables S10–S12) and LAeqN contours
(Tables S13 and S14), in general, had positive associations between
noise exposure and socially vulnerable groups (i.e., the socially vul-
nerable groupsweremore likely to be exposed).

Figure 3.Mean-difference plots for socially vulnerable groups: (A) non-Hispanic black, (B) non-Hispanic Asian, (C) Hispanic, (D) non-Hispanic other, (E) no
high school diploma or GED, (F) high school diploma or GED only, (G) annual household income <$25,000, (H) annual household income $25,000 to
<$50,000, and (I) annual household income $50,000 to <$75,000. In (A–I), each airport-specific relationship is represented by a point (nairport = 61), where the
x-axis is the mean of the percentage socially vulnerable group for all block groups within the maximum extent and the y-axis is the mean difference between
the percentage exposed for the socially vulnerable group and the airport mean. Airports above the zero line were those found to have block groups with a
greater percentage of socially vulnerable groups within the 55-dB(A) noise contour than the mean of all block groups around that airport (i.e., more exposed).
Airports below the zero line were those found to have block groups with a lower percentage of socially vulnerable groups within the 55-dB(A) noise contour
than the mean of all block groups around that airport (i.e., less exposed). Points along the zero line are airports where there is no difference in percentage
socially vulnerable groups within the DNL 55-dB(A) contour (i.e., exposed) relative to the airport mean. Dashed lines represent the mean of the mean differen-
ces across all airports. Note: CI, confidence interval; DNL, day–night average sound level; GED, General Education Development; HS dip, high school
diploma; k, thousand; MD, mean difference.
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Discussion
Aggregated across airports, we observed higher odds of exposure
to aircraft noise in census block groups with a higher percentage
of socially vulnerable groups, including across race/ethnicity,
education, and income. However, we observed considerable vari-
ability among U.S. airports in these patterns (Figure 3; Figures
S1 and S2).

Our findings of higher odds of aircraft noise exposure in census
block groups with higher percentage Hispanic populations were
similar to results reported for some single airport studies. For
example, Ogneva-Himmelberger and Cooperman (2010) investi-
gated sociodemographic characteristics of aircraft noise exposure
within a 21-km radius, the maximum extent of the 55-db(A) con-
tour, of Boston Logan International Airport for 1990 and 2000 and
found high clusters of Hispanic populations concentrated in noise-
affected areas, whereas high clusters of Black populations were
concentrated outside the airport area. Sobotta et al. (2007) used a
research design that was similar to our study design and also found
disproportionate exposure to aircraft noise around an Arizona air-
port in census blocks with a higher percentage of Hispanic heads of
household. The authors found a 25% increase in probability of
being within a block group within the 65-dB(A) noise contour
compared with being outside the 65-dB(A) contour with each

percentage increase in heads of households who are Hispanic.
Although we were underpowered to observe associations with the
65-dB(A) noise contour, in part because aircraft engines were
much quieter in 2010 (the year of our analysis) than they were in
1992 [the year of the analysis by Sobotta et al. (2007)], we did
observe a 5% increase in the odds (per 10-percentage point increase
in a block group’s Hispanic population) of exposure to noise levels
>55 dBðAÞ and 13% increase in odds of exposure to noise levels
>45 dBðAÞ aggregated acrossmultiple airports.

Further, our results are an aggregate of multiple airports
across the United States, and we found substantial heterogeneity
by airport (Figures 3; Figures S1 and S2). This heterogeneity
may reflect varying histories on how and why airports were sited
and how the areas evolved over time as influenced by local geog-
raphy, zoning policies, and real estate practices. Although FAA
oversees the procedural process for conducting noise studies, the
planning and decision making related to aircraft noise impacts is
made at the local level (Sobotta et al. 2007). Kruize et al. (2007)
investigated road, rail, and air traffic noise exposures in the
Netherlands and reported an indication of higher exposure with
lower income only for road traffic noise. In London, UK, Tonne
et al. (2018) found higher exposure to aircraft noise among those
of the highest household income, White compared with Asian

Table 3.Multinomial multivariable-adjusted odds ratios and confidence intervals [ORs (95% CIs)] for block group exposure to day–night average sound level
(DNL) exposure groups (45 to <55 dBðAÞ, 55 to<65 dBðAÞ, ≥65 dBðAÞ) relative to base group (<45 dBðAÞ) for a 10% increase in percentage of block group
with characteristic.

Variables (n=90 airports; 74,253 block groups) 45 to<55 dBðAÞ 55 to<65 dBðAÞ ≥65 dBðAÞ
Race/ethnicity (%)
Non-Hispanic black 1.05 (1.04, 1.06) 1.03 (1.01, 1.05) 1.15 (1.06, 1.24)
Non-Hispanic Asian 1.10 (1.09, 1.12) 1.13 (1.10, 1.17) 0.49 (0.35, 0.69)
Hispanic 1.13 (1.11, 1.14) 1.12 (1.09, 1.15) 1.39 (1.25, 1.54)
Non-Hispanic other 1.08 (1.03, 1.13) 1.12 (1.03, 1.22) 1.31 (0.92, 1.87)
Non-Hispanic white Ref Ref Ref
Education (%)
<High school diploma or GED 1.00 (0.98, 1.02) 1.09 (1.05, 1.14) 0.89 (0.75, 1.04)
High school diploma or GED 1.05 (1.03, 1.07) 1.19 (1.15, 1.23) 1.17 (1.01, 1.36)
>High school diploma or GED Ref Ref Ref

Household income (%)
<$25,000 1.02 (1.01, 1.04) 1.04 (1.01, 1.07) 1.04 (0.92, 1.18)
$25,000 to <$50,000 1.05 (1.04, 1.07) 1.10 (1.06, 1.14) 1.08 (0.93, 1.25)
$50,000 to <$75,000 1.05 (1.03, 1.08) 1.09 (1.05, 1.14) 1.21 (1.02, 1.44)
≥$75,000 Ref Ref Ref

Note: The main model was adjusted for variables on race/ethnicity, education, household income, and airport. GED, General Education Development; Ref, reference.

Table 4.Within-airport odds ratios and confidence intervals [ORs (95% CIs)] for block group exposure to three different day–night average sound level (DNL)
thresholds (i.e., three different models) for a 10% increase in percentage of block group with characteristic using multivariable hybrid mixed-effect logistic
model with random intercept by airport.

Variables

Models

DNL 45 dB(A)
(n=86 airports; 74,170 block groups;

21,296 exposed)

DNL 55 dB(A)
(n=61 airports; 34,283 block groups;

3,476 exposed)

DNL 65 dB(A)
(n=15 airports; 4,031 block groups;

158 exposed)

Race/ethnicity (%)
Non-Hispanic black 1.04 (1.03, 1.05) 0.98 (0.97, 1.00) 0.96 (0.89, 1.04)
Non-Hispanic Asian 1.11 (1.09, 1.12) 1.04 (1.00, 1.07) 0.44 (0.30, 0.66)
Hispanic 1.13 (1.11, 1.14) 1.05 (1.02, 1.07) 1.09 (0.96, 1.23)
Non-Hispanic other 1.09 (1.05, 1.14) 1.03 (0.95, 1.12) 0.82 (0.54, 1.25)
Non-Hispanic white Ref Ref Ref
Education (%)
<High school diploma or GED 1.02 (1.00, 1.04) 1.08 (1.04, 1.13) 1.08 (0.89, 1.30)
High school diploma or GED 1.07 (1.05, 1.09) 1.21 (1.17, 1.26) 1.11 (0.93, 1.32)
>High school diploma or GED Ref Ref Ref

Household income (%)
<$25,000 1.02 (1.00, 1.03) 0.96 (0.93, 0.99) 0.99 (0.84, 1.15)
$25,000 to <$50,000 1.06 (1.04, 1.08) 1.01 (0.98, 1.05) 1.10 (0.92, 1.31)
$50,000 to <$75,000 1.06 (1.04, 1.08) 1.02 (0.98, 1.07) 1.17 (0.95, 1.43)
≥$75,000 Ref Ref Ref

Note: Models were adjusted for variables on race/ethnicity, education, household income, and airport. GED, General Education Development; Ref, reference.
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and other populations, and the lowest area-level income depriva-
tion; higher exposure to rail noise with highest area-level income
deprivation; and less pronounced socioeconomic and ethnic
inequalities related to road traffic noise. Of note, Dreger et al.
(2019) reviewed eight studies on noise and social inequality and
found mixed results; however, the sources of environmental noise
(e.g., road, rail, aircraft, industry noise) and their measurement
and use (grouped or individual), as well as the measures and use
(indicator or index) of social inequality, varied between studies.
A study assessing environmental noise (not an aircraft-specific
noise model) for the contiguous United States that used geospa-
tially modeled sound levels, found that higher noise exposure
was related to race/ethnicity, SES, and residential segregation
(Casey et al. 2017).

We hypothesize that our findings of higher odds of being
exposed to noise in census block groups with lower education lev-
els may reflect that these groups may not have opportunity to move
out of areas with high exposure (Phinney 2013). In addition, those
of higher education may be more likely to have social networks
and political connections that allow them to engage in civic organi-
zations and political activism (Banzhaf et al. 2019; Collette 2011)
to lobby for policies to lower exposure. Noise as a disamenity can
also lower the value of land, or, the lower value of land, related to
racism and segregation, could invite certain sectors (Sobotta et al.
2007). However, our observation of higher odds of exposure with
greater percentage of population with household incomes $25,000
to <$75,000 and those with only a high school education (as com-
pared with the lowest income and education attainment groups,
respectively) living near an airport may be due to employment pat-
terns, as well as housing market dynamics (Brainard et al. 2004;
Lipscomb 2003; National Academies of Sciences, Engineering,
andMedicine 2008).

We focused on three important DNL noise thresholds—45,
55, and 65 dB(A)—and found modest differences by threshold.
Although some associations were consistent across thresholds,
including with Hispanic status, others varied in interesting ways.
For example, in multinomial analysis block groups with higher
percentage non-Hispanic Asians had lower odds of exposure to
aircraft noise ≥65 dBðAÞ when compared with the base group
[i.e., block groups with exposure <45 dBðAÞ] but had higher
odds of exposure to DNL 45 to <55 and DNL 55 to <65 dBðAÞ.
The hybrid mixed-effects regression analysis seemed to confirm
that this group lives near airports but just outside the 65-dB(A)
threshold. Conversely, in ordered multinomial models only, block
groups with higher percentage non-Hispanic blacks showed
higher odds of exposure to DNL 55 to < 65 dBðAÞ and DNL
≥65 dBðAÞ compared with those exposed to DNL <45 dBðAÞ.
This may reflect less distinction in percentage non-Hispanic blacks
with block groups exposed to DNL 45 dB(A) to <65 dB(A) than
with block groups exposed to DNL <65 dBðAÞ.

We chose to use buffers around airports that were themaximum
extent of the noise contours as our areas of study. We also investi-
gated a single year, and patterns may not hold over time—airplanes
have become significantly quieter over the years (GAO 2020), so
populations affected in 2010 may no longer be affected to the same
extent (Ogneva-Himmelberger and Cooperman 2010; GAO 2020).
Given that some groups may lack residential mobility or home
ownership may change slowly, residential patterns in the 2010
unexposed block groups could be remnants of past exposure. As an
alternative approach, we could have chosen a circle of equal area
outside the maximum extent of the noise contours so the “unex-
posed” block groups would not include areas that are close to the
airport and affected by distance; however, this method could have
resulted in identifying differences more related to urbanization and
land-use factors than airports. Differences in urbanization and

land-use factors could influence flight paths where flights may be
directed over less densely populated areas. Another possible
approach would have been to compare sociodemographics of those
exposed with the sociodemographics of the corresponding metro-
politan statistical area (MSA). The MSA delineates metropolitan
areas composed of an urban area with a population nucleus of
≥50,000 inhabitants along with adjacent communities that are sig-
nificantly economically and socially connected (U.S. Census
Bureau n.d.-e). However, our method allowed us to examine more
geographically proximate populations to control for broader popu-
lation differences and facilitated comparability with other studies
(Sobotta et al. 2007).

Our study had several limitations. We used DNL, which is an
annualized noise exposure metric based on a typical 24-h day, as
the basis of our primary regression models. However, this may
not be the ideal metric associated with annoyance or health
effects, and some have suggested that other noise metrics, such as
number of aircraft overflights, are more correlated with annoy-
ance than DNL (Collette 2011). Those with DNL below, for
example, 65 dB(A), could have periods of exposure within a
given year that are >65 dBðAÞ. This is particularly true for areas
surrounding airports with intersecting runways designed to
accommodate expansion or variable wind direction (Yu and
Hansman 2019). In the latter scenario, residents along the flight
path that is used for the less frequent wind direction could have
periods of high aircraft noise exposure equal to those along
the path of the primary runway; however, their annualized expo-
sure could be below the threshold. Our investigation of nighttime
noise levels (LAeqN), though, showed similar results to the DNL
analysis.

Using census block group-level data raises the issue of the
precision of the sociodemographic distribution of the populations
within a block group (Banzhaf et al. 2019; Jones et al. 2014).
ACS data at the block group level can have large standard errors;
the distribution of CVs we calculated for the block groups used
were largely categorized as having medium and low reliability.
Aggregating data, either by attribute or geography, is a simple
approach to reducing the standard error but it comes at the cost of
lowering the resolution of population sociodemographics and ex-
posure assignment (Spielman et al. 2014). We chose to analyze
noise exposures without aggregating ACS data geographically;
however, future analyses could be done to see if the patterns that
we found hold using tracts or larger geographic units. In addition,
the size of the area delineating the block groups could vary
around airports; for example, they could be smaller in very
densely populated areas (Banzhaf et al. 2019), which was not
accounted for in our analysis. However, our intention was not to
make inferences about individuals (Idrovo 2011) but, rather, to
elucidate noise exposure patterns at the population level.
Utilizing larger geographic units would have implicitly assumed
uniform patterns within, for example, census tracts instead of
block groups, which would have contributed error given the rela-
tive steep gradients of some noise contours.

Relatedly, in overlaying noise contours with census block
groups, there are some block groups with part of the block group
inside the noise contour area and part outside the area. We made
the decision that if ≥50% of the (land) area of that block group
was within the noise contour then the entire census block group
would be considered exposed. The noise exposure models
excluded helicopter operations, which can be a major source of
aviation noise in certain communities, such as those surrounding
trauma centers. Although peer-reviewed guidance for integrated
modeling techniques for predicting fixed-wing aircraft noise is
well established, such guidance is yet to be stipulated for predict-
ing helicopter noise (Page 2016). Our analyses did not account
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for noise abatement measures, which may be important when
thinking about noise exposure rather than ambient sound levels.
We did not report on patterns of racial segregation (Morello-
Frosch 2002), which may be an important aspect of the sociode-
mographic patterning of noise exposure in the United States.
More generally, we relied on racial and ethnic categorizations
from the census, but these data have limitations and do not fully
capture the root causes of exposure differentials related to racism,
racial discrimination, and racial segregation (Payne-Sturges et al.
2021). In addition, there is a complex relationship between race/
ethnicity and SES (Williams et al. 2016), and although we con-
trolled for both in the same model, we did not evaluate effect
measure modification.

In spite of these limitations, our study offers multiple novel
insights. To our knowledge, we have performed the first evalua-
tion of sociodemographic patterning of aircraft noise exposure
across multiple (90) U.S. airports. In addition, the noise modeling
for the 90 airports was performed in parallel with similar model
inputs and assumptions using a regulatory-approved software
(i.e., AEDT). The inclusion of multiple airports using a common
analytical approach gave us more power to detect differences and
makes the study more generalizable. We also applied statistical
techniques that accounted for clustering around airports and
explored within- and between-airport differences, and our results
were robust across various regression approaches. Our study
highlighted that there was considerable heterogeneity between
airports, reinforcing that results from single- or few-airport stud-
ies should not be extrapolated to the entire United States. Our
analysis was at the block group level, and not at the level of
larger geographic units (e.g., counties). At higher geographic lev-
els, if segregation exists between the geographic units or if the
boundaries of geographic units are systematically gerrymandered,
associations between noise exposure and sociodemographics
could be overestimated (Banzhaf et al. 2019).

Conclusion
We found that, in pooled multivariable analysis, increasing
higher exposure categories of DNL 45 to<55, 55 to<65, and
≥65 dBðAÞ relative to a base category of <45 dBðAÞ and DNL
noise exposures above the 45-dB(A) and 55-dB(A) thresholds
were positively associated with block groups with higher percen-
tages of socially vulnerable populations; however, there was sub-
stantial heterogeneity in associations by airport. Understanding
these patterns and differences in noise exposure is important for
nationwide studies on the associations of noise and health, espe-
cially given potential confounding in such studies. Airport-
specific associations can provide valuable insight for local policy
makers considering environmental justice issues but should not
be generalized to other airports or nationally given heterogeneity
in the associations.
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