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Abstract

Despite the rising global incidence of central nervous system (CNS) disorders, CNS drug 

development remains challenging, with high costs, long pathways to clinical use and high failure 

rates. The CNS is highly protected by physiological barriers, in particular, the blood–brain barrier 

and the blood–cerebrospinal fluid barrier, which limit access of most drugs. Biomaterials can 

be designed to bypass or traverse these barriers, enabling the controlled delivery of drugs into 

the CNS. In this Review, we first examine the effects of normal and diseased CNS physiology 

on drug delivery to the brain and spinal cord. We then discuss CNS drug delivery designs and 

materials that are administered systemically, directly to the CNS, intranasally or peripherally 

through intramuscular injections. Finally, we highlight important challenges and opportunities for 

materials design for drug delivery to the CNS and the anticipated clinical impact of CNS drug 

delivery.

Central nervous system (CNS) disorders are a growing and costly global health problem. 

Neuropsychiatric disorders are one of the top global health challenges of this century1. 

Added to this are neurological disorders, such as Alzheimer disease (AD) and Parkinson 

disease (PD), which preferentially affect the growing elderly population. Finally, patients 

with primary brain tumours or brain metastases have few treatment options, apart 

from surgical resection, systemic chemotherapy and radiation. However, many major 

pharmaceutical companies have limited efforts in CNS drug development owing to 

the high cost, long pathway and low success rate associated with clinical translation2. 

Biomaterial-based delivery systems represent a potential avenue for enabling new CNS 

therapies. Advances in precision biomaterial synthesis have yielded biomaterials that can be 

specifically functionalized, engineered to respond to physiological or external triggers and 

that possess desirable degradation properties.
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In this Review, we examine the effect of normal and diseased CNS physiology on drug 

delivery to the brain and spinal cord. We highlight the pathophysiological changes that 

complicate drug delivery into the CNS and discuss biomaterials that can be administered 

systemically, directly to the CNS, intranasally or peripherally through intramuscular 

injections. The Review concludes with a perspective on the clinical challenges, future 

directions and anticipated clinical impact of CNS drug delivery.

Barriers to delivery in the normal CNS

Drug delivery challenges to the brain are often attributed to the complex and highly 

regulated barriers that prevent a drug from reaching its target site in the brain from its point 

of entry into the body3 (FIGS 1,2). In particular, two barrier sites between blood and the 

brain are often considered for drug delivery4: the blood–brain barrier (BBB) and the blood–

cerebrospinal fluid (CSF) barrier. In addition, independent of the route of administration to 

the brain, drug delivery systems must penetrate into the brain parenchyma to reach target 

disease sites.

At the BBB and blood–CSF interfaces, the barrier function is a result of physical, transport 

and metabolic contributions. Central to the brain’s neurovascular unit (NVU), the BBB is a 

non-fenestrated monolayer of cells and extracellular matrix (ECM), which, on the abluminal 

side, consists of tightly sealed endothelial cells that form a barrier between the brain tissue 

and circulating blood (FIGS 1a,2a). The BBB is considered one of the most regulated and 

exclusive barriers in the human body. At the level of the capillaries, which are spaced, 

on average, 40 μm apart and contribute to 85% of the 400 miles of blood vessels in the 

human brain5, BBB integrity is maintained by pericytes6–8 and influenced by astrocytes, 

particularly astrocyte endfeet that surround brain vessels9,10. Endothelial cells and pericytes 

share a stabilizing basement membrane, which represents the non-cellular component of the 

NVU.

The BBB regulates transport of molecules into and out of the CNS to tightly control the 

chemical composition required for normal brain function9. Oxygen, carbon dioxide and 

lipophilic molecules smaller than 400 Da passively diffuse across the brain endothelium11. 

The capillary permeability for small, water-soluble molecules (<5 Å in size) is reduced 

by over two orders of magnitude in the brain compared with other organs; this difference 

is increased to over seven orders of magnitude for molecules of 50 Å in size12. Tight 

junctions between brain endothelial cells control paracellular transport, and carbohydrates, 

amino acids and hormones must passage across the BBB using endothelial carrier-

mediated transporters13. Some macromolecules, including transferrin, insulin and leptin, 

use endothelial receptor-mediated transport14. Endothelial ion transporters and channels are 

further crucial in controlling ion concentrations in the CNS. Lastly, efflux mechanisms using 

ATP-binding cassette transporters actively pump drugs and drug conjugates, xenobiotics 

and endogenous metabolites into the blood, contributing to the barrier function between the 

blood and the brain.

The blood–CSF interface presents a second barrier to drug penetrance, comprising the 

choroid plexus epithelium with an estimated surface area of 1.7 m2 in humans15. Compared 
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with the BBB, the blood–CSF barrier is leaky. Blood capillaries at the blood–CSF interface 

are fenestrated; therefore, barrier properties are formed by tight junctions between epithelial 

cells at the CSF-facing surface (apical) of the choroid plexus. Molecules, such as sucrose, 

inulin and albumin, do not cross the BBB, but can cross the choroid plexus to enter the 

CSF at a rate inversely proportional to the molecular weight of the substance16. To move 

from the CSF to the brain, drugs can navigate one of three routes. Therapeutics infused into 

the CSF can move from the CSF into blood and then enter across the BBB to reach brain 

parenchyma. Diffusion into the brain can occur across the ependyma lining of CSF flow 

tracts from the CSF into the brain, although this route can be toxic if high concentrations 

are used to drive diffusion17,18. Drugs can also penetrate through bulk flow of CSF along 

perivascular spaces, as demonstrated by intraventricular infusion of horseradish peroxidase 

in rats and cats15,19. However, the volume of CSF flow within the brain parenchyma is small 

and 20-fold slower than CSF flow over the surface of the brain20, limiting penetration from 

the perivascular space into brain parenchyma.

If therapeutics are able to navigate the BBB or blood–CSF barrier, or if they are locally 

administered to bypass these barriers, there remains the challenge of tissue penetration from 

the site of entry into the brain to target cells or regions of interest within the brain. Given 

the emphasis of the neurotherapeutic field on overcoming the BBB, penetration within the 

brain parenchyma is an often overlooked but important barrier to drug delivery into the 

CNS21. A small lipophilic substance, which successfully diffused transcellularly across the 

BBB, faces the additional barrier of partitioning from the lipid environment of the BBB 

endothelial cell membrane into the aqueous interstitial fluid. Drug distribution by diffusion 

within the brain extracellular space (ECS) is mediated by blood, the CSF, extracellular 

fluid movement, pH, the presence of the ECM and the degree of cellularity22,23. Diffusion 

is also limited by the physicochemical properties of the drug or delivery vehicle, such 

as size, surface charge, shape and molecular weight24–26. For example, free drugs only 

penetrate 1–3 mm into parenchyma, as evidenced by studies measuring drug distribution as a 

function of distance from the site of intracerebral or intracerebroventricular injection16,22,27. 

Notably, the ECS is heterogeneous and diffusion is anisotropic in many brain regions, 

further altering net drug distribution. Moreover, many physiological changes associated 

with disease pathology alter the brain ECS, ECM and NVU microenvironment (FIGS 1,2), 

affecting the penetration of drug delivery systems within the brain parenchyma; for example, 

breakdown in vascular function, changes in enzymatic activity, and extracellular and cellular 

disruption by processes such as inflammation result in alterations in the brain interstitial 

space.

CNS diseases and drug delivery

Cancer

Glioma is the most common primary brain cancer type. The most aggressive, prevalent 

subtype of glioma is glioblastoma multiforme (GBM), with a median survival time of only 

around 1 year28. In addition to primary tumours in the brain, an estimated 9–17% of cancers 

metastasize to the brain. Brain cancer is challenging to treat in large part because the BBB 

limits drug delivery to the tumour. Physiological changes that occur in brain cancer include 
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transformations in vascularization, the brain ECM and the local immune composition (FIG. 

1b). These disease-associated changes can hinder but can also be exploited for drug delivery.

Glioblastoma can have dysfunctional vasculature, including more irregular vessels and 

increased permeability compared with healthy brain vasculature. Increased permeability 

is more associated with high-grade tumours and metastases29, but can also allow drugs 

to access brain tumours from the blood circulation, which would otherwise be prohibited 

by an intact BBB. Vasculature changes also affect brain tumour tissue. Leaky vasculature 

can lead to cerebral oedema and increased intracranial pressure, and altered distribution of 

vasculature can generate locations of hypoxia30. Glioma cells remodel the local ECM and 

produce matrix proteins that are not present in normal brain parenchyma31. Tumour cells 

also upregulate protease expression (for example, urokinase plasminogen activator, matrix 

metalloproteinases (MMPs) and secreted cathepsin B) to facilitate ECM remodelling. Smart 

materials responsive to the remodelled ECM or upregulated proteases have been designed 

for tumour-targeted drug delivery32. Glioma cells also secrete factors that recruit immune 

cells into the brain tumours, including tumour-associated macrophages, myeloid-derived 

suppressor cells and T cells. Immune cell migration from the circulation into the brain has 

also been exploited for drug delivery.

Trauma

Traumatic brain injury (TBI) affects approximately 2 million and spinal cord injury (SCI) 

18,000 US patients per year, with nearly 300,000 patients with SCI dealing with its 

chronic effects33–35. Both types of neurotrauma remain challenging clinical problems, with 

a complex pathophysiology that evolves over time, adding to the difficulty in finding 

appropriate treatments (FIG. 1c). In addition to the initial trauma, secondary injury 

mechanisms, including inflammatory cytokine production, neutrophil infiltration, glutamate 

excitotoxicity, free radical formation, apoptosis and scar formation, lead to considerable 

expansion of the injury36–38, but also offer many potential avenues for intervention39–41.

A common theme in both TBI and SCI is the role of neuroinflammation and secondary 

injury. Mitigation of post-TBI neuroinflammation can lead to functional improvements in 

preclinical rodent models of contusive injury34,42. Inflammation is a crucial component of 

the secondary injury cascade, leading to further cellular damage and death. Tumour necrosis 

factor is a pro-inflammatory cytokine, present soon after SCI in rodent models, peaking 

at 1 h post-injury and persisting at detectable levels for 72 h after injury38. Therefore, the 

first 72 h post-injury appear to be the optimal time frame for decreasing inflammation. 

However, in vivo delivery of anti-inflammatory agents is challenging, owing to adverse 

side effects. Thus, the American Association of Neurological Surgeons-Central Nervous 

System Joint Spine section advised against the use of intravenous (iv) methylprednisolone 

in their 2013 SCI guidelines43, based on a meta-analysis of systemic adverse effects in 

published clinical studies. Administration of steroids remains a controversial topic, with 

patients with SCI44 and some surgeons in favour45 of their use within 8 h of injury owing 

to possible benefits, but a dwindling number of clinicians prescribing them owing to the 

perceived risk46. Although anti-inflammatory drugs may be applicable for the treatment 

of neurotrauma, targeted delivery methods are required to minimize systemic side effects 
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(BOX 1). For example, the controversy surrounding steroids could potentially be solved 

by local and controlled release of an anti-inflammatory agent. This could be achieved by 

polymer-based approaches, which enable the formation of local drug depots and controlled 

drug release.

Beyond the acute phase, the chronic phase of SCI offers important opportunities for 

enhancing recovery through rehabilitation and neuromodulation. For example, advances in 

epidural electrical stimulation have recently led to some recovery of voluntary motor control 

and modest, but impaired, overground stepping in a subset of motor-complete patients 

with SCI47,48. Thus, increased tissue sparing right after injury could greatly improve the 

potential of emerging rehabilitation therapies. These therapies could further be improved 

using implantable drug delivery technologies.

Neurodegenerative pathophysiology

Evidence of endothelial degeneration and diminished BBB function has been reported 

for amyotrophic lateral sclerosis, PD and AD, highlighting potential consequences of 

neurovascular dysfunction in ageing and neurodegenerative diseases49,50. The onset of 

BBB dysfunction occurs with increased gliosis, neurovascular dysfunction, increased 

neuroinflammation and a progressive loss in neuronal function51 (FIG. 2b). In patients with 

chronic psychological disorders or schizophrenia, neurovascular health is also compromised. 

In these conditions, perivascular microenvironments show a thickened basal lamina, 

deformation of astrocytic endfeet, microglial activation and chronic neuroinflammation52.

In addition to challenges related to vascular dysfunction preceding the loss of neuronal 

function53,54, drug delivery into the CNS is also complicated by the onset of secondary 

pathologies, which develop with prolonged BBB dysregulation. The downregulation of 

tight junction protein expression in the BBB leads to perivascular space expansion and 

accumulation of toxic proteins (for example, fibrinogen) from the blood55. Vascular 

dysfunction also coincides with increased deposition of heavily sulfated proteoglycans and 

glial scarring56 owing to an increase in amyloid protein deposition, which further impacts 

cellular components (for example, pericytes) of the neurovascular niche57. Pericytes have a 

key function in BBB integrity, and, thus, these progressive angiopathies accelerate vascular 

degeneration and reduce brain microvasculature58. With decreasing vascular function, 

amyloid and proteoglycan deposition increases, and, thus, material formulations designed 

to deliver drugs across a healthy BBB face substantial barriers that confound delivery into 

diseased CNS49,53,59–62.

Stroke

Stroke refers to vascular brain injuries from either ischaemia and/or haemorrhage, and has 

high lifetime risk, affecting one in four people63. Globally, there are approximately 14 

million new stroke cases per year, with 70% ischaemic and 30% haemorrhagic aetiologies4. 

The stroke treatment landscape is rapidly changing. Treatment with tissue plasminogen 

activator (tPA) has shown survival and functional benefits in several randomized clinical 

trials64; however, tPA must be iv delivered and has a narrow time window for intervention 

— in the USA, administration is currently only recommended within 4.5 h of stroke onset65. 
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As a serine protease, tPA promotes conversion of plasminogen into plasmin, facilitating 

clot dissolution. Owing to the requirement of systemic delivery, high doses are needed 

(0.9 mg kg−1 iv) and patients may suffer devastating complications from intracerebral 

and/or subarachnoid haemorrhage. Thus, controlled release systems are needed that achieve 

functional stroke benefit, while mitigating haemorrhagic risk.

Alternatively, neurointerventional options have been explored for the treatment of ischaemic 

stroke, for example, the insertion of an intra-arterial catheter (usually in the femoral artery). 

The catheter is then advanced towards the ischaemic brain vessel to retrieve the offending 

clot66–70. Endovascular thrombectomy has been shown to be an effective treatment up to 

24 h post-stroke in a subset of patients with mismatch between clinical severity and infarct 

volume71. Interventional stroke treatments have become more pervasive, and endovascular 

access also provides a potential route for depositing a drug delivery system to further 

promote stroke recovery (FIGS 2c,3a).

In addition to acute interventions, subacute and chronic phases of stroke also offer 

opportunities for controlled drug release, for example, to promote neuroregeneration or 

neuroplasticity. Multiple biological processes limit the capacity of the CNS to regenerate, 

including glial scar formation. Chondroitin sulfate proteoglycans are a key component of 

the glial scar and local delivery of chondroitinase ABC can help degrade this barrier72. 

MMPs are also of therapeutic interest, because they can help remodel the ECM. However, 

the timing of MMP delivery is crucial; they may be harmful in the acute phase but promote 

recovery if delivered 1 week post-stroke73. Other strategies include neuroprotection (for 

example, minocycline, natalizumab, uric acid, fingolimod), delivery of growth factors and 

delivery of microRNAs by depot materials to promote survival and differentiation of stem 

cells73–76.

Systemic delivery to the CNS

Drug delivery strategies to the CNS can be implemented by several administration routes: 

systemic delivery, invasive local delivery, such as intrathecal and intraparenchymal delivery, 

and alternative administration routes, such as intranasal and peripheral delivery.

Intravenous administration provides a minimally invasive opportunity for drug delivery 

to the brain but requires passage through the BBB. Consequently, more than 98% of 

systemically administered small molecules with a molecular weight <500 Da and nearly 

100% of molecules with a molecular weight >500 Da are unable to access the brain77. Here, 

we discuss three main approaches to increase drug delivery from the blood circulation into 

the brain: synthetic formulations that undergo transcytosis across the brain endothelium; 

biological carriers that traffic to the brain; and drug delivery combined with temporary 

disruption of the BBB.

Synthetic formulations for transcytosis across the BBB

The brain endothelium closely regulates material transfer between the blood and the brain 

through transporters, receptors and drug efflux pumps (FIG. 4a). These transporters and 

receptors can be exploited for drug delivery across the BBB78–80 (TABLE 1). Of note, the 
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expression of transporters and receptors at the BBB can be altered in disease, which may 

affect drug delivery vehicles using these pathways. For example, low-density lipoprotein 

receptor-related protein expression is reduced, whereas the expression of some drug efflux 

transporters is increased in AD.

Different brain targeting ligands can be compared using the same material platform. For 

example, when comparing iv-injected liposomes modified with transferrin (Tf), an anti-

transferrin receptor (TfR) antibody, angiopep-2, an ApoE mimetic peptide or a mutated 

diphtheria toxin, only liposomes functionalized with anti-TfR antibodies show increased 

brain accumulation, compared with unfunctionalized control liposomes81. Similarly, when 

comparing injection of a 50-kD polyanionic polymer (poly(β-L-malic acid)) conjugated 

with five different peptide targeting ligands, the angiopep-2-targeted construct exhibits the 

highest brain accumulation in BALB/c mice when combined with a small peptide for 

endosomal release82. It is important to note that the material design for each targeting 

approach needs to be optimized based on the specific ligand–receptor interactions and 

intracellular trafficking pathway.

A case study with TfR

The evolution of materials design driven by increased biological understanding is well 

illustrated by a series of formulations developed for TfR-mediated blood-to-brain delivery. 

Three possible outcomes have been reported for TfR trafficking in brain endothelial cells 

after ligand binding on the apical side: recycling back to the apical side; degradation in 

lysosomes; or transcytosis to the basolateral side (BOX 2). Successful brain delivery from 

the circulation requires receptor binding to brain vasculature, transcytosis through brain 

endothelial cells, diffusion through the basement membrane and penetration through the 

brain parenchyma, all of which can be impacted by ligand and vehicle properties.

Receptor affinity.—Seminal work by Genentech demonstrated that reducing the affinity 

of anti-mouse TfR (mTfR) antibodies from 1.7 nM to 111 nM increased brain delivery after 

iv injection from 0.1% to 0.6% of injected dose (ID)83. A follow-up study investigating a 

series of anti-mTfR antibodies with high (18 nM), moderate (588 nM) and low (100 μM) 

receptor binding affinities revealed that the antibody with intermediate affinity accumulated 

with the highest concentration in the brain after iv injection84. Several options could 

explain improved brain delivery with lower-affinity TfR1 binders. Lower-affinity antibodies 

dissociate more readily from the receptor after transcytosis, improving brain accumulation 

and distribution83. High-affinity, but not low-affinity, anti-mTfR antibodies reduce TfR 

expression by 50% within 24 h of treatment in the brain cortex, owing to trafficking to 

lysosomal compartments in endothelial cells85. Finally, high-affinity TfR binders may bind 

non-BBB cells, such as reticulocytes84 and hepatocytes, reducing BBB targeting. Together, 

these studies demonstrate the importance of ligand affinity optimization for transcytosis.

Ligand valency and avidity.—Avidity in targeted delivery can be introduced using 

divalent antibodies or by synthesizing nanoparticles with multivalent ligand display. As 

observed with high-affinity anti-TfR antibodies, divalent antibodies also increase TfR 

degradation, compared with monovalent antibodies86. Transvascular brain delivery using 
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targeted nanoparticles can be optimized by fine-tuning ligand valency on the nanoparticles. 

High-avidity, transferrin-modified nanoparticles remain attached to the brain vasculature, 

whereas lower-avidity nanoparticles can access the brain parenchyma87. For example, more 

nanoparticles functionalized with low-affinity anti-mTfR antibodies (149 nM) accumulate 

in the brain parenchyma than nanoparticles functionalized with high-affinity (21 nM) 

antibodies88. Thus, higher ligand valency and avidity are not necessarily better in terms 

of brain accumulation. Ligand valency effects on receptor binding, receptor trafficking 

and tissue penetration are complex, and, therefore, optimization may be required for each 

platform.

pH sensitivity.—The dichotomy in TfR1-mediated transcytosis, that is, high initial 

binding affinity for cell uptake followed by low-affinity binding to avoid lysosomal 

trafficking, has galvanized the development of pH-sensitive ligand designs with the 

following common principle: high receptor binding affinity and avidity at extracellular 

pH (pH = 7.4) and reduced binding affinity and avidity in early endosomal pH (pH 

~6.0). To reduce lysosomal trafficking of multivalent TfR1-targeted nanoparticles, Tf can 

be linked to nanoparticles by acid-cleavable, diamino ketal or boronate ester linkers, 

allowing reversible attachment of Tf and higher nanoparticle accumulation in murine 

brains, compared with formulations with non-cleavable linkers89,90. Similarly, the inclusion 

of an acid-cleavable diamino ketal linker between the T7 TfR1-binding peptide and an 

electrostatically complexed nanoparticle, composed of an amphiphilic cationic polymer 

and small interfering RNA (siRNA) against β-secretase 1 (BACE1), increases transcytosis 

in brain endothelial cell monolayers compared with a control formulation with stably 

conjugated peptide ligands91.

Physicochemical and mechanical properties.—The circulation time of nanosized 

drug carriers is strongly influenced by their physicochemical and mechanical properties, 

such as size, shape, charge, hydrophilicity and stiffness (FIG. 4b). Prolonged circulation 

half-life is a prerequisite for systemic and sustained access to the BBB, and, thus, particles 

should be used that are not immediately cleared after administration, that is, nanoparticles 

with diameters <100 nm or high aspect ratio, near neutral charge and a protective corona 

that limits protein adsorption92. The vascular basement membrane, a 20–200-nm-thick 

matrix comprised primarily of glycoproteins, adds an additional charge and size restriction 

to brain delivery. In addition, size limits within the brain extracellular space accessible 

for nanoparticle diffusion have been estimated to be <114 nm (REF.24). In vivo studies 

in rodents confirmed that particles <100 nm are best suited for systemic delivery to the 

brain87,93. In a microfluidic in vitro BBB model, rod-shaped particles have been shown to 

be more efficiently transcytosed than spherical particles of the same volume94. The rather 

underexplored area of particle shape may be a focus of future materials development for 

brain delivery.

Brain-vasculature-targeted delivery

Despite progress in developing vehicles for BBB transcytosis, overall delivery efficiencies 

remain low, and most brain-accumulating formulations are associated with the 

microvasculature endothelium in the brain88,95. For example, >90% of brain-associated 
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anti-TfR antibody, known as OX26, is found in the brain capillaries after iv injection and 

not in post-capillary compartments95. However, endothelial retention and the uniqueness of 

the brain endothelium also present an opportunity for targeted brain delivery. For example, 

OX26-functionalized liposomes that associate with brain capillaries without transcytosis can 

deliver encapsulated oxaliplatin to the brain96. The brain vasculature can, therefore, act as an 

accessible depot site for drug delivery to the brain. Proteins upregulated in inflamed brain 

vasculature can also be targeted to localize carriers to the cerebral vasculature; for example, 

anti-vascular cell adhesion molecule 1 antibodies accumulate in the brain vasculature at an 

impressive 17% ID g−1, compared with 1.5% for anti-TfR antibodies97. Localized injection 

into the carotid artery further increases brain delivery efficiency of liposomes targeted to 

cellular adhesion molecules by another fivefold98. The low level of endocy-tosis in brain 

endothelial cells compared with peripheral endothelial cells can also be exploited for brain 

vasculature targeting99. Anti-platelet endothelial cell adhesion molecule antibodies bind 

to endothelial cell surfaces but are less internalized in brain endothelial cells than in the 

rest of the vasculature. Injection of avidin-functionalized micelles 8 h after injection of 

biotinylated anti-platelet endothelial cell adhesion molecule antibodies results in selective 

brain accumulation compared with other organs99.

Biological carriers.—Red blood cells (RBCs), which can be readily obtained in a clinical 

setting, can be used as carriers to the brain. For example, conjugating tPA to RBCs leads 

to reduced hippocampal cell loss in rats with TBI100. Injection of RBCs functionalized with 

nanocarriers into the internal carotid artery, which feeds into the brain, results in 11.5% ID 

delivered to the brain of healthy mice101. Leukocytes from the blood are also able to cross 

the BBB, with migration rates increasing in response to brain inflammation. For example, 

macrophages equipped with polymeric backpacks through layer-by-layer deposition of 

electrolytes can deliver drugs, such as catalase, to the brain102. To avoid the complexity 

associated with cell therapies, liposomes can be functionalized with cyclic RGD peptides 

to target monocytes and neutrophils103. Following iv injection into rats with ischaemia–

reperfusion injury, the targeted liposomes associate with 34.5% of circulating monocytes and 

are carried to the ischaemic brain injury site by these cells103.

Extracellular vesicles, such as exosomes, are cell-membrane-encapsulated vesicles released 

by cells. Exosomes participate in intercellular communication by transferring protein and 

nucleic acid from host to recipient cells. As naturally occurring nanoparticles, exosomes are 

well tolerated and have minimal non-specific interactions, leading to prolonged circulation 

time (hours in the blood)104. Some exosomes, such as those derived from macrophages, 

are able to cross the BBB, with approximately fivefold increased passage in inflamed brain 

compared with healthy brain105. To increase BBB targeting, ligands can be attached to 

exosomes, either through recombinant expression of a fusion protein enriched in exosomal 

membranes106 or by direct covalent conjugation107. Such engineered exosomes can deliver 

small-molecule drugs, nucleic acids and proteins106–108; for example, exosomes isolated 

from bone-marrow-derived dendritic cells can be engineered to express a rabies virus 

glycoprotein-derived peptide, allowing brain endothelial cell targeting and delivery of 

siRNA against BACE1, resulting in efficient target protein reduction in the mouse brain106.
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Biological carriers are an attractive approach for drug delivery to the brain; however, 

production costs are high compared with synthetic carriers. Large-scale production and 

purification, as well as methods for rapid and reproducible characterization of exosomes, 

remain a bottleneck in the clinical translation of this technology.

Localized disruption to facilitate brain delivery.—The aforementioned approaches 

focus on navigating the BBB by exploiting innate, non-disruptive pathways. Alternatively, 

transvascular drug delivery can be achieved through transient disruption of the BBB by 

osmotic change109. However, disrupting the BBB is associated with toxic effects and, thus, 

this approach requires tight spatial control and temporal transience. Adverse side effects 

can be reduced by magnetic resonance (MR)-guided110 optimization of the perfusion area 

impacted by osmotic agent delivery, combined with temporary occlusion111.

Focused ultrasound allows precise spatial and temporal control of localized acoustic 

energy treatment to transiently disrupt the BBB. Combined with MR imaging, MR-guided 

focused ultrasound (MRgFUS) can improve brain delivery of systemically delivered small-

molecule drugs, proteins, antibodies, synthetic nanoparticles, viruses and cells112–114. In 

MRgFUS-mediated brain delivery, drugs are usually co-delivered with microbubbles that 

respond to ultrasound by expanding and contracting, temporarily increasing neurovascular 

permeability115. Importantly, several recent clinical studies have demonstrated that 

MRgFUS for brain delivery is well tolerated in patients with AD116 and brain cancer117. 

Thus, MRgFUS is a promising approach for targeting delivery to specific locations within 

the brain, However, the approach is complex and requires sophisticated instrumentation.

Invasive local delivery

Local or non-systemic drug delivery routes are often invasive but viable strategies during 

surgical interventions for resection of malignant tumours, subarachnoid haemorrhage, PD 

or traumatic injury treatment. For example, extended-release wafers, hydrogel scaffolds, 

polymer films, microspheres or nanoparticles can be implanted for direct parenchymal 

administration to the brain (FIG. 5). Intrathecal delivery strategies can further employ 

biomaterials that can be infused into the CSF. Non-biodegradable polymers, such as 

silicone rubber, were first explored, which can deliver a range of molecules; however, these 

materials are not optimal, owing to long-term side effects and reduced drug release rates 

over time118. Improved clinically available polymer delivery systems were composed of 

hydrophilic matrices that adsorb water and undergo homogeneous degradation; however, 

homogeneous degradation results in rapid and uncontrolled inactivation of drug agents. 

Hydrophobic adsorbable polymer sutures were the first clinically used biodegradable 

polymers, introduced in the 1980s119, which then inspired the next generation of sustained 

intraparenchymal delivery strategies.

Intraparenchymal administration

Drug delivery through intraparenchymal (also referred to as intracranial or intracerebral) 

injection can be achieved using natural or synthetic polymer-based systems, which provide 

controlled, timed and long-lasting drug delivery as the material degrades. Natural polymers, 

such as polysaccharides (for example, alginate, hyaluronic acid, dextran and chitosan) and 
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proteins (for example, collagen, albumin, elastin and gelatin), can form hydrogels through 

self-assembly or cross-linking. Natural polymers are abundant and generally well tolerated 

in vivo. Synthetic polymers have the advantage of allowing sophisticated modifications, 

enabling customization for specific drug release and degradation requirements. Most 

synthetic polymers used for intraparenchymal depots are composed of polyesters, poly 

anhydrides, polyamides, polycarbonates and phosphate-based polymers. These polymers are 

typically hydrophobic and provide a stable platform for water-insoluble drugs. Natural and 

synthetic polymers have been used in the form of wafers, injectable hydrogels, implantable 

hydrogel scaffolds, conducting polymers, and microparticles and nanoparticles.

Extended-release wafers.—The most extensively studied intraparenchymal delivery 

system is the US Food and Drug Administration (FDA)-approved carmustine (BCNU)-

loaded polyanhydride wafer (Gliadel), used in the treatment of glioblastoma. This wafer 

is composed of pol y(carboxyphenoxy-propane-co-sebacic acid anhydride) and is a core 

technology for the delivery of antitumour agents, including paclitaxel120, camptothecin121 

and temozolomide122. BCNU wafers provide high local drug concentrations while limiting 

systemic toxicity123, resulting in modest efficacy in patients with GBM124. However, the 

majority of BCNU is released from the wafers within the first week of implantation 

and the drug concentration is highest within 1 cm of the implanted wafers125, which is 

suboptimal, given the invasive nature of high-grade gliomas. Thus, greater tissue penetrance 

of therapeutically effective drug concentrations is required to improve outcomes after 

Gliadel implantation. Although the approval of BCNU wafers was an important step for 

the drug delivery and biomaterials fields, follow-up clinical trials in patients who were 

not eligible for the initial clinical trials raised concerns about side effects potentially 

caused by materials with prolonged polymer degradation126. Nonetheless, BCNU wafers 

provide an exemplary design platform for intraparenchymal drug delivery and can guide 

the development of alternative polymer depots, such as hydrogels, microspheres and 

nanoparticle systems. For example, the composition of polymer reservoir systems based 

on polyester nanofibre composites can be tailored by electrospinning127.

Injectable hydrogels.—Hydrogels are soft, often shear-thinning materials that can be 

tuned to degrade over a period of days to weeks, rather than months. Intraparenchymally 

delivered hydrogels can encapsulate various payloads, including mesenchymal stem cells128, 

small-molecule drugs, growth factors129 and extracellular vesicles130. Many hydrogel 

studies have focused on brain cancer treatment; however, peptide-based and polymer-based 

hydrogels have also proven effective in delivering trophic factors for the treatment of 

inflammation and ongoing oxidative injury in stroke, TBI and SCI73,129,131. For example, 

a complement component 7 (C7)-poly(ethylene glycol) (PEG) hydrogel encapsulating 

vascular endothelial growth factor and MMP9 provided sustained release and improved 

functional recovery in a preclinical middle cerebral artery occlusion model for stroke73. 

Delivery of vascular endothelial growth factor and MMP9 into the CSF resulted in 

downregulation of connective tissue growth factor, representative of a purported recovery 

mechanism shown in preclinical studies on stem cell transplantation73. Humans have a 

larger tissue volume than mice, which may allow better tolerance of microlitre-volume 

hydrogel injections relative to the smaller spinal cord space. Indeed, brain injections for 
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convection-enhanced delivery has been demonstrated in humans. An injectable ultraviolet 

(UV) cross-linked poly(lactic acid)–PEG hydrogel encapsulating neurotrophin 3 (NT3) 

enabled controlled release of the drug in a dorsal hemisection preclinical model of SCI132. 

Local delivery led to improved functional recovery as measured by standard locomotor 

tests132. Although this is an interesting approach for spinal cord transection, the great 

majority of human SCI cases are contusive rather than true transections. Injection of a 

hydrogel is more challenging in this clinical setting because there is no open spinal cord 

wound in which to place the gel; rather, the surgeon would have to violate the meninges and 

spinal cord tissue with an injection, potentially causing further injury. Moreover, whether 

UV polymerization is successful if the pre-polymer is intrathecally injected remains to be 

shown, because UV light has to pass through an intact dura and subarachnoid space. In situ 

temperature-based polymerization has been demonstrated with an injectable F-127 hydrogel 

depot containing poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with thrombin 

inhibitors, resulting in improved recovery in a mouse SCI model compared with animals 

injected with CSF or heparin hydrogel controls133.

Hydrogel delivery of enzymes, which are unstable and challenging to deliver in free 

form at body temperature, has shown promise for the treatment of neurotrauma. For 

example, a chondroitinase ABC fusion protein can be stabilized by site-directed mutagenesis 

and PEGylation when encapsulated in a methylcellulose hydrogel72. Following injection, 

chondroitinase ABC enzymatically degrades chondroitin sulphate proteoglycan, making 

the post-injury microenvironment more permissive for axonal regrowth and enabling 

remodelling after neurotrauma or stroke72. Sustained release from the hydrogel system 

reduced chondroitin sulfate proteoglycan levels in a rodent stroke model. A polymeric form 

of bivaliru-din, a thrombin inhibitor, can be delivered by an injected hyaluronic acid and 

methylcellulose hydrogel, which reduced gliosis in a rat SCI model134.

Implantable hydrogel-based scaffolds.—Hydrogel scaffolds can also be employed 

for controlled CNS drug delivery. Hydrogel scaffolds are structural and compositional 

mimics of the target tissue environment and may be used to deliver drugs or chemical 

cues to promote regeneration after stroke or neurotrauma135, such as trophic factors to 

promote overall growth, mechanical alignment cues, or attractive and repulsive cues to help 

regenerative nerve fibres to reach their target. For example, a heparin system encapsulating 

NT3 in a fibrin gel136 showed evidence of regenerating fibres in an SCI model without 

functional assessment. Similarly, poly(ε-caprolactone-co-ethyl) ethylene phosphate can be 

electrospun into aligned nanofibres and embedded in a collagen hydrogel to enable sustained 

release of NT3 and microRNAs after implantation in a cervical hemisection model of 

SCI137. In this model, aligned axon regeneration could be achieved; however, behavioural 

recovery was not assessed, and, thus, it remains unclear whether the hydrogel had a 

functional effect. In addition, the system may be challenging to implement in humans with 

non-penetrating SCIs; in the most common human clinical scenario, there is almost never a 

hemisection gap available in which to implant such a hydrogel and implantation itself may 

cause injury.
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Conductive polymer implants.—Conductive polymer scaffolds offer the possibility to 

house and stimulate cells that can act as therapeutics for the CNS. For example, neural 

stem cells can be pre-stimulated on a polypyrrole scaffold prior to implantation in a rat 

stroke model138. Animals treated with electrically preconditioned neural stem cells showed 

improved functional recovery compared with animals implanted with unstimulated neural 

stem cells. Combining this approach with controlled drug release by a polymer in vivo 

may further improve the results. Conductive polymer thin films have been used in various 

applications for targeted drug delivery. By undergoing oxidation–reduction reactions, 

conductive polymers can provide a depot for the release of bioactive molecules in the 

CNS. In particular, polypyrrole has grown in popularity owing to its biocompatibility139,140. 

Additionally, microfabrication techniques can create polymer-covered electrode arrays with 

any geometry of interest for controlled local drug delivery to the CNS139–142.

Microscale and nanoscale delivery systems.—Natural and synthetic polymers 

can be fabricated into microspheres and nanoparticles for intraparenchymal delivery. For 

example, drug delivery by biodegradable PLGA microspheres has been investigated for 

high-grade gliomas, pain143 and spasticity144. In a randomized phase II trial, patients 

with high-grade glioma received multiple injections of PLGA microspheres loaded with 

5-fluorouracil following tumour resection, with post-operative fractionated radiotherapy145. 

These patients survived 15.2 months, compared with 13.5 months for patients who 

only received radiotherapy after surgical resection. PLGA can also provide a depot 

for nimodipine to treat vasospasm and secondary brain injury after a subarachnoid 

haemorrhage146. Incorporated into PLGA microspheres, nimodipine treatment resulted in 

a significant reduction of vasospasm with no signs of toxicity147,148.

Microspheres have high loading capacity and long drug release profiles, but show limited 

brain parenchyma penetration. By contrast, nanoparticles designed to minimize interactions 

with the ECM and cellular components of the brain microenvironment are more widely 

distributed in the parenchyma and show increased retention following intraparenchymal 

delivery24,149. For example, PLGA nanoparticles copolymerized with PEG and loaded 

with paclitaxel resulted in slowed brain tumour growth after intratumoural injection in a 

gliosarcoma rat model150. Paclitaxel-loaded PLGA particles without PEG were not able to 

delay tumour growth compared with free drug and no-treatment controls, owing to limited 

penetrance and distribution of the particles and drug. PLGA nanoparticles in disc rather 

than spherical form were equally effective at treating glioma, because they achieve high 

paclitaxel concentrations at >5 mm from the site of injection, demonstrating the potential 

importance of shape and size in improving drug distribution within the parenchyma151. 

Lipid polymer capsules delivering doxorubicin, paclitaxel or temozolomide also improve 

glioma outcomes following intracranial administration152. Brain tumour models are the most 

common models for investigating intraparenchymal delivery strategies; however, liposomal 

nanoparticles loaded with dopamine have also been studied for the treatment of PD. Delivery 

into the striatum of rats with PD-like symptoms resulted in partial recovery of behavioural 

deficits and partial amelioration of symptoms153, and the effects were further improved by 

altering the dopamine/lipid ratio154.
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Convection-enhanced delivery.—When a substance is administered directly into the 

parenchyma, transport away from the site of entry is thought to predominantly occur by 

concentration-gradient-driven diffusion25; in general, there is little bulk flow of fluid within 

the neuropil ECS compared with lower resistant areas, such as the perivascular space22. 

Diffusion can limit the therapeutic relevance of drugs, because the distances over which 

drugs would have to diffuse to impart a therapeutic effect can be very long. Therefore, other 

forms of passive delivery, such as convection-enhanced delivery, have been explored. Here, 

a drug or delivery vehicle solution is infused through a surgically implanted catheter by a 

pump to allow bulk flow into the brain ECS. Convection-enhanced delivery can increase 

the volume of drug and nanoparticle distribution up to 15-fold compared with nanoparticle 

distribution by diffusion alone155. For example, the distribution of polymer nanoparticles 

infused by convection-enhanced delivery is more heterogeneous in the presence of tumours 

compared with normal brain tissue, although the net volume of distribution remains larger 

compared with healthy brain156.

Convection-enhanced delivery of free drugs has been shown to be safe and feasible 

in clinical trials157; however, survival has not been improved for patients with GBM. 

Combining convection-enhanced delivery with nanocarriers may address the limitations 

of short half-lives and rapid free drug metabolism after infusion is stopped. Polymer156 

and liposomal158 nanoparticles administered by convection-enhanced delivery can provide 

sustained drug release on the order of days and weeks after infusion has ended. The 

surface properties and size of the nanoparticles influence nanoparticle volume of distribution 

following convection-enhanced delivery159; interestingly, nanotherapeutic distribution could 

further be increased by altering the osmolality of the infusate used to deliver the 

nanoparticles160.

Convection-enhanced delivery is also often used for intracranial gene delivery to the CNS. 

As of 2020, more than 30 clinical trials have been conducted for intraparenchymal viral 

vector delivery systems for the treatment of glioblastoma and PD161, with 90% of these 

studies using adeno-associated viral vectors (AAVs). For example, studies in non-human 

primates showed that AAV infusion into the subcortical region results in broader and more 

robust expression of glial-cell-derived neurotrophic factor, which restored dopaminergic 

function in parkinsonian monkeys162. AAVs have the advantage of being small (25 nm), 

non-replicative and non-pathogenic viruses, which makes them interesting for local delivery 

in the brain161.

Intrathecal administration to the CSF

Different routes of drug administration can lead to absorptive uptake in the CNS. 

Biomaterials can also be administered directly to the CSF by intrathecal injection to 

achieve high doses with minimal off-target exposure and toxicity163 (FIG. 5). Consequently, 

intrathecal administration may potentially circumvent the shortfalls of systemic delivery of 

drugs and non-viral gene delivery to treat CNS diseases.

Materials injected directly into the CSF circumvent BBB obstacles; however, ependymal 

cells of the choroid plexus also act as a barrier, limiting tissue penetrance despite 

widespread diffusion of biologics throughout the CSF164. Therefore, nanoparticles and 
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polymer formulations are being explored in preclinical studies to improve delivery and brain 

tissue penetrance165. Initially, polyethyleneimine–DNA complexes, cationic liposomes and 

silica nanoparticles were used for siRNA and non-viral gene delivery in vivo166. Since these 

initial studies, multifunctional polymer materials have been optimized to further increase 

cargo stability167 and to enhance endosomal escape168. In addition, copolymers have been 

designed to mimic viruses to increase gene delivery to the brain169. Materials engineered 

to increase tissue penetrance and widespread delivery into cells have the potential to create 

viable non-viral gene and biologics delivery therapies for the brain. Although biologics 

delivery remains difficult owing to substantial biological barriers170, these limitations may 

be overcome by appropriately designing the size, charge and shape of biomaterials171. For 

example, smart, stimuli-responsive biomaterials or depot delivery polymeric formulations 

could be used to improve uptake and pharmacokinetics of therapeutics to treat diseases of 

the CNS172.

Intranasal and peripheral administration

Intranasal administration

Despite neurovascular changes and loss of BBB integrity associated with neurodegenerative 

disease, brain-targeted materials show restricted CNS penetrance and premature drug 

degradation after systemic administration or drug depot implantation11. Alternatively, 

intranasal administration can bypass the BBB and deliver therapeutic drugs into the brain173. 

Similarly, peripheral injection allows uptake and delivery to the CNS and spinal cord by 

motor neurons and the autonomic nervous system (ANS), as has been demonstrated with 

model drugs174. These alternative routes of administration oiler the potential to increase 

CNS delivery with minimal systemic drug distribution and without the need to disrupt or 

damage the BBB175.

Drug delivery across the nasal epithelium provides two routes for delivery into the CNS. 

Lipophilic drugs and small biologics can leak through the nasal epithelium and diffuse into 

the brain and CSF176, or drugs can be transported through transneuronal pathways along 

olfactory and trigeminal nerve axons177. Consequently, intranasal delivery offers ease of 

use, reduced systemic exposure, faster drug onset of action and greater bioavailability in a 

non-invasive manner compared with systemic or local delivery178.

Despite the potential advantages and clinical efficacy of intranasal administration179, the 

approach is limited by the nasal cavity surface area and properties of the nasal mucosa180, 

which attenuate effective drug uptake181. Surfactants or encapsulation by nanoparticles 

are being explored to increase delivery182,183. For example, alginate or chitosan 

nanoparticles can prevent active export by BBB receptors (for example, P-glycoproteins) 

and protect against biological and/or chemical degradation184. Nanostructured lipids185, 

nanoemulsions186 and chitosan-coated niosomes187 can be applied to alter the surface 

properties of nanoparticles to improve nose-to-brain delivery188. Similarly, degradable 

polymeric materials, such as poly(lactic acid), poly (glycolic acid), PLGA and poly(sebacic 

anhydride)185, can encapsulate and increase drug stability for intranasal delivery189. 

Targeting the nasal epithelium for uptake and delivery can further be achieved by 
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functionalization with lectins, cell-penetrating peptides and proteins, for the treatment of 

AD and PD190.

Retrograde delivery from the periphery

CNS delivery can also be achieved after intramuscular injection through retrograde transport 

along nerve axons that project from the periphery (for example, gastrocnemius) back to 

the spinal cord and brain191. Delivery of viruses and non-viral biomaterials to the CNS by 

intramuscular injection and retrograde transport has been demonstrated in rodents192,193 and 

non-human primates194,195.

Moreover, administration into multiple muscle groups and neuromuscular endplates was 

shown to improve delivery to the CNS192,196. Viral delivery vehicles conjugated with 

recombinant protein chimeras, peptide ligands from cholera and tetanus toxin197, or wheat 

germ agglutinin increase neuronal uptake and delivery into the brain and spinal cord198. 

In addition, material formulations functionalized with small peptides demonstrate axonal 

uptake by motor neurons and delivery into the CNS199,200. However, access to nerve termini 

within injectable muscle sites remains limited and, thus, delivery strategies exploiting the 

ANS are being explored201,202 as a means for enhancing CNS uptake via sympathetic and 

parasympathetic neurons. Thus, peptides targeting the ANS could be used in polymer and 

material formulations to deliver drugs at therapeutically relevant doses174, which is crucial 

for treating CNS diseases203.

Conclusions and perspective

Owing to the tightly controlled BBB, drug delivery to the CNS remains technically and 

clinically challenging. Neurodegenerative, psychiatric, oncologic and traumatic injuries may 

all benefit from controlled, responsive and tailored drug release systems. However, there 

is a disconnect between successes in preclinical studies and the few drug delivery systems 

that made it into human clinical trials (TABLE 2), owing to the considerable challenges 

associated with using rodent models to test engineered materials, which may not overcome 

biological barriers present in human disease.

Perhaps the biggest biological challenge is the complexity and diversity of human pathology. 

Mammalian models only partially mimic the biological barriers faced by drug delivery 

vehicles in humans. In vitro monocultures do not have complex multicellular networks 

or an ECM. By contrast, ex vivo organotypic brain slices retain regional differences, the 

3D architecture of cells and the ECM; however, vascular and ventricular flow effects are 

absent. In vivo models provide the BBB, fluid flow and solute exchange, but it is difficult 

to perform mechanistic studies in vivo. In addition, no animal model adequately replicates 

the complexity, heterogeneity and spatial-temporal scale of any CNS disease in humans. 

For example, the location, severity and pathology of TBI or SCI vary greatly between 

patients; by contrast, injury patterns are tightly controlled in preclinical animal models. 

Many failed human pharmaceutical trials may not have achieved statistical significance 

owing to injury diversity. Additionally, the scale (for example, volume) of injuries can 

be very large in humans (FIG. 3), emphasizing the need for drug delivery strategies that 
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can achieve therapeutically relevant distributions throughout the entirety of the injured or 

diseased tissue.

Biomaterial formulations for CNS delivery have been effective for drug release at the 

site of action (for example, Gliadel wafer); however, there remains a need for materials 

that can mediate delivery throughout the CNS. Although materials can deliver past 

the BBB, the delivery efficiencies remain low. Formulations are required that show 

increased BBB transport and tissue penetrance at distal targets to promote cellular 

repair. For example, dynamic materials that transform in response to biological stimuli 

or environmental cues could overcome serial barriers and facilitate systemic delivery in 

the pathologic CNS. Furthermore, injectable materials with wide-ranging hydrodynamic 

modulus and biomimetic properties would improve local delivery. Materials that are 

biodegradable in relevant timescales are needed to improve biocompatibility and prevent 

additional neuroinflammation. Similarly, conductive materials could be used to further 

improve neuronal communication within the diseased CNS204,205. Finally, materials that are 

responsive to biological stimuli and temporal shifts could better respond to the challenges 

of disease pathology to account for temporal control in acute versus chronic conditions; 

for applications in SCI or TBI, an ideal material would be anti-inflammatory immediately 

after injury, but facilitate regeneration at longer time points. Chronic conditions that require 

sustained drug release over longer periods will also benefit from materials that mitigate 

immune responses.

The clinical translation of promising CNS drug delivery systems also suffers from a funding 

gap, given the orders of magnitude cost difference in completing a pre-clinical versus a 

clinical trial. New funding mechanisms are needed to bridge the gap and to increase the 

number of CNS drug delivery devices that reach the market and, ultimately, help patients.

Nonetheless, the rapidly growing body of tools for CNS drug delivery will certainly 

improve treatment options for patients with CNS disease. A detailed understanding of 

CNS pathophysiology is crucial for the rational design of CNS delivery approaches. Use 

of transferrin receptors, lipoprotein receptors and choline transporters has led to successful 

demonstrations of CNS drug delivery, including systemic injection for applications, such 

as brain cancer, in animal models. Intranasal PLGA delivery devices are promising for 

neurodegenerative conditions, such as AD and PD. The intrathecal route has proven viable 

for CNS delivery of DNA, siRNA or nanoparticle complexes. Non-invasive methods to 

access the brain from systemic administration, especially for biological drugs, would 

transform care of neurodegenerative diseases that require repeated administration and for 

metastatic brain cancer. Substantial advances have been made in recent years with antibody 

and nanoparticle engineering, as well as focused-ultrasound-mediated delivery; however, 

further improvements in delivery efficiency to the CNS are needed to avoid exacerbating 

disease pathologies.

New neurosurgical approaches allow greater access to target sites for local delivery 

strategies; for example, electrode implantation for PD provides access to the diseased 

basal ganglia; convection-enhanced delivery has been tested in humans with high-grade 

CNS tumours, facilitating high-volume infusate delivery; endovascular approaches for 
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clot retrieval after stroke give access to the local vasculature for materials implantation; 

decompressions after brain injury or SCI enable access to injured neurons and glia; and 

stereotactic devices have been developed for local implantation in human patients with 

amyotrophic lateral sclerosis206. Hydrogel drug depots that mitigate gliosis, inhibit thrombin 

or release neurotrophic factors have improved functional recovery in preclinical models of 

CNS injury. Implantable BCNU wafers have shown modest efficacy in human patients with 

GBM. Importantly, drug-material formulations for local delivery strategies can be combined 

with systemic delivery approaches to provide temporal and multifaceted control of treatment 

approaches for the CNS to further improve outcomes. Taken together, technical challenges 

in CNS delivery are gradually being overcome and the landscape for continued progress and 

materials development is bright.
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Box 1 |

Clinical vignette

A 20-year-old male fell in a mountaineering accident. After the fall, he was able to move 

his biceps but had no movement in other muscles of the extremities. He had sensation 

above the clavicles but none below. A computed tomography scan of the cervical spine 

revealed C4–C5 burst fractures, with bone fragments in the spinal canal (see the figure, 

panel a). He was intravenously (iv) treated with methylprednisolone and emergency 

surgical decompression and stabilization.

According to the National Acute Spinal Cord injury Study (NASCIS) protocol, patients 

with spinal cord injury treated with iv methylprednisolone are given a 30 mg kg−1 iv 

loading bolus over 15 min, followed by a 5.4 mg kg−1 h−1 iv drip over the next 23 h. 

For an 80-kg patient, this translates to a total dose of 12,300 mg. This high systemic 

dose may lead to adverse side effects, such as pneumonia, sepsis, gastrointestinal 

bleeding, myopathy and hyperglycaemia. Thus, administration of iv methylprednisolone 

is controversial.

This patient underwent a two-stage spine surgery; first, a C4–C5 corpectomy with 

reconstruction of the vertebral bodies using a titanium cage and, second, C2–C7 posterior 

spinal fusion with C3–C6 laminectomies (see the figure, panel b). In spite of the 

technically successful spine surgery and early administration of iv steroids, he did not 

regain any movement or sensation at long-term follow-up.

The case would have benefited from a controlled release system for the spinal cord. 

Multiple preclinical studies have shown promising results with local delivery of anti-

inflammatory or pro-regenerative molecules. A human clinical trial was completed for an 

epidural implantation of a Rho inhibitor encapsulated in a fibrin sealant230. Although the 

trial did not demonstrate functional benefit, it demonstrated a new strategy for controlled 

release to the spinal cord.
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Box 2 |

TfR1-targeted delivery

Transferrin receptor 1 (TfR1) is a transmembrane glycoprotein with two identical 

subunits, each binding to one transferrin. Holo-transferrin (Holo-Tf), bound to two 

Fe, binds TfR1 with high affinity (~10 nM) at pH 7.4 (24 times higher affinity than 

the apo-transferrin (Apo-Tf) form)231,232. TfR1 expressed on brain endothelial cells 

preferentially binds Holo-Tf in blood and is subsequently internalized through clathrin-

mediated endocytosis into acidifying endosomes (pH ~6.0). In the endosomes, the 

affinity between Fe and transferrin is reduced, and Fe is released. However, Apo-Tf 

binds to TfR1 with higher affinity in acidic environments and can, therefore, remain 

associated with the receptor during intracellular trafficking231. From there, TfR1 can be 

recycled back to the apical surface by recycling endosomes (1), degraded in lysosomal 

compartments (2) or transcytosed to the basolateral side for potential cargo delivery to the 

brain (3). Targeting ligands that preferentially undergo transcytosis in brain endothelial 

cells are desirable for transvascular brain delivery formulations.
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Fig. 1 |. Physiological and pathological changes of the central nervous system in cancer and 
traumatic brain injury.
The impact of vascular, enzymatic, extracellular, cellular and interstitial barriers on drug 

delivery is shown in normal brain tissue (panel a), cancer (panel b) and traumatic brain 

injury (panel c). BBB, blood–brain barrier; ECM, extracellular matrix; MMP, matrix 

metalloproteinase; TAM, tumour-associated macrophage.
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Fig. 2 |. Physiological and pathological changes of the central nervous system in chronic 
neurodegeneration and stroke.
The impact of vascular, enzymatic, extracellular, cellular and interstitial barriers on drug 

delivery is shown in normal brain tissue (panel a), chronic neurodegeneration (panel b) 

and stroke (panel c). BBB, blood–brain barrier; ECM, extracellular matrix; MMP, matrix 

metalloproteinase; TAM, tumour-associated macrophage.
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Fig. 3 |. Different human diseases present different central nervous system drug delivery 
challenges.
a | Computed tomography scan of a malignant middle cerebral artery (MCA) stroke, 

area outlined in yellow. The highlighted area (magenta) shows injured brain parenchyma 

occupying much of the left hemisphere, in which drug delivery solutions may be able to 

salvage tissue in the stroke penumbra that is transiently ischaemic but not yet infarcted or 

lost owing to cell death. b | Magnetic resonance image of a spinal cord injury (blue outline) 

shows a compressed spinal cord from cervical stenosis. The yellow outline shows a C7–T1 

traumatic herniated disc displacing the spinal cord. Thus, two distinct areas (red arrows) of 

injury would need to receive a drug at therapeutic dose to preserve or recover white matter 

tracts, which could be accessible during surgery. c | Magnetic resonance imaging scan of 

glioblastoma multiforme (GBM) brain tumour, showing a large mass effect (enhancement 

within the left temporal lobe, yellow outline) causing mass effect and displacing the brain 

by over 1 cm from left to right. Resection surgeries for tumour removal (cyan) allow 

placement of local antineoplastic drug delivery devices. The technical challenge of targeting 

microscopic tumour cells in the brain beyond the large macroscopic tumour could benefit 

from materials that facilitate the delivery of therapeutic doses across a large tissue volume. 

Images obtained by R. Saigal.

Nance et al. Page 34

Nat Rev Mater. Author manuscript; available in PMC 2024 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4 |. Drug delivery across the blood–brain barrier.
a | Drug delivery systems can take advantage of several transport mechanisms across the 

blood–brain barrier (BBB)4. (1) Paracellular transport can occur for low- molecular-weight 

hydrophilic molecules; (2) transporters can facilitate movement of specific endogenous 

small molecules or mimics/derivatives of small molecules136; (3) absorptive transcytosis 

can be driven by charge-based binding and transport of macromolecules and nanoparticles, 

followed by internalization and transcytosis; (4) transcellular diffusion can occur for low-

molecular-weight hydrophobic molecules; and (5) receptor-mediated transcytosis involves 

receptor-mediated shuttling of ligands and ligand–drug conjugates from the apical to the 

basolateral side. b | Material properties of drug delivery systems can influence adsorption, 

distribution and clearance of drug delivery systems following systemic administration. PEG, 

poly(ethylene glycol).
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Fig. 5 |. Local central nervous system drug delivery routes.
Direct drug delivery to the central nervous system can be achieved by intraparenchymal 

injection, intraventricular or intrathecal infusion, or by implants, such as wafers or hydrogels 

loaded with drug or drug delivery systems. ECM, extracellular matrix.
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