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Diagnostic Classification Models
for a Mixture of Ordered and
Non-ordered Response Options
in Rating Scales

Ren Liu1, Haiyan Liu1, Dexin Shi2, and Zhehan Jiang3

Abstract
When developing ordinal rating scales, we may include potentially unordered response options
such as “Neither Agree nor Disagree,” “Neutral,” “Don’t Know,” “No Opinion,” or “Hard to
Say.” To handle responses to a mixture of ordered and unordered options, Huggins-Manley et al.
(2018) proposed a class of semi-ordered models under the unidimensional item response theory
framework. This study extends the concept of semi-ordered models into the area of diagnostic
classification models. Specifically, we propose a flexible framework of semi-ordered DCMs that
accommodates most earlier DCMs and allows for analyzing the relationship between those
potentially unordered responses and the measured traits. Results from an operational study and
two simulation studies show that the proposed framework can incorporate both ordered and
non-ordered responses into the estimation of the latent traits and thus provide useful information
about both the items and the respondents.

Keywords
diagnostic classification model, rating scales, nominal response option, ordinal response option,
neutral responses, semi-ordered model

Classification of respondents with a set of characteristics or competencies is often of interest in
social and behavioral sciences research. These characteristics are frequently measured using rating
scales where respondents are scored on their selections from ordinal options such as “Strongly
Disagree,” “Disagree,” “Agree,” and “Strongly Agree.” On those types of scales, it is common to

1University of California, Merced, CA, USA
2University of South Carolina, Columbia, SA, USA
3Peking University, Beijing, China

Corresponding Author:
Ren Liu, Quantitative Methods, Measurement, and Statistics (QMMS), University of California, Merced, Merced, CA
95343, USA.
Email: rliu45@ucmerced.edu
Zhehan Jiang, Institute of Medical Education & National Center for Health Professions Education Development, Peking
University, Beijing 100191, China.
Email: jiangzhehan@gmail.com

https://us.sagepub.com/en-us/journals-permissions
https://doi.org/10.1177/01466216221108132
https://journals.sagepub.com/home/apm
https://orcid.org/0000-0002-6708-4996
mailto:rliu45@ucmerced.edu
mailto:jiangzhehan@gmail.com


offer a “no opinion” option such as “Neither Agree nor Disagree,” “Neutral,” “Don’t Know,” “No
Opinion,” or “Hard to Say” (Schuman & Presser, 1996). For example, a rating scale measuring the
perception of drug risk used by the United Nations Drug Control Program offers the following five
response options: “No Risk,” “Slight Risk,” “Moderate Risk,” “Great Risk,” and “Don’t Know”
for questions such as “What do you think the level of risk is for a person who has taken
tranquilizers at some time?” (Bejarano et al., 2011). The “no-opinion” options may be potentially
non-ordered with the original ordinal scale and pose questions about how to best handle them.

Traditional psychometric approaches could treat item responses as either ordinal or nominal,
but not a mixture of both. Huggins-Manley et al. (2018) proposed a class of semi-ordered item
response theory (IRT) models which could handle a mixture of ordinal and nominal item re-
sponses. Using the semi-ordered IRT models, Huggins-Manley et al. (2018) treated the selection
of a “Not Applicable” response option as a selection of a nominal variable on an otherwise ordinal
scale. Later, Cohn and Huggins-Manley (2020) applied the semi-ordered models where the
“Neutral” responses were treated as nominal variables on an ordinal scale, and Zhou and Huggins-
Manley (2020) applied the semi-ordered models where item-level missingness was treated as an
intentional selection of a nominal variable on an ordinal scale. The semi-ordered models allow for
(1) analyzing responses on both ordered and unordered options at the same time, and (2) ex-
amining the relationship between the unordered option and the measured trait in the IRT
framework.

Outside of the IRT framework, diagnostic classification models (DCMs; Rupp et al., 2010), a
newer class of psychometric models, have demonstrated their potential to accurately classify
examinees according to their latent traits. For example, Templin and Henson (2006) used DCMs to
classify patients with pathological gambling disorder, Liu and Shi (2020) used DCMs to classify
individuals with different personalities, and Ahn and Feuerstahler (2021) used DCMs to classify
employees with organizational commitment. Compared to expert-suggested approaches for
classifications, DCMs offered a new set of methods for researchers and practitioners to obtain
data-suggested classifications. The purpose of this study is to extend the semi-ordered concept into
the world of DCMs by proposing and evaluating a semi-ordered DCM framework that can analyze
responses on a mix of ordered and unordered options. In the next section, we introduce the
foundational work that supports the development of the semi-ordered DCMs.

Foundational Work

The proposed semi-order DCM framework extends three strands of psychometric work: (1) the
integration of the nominal response model (NRM; Bock, 1972) and ordinal IRT models in
Huggins-Manley et al. (2018); (2) the nominal response diagnostic model (NRDM) developed in
Templin et al. (2008) to handle nominal data; (3) the ordinal response diagnostic model (ORDM)
developed in Liu and Jiang (2018) to handle ordinal data.

The Semi-ordered IRT Models

When nominal response options are present in an ordinal scale, traditional measurement models
are unable to handle such scenarios. Huggins-Manley et al. (2018) presented an example where a
questionnaire asks about respondents’ family support. One item on the questionnaire asks whether
the respondent “Never,” “Seldom,” “Sometimes,” “Usually,” or “Always” has time to be with
spouse/partner. On this ordinal scale, an additional nominal response option: “Not Applicable” is
provided for those that do not have partners. As a result, the scale is a mix of ordinal and nominal
options. Similarly, Cohn and Huggins-Manley (2020) presented another example where the
“Neutral” option is considered nominal within an ordinal scale.
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To address situations like above, Huggins-Manley et al. (2018) proposed a class of semi-
ordered IRT models, most notably the semi-ordered generalized partial credit model (semi-
GPCM), in which the nominal and ordinal responses are calibrated at the same time. The semi-
GPCM integrates the NRM and the GPCM (Muraki, 1992) innovatively. If all the options are
nominal (e.g., selecting your favorite color from blue, red, orange, gold, and green), an NRM
could be used, which defines the probability of selecting response option r on item i given a
unidimensional latent trait θ for examinee j as

P
�
Xi ¼ rjθj

� ¼ exp
�
dirθj þ bir

�
PR

r¼1exp
�
dirθj þ bir

� (1)

where dir and bir are the slope parameter and intercept parameter for option r on item i, re-
spectively. Equation (1) models the likelihood of selecting option r as compared to the sum of the
likelihood of selecting each response option. Thus, the NRM can be considered a manifestation of
the “divide-by-total” approach in polytomous item response modeling (Thissen & Steinberg, 1986).

Comparatively, when all response options are ordinal, one could use the GPCM, which defines
the probability of selecting response option r on item i given a unidimensional latent trait θ for
examinee j as

P
�
Xi ¼ r

��θj� ¼ exp
Pr

r¼1

�
di
�
θj þ bir

��
PR

s exp
Ps

r¼1

�
di
�
θj þ bir

�� (2)

Comparing the NRM with the GPCM, the NRM slope parameter dir becomes r × di in the
GPCM for each response option r, signifying that the GPCM treats responses as ordinal variables.
Despite that, the GPCM shares a similar structure with the NRM because both models use the
“divide-by-total” approach and the GPCM can be seen as a special case of the NRM. Such a
relationship made the integration of the two models possible in Huggins-Manley et al. (2018). Let
v denote the unordered response option, which can be, for example, “Neutral,” or “Don’t Know”
options. The semi-GPCM defines the probability of selecting the unordered option v on item i
given a unidimensional latent trait θ for examinee j as

P
�
Xi ¼ vjθj

� ¼ exp
�
divθj þ biv

�
PR

s exp
Ps

r¼1

�
di
�
θj þ bir

��þ exp
�
divθj þ biv

� (3)

We can see that the semi-GPCM utilizes the basic structure of the NRM while allowing the
ordered response options to be analyzed through the GPCM component. This type of semi-ordered
model allows us to examine the relationship between a latent variable and responses on both
ordered and unordered options. Now, let us move on to the world of DCMs, particularly the
models that are able to handle unordered and ordered responses, respectively.

The NRDM

DCMs are confirmatory latent class models with different parameterizations of the measurement
component and/or the structural component. The latent classes are formulated through the
possession and non-possession states of multiple categorical latent traits. In this article, we use
k ¼ 1,…, K to index binary latent traits (aka attributes) and αc ¼ fα1, …, αKg to index attribute
profiles for latent class c. To specify the relationship between items and attributes, we construct an
item-by-attribute incidence matrix, commonly referred to as a Q-matrix (Tatsuoka, 1983). In a Q-
matrix, an entry qik ¼ 1 when item i measures attribute k, and qik ¼ 0 otherwise.
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Among all DCMs, the NRDM in Templin et al. (2008) was developed to handle nominal
responses. The NRDM defines the probability of examinees in latent class c selecting response
option r on item i, such that

PðXi ¼ rjαcÞ ¼
exp

h
λ0,i,r þ λTi,rhðαc,qiÞ

i
PR

r¼1exp
h
λ0,i,r þ λTi,rhðαc,qiÞ

i (4)

where λ0,i,r is the intercept associated with option r on item i, and λTi,rhðαc,qiÞ index all the main effects
and higher-order interaction effects of the k attributes associated with option r on item i, which can be
expressed asPK

k¼1λ1,i,k,rðαc,kqi,kÞ þ
PK�1

k¼1

PK
k’¼kþ1λ2,i,k,k’,rðαc,kαc,k’qi,kqi,k’Þ þ…þ λK,i,1,…,K,r∏K

k¼1ðαc,kqi,kÞ.

The ORDM

To create semi-ordered DCMs, ordinal DCMs that utilize the “divide-by-total” approach similar to
the NRDM are needed. Among all polytomous DCMs, the ORDM is one possible candidate.

The ORDM defines the probability of examinees in latent class c selecting response option r on
item i, such that

PðXi ¼ rjαcÞ ¼
exp

Pr
r¼1

�
λ0,i,r þ λTi hðαc,qiÞ

�
PR

s exp
Ps

r¼1

�
λ0,i,r þ λTi hðαc,qiÞ

� (5)

Comparing the NRDMwith the ORDM, the NRDM λi,r vector becomes r × λi in the ORDM for
each response option r, representing the ordinal nature of response options. Despite that, the
ORDM is similarly structured with the NRDM using the “divide-by-total” approach and
the ORDM can be seen as a special case of the NRDM. The relationship between the NRDM and
the ORDM is similar to that between the NRM and the GPCM, which creates an opportunity for
developing a semi-ordered DCM.

The Semi-ordered DCM Framework

The semi-ordered DCM (SDCM) framework integrates the NRDM and the ORDM similar to the
approach used in Huggins-Manley et al. (2018). Depending on whether an examinee selects an
ordinal response option r or a nominal response option v, the SDCM can be written as

PðXi ¼ xjαcÞ ¼
�
exp

Pr
r¼1

�
λ0,i,r þ λTi hðαc,qiÞ

��1�v
n
exp

h
λ0,i,v þ λTi,vhðαc,qiÞ

iov

PR
s exp
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r¼1
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�þ exp
h
λ0,i,v þ λTi,vhðαc,qiÞ

i (6)

where v is a binary indicator representing whether an examinee selects the nominal response option
(v=1) or not (v=0). The SDCM in equation (6) can be broken down into two levels: it defines the
probability of examinees in latent class c selecting an ordered response option r on item i as

PðXi ¼ rjαcÞ ¼
exp

Pr
r¼1

�
λ0,i,r þ λTi hðαc,qiÞ

�
PR

s exp
Ps

r¼1

�
λ0,i,r þ λTi hðαc,qiÞ

�þ exp
h
λ0,i,v þ λTi,vhðαc,qiÞ

i (7)

and selecting the nominal option v such as “Neither Agree nor Disagree,” “Neutral,” “Don’t
Know,” “No Opinion,” or “Hard to Say” as
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PðXi ¼ vjαcÞ ¼
exp

h
λ0,i,v þ λTi,vhðαc,qiÞ

i
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s exp
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Equations (7) and (8) share the same denominator while differing only on the numerator. Note
that the parameters for the main effect and interaction effect on the ordered response options do not
have subscript r, instead, they are functioning as r × λi, similar to the ORDM.

If multiple nominal response options are present in an ordinal scale, for example: both
“Neutral” ðv1Þ and “Don’t Know” ðv2Þ are added in a Likert scale, we can expand the SDCM to
accommodate multiple nominal response options such that

PðXi¼xjαcÞ¼ wPR
s exp

Ps
r¼1

�
λ0,i,rþλTi hðαc,qiÞ

�þexp
h
λ0,i,v1þλTi,v1hðαc,qiÞ

i
þexp

h
λ0,i,v2þλTi,v2hðαc,qiÞ

i
(9)

where w ¼ exp
Pr

r¼1½λ0,i,r þ λTi hðαc,qiÞ� when an ordered response option r is selected, w ¼
exp½λ0,i,v1 þ λTi,v1hðαc,qiÞ�when “Neutral” ðv1Þ is selected, andw ¼ exp½λ0,i,v2 þ λTi,v2hðαc,qiÞ�when
“Don’t Know” ðv2Þ is selected.

Two types of constraints are imposed on the SDCM, one for identifiability, and the other one for
reasonable interpretations of parameter estimates. For identifiability, one could adopt either
one of the following two types of constraints. First, the “first-as-zero” approach (Thissen,
1991) can be used where the parameters associated with the first response option are fixed to
zero, such that

λ0,i,r1 ¼ 0 " i

λ1,i,k,r1 ¼ 0 " i,k

λ2,i,k,k’ ,r1 ¼ 0 " i,k,k ’

and for all higher-order interactions. Alternatively, the “sum-to-zero” approach used in Bock
(1972) and Templin et al. (2008) can be used where the sum of each type of parameter (i.e.,
intercepts, main effects, and interaction effects) is fixed to 0, such that

XR
r¼1

λ0,i,r þ λ0,i,v ¼ 0 " i

XR
r¼1

ðr × λ1,i,kÞ þ λ1,i,k,v ¼ 0 " i, k

XR
r¼1

�
r × λ2,i,k,k’

�þ λ2,i,k,k’ ,v ¼ 0 " i,k,k ’

and for all higher-order interactions. For reasonable interpretations of parameter estimates, the
main effect and interaction effect parameters for the ordered response options are constrained to be
greater than 0. This constraint ensures that possessing an attribute does not decrease the probability of
selecting a higher response option on the ordinal scale. This constraint is similar to fixing the dis-
crimination parameter to be greater than 0 under an IRTmodel so that examinees that are higher on the
latent trait continuum are likely to endorse a higher response option. Such constraint is not imposed on
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the main effects associated with the unordered response option (i.e., λ1,i,k,v) because possessing an
attribute may or may not increase the probability of selecting the unordered response option.

In operational settings, the total number of parameters associated with the SDCM will be
somewhere between that of the ORDM and the NRDM for a given dataset. Let us illustrate the
SDCM in detail using a hypothetical example. Suppose there are 20 items on a five-point scale:
“Strongly Disagree,” “Disagree,” “Neutral”, “Agree,” and “Strongly Agree” where 10 items
measure α1 and the other 10 items measure α2 with no cross-loadings. Traditionally, one could fit
an ORDM to this dataset because of the ordinal nature of the response options. Under the ORDM,
we would need to estimate a total of 120 parameters: 20 items × 5 options = 100 intercepts ðλ0,i,rÞ
and 20 main effects ðλ1,iÞ. If we ignore the ordinal nature and treat the item responses as nominal
variables, one could fit an NRDM with 200 parameters: 20 items × 5 options = 100 intercepts
ðλ0,i,rÞ and 20 items × 5 options = 100 main effects ðλ1,i,rÞ. If one wants to evaluate whether the
“Neutral” option conforms to the order within the five-point scale, an SDCM could be im-
plemented with 140 parameters: 20 items × 5 options = 100 intercepts ðλ0,i,rÞ, 20 main effects for
the ordered responses ðλ1,iÞ, and 20 main effects for the “Neutral” option ðλ1,i,vÞ. Note that the
SDCM can accommodate unordered response options, but the response options do not have to be
unordered if one wants to implement the SDCM.Modeling the “Neutral” option as unordered is an
example. If the “Neutral” option is actually ordered, the SDCM will produce similar results to the
ORDM. If the “Neutral” option is found to be unordered, the SDCM can uncover the true re-
lationship between that option and the attributes. In short, the SDCM provides the flexibility of
incorporating such a relationship which may or may not be present in a dataset.

Like any general model with interaction parameters, the number of parameters is always a
concern in data collection and estimation. If there were cross-loadings with more attributes in the
above example, the number of parameters in the general SDCM could easily be close to or exceed
1000. One potential solution for this issue is to develop smaller models that are nested within the
SDCM which feature a smaller number of parameters. The SDCM provides a flexible framework
that could accommodate most earlier DCMs to serve as its core item response function (IRF). For
example, the earliest and simplest DCM: “deterministic inputs, noisy, and gate” (DINA) model
(Haertel, 1989; Junker & Sijtsma, 2001) can be converted into an SDCM-DINA. In the SDCM-
DINA, each item has four sets of parameters: an intercept ðλ0,i,rÞ for each ordered response option,
an overall attribute(s) effect ðλ1,iÞ for the ordered response options, an intercept ðλ0,i,vÞ for the
unordered response option, and an overall attribute(s) effect ðλ1,i,vÞ for the unordered response
option. The SDCM-DINA can be expressed as

PðXi ¼ xjαcÞ ¼
h
exp

Pr
r¼1

	
λ0,i,r þ λ1,i∏

K
k¼1α

qi,k
c,k


i1�vh
exp
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K
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qi,k
c,k


iv
PR

s exp
Ps

r¼1

	
λ0,i,r þ λ1,i∏

K
k¼1α

qi,k
c,k



þ exp

	
λ0,i,v þ λ1,i,v∏

K
k¼1α

qi,k
c,k


 (10)

Using the SDCM-DINA, the number of parameters is immune from the number of attributes
and/or cross-loadings, which may be more favorable in some operational settings.

In addition to the SDCM-DINA, we could also develop another nested model using the IRF of
the linear logistic model (LLM; Maris, 1999). The SDCM-LLM can be viewed as the general
SDCM without all the interactions. It can be written as

PðXi ¼ xjαcÞ ¼
�
exp

Pr
r¼1

�
λ0,i,r þ

PK
k¼1λ1,i,k

�
αc,kqi,k

���1�v�
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PK
k¼1λ1,i,k
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αc,kqi,k

��þ exp
�
λ0,i,v þ
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k¼1λ1,i,k,v

�
αc,kqi,k

��
(11)
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Using the SDCM-LLM, the number of parameters is still being affected by the number of
attributes but not by the number of cross-loadings. There are other earlier DCMs that can be used
as IRFs under the SDCM framework, and the selection of a particular IRF involves careful
considerations of both construct theories and statistical properties.

Operational Study

In operational settings, whether the “Neither Agree nor Disagree” or “Neutral” options are ordered
or unordered is often unknown. This section aims to demonstrate how to use the SDCM to
accommodate that unknown situation through an operational dataset. Both the SDCM and the
ORDM were fit to the dataset in which the results were compared.

Method

We obtained 901 examinees’ responses to 40 items on a part of an experiment DISC personality
test in the International Personality Item Pool (Goldberg et al., 2006) with no missing data. Those
40 items are all simple-structured items where each item only measures one attribute. Items 1-10
measure assertiveness ðα1Þ, items 11-20 measure social confidence ðα2Þ, items 21-30 measure
adventurousness ðα3Þ, and item 31-40 measure dominance ðα4Þ. Personality attributes sometimes
are hypothesized as categorical variables for the use of user marketing on social media websites
such as Facebook (e.g., Souri et al., 2018), or personnel administration in a workspace (e.g., Coe,
1992). Users of personality tests may also be interested in their personality categories, for example,
whether they can be classified as an extrovert or an introvert. DCMs provide an alternative model-
based classification avenue to the traditional standard-setting approach based on experts’ opinions
(Rupp et al., 2010; Templin & Henson, 2006). In our dataset, we hypothesized attributes as cat-
egorical variables (e.g., being adventurous vs. not adventurous) to demonstrate the use of DCMs.

Each item in the dataset has five response options: “Strongly Disagree,” “Disagree,” “Neutral,”
“Agree,” and “Strongly Agree.” Before the analysis, negatively worded items were reverse coded
back to make sure that the direction of response options aligned with that of the latent trait
continuum. For example, both item 2 and item 7 measure assertiveness ðα1Þ, while item 2 is
positively worded: “I try to lead others,” and item 7 is negatively worded: “I wait for others to lead
the way.”Before computing any descriptive statistics, we first reverse-coded the responses on item
7. This reverse-coding step is necessary because most psychometric models, including the SDCM
and the ORDM, employ the dominance-based process philosophy (Coombs, 1964), which as-
sumes that the probability of agreeing with a statement monotonically increases as individuals’
latent trait level increases on the continuum.

Figure S1 in the Online Appendix visualizes the distribution of examinees’ response option
selections across all items. We can see that most examinees selected “Agree” or “Strongly Agree”
on most items. As a result, we would expect that the estimated probability of selecting those two
options would be higher than the other three options from the fitted models. Under the SDCM, the
four unneutral options were treated as ordinal variables and the “Neutral” option was treated as a
nominal variable. Under the ORDM, all five options were treated as ordinal variables.

This dataset was chosen for the operational study because selecting the “Neutral” optionmay or
may not be directly related to the measured attributes. For example, selecting “Neutral” on an item
measuring assertiveness ðα1Þ may or may not be a reflection of a lack of possessing assertiveness
ðα1Þ. Through fitting both the ORDM and the SDCM, we would be able to look at whether the
non-ordered treatment of the “Neutral” option would change the probability of selecting the
“Neutral” option on each item.
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Parameters for both models were estimated using Hamiltonian Monte Carlo (HMC; Duane
et al., 1987) algorithms in Stan (Carpenter et al., 2017). The full Stan code is shared in the Online
Appendix. For each response option on each item, the prior distribution was specified as
Normalð0; 2Þ for the intercept and Normal ð1:5,2Þ for the main effects. Four chains were run for
each model where each chain took 10,000 iterations with the first 5000 discarded as burn-in. The
Gelman-Rubin convergence statistic bR (Brooks & Gelman, 1998; Gelman & Rubin, 1992) was
used to assess convergence. All the bR values for each parameter in both models were very close to
1.00, suggesting convergence to a stationary distribution (Junker et al., 2016).

To assess absolute fit, posterior predictive p-values (PPPs; Gelman et al., 2013) were computed
for each item model where values close to 0.5 suggest good fit. Specifically, we simulated 20,000
new datasets based on the 20,000 draws from the posterior distribution. Then we computed the
root mean square error of approximation (RMSEA, Kunina-Habenicht et al., 2009) based on the
difference between the estimated and expected number of individuals in each attribute profile. The
PPPs were then computed as the percentage of the simulated data whose RMSEAwas greater than
or equal that of the real data.

To compare the relative fit between the models, the leave-one-out information criterion
(LOOIC; Vehtari et al., 2017) values were computed using the importance-sampling algorithm
(Gelfand et al., 1992), where smaller values suggest better fit.

Results

Model Fit. The average PPPs across items for the SDCM and the ORDM were 0.53 and 0.54,
respectively, both indicating good fit. The LOOIC values for the SDCM and the ORDMwere 77.1
and 78.5, respectively, suggesting that the SDCM fit slightly better than the ORDM. It is worth
mentioning that this does not mean that the SDCM will be universally better fitting than the
ORDM. It is just the SDCMmay fit slightly better than the ORDM on this dataset, suggesting that
the “Neutral” option may be unordered overall across items. If one uses another dataset where the
“Neutral” may be ordered within the ordinal scale, they may find that the ORDM fits better than
the SDCM. For the absolute fit indices such as the PPPs, the more general SDCMmay not always
show better fit because it may not be as close to the data structure as the nested model. For relative
fit indices such as the LOOIC, we found that it is more likely that the more general model fit better
even when the nested model would be true. However, the choice of different priors may
complicate the results and it remains unclear how the prior information for the additional pa-
rameters in the more general model may affect the values of relative fit indices.

Item Parameters. The mean and standard deviation of the posterior distribution for each item
parameter were listed in the Online Appendix (Tables S1–S4) for the two models. According to
model structures, the SDCM had six parameters associated with each item, while the ORDM had
five. Under both models, the intercept and main effects for the first response option “Strongly
Disagree” were fixed to zero. What is different is that the main effect for the “Neutral” option was
estimated separately through using the λ1,i,v parameter in the SDCM, while the main effect
parameter λ1,i was consistently applied to all response options in the ORDM. In terms of the
accuracy of parameter estimation, we could compare the average standard deviation (similar to the
use of standard error under the frequentist’s approach) of each type of parameter across all items.
Such information can be found on the last row of Table S2 for the SDCM and Table S4 for the
ORDM. The SDCM produced smaller average standard deviations than the ORDM on parameters
that both models have. The SDCM had large standard deviations on the main effect parameter for
the “Neutral” option. Such large standard errors of the parameters associated with the response

Liu et al. 629

https://journals.sagepub.com/doi/supp/10.1177/01466216221108132
https://journals.sagepub.com/doi/supp/10.1177/01466216221108132
https://journals.sagepub.com/doi/supp/10.1177/01466216221108132
https://journals.sagepub.com/doi/supp/10.1177/01466216221108132


option that was separately estimated were also observed when the semi-ordered models were used
under the IRT framework (e.g., Cohn & Huggins-Manley, 2020; Huggins-Manley et al., 2018).

Although both the SDCM and the ORDM employ the divide-by-total approach to define
category advancement similar to the GPCM under the IRT framework, the interpretation of
parameter estimates under the SDCM and the ORDM is different from that under the GPCM.
Under the GPCM, the di is the slope (visually represented by the steepness of the item char-
acteristic curve), and bir is the point at which a person has an equal chance of scoring an r � 1 or r.
Under any DCM, because the latent traits are categorical instead of continuous, we won’t be able
to have an item characteristic curve that is plotted along the latent trait continuum. Instead, we only
have two values for each category in each item under a simple structure: the intercept λ0,i,r and the
main effect λ1,i. A larger λ0,i,r is associated with a higher probability of endorsing option r for
persons that don’t possess the associated attributes, and a larger λ1,i is associated with a higher
probability of endorsing option r for persons that possess the associated attributes. We could
conceptualize the overall difficulty of each response option in each item as

Pr
r¼1λ0,i,r þ r × λ1,i.

We could also conceptualize the discrimination of each response option in each item as the
difference in the probability of endorsing response option r for people that possess and don’t
possess the associate attributes. In other words, a higher discrimination is associated with a smaller
λ0,i,r and a larger λ1,i. We can visualize this difference in probability more clearly in Figures 1–4,
which are going to be presented in the next section.

Rather than directly comparing the parameter estimates between the two models, it is more
appropriate to compare when the parameter estimates are transformed back into probability
because the denominators of the item models under the SDCM and the ORDM are different.

Category Response Probabilities. An easier way to examine the differences of the item parameter
estimates between the two models is to input the parameter estimates into the models and compute
the probabilities of selecting each response option on each item given the possession status of an
attribute. Let us plot eight representative items (two for each attribute) in Figures 1–4 as examples
for further discussion. Although those examples could be used for item revision and/or construct
theory development, the focus here is to offer readers examples of how to read the graphs and
understand the similarities/differences between the model estimates.

When comparing the curves produced by the SDCM and the ORDM, we could focus on their
estimated probabilities of selecting “Neutral.” If those probabilities were similar to each other, it
may suggest that the “Neutral” option may be ordered within its original scale. Although the two
models’ different treatments on the “Neutral” option unavoidably affected the estimation of
parameters of other response options, the focus of the comparison is on the “Neutral” option
because that is the underlying reason for all the different estimates on other options.

In Figure 1, items 2 and 7 are examples where the “Neutral” option may be unordered because
the probabilities of selecting the “Neutral” category between the two models are very different for
either those who possess α1 or not. The curves in item 2 are very similar to those in item 7 because
the item stems are basically the same after reverse coding. As discussed previously, we expected
that the probability of selecting “Agree” and “Strongly Agree” would be higher than other
categories because more examinees selected those response options. That is why we can see that
under the ORDM, those who did not possess assertiveness ðα1 ¼ 0Þ had the highest probability of
selecting “Agree,” and those who possessed assertiveness ðα1 ¼ 1Þ had the highest probability of
selecting “Strongly Agree.”

In contrast to items 2 and 7, the “Neutral” option may potentially be ordered within its original
scale for items 12 and 16, as shown in Figure 2. The probabilities of selecting the “Neutral” option
under the SDCM and the ORDMwere very similar, suggesting that freely estimating the “Neutral”
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option in an unordered way may be similar to just constraining that option through an ordered
fashion.

In Figure 3, items 24 and 27 were selected to illustrate the impact of the distribution of
examinees selecting each response option. Recall from Figure S1 in the online appendix, most
examinees selected “Agree” or “Strongly Agree.” As a result, the estimated probabilities of
selecting the other three response options were expected to be lower. We observed that the SDCM
was less confined to the original data distribution, as it gave a relatively smaller probability to the
most frequently selected options compared to the ORDM.

In contrast to items 24 and 27, the original distributions of the data on items 34 and 40 were
more balanced across different options. The category response probabilities estimated under the
ORDM consistently followed the original distribution, and the SDCM produced similar estimates
under this situation with more balanced data across response categories, as shown in Figure 4.

Lastly, we want to mention that each item under the SDCM or ORDM had its own model, and
one could fit different models to different items based on a variety of factors such as absolute and
relative item fit indices and the principle of parsimony. Model fitting is always an iterative process
that connects to item development and revision.

Classification Agreement. Ultimately, we are interested in examinees’ estimated scores under the
two models. Examinees’ attribute classifications are their scores under the DCM framework.
Table 1 provides the classification agreement on each attribute profile. Overall, 84.57% of ex-
aminees were classified with the same attribute profiles under the two models. In future appli-
cations of the SDCM, one may experience a higher or a lower agreement rate depending on how
much the “Neutral” option deviates from the ordinal scale.

Figure 1. Example option characteristic curves in the operational study (Items 2 and 7 measuring
assertiveness: α1).
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Simulation Study

Application of the SDCM to different items in the operational study demonstrated its utility in
accommodating potentially unordered response options. In this section, we conducted two
simulation studies to further explore the parameter estimation and classification accuracy between
the SDCM and the ORDM. Both studies are couched within the conditions of the operational
study, similar to Huggins-Manley et al. (2018) and Liu and Jiang (2018). We did not vary
conditions such as sample size, number of attributes, test length, or Q-matrix complexity similar to
the reasons identified in the aforementioned studies. The SDCM, as a special case of the NRDM,
as well as an extension of the ORDM, obeys the general features that have been consistently
uncovered through many DCM studies. For example, a larger sample size is associated with more
accurate parameter estimation and a longer test length would increase classification accuracy, and
a Q-matrix with more “1”s (i.e., more cross-loadings) may lead to lower classification accuracy
(e.g., Madison & Bradshaw, 2015).

Study 1: SDCM is the True Model

The purpose of Study 1 is two-fold. We aim to examine (1) whether the SDCM can produce
unbiased parameter estimates, and classify individuals correctly, and (2) whether the performance
of the SDCM is better than the ORDM when the data may be potentially unordered.

We generated 100 datasets using R (R Core Team, 2019) through the following four steps. First,
we generated 901 persons’ true attribute profiles from a multinomial distribution of the profile
proportions in the simulation study. Next, we extracted the true item parameters using the mean of
the posterior distributions of each item parameter listed in Table S1. Then, the item and person
parameters were submitted to the SDCM to compute the probability of selecting each response

Figure 2. Example option characteristic curves in the operational study (Items 12 and 16 measuring social
confidence: α2).
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option on each item for each person. Finally, we drew a random number from the multinomial
distribution of the response option probabilities for each item and person to serve as the person’s
item response.

Figure 3. Example option characteristic curves in the operational study (Items 24 and 27 measuring
adventurousness: α3).

Figure 4. Example option characteristic curves in the operational study (Items 34 and 40 measuring
dominance: α4).
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We then fit both the SDCM and the ORDM to each dataset using the same Stan code and HMC
specifications for the operational study. To assess parameter recovery of the SDCM, we computed
the bias and the root mean square error (RMSE) such that

BiasðxÞ ¼
PR

r¼1

hberðxÞ � eðxÞ
i

R
(12)

RMSEðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPR
r¼1

hberðxÞ � eðxÞ
i2

R

vuut
(13)

whereberðxÞ is the estimate for parameter x in the rth dataset, and eðxÞ is the true value of parameter
x. To assess classification accuracy, we computed the agreement rates between the estimates
obtained under each simulated dataset and the true values for each attribute and attribute profile.

Table 2 lists the descriptive statistics for the bias and RMSE for each item parameter in the
SDCM. On average, the bias estimates were all around 0, suggesting that the SDCM can provide
unbiased parameter estimates. Among them, the bias and RMSE for the main effect estimates of
the potentially unordered option (i.e., λ1,i,v) were larger.

We then compared the results of the SDCM and the ORDM. In terms of model fit, the mean
LOOIC values for the SDCM and the ORDMwere 70.6 and 78.0, respectively, suggesting that the
SDCM fit better than the ORDM. We also compared the classification accuracy at each attribute
and profile level for the two models in Tables 3 and 4. For the SDCM, the mean classification
accuracy for each attribute was around 0.99, and the mean profile classification accuracy was 0.92,
suggesting that the SDCM can provide accurate examinee classifications. For the ORDM, the
mean classification accuracy for each attribute was around 0.72, and the mean profile classification
accuracy was 0.55. The large discrepancy between the SDCM and the ORDM classification
results tells us that, fitting the ORDM to item data that may have a mix of ordered and unordered
response options will likely produce a lot of classification errors.

Study 2: ORDM is the True Model

The second simulation study aims to investigate the appropriateness of fitting the SDCM even if
the response options were ordered.

We generated 100 datasets using R (R Core Team, 2019) through a similar procedure used in
Study 1. The difference is that the item and person parameters were submitted to the ORDM to
obtain the probability, and hence the actual response for each person. Both the SDCM and the
ORDM were fitted to each dataset. Although the item parameter estimates were not directly
comparable due to the different model structures, we can compare the results of fit indices and
classification accuracy. In terms of model fit, the mean LOOIC values for the SDCM and the

Table 1. Attribute Profile Classification Agreement Between the SDCM and the ORDM in the Operational
Study.

Attribute Profile 0000 0001 0010 0011 0100 0101 0110 0111

Classification Agreement 0.836 0.746 0.857 0.889 0.857 0.905 0.895 0.875

Attribute profile 1000 1001 1010 1011 1100 1101 1110 1111
Classification agreement 0.829 0.833 0.909 0.870 0.691 0.828 0.889 0.912
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ORDM were 72.9 and 70.8, respectively. This suggests that the ORDM fit better than the SDCM.
Results of classification accuracy are shown in Table 5 for the ORDM, and Table 6 for the SDCM.
From Table 5, we can see that the classification results for the ORDM were very accurate, with a
mean attribute-wise classification accuracy of 0.99, and profile-wise classification accuracy of
0.93. This is expected because the data was generated under the ORDM. Our main interest in
Study 2 is the results in Table 6, which shows the classification accuracy of the SDCM when the
data was generated under the ORDM. On average, the attribute-classification accuracy was 0.95,
and the profile-wise classification accuracy was 0.81. Compared to the results in Study 1, we can
see that the drop in classification accuracy was less severe when the SDCM was fitted to ORDM-
generated data. When the model and data mismatch, the drop in attribute-wise classification
accuracy was 4.0%, and the profile-wise drop was 12.5% in Study 2. In Study 1, the attribute-wise
drop was 27.3%, and the profile-wise drop was 40.6%, representing a drop of roughly four times
than those in Study 1. In addition, when the SDCM was fitted to the dataset generated under the
ORDM in Study 2, we were able to achieve 100% classification accuracy in some iterations.
Compared to Study 1, the maximum classification accuracy under the model-data mismatch was
around 82.2%.

To sum up, classification accuracy was higher when the model matches the data structure.
When there was a mismatch, the SDCM performed better than the ORDM, as demonstrated by
SDCM’s smaller decrease in classification accuracy.

Discussion

When response options are all ordered, ordinal DCMs such as the ORDM could be directly
applied to calibrate the item responses. However, we sometimes provide a “Neither Agree nor
Disagree,” “Neutral,” “Don’t Know,” “No Opinion,” or “Hard to Say” option for respondents to
select when appropriate. Although this makes the modeling process more difficult and complex,
we should appreciate incorporating those potentially unordered options. Without those options,
respondents would be forced to select an option that they don’t intend to, and this would add noise
to our estimation of their latent traits. The SDCM that we proposed in this study, based on the
semi-ordered IRT models developed by Huggins-Manley et al. (2018), successfully incorporates
both the ordered and potentially unordered options into the estimation.

Through the operational study, we demonstrated that the SDCM produced smaller average
standard errors than the ORDM for the ordinal scale item parameters. We also provided example
item characteristic curves to help readers understand different patterns. Although we may be able

Table 2. Bias and RMSE of the Estimated Item Parameters of the SDCM in Simulation Study 1.

Bias λ0,i,r2 λ0,i,r3 λ0,i,r4 λ1,i λ0,i,v λ1,i,v

Min �0.102 �0.070 �0.027 �0.121 �0.061 �0.205
Mean �0.045 0.043 0.061 �0.048 �0.009 �0.101
Max 0.033 0.142 0.168 0.030 0.046 0.037
SD 0.028 0.039 0.036 0.033 0.018 0.061

RMSE λ0,i,r2 λ0,i,r3 λ0,i,r4 λ1,i λ0,i,v λ1,i,v

Min 0.368 0.376 0.425 0.421 0.460 0.662
Mean 0.503 0.593 0.631 0.582 0.614 0.936
Max 0.622 0.783 0.852 0.769 0.764 1.261
SD 0.064 0.087 0.095 0.080 0.073 0.122
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to infer whether an option of interest may or may not be ordered, depending on the similarities of
the curves between the SDCM and the ORDM, the primary purpose of a measurement model is to
accurately measure individuals’ latent traits. Through simulation study 1, we found that the
SDCM could provide unbiased parameter estimates and accurate individual classifications. We
also found that fitting the ORDM to item data from a mix of ordered and unordered response
options led to a lot of classification errors. Through simulation study 2, we found that fitting the
SDCM to item data from fully ordered response options led to relatively fewer classification
errors. In practice, if there are potentially non-ordered responses options, we recommend readers
to fit both the SDCM and the ORDM, so that model fit results and classification agreement
between the models can be compared, similar to what we have done in the operational study.

The operational and simulation studies lead to our thoughts on the following research questions
which could be further explored in the future. First, fit evaluation for polytomous DCM item
responses is needed. As discussed in the results section, the results of absolute and relative fit
indices may be affected by the selection of prior distributions. Using the same prior for both the
SDCM and the ORDM, we found that the SDCM fit better than the ORDM in terms of overall
model fit and item fit. More research is needed on the ability of the indices to select the “true”
model. In addition to model fit and item fit, we would also want to include person fit information
into consideration. In the DCM area, studies on person fit (e.g., Liu et al., 2009) have been limited
to binary items under specific models. Future research could look into person fit indices for
polytomous items.

Second, one could seek to further investigate the effect of the response option distribution on
model selection between the SDCM and the ORDM. Researchers could consider factors such as
the proportion of people selecting the nominal response option, and the magnitude of correlations
between the nominal response option and other related variables.

Third, evaluating the effect of sample sizes for polytomous DCM items is needed. In terms of
model complexity, the SDCM is between the ORDM and the NRDM. Thus, the SDCM may
require a sample size that is between those two models. However, there is no study on sample size
guidelines for either the ORDM or the NRDM. We imagine that sample size is not a standalone

Table 3. Descriptive Statistics for Attribute and Profile Classification Accuracy of the SDCM in Simulation
Study 1.

α1 α2 α3 α4 Profile

Min 0.933 0.912 0.927 0.901 0.752
Mean 0.995 0.996 0.990 0.982 0.924
Max 1.000 1.000 1.000 1.000 1.000
SD 0.009 0.010 0.009 0.012 0.047

Table 4. Descriptive Statistics for Attribute and Profile Classification Accuracy of the ORDM in Simulation
Study 1.

α1 α2 α3 α4 Profile

Min 0.636 0.609 0.624 0.617 0.413
Mean 0.712 0.731 0.705 0.722 0.548
Max 0.818 0.829 0.834 0.810 0.642
SD 0.014 0.012 0.014 0.016 0.061
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issue as it involves factors such as Q-matrix complexity and test length. Future research into
sample size requirements for polytomous items would be helpful.

Fourth, in addition to the ORDM, other ordinal DCMs such as the sequential GDINA model
(Ma & de la Torre, 2016), the general polytomous diagnosis model (Chen & de la Torre, 2018), the
modified ORDM (Liu & Jiang, 2018), and the rating scale DCM (Liu & Jiang, 2020) could be
considered as the base for the SDCM, just like how the semi-ordered GPCM could be extended to
accommodate other polytomous IRT models.

Lastly, another potential avenue to incorporate the nominal responses into the estimation
process is to use the tree approach (e.g., Ma, 2019) or the two-level nesting approach (e.g., Suh &
Bolt, 2010; Liu & Liu, 2020) where the first level evaluates the probability of selecting the
nominal response option. If the respondent does not select the nominal response option, the second
level is activated to estimate the probability of selecting each ordinal response option. This is a
theoretically possible approach, and future research could look into this opportunity and compare
that with the SDCM.
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Table 5. Descriptive Statistics for Attribute and Profile Classification Accuracy of the ORDM in Simulation
Study 2.

α1 α2 α3 α4 Profile

Min 0.912 0.925 0.911 0.908 0.789
Mean 0.997 0.992 0.995 0.990 0.928
Max 1.000 1.000 1.000 1.000 1.000
SD 0.007 0.011 0.010 0.012 0.042

Table 6. Descriptive Statistics for Attribute and Profile Classification Accuracy of the SDCM in Simulation
Study 2.

α1 α2 α3 α4 Profile

Min 0.882 0.891 0.893 0.876 0.711
Mean 0.953 0.955 0.947 0.949 0.812
Max 1.000 1.000 1.000 1.000 1.000
SD 0.015 0.014 0.016 0.018 0.057
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