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ABSTRACT 

The use of GPS navigation apps has been surging with increasing the use of smartphones. People 

used to use a map to find a way to their destination, but now the navigation apps provide us with 

several options that can be taken as the best path for drivers. Also Connected and Autonomous 

Vehicles (CAVs) have been attracting attention and have improved a lot in tandem with the 

popularization of electric vehicles. Also, it is expected that autonomous driving which means that 

the car is self-driven instead of being driven by a person will emerge in the near future. This 

autonomous driving will rely on algorithms that will determine the best path once the destination 

is set and will perform dynamic routing to adapt to road network congestion during the trip. These 

algorithms that suggests the best paths will affect road traffic flow. Furthermore, when more CAVs 

rely on the same best path algorithm in the future, it will lead to a significant impact on a city’s 

road network traffic if an adversary can intentionally cause real or virtual disruptions in an few 

strategic locations. 

This thesis presents the results of simulation experiments to determine vulnerability in road 

network in the city of Davis in California. Specifically, by developing a simulation model, this 

study models how disruption in one part of the network can spread and how this is related to or 

not related to some of the topological properties of the network. Lastly, this thesis discusses a way 

to minimize the effect of the vulnerability. 

 

  



-v- 

 

ACKNOWLEDGMENTS 

Firstly, I would like to express my sincere gratitude to my committee chair, Professor Dipak 

Ghosal, for invaluable guidance and support through the course of study. I am so fortunate to be 

advised by him. I would not have successfully completed the study without his help. 

 

I would also like to thank committee member Professor Chen-Nee Chuah who introduced me to 

CP3O and provided valuable suggestions during the meeting. I would not have met such valuable 

people without her help. 

 

Thanks especially also to Professor Michael Zhang, who was willing to engage with my research, 

providing wonderful advice for me to strengthen my knowledge. I would like to express my special 

appreciation to Professor Raissa M. D'Souza, for her guidance with network science as applied to 

road networks. 

 

Lastly, I would like to thank my family and friends who always give me infinite support and 

emotional relief during tough times. 

 



-1- 

 

 

CHAPTER 1 

INTRODUCTION 

1.1 MOTIVATION 

The use of GPS navigation has been soaring since smartphones have become an essential tool for 

people. Today people do not need a printed maps like before because it is more convenient for 

them to make use of mobile apps like Google Maps[1], Waze[2], and MapQuest[3]. People tend 

to use GPS apps even though they already know the way to their destination. This is because these 

apps not only offer the best paths for their destination, but also provide information about traffic 

congestion and accidents that occurred on the way to their destination. Moreover, these apps 

present spots where speed cameras are located so that drivers can be aware of them. The more 

people utilize these GPS apps, the higher influence they have on road traffic. In fact, one can 

envision that rerouting recommendation provided by the navigation programs following 

congestion in one part of the road network can lead to congestion in other parts of the network. 

Not only that, Tesla, an automotive company, has made huge progress in electrical vehicle and 

self-driving technology. There are six Levels of automated driving from zero to five as defined by 

the Society of Automotive Engineers [4]. In Level Zero there is no automation and the driver is 

totally in charge of managing the vehicle, performing tasks such as accelerating, steering, and 

braking. On the other hand, Level Five capable vehicles are fully autonomous and driver is not 

needed behind the wheel. One of the projects to achieve Level Four took place in the U.K. last 

year. The cars operated on a nine-mile circuit through a city’s main train stations [5]. Furthermore, 

Tesla’s Full Self-Driving technology is expected to reach Level Five autonomy by the end of 2021. 

Whether they could reach Level Five autonomous cars by the of 2021 or not, it seems this goal 

will be reached in the near future. All the functions of vehicle in Level Four or Five will be fully 

automated by relying on road-side sensors and traffic control management system. In the future, 

these connected autonomous vehicles (CAVs) and the traffic control system will be fully integrated 

with a ultra-reliable low-latency wireless communication channel defined in the 5G wireless 

network standard [6]. The traffic control management system consists of traffic signal controllers 

https://www.sae.org/standards/content/j3016_201806/
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(TSC) which schedule traffic at the intersections and provide speed guidance to vehicles will be 

significantly enhanced by this integrated system.  

This self-driving environment can provide drivers with many benefits such as stress-free parking, 

fewer traffic jams, and the decreased probability of car accidents. However, new safety, security, 

and hacking concerns will also arise. The more CAVs are introduced, there are new vulnerabilities 

that can be exploited by adversaries. 

There are several ways by which an adversary can impact the traffic flow in the road network. This 

includes attacking vehicles directly, attacking the specified traffic signal controllers, or attacking 

the traffic control management system. The purpose of the adversary is to create significant 

disruption in the road traffic network that can lead to congestion and significantly increase the 

travel time. In this study we consider an adversary that attacks the TSC or traffic control 

management system instead of targeting individual vehicles to affect the traffic flow in the road 

network.  

 

1.2 METHODS TO CAUSE ROAD NETWORK DISRUPTIONS 

This study starts with the assumption that an adversary can launch an attack on a TSC and cause 

it to take wrong scheduling decision thereby disrupting the flow of traffic through the intersection. 

Given this capability, the key question is to determine the adversary attack strategy that can create 

network wide disturbance and significantly increase the average travel time. This study was 

motivated by a previous study that showed that in the power grid network disruption in a few 

specific link can cause cascading failures resulting in large network failure [7].   

Blocking roads sections which are critical in the network are likely to lead to an impact on the 

whole network. Hence the disrupting a small number of road sections can result in a disturbance 

for whole areas. One of the goals of this thesis is to demonstrate the result of attacking some traffic 

signal controls, how the disruptions spread through the network, and what is the impact of the 

spread on the travel time of vehicles. Another goal is to show how various traffic patterns can be 

predicted, and what is a way to minimize the effect from the disruption. 
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1.3 OBJECTIVE AND CONTRIBUTIONS 

This thesis seeks to contribute to network science of road networks by studying  flow patterns that 

resulted after blocking some specific edges. Given the map of the road network, the study sought 

to determine the location of the critical roads where injecting disruption could  impact the whole 

network. This study is based on a simple network topology metric in which the edges that are used 

the most are the important edges.  

In addition, the study provides a detailed simulation analysis of the traffic flow variation. 

Specifically, the simulation is used to determine the alternative roads that will be exploited when 

a heavily used edge is blocked and determine the new locations of congestion in the road network.  

The ideas explored in this study could apply to other networks such as communication networks, 

power gird networks, and other transportation networks when they injected with accidental or 

intentional failures. 

 

1.4 APPROACH 

First, we determine which roads are most used by simulating (traffic)- with a certain number of 

sources and destinations to find the best path for them. Next, we block the most used road, and 

simulate  to determine new road sections that are the most used. We then block the most used road 

from the second simulation, and perform the next simulation. By reiterating this several times, we 

determine how the traffic patterns for a given road network changed and which roads will be used 

for the main routes. 

 

1.5 THESIS OVERVIEW 

Chapter 2 covers the background knowledge to understand what algorithms and methods such as 

centrality of network, Monte Carlo integration, and Dijkstra algorithm were used in the 

experiments. The simulation programs and the fundamental settings of the studies are covered in 

Chapter 3. This chapter also discusses the many procedures involved in conducting experiments 

to attain the objectives. Chapter 4 discusses the results of experiments and Chapter 5 finalizes the 

thesis with the conclusion.  
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CHAPTER 2   

BACKGROUND  

2.1 INTRODUCTION 

In this chapter we discuss centrality measures that are used to characterize complex networks. We 

also review the shortest path routing algorithm that is used in the simulation analysis. Finally, we 

discuss the Monte Carlo method that was used to determine the number of source and destination 

pairs for the simulation experiments. 

2.2 CENTRALITY MEASURES 

Centrality measures [8,9,10,11] are an essential property for understanding complex network 

structure. These measures based on graph theory are used to determine the importance of nodes 

and edges in a network. The centrality of nodes identifies which nodes are more “central” than 

others. Freeman (1978) [12] suggested that central nodes were focal points. He presented his idea 

with an example that showed a simple network consisting of 5 nodes (see Fig 2.1).  In the graph, 

the center node (node A) has three distinguishing features compared to the other nodes. First, it 

has the maximum connection to other nodes. Second, it has the closest distance (in number of hop 

counts) to all the other nodes. Third, flows between any pair of nodes pass through it. Freeman 

(1978) defined these three conceptual foundations for network centrality: degree, closeness, and 

betweenness. 

 

Figure 2.1 A simple network consisting of 5 nodes and 4 edges. Node A is the central node with 

respect to degree, closeness and betweenness centrality of the network.  
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Degree of a node is the number of nodes that the node is directly connected to. Therefore, degree 

is easy to calculate once the adjacent nodes around a node are provided. The central node with 

respect to degree centrality is the node with the highest degree. However, degree centrality has 

limitations as it does not characterize the global structure of the network. Closeness was introduced 

to enhance the feature and is defined as the inverse sum of shortest distance to all other nodes from 

a node. The node with the largest closeness value is the central node with respect to closeness 

centrality of the network. A major drawback of closeness centrality is that closeness cannot apply 

to a network with disconnected network. Betweenness evaluates the extent to which a node lies on 

a geodesic path between two other nodes. This measure can be applied to networks with 

disconnected component with some limitations.  

2.2.1 DEGREE CENTRALITY 

Degree centrality is the simplest measure, which is defined by the number of links held by each 

node. This means how many direct, ‘one hop’ connections each node has to other nodes in the 

network. Degree centrality assigns an importance score based simply on the number of connections 

attached to each node. A node that has more ties to other nodes is regarded to be in an advantaged 

position with a higher score. Because the node has many ties, that node has easy access to other 

nodes, also the node can be a deal maker in exchanges among the others. This method is useful for 

finding popular nodes, very associated nodes, nodes that can quickly connect with the broad 

network, or nodes that are likely to maintain the most information. For directed graphs it is 

important to differentiate in-degree and out-degree, i.e., consider the number of inbound links and 

the number of outbound links as distinct measures. However, degree centrality has some 

limitations in directed graphs as well.  
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Figure 2.2 A network illustrating two local center nodes A and B. Both A and B have high 

degrees but their importance is local.  

 

For instance, in Figure 2.2, node A and node B both have node degree of six but they are not central 

as they are at the periphery of the network. Thus, the degree centrality may not determine the 

importance of the node in the network. The degree centrality reflects importance of the node in the 

local surrounding.  

2.2.2 CLOSENESS CENTRALITY  

Closeness centrality is defined in terms of the inverse of farness, which is the sum of distance of a 

node to all others. Closeness centrality scores each node based on its ‘closeness’ to all other nodes 

in the network. This measure assesses the shortest paths between all nodes, then allocates each 

node a score which is the inverse of the sum of the shortest paths. Closeness considers all the nodes 

in the network even as some of the nodes are quite distant. On the other hand, degree centrality 

just examines adjacent nodes which are directly connected to the focal node. The closeness 

centrality measure is useful for finding the individual nodes which are best placed to affect the 

whole network most rapidly. However, the closeness centrality also has some limitations. First, 

the range of variation is too restricted since closeness centrality is only based on the shortest 

distance. Results show that all nodes have a similar score [13]. Moreover, it cannot be guaranteed 

that nodes with the same closeness have the same role in the network. Second, it does not work 

well in networks that have disconnected sub-networks. When it comes to calculating two nodes 

that belong to different networks, the closeness centrality scores for those nodes will be infinite. 

Therefore, closeness centrality is normally limited to connected networks which means that from 

a given node all the other nodes in the network are reachable.   

Closeness centrality is applicable to find good influencers, but within a single cluster, it will often 

get several nodes with the same level of closeness centrality scores. 

2.2.3 BETWEENNESS CENTRALITY 

Betweenness centrality measures the extent to which a node lies on the shortest path between other 

nodes. This measure also indicates which nodes work as bridges between nodes in a network. The 

nodes with high betweenness centrality are more likely to have significant influence on other nodes 
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within a network since the nodes are capable of controlling information flow between other nodes. 

They are also regarded as the ones whose removal from the network will lead to considerable 

disruption to the whole network since they lie on the largest number of shortest paths taken by 

other nodes. 

Formally, the betweenness centrality (BC) of a vertex (node) v is defined as: 

𝐵𝐶(𝑣) =  ∑
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
𝑠≠𝑡≠𝑣

  

where 𝜎𝑠𝑡 indicates the number of shortest paths from s to t, and can be viewed as the number of  

information pathways and  𝜎𝑠𝑡(𝑣) is the number of shortest paths from s to t that pass through v. 

 

Figure 2.3 Example illustrating the betweenness centrality of each node. The shortest path is in 

terms of the number of hops.  

 

For instance, to calculate Betweenness centrality for node A, it is necessary to find the number of 

shortest paths between vertices. First, it is necessary to find the total number of pairs of vertices 

not including node A. There are fifteen such pairs such as BC and FG. For a given pair there maybe 

more than one shortest path. For example, in Figure 2.3 between nodes B and F there are two 

different shortest paths - one is B-A-C-F and the other is B-D-G-F. On the other hand, between 

nodes A and E there is only one shortest path which is A-C-E. Next we need to determine the 

number of shortest paths that include (pass through) node A.  For example, node A is on the 

shortest paths for the pairs BC, BE, BF, and CD. The number of shortest paths for BC and BE is 
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only one while that of shortest paths for BF and CD is two. Therefore, betweenness centrality for 

node A is three. 

For A BC BD BE BF BG CD CE CF CG DE DF DG EF EG FG TOTAL 

𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡

 1/1 0/1 1/1 1/2 0/1 1/2 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 
 

BC(A) 1 0 1 0.5 0 0.5 0 0 0 0 0 0 0 0 0 3 

For B AC AD AE AF AG CD CE CF CG DE DF DG EF EG FG TOTAL 

𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡

 0/1 1/1 0/1 0/1 1/2 1/2 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 
 

BC(B) 0 1 0 0 0.5 0.5 0 0 0 0 0 0 0 0 0 2 

For C AB AD AE AF AG BD BE BF BG DE DF DG EF EG FG TOTAL 

𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡

 0/1 0/1 1/1 1/1 1/2 0/1 1/1 1/2 0/1 0/1 0/1 0/1 0/1 0/1 0/1 
 

BC(C) 0 0 1 1 0.5 0 1 0.5 0 0 0 0 0 0 0 4 

For D AB AC AE AF AG BC BE BF BG CE CF CG EF EG FG TOTAL 

𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡

 0/1 0/1 0/1 0/1 1/2 0/1 0/1 1/2 1/1 0/1 0/1 0/1 0/1 0/1 0/1 
 

BC(D) 0 0 0 0 0.5 0 0 0.5 1 0 0 0 0 0 0 2 

For E AB AC AD AF AG BC BD BF BG CD CF CG DF DG FG TOTAL 

𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡

 0/1 0/1 0/1 0/1 0/2 0/1 0/1 0/2 0/1 0/2 0/1 0/1 0/1 0/1 0/1 
 

BC(E) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

For F AB AC AD AE AG BC BD BE BG CD CE CG DE DG EG TOTAL 

𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡

 0/1 0/1 0/1 0/1 1/2 0/1 0/1 0/1 0/1 1/2 0/1 1/1 1/1 0/1 1/1 
 

BC(F) 0 0 0 0 0.5 0 0 0 0 0.5 0 1 1 0 1 4 

For G AB AC AD AE AF BC BD BE BF CD CE CF DE DF EF TOTAL 

𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡

 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 1/2 1/2 0/1 0/1 1/1 1/1 0/1 
 

BC(G) 0 0 0 0 0 0 0 0 0.5 0.5 0 0 1 1 0 3 

Table 2.1 Calculation for the betweenness centrality measure for all the nodes in Figure 2.3. 

 

Table 2.1 shows the betweenness centrality for all nodes in Figure 2.3.  Node C and F have a high 

BC score since they lie on important paths for other pairs, while Node E has a zero score since 

node E is not on the shortest path between any of the pairs of vertices. Nodes which most frequently 

lie on these shortest paths will have a higher betweenness centrality score. 
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It is important to note that the betweenness centrality values depend on the size of network. To 

compare the Betweenness centrality values of two different networks, a normalizing method is 

usually adopted in which the BC scores are normalized by their largest possible value. It is useful 

for comparing networks that changes over time.  

Betweenness centrality is useful for analyzing social networks, transportation, and scientific 

cooperation by finding individuals who influence network flow. A high betweenness value could 

indicate a critical position with control over disparate clusters in a network, or just that they are on 

the periphery of both clusters. This measure acts as a significant indicator for analyzing networks 

in this thesis, since it will be used to compare experiment simulations.   

 

2.3 ROUTING ALGORITHM 

2.3.1 DIJKSTRA ALGORITHM 

Dijkstra's Algorithm [14,15,16] determines the shortest path between one node and all other nodes 

in a graph by determining the shortest pass tree which has a set of nodes that have the shortest 

distance from the first node. The concept of the algorithm is to repeatedly calculate the shortest 

distance from a source node to the end nodes while it excludes longer distances when making an 

update. 

  

Figure 2.4 Dijkstra’s algorithm. 
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The Dijkstra algorithm consists of the following steps:  

1. Select the start node with distance value zero, and then initialize of all other nodes with 

distance ‘infinite’. 

2. Mark the starting node as visited and the distance of the starting node is permanent which 

is 0, and all other distances can be changeable except for visited nodes. 

3. Calculate the distances of all neighbor (adjacent) nodes of the just visited node by summing 

up its distance with the weights of the edges. 

4. If a new calculated distance of a node is smaller than the current value, update the distance 

and set the current node as previous node. Now these neighbor nodes which have a new 

calculated distance and previous node information are added to a priority queue. The key 

for the priority queue is distance.  

5. Next, pop a node from Q with the shortest distance and mark the node as visited.  

6. Repeat 3 to 5 until no nodes are left from Q.  

The main idea of the algorithm is to keep track of the shortest distance from each node to the start 

node and to update these distance values in case a shorter path is found. The Dijkstra algorithm is 

efficient enough to find the best paths. However, it has some limitations like doing a blind search, 

wasting unnecessary time and resources. Also, it cannot work with graphs that have negative 

weights, so sometimes it reaches the wrong paths. Nevertheless, Dijkstra provides the shortest path 

between one node of the graph and all other nodes, so it is widely used in various fields. In this 

study, we have used Dijkstra’s to find the shortest path between source and destination in the road 

network simulation.  

2.4 MONTE CARLO INTEGRATION 

Monte Carlo integration [17,18] is a numerical method to approximate the integral of a function 

using random sampling. This method tends to be straightforward, expandable, and flexible. In 

general, Monte Carlo techniques allow complex models to be encoded through a set of rules that 

can be performed on a computer. Monte Carlo method is a practical way for the multi-dimensional 

integration problems that widely occurs in computer graphics.  
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The principle of a basic Monte Carlo estimation is to use random sampling of a function to 

approximate the value of an arbitrary integral. Suppose we want to integrate a one-dimensional 

function f(x) from a to b such as given by  

𝐹 =  ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
  

 

Figure 2.5 Figure illustrating the basic idea of Monte Carlo integration to find the area under the 

curve f(x) in the range a to b.  

 

Figure 2.5 shows an arbitrary function f(x) for which we need to calculate the area in the range 

from a to b, i.e., the shaded area in graph on the left. If any random point x is selected in the range 

between a and b, the area of the rectangle of width (b-a) and height f(x) can be multiplied by the 

value of (b-a), the length between a and b. The figure is the same as the rectangular area where the 

function value is height and length (b-a) is width. 

 

Figure 2.6: An illustration of basic Monte Carlo estimation using eight samples. 
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Figure 2.6 illustrates the basic Monte Carlo estimator using eight samples. This integral can be 

approximated by adding a rectangular region and averaging the sum. The more samples that are 

applied, the more accurate the acquired results will be. Given a set of N uniform random variables 

Xi ∈ [a,b) with a corresponding PDF of 1/(b − a), the Monte Carlo estimator for computing F is 

〈𝐹𝑁〉 = (𝑏 − 𝑎)
1

𝑁−1
 ∑ 𝑓(𝑥𝑖)

𝑁
𝑖=0    

By the law of large numbers, the integrals described by the expected values of some random 

variables can be approximated by taking the empirical mean (i.e., sample mean) of independent 

samples of variables. Therefore, as N approaches infinity, the Monte Carlo estimator converges in 

probability to F, the true value of the integral: Pr { lim
𝑁→∞

⟨𝐹𝑁〉 = 𝐹}  = 1.  Furthermore, as the size 

of sample N increases, the estimator 〈𝐹𝑁〉 becomes a closer and closer approximation of F. Due to 

the Strong Law of Large Numbers, it can be guaranteed to have a solution with limited accuracy. 

By checking the convergence rate of the estimator variance, it can be seen how quickly the 

estimator actually converges to a sufficiently accurate solution.  

Monte Carlo method is a computational algorithm that utilize the process of repeated random 

sampling to make numerical estimations of unknown parameters. They allow for modeling of 

complex situations associated with many random variables and assessing the impact of risk. Monte 

Carlo methods have a wide spectrum, but they all share the commonality that they rely on random 

number generation to solve deterministic problems. In this study Monte Carlo metho is  used to 

determine the number of samples for experiments. 

2.5 CONCLUSION 

Centrality measures, a routing algorithm, and Monte Carlo concept were reviewed in this section. 

In next section, how these concepts are used for identifying the vulnerable roads with the 

experimental setups and conditions is described.  
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CHAPTER 3 

EXPERIMENTAL SETUP  

3.1 INTRODUCTION 

In this chapter we first describe the simulation tool that we developed to study the vulnerability of 

the road network. In Section 3.3, we outline the simulation methodology and the metrics. In 

Section 3.4, we discuss the simulation method with random O/D pairs  and in Section 3.5 we 

consider non-uniform O/D pairs. Finally, in Section 3.6  we determine the number of O/D pairs to 

simulate. 

 

3.2 SIMULATION TOOL 

Python is a high-level programming language and widely used nowadays. Python has many 

advantages. It is easy to read, learn and write because it is based on simplicity and efficiency. This 

programming language is free to use and is available under Open-Source license. It leads many 

programmers to make and develop application packages. These packages allow other people to 

save their time for making the same function programs. In this thesis, NetworkX [19] and OSMnx 

[20] are main packages to implement the simulation.  

NetworkX is a Python package for exploration and analysis of networks. The package provides 

data structures for representing various networks including directed, undirected, and multigraphs. 

This is extremely flexible for researching graph algorithms. Nodes can be any hashable object in 

Python, and edges can contain arbitrary data. With connection to other packages such as SciPy, 

NumPy, and matplotlib, NetworkX provides strong scientific computation and makes graphs 

visible for helping us to understand such a complex computation.  

OSMnx is a Python package for downloading OpenStreetMap street network data and then 

building it into NetworkX graphs. OSMnx simplifies and corrects the network’s topology to ensure 

that nodes exclusively represent intersections and dead-ends. After the network is built and 

amended, OSMnx provides the shortest path from one node to another node. It can also calculate 

various network measures relevant to transportation networks including average street segment 
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length, average intersection degree, intersection density, circuity, edge density, clustering 

coefficients, betweenness centrality and closeness centrality. By using the matplotlib package, 

OSMnx can easily plot various network’s features like routes, high/low connectivity intersections, 

dead-ends, one-way streets, and figure-ground diagrams of street networks. 

3.3 SIMULATION METHOD 

The experiments were performed with the map of the city of Davis in California. There are several 

ways to download the street map. One is to load the graph from the place name which will be 

Davis. Another way is getting it from address and distance. However, neither way is suitable for 

using highways which cross the city of Davis. The best way to fully utilize the highway is to get 

from the b-box which is set from boundaries. The points of boundaries are 38.5754, 38.5156, -

121.6759, and -121.7941 from the north, south, east, and west respectively.  

Figure 3.1 shows the best paths for randomly chosen 10 O/D pairs in the Davis map. 

 

Figure 3.1 Best paths for 10 randomly chosen O/D pairs in the Davis map.  
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The next step is allocating the speed limit for the roads. OSMnx has basic attributes for edges like 

the road name, road type, road length, and whether the road is one way or not. To make use of 

travel time to find the best path, it is necessary to add speed limit and travel time which is derived 

from the speed limit and length. The base travel time is of an edge is determined as  

𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑇𝑡 =
𝐿𝑒𝑛𝑔𝑡ℎ(𝑚𝑒𝑡𝑒𝑟)

𝑆𝑝𝑒𝑒𝑑 𝑙𝑖𝑚𝑖𝑡(𝑘𝑝ℎ)
 

Due to just a small portion of edges having a speed limit, it is necessary to set the max speed for 

the rest of edges to calculate the travel time. OSMnx employs Kilometers Per Hour (kph) as a unit 

of speed instead of Miles Per Hour (mph). The set speeds are 110, 60, 50, 40, 40 (kph) respectively 

for the road types highway, primary, secondary, tertiary, and residential. This represents the speed 

limit corresponding to the speed in mph in Davis. This speed limit is used for calculating travel 

time for the edges. NetworkX provides the best path based on travel time by using the Dijkstra 

algorithm.   

One of the methods to identify important links is figuring out which edges are most used over a 

certain period of time. To implement this method, all edges in the map have a count value which 

is incremented when the edge belong to the route which is the best path for a given origin and 

destination (O/D) pair. As more routes are created, the count for the edges increases. The larger 

numbers of O/D pairs give us more accurate data about which edges (roads) are most used in a 

given map. To determine the number of O/D pairs, we use the Monte Carlo method described in 

Chapter II. From experiments, we found that the top ten most used edges are constant and 

invariable when the number of O/D pairs is larger than 10,000. In other words, regardless of 

whether the number is 10,000 or 100,000 pairs, both have the same top ten dominant edges. 

Accordingly, in this study we have considered 10,000 O/D pairs to determine the most used edges 

which are denoted as critical edges. 

3.4 SIMULATION WITH RANDOM O/D PAIRS 

A natural heuristic to identify important edges is just to use the top five most used edges from a 

simulation with randomly chosen 10,000 O/D pairs. However, this approach does not incorporate 

the user behavior as drivers are likely to select alternative routes when faced with traffic congestion. 

A more practical approach is to choose only the top edge from the first iteration with 10,000 O/D 
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pairs and then apply traffic congestion model to the top edge. The traffic congestion will alter the 

speed of the edge which will cause traffic delays. This information is provided to the drivers in the 

next phase of the simulation providing them with an opportunity to change their paths. After 

applying the speed change, the second iteration is executed with the same 10,000 O/D pairs that 

were used during the first iteration. The most used edge from the first iteration was blocked (the 

speed is set to 1 kph) while the second simulation was running. The second iteration yields a new 

most heavily used edge. The congestion model is then applied to this new edge to determine the 

new speed of the link. With the new Afterward, the speed of the top edge was changed again from 

the second iteration. By repeating those simulations five times, five edges were obtained which 

were more likely to have important roles for the map.  

3.4.1 SIMULATION OF RANDOM O/D PAIRS WITH TRAFFIC LIGHT DELAY. 

Even though the travel time is calculated using the length and the speed limit of the edges, this is 

not sufficient to estimate the travel time realistically. There are other factors that can make the 

travel time longer. One of the factors is traffic light delay. We need to consider the elapsed time 

between red and green lights at the intersection during which nom cars are forwarded. Also, cars 

must stop when they reach at stop sign and potentially wait for others who arrived at the stop sign 

earlier. These factors affect the travel time. 

Most of the primary or secondary roads employ signal traffic lights, while most residential roads 

employ stop signs. Typically, it takes longer to be scheduled at a traffic light than at a stop sign. 

In this study, the travel time was modeled as follows: 

𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑇𝑡 = 𝐵𝑡 + 𝐿𝑡 ,   𝐵𝑎𝑠𝑒 𝑡𝑖𝑚𝑒 𝐵𝑡 =
𝐿𝑒𝑛𝑔𝑡ℎ(𝑚𝑒𝑡𝑒𝑟)

𝑆𝑝𝑒𝑒𝑑 𝑙𝑖𝑚𝑖𝑡(𝑘𝑝ℎ)
,  𝐿𝑡 = 𝑇𝑟𝑎𝑓𝑓𝑖𝑐 𝑙𝑖𝑔ℎ𝑡 𝑑𝑒𝑙𝑎𝑦 

The set traffic light delays are 10, 10, 6, and 4 (seconds), for the road types primary, secondary, 

tertiary, and residential respectively. 

Five edges were obtained from the five iterations after applying the traffic light delay. The five 

edges are much more similar to the five edges with betweenness centrality than those not applied 

with the traffic light delay. This time one of the critical edges from the simulation was on Interstate 

80. Incorporating the traffic light delay made the simulation of the road network more realistic by 

incorporating vehicular traffic flow features.     
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3.4.2 SIMULATION OF RANDOM O/D PAIRS WITH TRAFFIC CONGESTION 

One way to introduce traffic congestion in the simulation is to apply a traffic jam based on the 

count for each edge. However, for a more realistic model, congestion should include features such 

as the capacity of the edge, the number of lanes in the edge and the type of road.  In this simulation, 

the congestion delay time is modeled as follows.    

   𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑑𝑒𝑙𝑎𝑦 𝑡𝑖𝑚𝑒 𝐶𝑡

=
𝛽 ×  𝑓𝑙𝑜𝑤 𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 ×  𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑎𝑛𝑒𝑠 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠
(𝑠𝑒𝑐𝑜𝑛𝑑) 

The β values are 40, 50, 50, 60, 60 for the road type motorway, primary, secondary, tertiary, and 

residential, respectively. Flow count of edges means that the number of counts (i.e.  flows) use that 

edge. The capacity of an edge depends on the type of road: 2400, 2000, 2000, 1800, 1800 

corresponding to motorway, primary, secondary, tertiary, and residential, respectively. The 

number of lanes for each edges depends on the edge attribute. Some edges have multiple lanes, 

while most lanes have only 1. Specifically, the number of lanes for Russell Boulevard and East or 

West Covell Boulevard was set to 2; all other streets within the city had 1 lane. 

The congestion delay time in an edge  𝐶𝑡 was set to be inversely proportional to the number of 

lanes in the edge as shown below. For example, the flow count of an edge is 1200, the type of 

roads is primary, and the number of lanes is two, the 𝐶𝑡 is sixty-six seconds. 

𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑇𝑡 = 𝐵𝑡 + 𝐿𝑡 +  𝐶𝑡,   𝐵𝑡 =
𝐿𝑒𝑛𝑔𝑡ℎ(𝑚𝑒𝑡𝑒𝑟)

𝑆𝑝𝑒𝑒𝑑 𝑙𝑖𝑚𝑖𝑡(𝑘𝑝ℎ)
, 

  𝐿𝑡 = 𝑇𝑟𝑎𝑓𝑓𝑖𝑐 𝑙𝑖𝑔ℎ𝑡 𝑑𝑒𝑙𝑎𝑦, 𝐶𝑡 =
𝛽 ×  𝑓𝑙𝑜𝑤 𝑐𝑜𝑢𝑛𝑡 𝑜𝑓  𝑒𝑑𝑔𝑒𝑠

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 ×  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑎𝑛𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑑𝑔𝑒
 

Each iteration of the simulation was run with total of 20,000 O/D pairs consisting of 10 steps each 

with 2000 O/D pairs. Traffic congestion was applied at each step by using the accumulated  flow 

count for each edge to determine the Ct. For the initial first step, only Bt and Lt was used to 

determine the number of counted edges. For the second step, the travel time was calculated using 

Bt, Lt, and Ct where Ct was calculated by using the flow count determined from the previous step. 

The flow count was accumulated at every step. For example, in step seven, the flow count for an 

edge is the  the sum of the flow count from each of the previous steps one through step six. 
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Consequently, the traffic congestion time worsened with number of steps as the flow count 

increases. This allowed modeling how the traffic adapts to traffic congestion variation. For the 

tenth step which was the last step for first iteration, the most used edge, i.e., one with the most 

flow count was obtained. The next iteration of simulation was performed after removing the most 

used edge (setting the speed of the edge to 1 kph).  This was repeated for a total of 5 iterations to 

study how location of the critical link (defined to be the one that is most used) changed as the 

critical links were sequentially removed.  

 

3.5 SIMULATION WITH NON-UNIFORM O/D PAIRS 

Traffic pattern is influenced such as the time of day, day of week, public events, weather conditions, 

and holidays. Different traffic patterns impose different demands and may lead to congestion at 

different locations. Given the traffic pattern, it is possible to estimate the traffic congestion for the 

city. For instance, on any weekday morning, a large fraction of the traffic from the highway and 

elsewhere in the city Davis goes to the UC Davis campus. To study the impact of this traffic pattern, 

we considered a non-uniform distribution of O/D pairs. Specifically, with regards to the destination 

we assumed that 50% of the traffic went to the UC Davis campus, another 10% went to the to five 

grocery stores in Davis, and another 10% went to downtown of Davis, and another 30% went to 

random destinations in Davis. With regards to the source, we assumed that 15% of sources came 

from eastbound I-80, 10% of sources came from westbound I-80, and other 75% of sources from 

somewhere within Davis.  

The simulation steps and iterations with non-uniform O/D pairs was conducted in the same way 

as with the uniform O/D pairs. 

 

3.6 DETERMINING THE NUMBER OF O/D PAIR TO SIMULATE  

One of the goals for the simulation with the uniformed samples was to determine how many O/D 

pairs would be needed to model appropriate level of traffic congestion. If more O/D pairs are tested, 

more accurate results will be obtained from the background with Monte Carlo Integration, which 

can be useful to exploit for a probabilistic interpretation.   
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Figure 3.2 Variation of edge rank a function of the number of O/D pairs.  

Figure 3.2 shows the rank variation of the top 10 most used edges based on the number of given 

O/D pairs. The edge’s ranks are constant if more than 10,000 O/D pairs are given. The chart 

informs us the marginal number of O/D pairs is 10,000 pairs. Therefore, 10,000 O/D pairs were 

mainly used in the simulations of experiments. 

3.7 CONCLUSION 

Simulation tools, methods, and different conditions to identify the vulnerable roads were described 

in this section. In next section, the results of the experiments with these contents are discussed. 
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CHAPTER 4 

RESULTS AND DISCUSSIONS 

4.1 INTRODUCTION 

In this chapter we discuss the results from the various simulation experiments. The results are 

presented as five key observations. Additionally, the impact of different traffic pattern on the 

network are also presented.  

4.2 OBSERVATION 1: NON-LOCAL MIGRATION OF CRITICAL EDGE   

Recall that the edge with the largest flow count is the critical edge. An important question is if the 

critical edge is removed which edge becomes the next critical edge. We studied this with uniform 

O/D pairs. For a benchmark we first determined the top five critical edges from one iteration of 

the simulation. Next we determined   the top five critical edges following the five iterations of the 

simulation where in each iteration we remove the critical edge. Figure 4.1(a) shows the top five 

edges from one iteration of the simulation. The edges are close to each other and lie along the same 

primary road (E.Covell Blvd). This was because the edges that were connected to the edge with 

the most flow count were likely to have high flow count so that the top five counted edges were 

concentrated at specific roads.  

  

Top five edges from first simulation.  Top five edges from five step simulation. 

Figure 4.1 Location of the critical edge with accumulated sequential disruptions under uniform 

O/D pairs.  
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Figure 4.1(b) shows the top five critical edges where at the end of each iteration the most critical 

edge is removed. To be specific, at the end of the first iteration, the purple color edge removed. In 

second iteration, the red edge was the critical edge which was removed for the third iteration and 

so on.  In this case we observe that the location of the critical edge changes different part of the 

network still remaining on the primary roads such as the Fifth Street and the J Street. This was 

because alternate routes were used when the critical edge was blocked. The result show that under 

uniform O/D pairs there is non-local effect in how the critical edge migrates when disruptions are 

injected in the network.  Figure 4.2 This phenomenon was remarkable in the simulation with traffic 

light delay. 

  

(a) Top five critical edges from one 

iteration of the simulation. 

(b) Top five critical edges from five iteration 

of the simulation with disruptions. 

Figure 4.2 Location of the critical edge with accumulated sequential disruptions under uniform 

O/D pairs and with traffic light delay. 

With traffic light delay migration of the critical edge is even more widespread and demonstrate the 

non-local effect that influences how the critical edge migrates when disruptions are injected in 

network.  

4.3 OBSERVATION 2: IMPACT OF TRAFFIC LIGHT DELAY  

All the five critical edges from the simulation with uniformed O/D pairs were mostly located in 

the middle of the map. This result meant that the Interstate 80 was not much used for the best paths 

of O/D pairs even though the highway was used by drivers a lot in the real world. This posed a 

problem in that the first result did not reflect the reality adequately. All the edges (roads) have 
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different speed limit based on the road’s type. Thus, a highway with a higher speed limit is more 

likely to be used than other roads such as primary, secondary, and residential with lower speed 

limits. However, the simulation with uniform O/D pairs did not present the preference for the 

highway in the real world.  This was due to the fact that there were no traffic lights applied to the 

map even though all roads had travel time based on the length and speed limit. Most intersections 

have a traffic light or a stop sign which results in additional delay in the travel time of the edge. 

However, the highway does not have the traffic light except at intersections at the highway ramp. 

By adding some traffic light delays to primary, secondary, tertiary, and residential roads far more 

realistic results were obtained. 

  

The top 10 edges from 1st iteration The top 10 edges from 2nd iteration 

  

The top 10 edges from 3rd iteration The top 10 edges from 4th iteration 
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The top 10 edges from 5th iteration  

Figure 4.3 Changes in traffic flow with traffic light delay with sequential removal of critical 

edge. At the end of each iteration the critical edge is removed. 

Figure 4.3 shows changes in traffic flow of the simulation with traffic light delays. In first iteration, 

major traffic flow focused on Covell Boulevard. In second iteration, the critical edge was on Eighth 

Street, but lot of traffic moved to Interstate 80. Afterward, when Interstate 80 and highway 113 

were crowded, then traffic flow moved to Russel Boulevard. In the fifth iteration, the major traffic 

direction was on between north and south and especially traffic flow moved to F Street and 

Richards Boulevard, which is one of the major roads to connect between north and south of Davis. 

The first remarkable point was that the five critical edges from the simulation were more in the 

east and west direction than north and south direction. The reason for this is that the map of Davis 

is much wider from east to west than from north to south. This phenomenon made the traffic flow 

between east and west dominant. 

Another intriguing result from this simulation was that if the first road was blocked, the next 

critical road was not adjacent to the first road but far from the road. This is opposite to common 

sense of just using the alternative roads which are closest to the first road, but, in reality, traffic 

finds a new path which maybe remote from the road. This result presents non-local effect, which 

demonstrates that the impact of traffic disturbances did impact locally but widely in the network.  
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Figure 4.4 The top 5 edges from simulation of uniformed O/D pairs with traffic light delay.  

Figure 4.4 shows the considerable difference from the previous result after applying the traffic 

light delay. The result was obtained from five-step simulation after applying traffic light delays.  

The result presented shows that the five critical edges were widespread and incorporating traffic 

light delays resulted in the Interstate 80 started to be used. It was intriguing to note that the 5 edges 

had intersection with those determined by the betweenness centrality measure. We discuss this in 

detail in Section 4.5. By adding traffic light delays, the usage of Interstate 80 increased, and in 

contrast, local roads’ usage decreased.  

4.4 OBSERVATION 3: IMPACT OF CONGESTION 

The previous study did not consider delays due to traffic congestion. In real life, traffic congestion 

conditions vary continuously. To introduce this feature, a new congestion model was applied. This 

was described in Chapter 3. One of the key factors of the congestion model is the capacity of the 

edges which depended on the road type and the number of lanes and played a significant role for 

the major roads that were utilized frequently. 
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The top 10 edges from 1st iteration The top 10 edges from 2nd iteration 

  

The top 10 edges from 3rd iteration The top 10 edges from 4th iteration 

  

The top 10 edges from 5th iteration  

Figure 4.5 Changes in traffic flow of simulation with traffic congestion 
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Figure 4.5 shows the result of simulation with traffic congestion. In first iteration, major traffic 

flow was concentrated on Covell Boulevard and Interstate 80. In second iteration, not only the 

most used road was on Interstate 80, but also most traffic was on Interstate 80. Afterward, when 

Interstate 80 and Covell Boulevard were crowded, then traffic flow moved to Russel Boulevard. 

In the fourth iteration, the top crowded road was on Eight Street that was one of the major 

alternative roads to connect east and west of Davis. In the fifth iteration, the most crowed road was 

on Interstate 80. However, the road’s direction was east to west which was opposite to the one in 

the second iteration. Also, the major traffic flow was on Interstate 80 west direction. 

One of notable results from this simulation was that major traffic flow was on Interstate 80 in both 

directions of east and west. This result was much closer to the reality that highway was preferred. 

 

 

Figure 4.6 The top 5 edges from simulation with congestion model.  

Figure 4.6 shows the top five vulnerable edges from the simulation with applying congestion 

model. 
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The five critical roads from this simulation were also widespread, and Interstate 80 was dominant. 

It was interesting that the most vulnerable edges also had some relationship with those from 

betweenness centrality measure.  

4.5 OBSERVATION 4: RELATIONSHIP WITH BETWEENNESS 

CENTRALITY  

  

Figure 4.7 The top five edges from betweenness centrality by five steps.  

Five edges with the highest betweenness centrality were acquired by five-step simulation. First, 

the betweenness centrality values were calculated for the whole map and the first edge with the 

highest value among all the edges was chosen. Next, the first edge was removed and betweenness 

centrality values were recalculated. Afterward, the second edge with the highest value was 

obtained. By doing so, five edges were obtained from the betweenness centrality measure. 
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The top five edges from betweenness centrality The top five edges with traffic light delay 

Figure 4.8 comparing top five edges based on different measures 

Figure 4.8 compares two results. One is betweenness centrality and the other is from the simulation 

with traffic light delay. Two results showed similarity of vulnerable roads, i.e., three of five edges 

were close to each other.  
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The top five edges from betweenness centrality The top five edges with the congestion model 

Figure 4.9 compares the top five edges based on different measures 

 

Figure 4.9 showed similarity of vulnerable roads from two different measures that were obtained 

from betweenness centrality and the simulation with the congestion model. This result indicated 

that betweenness centrality measure had a significant role in identifying vulnerable roads in 

ordinary traffic networks. Only one of five edges was different while four roads were exactly same. 

Betweenness centrality can be a useful method to ascertain critical edges under normal conditions 

in networks.  

4.6 OBSERVATION 5: IMPACT OF NON-UNIFORM TRAFFIC PATTERN  

Some proportion of source and destination was changed to identify critical roads from traffic 

pattern changes since traffic congestion can be influenced by different conditions such as the time 

of day, day of week, holdays, events, and weather. The data was set under conditions in Davis on 

weekday morning.  
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The top 10 edges from 1st iteration The top 10 edges from 2nd iteration 

  

The top 10 edges from 3rd iteration The top 10 edges from 4th iteration 

  

The top 10 edges from 5th iteration  

Figure 4.10 Changes in traffic flow of simulation of specifically targeted O/D pairs with 

congestion model. 
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Figure 4.7 shows changes in traffic flow of the simulation of specifically designated O/D pairs 

with the congestion model. In first iteration, the major traffic flow was on Interstate 80, specifically 

east to west direction. This was because 15% of source nodes were on east of I-80 and the half of 

destination nodes were in UC Davis. Such a particular changed rate of origin and destination nodes 

created most traffic flows from east to west. In the second iteration, the most critical road was on 

Richards Boulevard, which connected with the ramp of Interstate 80 east and west-bound. There 

were two reasons for this. The road on Richards Boulevard was on the path that was the alternative 

way to UC Davis from east of Interstate 80. Also, Richards Boulevard is one of the major roads to 

connect North and South Davis. Then the most critical road moved to Mace Boulevard, which was 

on another alternative route to go to UC Davis campus via Second Street. In the fourth iteration, 

the busiest road was on Pole Line Road, which is another major road to connect North and South 

Davis. Actually, Pole Line Road was the only possible option to go to North of Davis from South 

after blocking Richards Boulevard and Mace Boulevard. In the fifth iteration, the critical road was 

the same road on Richards Boulevard from the second iteration. After blocking the tree major 

roads that connect North and South Davis, the road on Richards Boulevard was the best choice to 

reach the destination.  
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Figure 4.11 The top 5 edges from Simulation of targeted O/D pairs with applying congestion 

model.  

It was demonstrated that the traffic pattern obviously changed by specifying origin and destination 

nodes which was non-uniform so that the critical top five edges were different with those from 

uniform O/D pairs. This result indicated that the traffic statistics allowed us to predict the traffic 

pattern and congestion. The stats helped drivers the view of what’s happening on the roads. If the 

data resources can be secured officially, the estimated traffic pattern will be more precise and 

accurate. 
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4.7 IMPACT OF VULNERABLE ROADS’ ON THE NETWORKS IN 

DIFFERENT CONDITIONS 

4.7.1 MEAN TRAVEL TIME DELAY 

Travel time 

(second) 

Uniformed O/D pairs Uniformed O/D with traffic light delay 

1st 2nd 3rd 4th 5th  1st 2nd 3rd 4th  5th  

Mean 336.3 343.5 350.4 354.2 355.9 502.5 516.6 525.7 548.4 554.5 

Difference  7.2 6.9 3.8 0.8  14.1 9.1 22.7 6.1 

75th % 435.4 445.5 458.1 465.0 467.5 654.3 675.7 688.2 712.2 717.1 

Median 326.6 333.0 339.7 343.7 344.7 502.1 514.6 521.1 528.9 531.1 

25th % 225.7 229.3 233.1 236.0 236.4 349.9 355.2 358.1 359.7 360.1 

Travel time 

(second) 

Applied traffic congestion model Targeted O/D pairs with congestion model 

1st 2nd 3rd 4th 5th  1st 2nd 3rd 4th  5th  

Mean 628.5 654.9 701.3 719.5 738.6 625.8 724.4 779.5 875.5 968.3 

Difference  26.4 46.4 18.2 19.1  98.6 55.1 96 93.3 

75th % 821.4 862.2 915.1 936.5 963.5 790.5 919.9 996.4 1110.5 1344.6 

Median 614.2 635.3 650.9 659.2 669.7 607.8 663.8 695.2 732.8 744.9 

25th % 419.3 429.6 433.6 437.1 440.9 441.8 466.5 480.6 494.9 492.5 

Table 4.1 The variance of traffic time for simulations of four different conditions 

 

Table 4.1 shows average travel times for four different simulations. The simulations consisted of 

five iterations, and the mean, 75th, median, and 25th percentile travel times were calculated 

respectively in each iteration. Difference indicates mean time increased between the previous 

iteration and the current iteration. Difference is one of the significant features since it means 

increased travel time caused by blocking the important edge between iterations. Particularly it 

indicates the extent of the impact on the whole network from the critical edges. 

Mean time of the applied congestion model is far higher than the one with traffic light delays. This 

is because the congestion model already includes traffic light delays as well as congestion delays. 



-34- 

 

In addition, travel time that congestion model applied was accumulated for ten steps so the travel 

time also gradually escalated over later steps. 

4.7.2 DIFFERENCE OF INCREASED TRAVEL TIME. 

Box plot [21] is a useful method of data display, showing not only some indication of the symmetry 

and skewness of the data but also the distribution/spread of data. In addition, box plot indicates the 

minimum and maximum values, and quartiles of data. 

  

a) Uniformed O/D pairs samples b) Traffic light delay applied 

    

c) Traffic congestion model applied d) Targeted O/D pairs 

Figure 4.12: box plot for four different simulations. a) Simulation with random O/D pairs. b) 

Simulation of random O/D pairs with traffic light delay. c) Simulation of random O/D pairs with 

traffic congestion. d) Simulation with non-uniform O/D pairs. 

The graphs in Figure 4.12 display the extent of the increased travel time for five iterations of 

different four simulations. From the box plot, it is clear that mean travel time increases as iterations 

repeat. One of the remarkable points was that travel times significantly increased at the certain 

point of iterations. This was because some of O/D pairs did not have any alternate routes so that 

the O/D pairs had to use the vulnerable roads which was blocked from previous iterations.  
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4.8 SUMMARY OF RESULTS  

A way to identify important edges which is just to use the top five most used edges from the first 

simulation with 10,000 O/D pairs is not practical. Since, it does not apply the user’s behavior that 

drivers are likely to select alternative routes when faced with traffic congestion. A more realistic 

approach is to choose only the top edge from the first iteration with 10,000 O/D pairs and then 

apply traffic congestion by using an appropriate method to the top edge. After applying traffic 

congestion, the next top edge is obtained from the next iteration. Doing so for five times, which is 

called a five-step way, better results can be secured.  

 The simulation with uniformed samples did not present the preference for the highway in the real 

world.  Far more realistic results were secured by applying traffic light delays or traffic congestion 

model. Moreover, the results from the simulation with traffic light delays or traffic congestion 

showed non-local effect which was that if the first road was blocked, the next critical road was not 

adjacent to the first road but far from the road. As a result, the traffic disturbances happened not 

just locally, but widely. 

Similarity of vulnerable roads from two different measures was confirmed. One was obtained from 

the betweenness centrality, and the other was from the simulation of the applied congestion model. 

This result indicated that betweenness centrality was a useful tool in identifying vulnerable roads 

in ordinary traffic networks.  

It was shown that specifying non-uniform origin and destination nodes caused the traffic pattern 

to alter completely, with the vulnerable five edges differing from those of uniform O/D pairs. As 

a result, traffic patterns and congestion were able to be predicted by using traffic information. 

CONCLUSIONS 

The top five observations such as non-local effect, impact of applying traffic light delay and 

congestion, relationship with betweenness centrality, and the impact of non-uniform traffic pattern 

were described in this chapter. Also, mean travel time delay and the difference of travel time based 

on simulations were explained.   
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CHAPTER 5  

CONCLUSION 

In this thesis, it was simulated how traffic pattern change, what features affect the diversity of 

traffic patterns, and what reasons contributed to the results.  

It was not realistic to use the top five most used edges from the first simulation with 10,000 O/D 

pairs to select critical edges. It did not take into account the user's behavior because drivers were 

more likely to choose alternate routes when confronted with traffic congestion. A more realistic 

technique was to choose only the top edge from the first 10,000 O/D pairs iteration and then apply 

traffic congestion to the top edge using an acceptable manner. The next top edge was obtained 

from the next iteration after traffic congestion had been applied. Better results were obtained by 

repeating the process five times. 

When a road was blocked, the next traffic congestion happened to the road that was far from the 

blocked road. The traffic congestion was widespread, not just local. This result described non-

local effect of vulnerable edges adequately and also implied that traffic congestion in small areas 

could impact large areas and if some roads were blocked, it could lead to a whole network 

disturbance.  

Betweenness centrality is an applicable measure to analyze traffic networks quickly under ordinary 

conditions. The results presented from simulations showed that there were strong relationships 

between the simulation and betweenness centrality.  

It will be interesting to explore traffic delay estimates by introducing machine learning with several 

features such as betweenness centrality, degree measure, and the rate of use per the number of O/D 

pairs. Also, the study with machine learning to predict the delay time after learning those labeled 

data will be helpful for future traffic control systems. 
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