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Abstract

Centralized and Decentralized Warehouse Logistics Collaboration

by

Shiman Ding

Doctor of Philosophy in Industrial Engineering and Operations Research

University of California, Berkeley

Professor Philip M Kaminsky, Chair

In an emerging trend in the grocery industry, multiple suppliers and retailers share
a warehouse to facilitate horizontal collaboration, in order to lower transportation
costs and increase outbound delivery frequencies. Typically, these systems (sometimes
known as Mixing and Consolidation Centers) are operated in a decentralized manner,
with little effort to coordinate shipments from multiple suppliers with shipments to
multiple retailers. Indeed, implementing coordination in this setting, where potential
competitors are using the same logistics resources, could be very challenging. In this
thesis, we characterizes the loss due to this decentralized operation, in order to develop
insight into the value of making the extra effort and investment necessary to imple-
ment some form of coordinated control. To do this, we consider a setting where several
suppliers ship to several retailers through a shared warehouse, so that outbound trucks
from the warehouse contain the products of multiple suppliers. We extend the classic
one warehouse multi-retailer analysis of Roundy (1985) to incorporate multiple suppli-
ers and per truck outbound transportation cost from the warehouse, and develop a cost
lower bound on centralized operation as benchmark. We then analyze decentralized
versions of the system, in which each retailer and each supplier maximizes his or her
own utility in a variety of settings, and we analytically bound the ratio of the cost of
decentralized to centralized operation, to bound the loss due to decentralization. We
find that easy-to-implement decentralized policies are efficient and effective in this set-
ting, suggesting that centralization (and thus, coordination effort intended to lead to
some of the benefit of centralization) does not bring significant benefits. In a compu-
tational study, we explore how system parameters impact the relative performance of
this system under centralized and decentralized control. Finally, we consider a stochas-
tic version of this model of decentralized collaboration, where we assume independent
Poisson demand occurs at each retailer for all products. To coordinate replenishment,
each retailer follows an aggregate (Q,S) policy, i.e., an order is placed to raise inventory
position to S whenever total demand since the last order at that retailer reaches Q.
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In this, setting demand at the warehouse can be well-approximated by a compound
Poisson process, and thus inventory at the warehouse is managed via an (s,S) policy.
We develop optimal and heuristic algorithms to optimize parameter settings in this
model.

2



Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Literature Review 6
2.1 The One Warehouse Multi-Retailer Problem . . . . . . . . . . . . . . . 6
2.2 The Joint Replenishment Problem (JRP) . . . . . . . . . . . . . . . . . 8
2.3 Decentralized Logistic Systems . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Logistic Collaboration and General Transportation Cost Models . . . . 9
2.5 Stochastic Multi-Echelon Collaboration . . . . . . . . . . . . . . . . . . 10

2.5.1 Classic Stochastic Inventory Models . . . . . . . . . . . . . . . . 10
2.5.2 The Stochastic One Warehouse Multi-retailer Problem . . . . . 11
2.5.3 The Stochastic Multi-supplier Multi-retailer System . . . . . . . 12

3 The Uncapacitated Model 13
3.1 The Centralized One Warehouse Multi-Supplier Multi-Retailer Problem 13

3.1.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 Relaxation of the Problem . . . . . . . . . . . . . . . . . . . . . 16
3.1.3 MSIRR Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.4 Second Order Cone Approach . . . . . . . . . . . . . . . . . . . 21
3.1.5 The Power-of-Two Policy . . . . . . . . . . . . . . . . . . . . . . 22
3.1.6 The Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Decentralized Zero-Inventory Ordering Policy . . . . . . . . . . . . . . 24
3.2.1 Retailers’ Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 The Zero-Inventory-Ordering Supplier Policy . . . . . . . . . . . 25

3.3 Decentralized Order-up-to Policy . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 Inventory Cost at the Warehouse . . . . . . . . . . . . . . . . . 30
3.3.2 Optimal Order Intervals for Suppliers . . . . . . . . . . . . . . . 32

3.4 Semi-Decentralized Model with PoT Control . . . . . . . . . . . . . . . 34
3.4.1 Retailers’ Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.2 Suppliers’ Policy . . . . . . . . . . . . . . . . . . . . . . . . . . 35

i



3.5 Cost of Decentralization . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5.1 The Cost of Decentralization Using the Decentralized ZIO Policy 37
3.5.2 The Cost of Decentralization Using the Decentralized OUT Policy 37
3.5.3 The Cost of Semi-Decentralization Using POT Policy . . . . . . 38

3.6 Computational Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6.1 MSIRR vs SCOP . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6.2 Number of Suppliers/Retailers . . . . . . . . . . . . . . . . . . . 40
3.6.3 Cost Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Per-truck Transportation Cost 45
4.1 The Centralized Lower Bound . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1.2 Equivalent Capacitated OWMRMS . . . . . . . . . . . . . . . . 48
4.1.3 Modified MSIRR Algorithm . . . . . . . . . . . . . . . . . . . . 50
4.1.4 The Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Centralized Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.1 The Power-of-Two Policy I . . . . . . . . . . . . . . . . . . . . . 54
4.2.2 The Power-of-Two Policy II . . . . . . . . . . . . . . . . . . . . 55
4.2.3 Centralized Zero-Inventory-Ordering Policy . . . . . . . . . . . . 56

4.3 Comparison with the Solution from the Uncapacitated Model . . . . . 58
4.4 A Retailer-Driven Decentralized ZIO Policy . . . . . . . . . . . . . . . 58

4.4.1 Retailers’ Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4.2 Suppliers’ Policy: The Zero-Inventory-Ordering Policy . . . . . 60

4.5 An Easily Implementable Retailer-Driven Decentralized Policy . . . . . 60
4.5.1 Suppliers’ Policy: The Order-Up-To Policy . . . . . . . . . . . . 60

4.6 Cost of Decentralization . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.6.1 The Cost of Decentralization Using the Decentralized ZIO Policy 61
4.6.2 The Cost of Decentralization Using the OUT Policy . . . . . . . 62
4.6.3 Decentralized Policies are Effective . . . . . . . . . . . . . . . . 62

4.7 Computational Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.7.1 General Observations . . . . . . . . . . . . . . . . . . . . . . . . 63
4.7.2 Number of Suppliers/Retailers . . . . . . . . . . . . . . . . . . . 64
4.7.3 Cost Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 A Stochastic OWMRMS Model 70
5.1 Model Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2 Retailer Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.1 Cost Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

ii



5.2.2 Convexity in Sij and Qi . . . . . . . . . . . . . . . . . . . . . . 74
5.2.3 Finding the Optimal Aggregate (Q,S) Policy . . . . . . . . . . 75

5.3 Supplier Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.1 Demand Approximation . . . . . . . . . . . . . . . . . . . . . . 76
5.3.2 Demand During Lead Time . . . . . . . . . . . . . . . . . . . . 78
5.3.3 Inventory Holding Cost at the Warehouse . . . . . . . . . . . . 81
5.3.4 Lost Sales Cost at the Warehouse . . . . . . . . . . . . . . . . . 82
5.3.5 Long Run Average Cost . . . . . . . . . . . . . . . . . . . . . . 83
5.3.6 Analysis of c(s0, s) . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.7 Optimizing Exact C(s, S) . . . . . . . . . . . . . . . . . . . . . 85
5.3.8 An Approximation of C(s, S) . . . . . . . . . . . . . . . . . . . 86
5.3.9 Approximation of s∗ and S∗ . . . . . . . . . . . . . . . . . . . . 87

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Conclusions 89

Appendix A 96
A.1 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
A.2 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.3 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.4 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.5 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.6 Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.7 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.8 Proof of Theorem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.9 Proof of Theorem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
A.10 Proof of Theorem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
A.11 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
A.12 Proof of Theorem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
A.13 Proof of Theorem 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
A.14 Proof of Theorem 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
A.15 Proof of Theorem 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
A.16 Proof of Theorem 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
A.17 Proof of Lemma 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
A.18 Proof of Lemma 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
A.19 Proof of Theorem 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
A.20 Proof of Lemma 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.21 Proof of Theorem 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
A.22 Proof of Theorem 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A.23 Proof of Theorem 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

iii



A.24 Proof of Theorem 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.25 Proof of Theorem 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
A.26 Proof of Theorem 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.27 Proof of Theorem 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.28 Proof of Theorem 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
A.29 Proof of Theorem 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
A.30 Proof of Theorem 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
A.31 Proof of Theorem 28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

iv



List of Figures

1.1 3PL Warehouse Collaboration . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Centralized and Decentralized Collaboration . . . . . . . . . . . . . . . 5

2.1 Classic One Warehouse Multi-Retailer (OWMR) Problem . . . . . . . . 6
2.2 Classic Joint Replenishment Problem (JRP) Problem . . . . . . . . . . 8

3.1 Γsi > Γr∗j , inventory from supplier i to retailer j . . . . . . . . . . . . . 27
3.2 Γsi < Γr∗j , inventory from supplier i to retailer j . . . . . . . . . . . . . 28
3.3 Γsi < Γr∗j , inventory from supplier i to retailer j . . . . . . . . . . . . . 31
3.4 Γsi > Γr∗j , inventory from supplier i to retailer j . . . . . . . . . . . . . 32
3.5 Decentralized cost for supplier i . . . . . . . . . . . . . . . . . . . . . . 33
3.6 Decentralized to centralized ratio with differing supplier number n /

retailer number m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.7 Decentralized to centralized ratio with diversity of supplier/retailer fixed

costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.8 Decentralized to centralized ratio with diversity of supplier/retailer fixed

cost scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.9 Decentralized to centralized ratio with holding cost variation at the ware-

house/retailers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.10 Decentralized to centralized ratio with correlated holding cost at diver-

sified retailers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Collaboration with Truck Transportation Cost . . . . . . . . . . . . . . 46
4.2 Cost Ratios of Different Policies . . . . . . . . . . . . . . . . . . . . . . 64
4.3 Number of participants . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4 Fixed cost scaling with different truck capacity . . . . . . . . . . . . . . 66
4.5 Holding cost scaling with different truck capacity . . . . . . . . . . . . 67
4.6 Diversity in truck capacity . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.7 Comparison with Uncapacitated Model . . . . . . . . . . . . . . . . . . 69

5.1 Multi-echelon inventory systen . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Distribution of Aggregate Orders at Warehouse . . . . . . . . . . . . . 77

v



5.3 Installation (s, S) policy for suppliers . . . . . . . . . . . . . . . . . . . 78
5.4 Transition states of inventory levels . . . . . . . . . . . . . . . . . . . . 79
5.5 Cost for c(s0, s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.6 Exact cost for C(s, S) . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.7 Cost for C(s, S) and C̃(s, S) . . . . . . . . . . . . . . . . . . . . . . . . 87

5.8 Histogram of cost ratio C̃(s,S)
C(s,S)

. . . . . . . . . . . . . . . . . . . . . . . 87
5.9 Comparison of cycle cost and long run cost . . . . . . . . . . . . . . . . 88

A.1 Γsi > Γr∗j , inventory from supplier i to retailer j . . . . . . . . . . . . . 103

vi



List of Tables

3.1 Comparison of MSIRR and CPLEX . . . . . . . . . . . . . . . . . . . . 39

vii



Acknowledgements

First and foremost, I would like to express my sincerest gratitude to my advisor,
Professor Philip Kaminsky, the smartest and nicest person I know at Berkeley, for his
wise guidance, creative insights, kind understanding and strong support of my doctoral
studies. Phil is always supportive and available when I need advice in research, and
I have learned a lot from him professionally and personally via numerous discussions,
which have extraordinarily improved my research capability. Next I am really grateful
to Professor Zuo-Jun Max Shen, Professor Anil Aswani, and Professor Shachar Kariv
for being my qualifying and dissertation committee and for their helpful feedback and
encouragement of my research. I also would like to express my special gratitude to
Professor Xin Guo, who has always supported me both in research and in life, which
really warms and guides me when I have a hard time.

I am so lucky to receive support and encouragement from friends at Cal: Dimin and
Kelly, all the night chats and gym talks we had boosted me up and made me strong;
Zhao, your accompanyment was so treasured that all of our best and worst memories
shape me. IEOR is a relatively small but great family, Birce, Cheng, Haoyang, Jiaying,
Kevin, Long, Min, Mo, Nan, Nguyen, Renyuan, Stewart, Sheng, Tugce, Wei, Xu and
Ying, all those days with you guys in Etch on course studies, research discussions, and
“after-seminar” activities made my life so sweet and memorable at Cal.

I would also like to thank my friends outside Cal. Though we were not in the same
place in the last five years, I never felt we were apart. Po, you are always the one who
calmed me down when I was in anxious, just like in high school:) Tiantian and Qin,
thanks for sharing my joyful times and still being my friends after enduring all my
complaints for the five years:) Runqi, my best moment in 2016 is to know “another
me” in Alberta! Jun, thanks for discussing all those interesting problems with me, and
watched me crying out when I broke up:). Yuanjun, it is enjoyable that every one of
our random chats would turn into research discussions:)

Next I would like to thank my parents, who devote their deepest love to me without
expecting any return. Though we are separated by the Pacific Ocean, my dear baba
and mama are always there whenever I need them. You always let me choose whatever
I want and fully support many of my seemingly stupid decisions ever since childhood.
Your love makes me strong enough to face all the difficulties in life.

Now, thank you Jerry:) Every moment we spent together, on badminton, on hiking,
on (random) research chats, on cooking and food tasting, on everything, is so enjoy-
able and unparalleled. We’ve been friends for years (can’t believe...), and I’m looking
forward:)

Hmm... finally thank YOU. Thanks for choosing this adventure five years ago;
thanks for being patient and never giving up; thanks for always following your heart!
You know, life is fun:)

viii



Chapter 1

Introduction

An emerging paradigm for horizontal logistics collaboration in the grocery industry
centers on large third-party warehouses, sometimes called mixing and consolidation
centers (MACC) that multiple suppliers use as warehouses or mixing centers, and from
which multiple retailers order mixed-supplier truckloads. Anecdotal evidence (and
common sense) suggests that these warehouses not only lower transportation costs by
more fully utilizing outbound transportation (that is, sending fuller trucks to retailers),
but also increase service level by increasing the frequency of deliveries to retailers.
Typically, systems like these are operated in an effectively decentralized fashion –
individual suppliers decide when to make deliveries to the warehouse, and individual
retailers order from the warehouse, where ordering information goes directly to the
warehouse to assemble deliveries, and also to the suppliers for billing and planning
purposes. There is no coordination between different suppliers or between different
retailers. Indeed, implementing coordination in this setting would be quite challenging,
as firms would be required to share order information, and to coordinate deliveries.

Our goal in this thesis is to develop some insight into the value of working to
overcome these challenges to implement coordination in this type of system. Would
the additional effort (in contract design, information technology, trust development,
etc.) be worth it? While this is obviously a complex question, in this thesis we analyze
two scenarios: models of deterministic demand, and models of stochastic and stationary
demand.

Using deterministic models, we begin to explore the value of centralized coordina-
tion by developing and analyzing a stylized continuous time constant demand model.
Specifically, we consider a set of suppliers each of which individually ships a supplier-
specific product to a single warehouse. In turn, trucks containing products from mul-
tiple suppliers are shipped to retailers, each of which faces constant, deterministic de-
mand for each of (or a subset of) the products. Outbound shipping costs are charged
both in the simple case per shipment (Chapter 3) as well as in a more complicated model
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per capacitated truck (Chapter 4), so that we can explore how much this warehouse
facilitates the effective utilization of outbound transportation. Additionally, holding
cost is charged at the warehouse and retailers. In this stylized setting, we explore the
following question: How much can system costs potentially be reduced if decentralized
control, where each retailer places its own (uncoordinated) order and suppliers inde-
pendantly react to these orders, is replaced with centralized control that coordinates
each order and delivery?

We also consider a stochastic model setting in Chapter 5, where demands at dif-
ferent retailers occur randomly. Collaboration can still be facilitated via warehouse
and truck sharing, and we still focus on decentralized policies in which suppliers and
retailers can keep their information private. In our model, we assume unmet demand
at retailers is fully backordered, but suppliers must meet all the orders to maintain
system stability. Thus, when inventory at the warehouse is insufficient to cover retailer
orders, suppliers need to pay additional fees to expedite supplies from other sources.
Under such an assumption, we propose the following decentralized policy: retailers all
follow an aggregate (Q,S) policy so that an order is placed if total demand for all
products reaches Q; similarly, suppliers implement a typical (s, S) policy. We provide
an algorithm to solve for the optimal policy parameters that is both efficient and easy
to implement.

1.1 Background

A significant portion of supply chain cost and environmental impact can be attributed
directly to logistics costs. In 2013, transportation represented 8.8% of U.S. Gross
Domestic Product, or roughly $1.4 T (trillion), and truck transportation specifically
accounted for nearly 31% of that (US Department of Transportation, 2014). Addi-
tionally, packaging and commercial warehousing account for $141B (billion) and $39B
in annual expenditures respectively, excluding all costs directly incurred by manufac-
turers, distributors and retailers (Armstrong Associates, 2016). In spite of this, the
current logistics network is far from efficient. For example, in spite of the obvious
economies of scale, trucks often operate at on average 60% of capacity (McKinnon,
2010), because firms often find it more cost effective to either use their own fleets, or
to pay truckload carriers, even if they don’t have full loads to ship, and indeed, trucks
often travel completely empty, because shippers often have more goods to ship in one
direction than in another. At the same time, inventory levels are often significantly
higher than they have to be, as firms attempt to reduce transportation costs at the
expense of inventory costs, and storage facilities are used inefficiently, due to the time
required to fill and pick from these facilities, and the incompatible shapes and sizes of
packaging.
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Indeed, over the past decades, individual firms have increasingly optimized their
supply chains, so that resources are used as efficiently as possible given the individual
firm’s requirements. It is becoming clear, however, that in order to achieve necessary
scale to efficiently utilize logistics resources, all but the largest firms will have to work
together, and specifically, focus on horizontal collaboration. While much of supply
chain management focuses on collaboration, the traditional focus, both in industry
and in academia, has been on so-called vertical collaboration. Vertical collaboration
refers to the development of partnerships, alliances, and strategic contracts between
firms at different stages of production or distribution within the same supply chain,
from manufacturing in factories, transportation to warehouses, to sales in retail stores.
While vertical collaboration leads to considerable supply chain efficiency, in many cases
it does not lead to sufficient volume to enable firms to fully and effectively utilize supply
chain assets. Horizontal collaboration, on the other hand, can be an effective approach
for addressing these concerns.

Specifically, horizontal collaboration is the cooperation among companies with sim-
ilar customers and consumers that share assets at the same stage of the supply chain
– production, transportation, warehouse storage, local retail selling, etc. It is collab-
oration across rather than along the supply chain. For example, firms could share
trucks, warehouses and other logistic resource. Utilizing this type of approach, each
individual company could cost-effectively increase the replenishment frequency with
fewer products transferred each time.

Articles in trade magazines occasionally describe examples of ongoing ad-hoc hor-
izontal collaboration efforts. Hershey and Ferrero, two competing chocolate makers,
have a collaborative logistics agreement focusing on shared warehousing, transporta-
tion, and distribution in North America (Cassidy, 2011). Colgate actively seeks oppor-
tunities to collaborate on shipping, and has an effort in place in the Los Angeles area
with Sunny Delight (Trunick, 2011). According to a case study published by KANE,
a midsized third-party logistics provider, raisin and dried fruit distributor Sun-maid
collaborated with manufacturers of candy, pet foods, condiments, and others, to shared
shipping resources, leading to a 62% reduction in Sun-maid’s outbound logistics costs
(KANE Is Able, Inc., 2011). In a pilot program in the UK, Nestle and Mars combined
deliveries to Tesco, a large UK grocery chain. Over three months, over 7500 miles of
truck travel were removed from the system (Meall, 2010). Four retail companies in
France (Ballot and Fontane, 2010) shared warehouses and trucks, reallocated gains,
costs and tariffs, and averaged savings of 29%. JSP, a manufacture of lightweight plas-
tic bags, and Hammerwerk Fridingen, a manufacture of advanced medal components
(CO3, 2011) shared transportation and significantly increased truck fill rate in the term
of both volume and weight.

Indeed, these types of collaborative logistics arrangements are not new, although
existing efforts such as those described above tend to be small and involve a few enti-
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ties with a narrowly focused scope (Benavides and Swan, 2012). Industry professionals
have recognized that significant levels of collaboration in the industry could lead to
breakthrough reductions in the cost and environmental impact of logistics (Gue and
Forger., 2014). Even with the significant potential, however, real obstacles stand in
the way of widespread implementation of collaboration. Most interestingly, different
stakeholders have strong views of why this type of system should work, but currently
does not – evidence suggests that collaboration efforts are more likely to fail than to
succeed with participants in a recent survey suggesting a 20% success rate for these ef-
forts (Benavides and Swan, 2012). Surveys suggest that technological obstacles related
to data sharing and securities are certainly not insurmountable. The critical challenge
seems to be the need for companies (sometimes competing companies) to trust one
another enough to achieve the needed levels of asset and information sharing (Cassidy,
2011). The MACCs introduced in the first paragraph of this paper may be a way to
address this issue, at least to the extent that they can facilitate some of the benefits of
collaboration, such as effectively utilizing outbound transportation, while limiting the
need for information sharing and coordination.

This research is motivated by our work with a specialized third party logistic
provider that has established large warehouse centers, where both manufacturers and
retailers combine their mixing centers and distribution centers into large facilities. As
shown in Figure 1.1, the warehouse center serves both as inbound warehouse for retail-
ers and outbound warehouse for suppliers.

Figure 1.1: 3PL Warehouse Collaboration

Currently, such 3PL systems are operated in a decentralized way. Suppliers can
send their products to the warehouse center and pay for inventory holding cost, until
it is ordered by some down stream retailer. Retailers can order from all suppliers and
combine their products in the same shipment to increase truck load. According to
Ryder, their solution involves “Harnessing the power of collaboration to ship less-than-
truckload quantities at truckload prices”.
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By sharing these warehouse centers, each retailer and supplier reduces supply chain
inventory, shortens their replenishment cycle length thus reducing inventory uncer-
tainty, and increases truck usage since each company only needs to fill in a portion of
truck’s capacity. Effectively, these systems enable horizontal collaboration by providing
necessary information sharing and limited coordination. A different provider, Ryder
Integrated Logistics, estimates that the use of their MACCs leads to the following gains
Ryder System (2014): “Average savings of 6 to 22% on freight costs, 99.8% on-time
delivery, reductions in out-of-stocks from 2 to 14% and lead-time reductions of 3 to 7
days.”

In this thesis, we explore how information affects horizontal collaboration and how
should we operates such system in reality. To assess the value of information sharing,
we compare two kinds of models: centralized systems and decentralized ones. As we
illustrate in Figure 1.2, in a centralized system, every party shares all the information
and makes collective decisions, to optimize system wide performance. In a decentralized
systen, each supplier and retailer makes their own manufacturing and shipping plans,
without giving out any private information, just as how ES3 and Ryder operates their
warehouse centers now.

Figure 1.2: Centralized and Decentralized Collaboration
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Chapter 2

Literature Review

Several streams of literature are closely related to our problem. For deterministic
models, the One Warehouse Multi-Retailer Problem (OWMR) and the Joint Replen-
ishment Problem (JRP) are two models that are the building blocks of our centralized
model. The OWMR Problem considers collaboration between a single supplier and
many retailers, while the JRP focuses on coordination between a single retailer and
many suppliers. In addition, several authors have considered logistics collaboration in
a decentralized setting and logistic models with generalized transportation costs, which
are closely related to our model in Chapter 4. For stochastic models, we reviewed many
classical policies as well as multi-echelon collaboration.

2.1 The One Warehouse Multi-Retailer Problem

The One Warehouse Multi-Retailer problem has been widely studied, most notably by
Roundy (Roundy, 1985). Roundy considered a distribution system with one warehouse
and multiple retailers. Constant demands occur at each retailer and no backorder or
shortage is allowed. The warehouse orders from an outside supplier with unlimited
supply and replenishes the retailers’ inventories.

Figure 2.1: Classic One Warehouse Multi-Retailer (OWMR) Problem
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Arkin et al. showed that the OMWR problem is NP -hard (Arkin et al., 1989).
Roundy introduced both the classic Power-of-Two (PoT) policy and the q-optimal
integer ratio policy and proved worst-case effectiveness of 94% and 98% respectively
(Roundy, 1985). He also developed an algorithm that obtains the optimal PoT solution
efficiently (Roundy, 1985). Later, Roundy extended the results to a multi-stage pro-
duction problem, where he viewed product at different stages as “different products”
and showed that for assembly systems, a PoT policy can be found in O(NlogN) time
with 98% effectiveness (Roundy, 1986). Lu and Posner developed additional heuris-
tics for the problem,one of which finds a solution in O(N) with error bound 2.014%,
and another of which finds a solution in O(NlogN/

√
ε), where ε is the error bound.

Mitchell and Joseph extended the model to include backlogging (Mitchell, 1987). Gal-
lego and Simchi-Levi extended the cost structure to incorporate transportation costs,
where trucks are capacitated and each truck will generate a fixed transportation cost
independent of its truckload (Gallego and Simchi-Levi, 1990). They demonstrated that
fully loaded direct shipping policy is at least 94% effective whenever the economic lot
size of each retailer is at least 71% of truck capacity (Gallego and Simchi-Levi, 1990).

The research detailed above is restricted to the deterministic demand single-supplier
setting. For the multi-supplier problem, Maxwell and Muckstadt (Maxwell and Muck-
stadt, 1985) and Muckstad and Roundy (Muckstadt and Roundy, 1987) considered a
class of nested and stationary policies. In this context, stationary means that the order
intervals are constant for each specific retailer, and nested means that whenever the
warehouse replenishes an item, a shipment will be sent to each retailer. Both provided
O(NlogN) algorithms to compute a PoT policy with 94% effectiveness compared to
any possible nested policy (Maxwell and Muckstadt, 1985), (Muckstadt and Roundy,
1987). Viswanathan and Mathur considered vehicle routing together with the multi-
item one warehouse inventory problem, where the warehouse is a break-bulk center and
does not keep any inventory. They presented a heuristic that develops a stationary and
nested joint replenishment policy (Viswanathan and Mathur, 1997).

The OWMR with warehouse capacity constraints has also received much attention.
Alhough our primary focus is on transportation capacity, these warehouse-capacity
models share characteristics with our models, in that they both restrict the quantity
that can be shipped to retailers. Jackson et al. considered a more general supply chain
distribution network, where supply is limited because of production capacity (Jackson
et al., 1988). They derived a closed-form solution for model with one capacity con-
straint, and lagrangian multiplier method for model with multiple capacity constraints
(Jackson et al., 1988). Federgruen and Zheng analyzed a similar system, and charac-
terized the effectiveness of an algorithm they developed within class of PoT policies
(Federgruen and Zheng, 1993). Konur analyzed an integrated inventory control and
transportation problem, with capacitated order quantity (Konur, 2014).

In simple model in Chapter 3, our centralized model setting is related to Roundys
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multi-item model, but we consider a more a general class of policies (rather than just
nested policies), and we consider inventory control at retailers and the warehouse. We
provide an efficient algorithm to find a Power- of-Two policy with 94% effectiveness
compared to any optimal policy.

In Chapter 4, our centralized setting is most closely related to Roundy’s multi-item
model, but we incorporate a more general transportation cost structure and consider
a more a general class of policies (rather than just nested policies), and we consider
inventory control at retailers and the warehouse.

2.2 The Joint Replenishment Problem (JRP)

The Joint Replenishment Problem is a widely studied special case of the One Warehouse
Multi-Retailer problem. The JRP arises when a retailer purchases several items from a
single supplier, and pays a so-called major fixed ordering cost that is independent of the
number of different products in the order, a minor fixed ordering cost that is incurred
for each product included in an order, and holding cost. The retailer must decide when
to order and which items to purchase in each order to minimize the total cost while
satisfying demand. The assumptions for the classical JRP are similar to those of the
EOQ; demand is deterministic and uniform, no shortage or quantity discount allowed,
and holding cost is linear.

Figure 2.2: Classic Joint Replenishment Problem (JRP) Problem

However, Arkin et al. showed that the JRP is NP -hard (Arkin et al., 1989).
Khouja et al. provided a comprehensive literature review of the Joint Replenishment
Problem between 1989 and 2005 (Khouja and Goyal, 2008). For the classical JRP,
many heuristics have been proposed: Silver’s algorithm (Silver, 1976) was improved
by Goyal and Belton (Goyal and Belton, 1979), and later, by Kapsi et al. (Kaspi
and Rosenblatt, 1991). Jackson et al. considered policies with fixed reorder intervals
and restricted policies to PoT policies (Jackson et al., 1985). They proposed a similar
sorting algorithm to the one Roundy proposed for the OWMR, and achieved the same
94%-effectiveness.
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2.3 Decentralized Logistic Systems

Although centralized models obviously minimize total system costs, they may not be
implementable. Thus, several recent papers have focused on decentralized logistics
systems. Chen et al. considered pricing and replenishment strategies simultaneously
in a system of one supplier and multiple retailers, showed that decentralization may
lead to supply chain inefficiency (Chen et al., 2001b), and developed approaches for
coordinating the supply chain in this setting (Chen et al., 2001a). Abdul-Jalbar et
al. considered the OWMR problem in both centralized and decentralized settings
(Abdul-Jalbar et al., 2003). In their retailer-driven decentralized model, they truncated
the EOQ order intervals to rational numbers for retailers and applied the algorithm
of Wagelmans et al. (Wagelmans et al., 1992) to find the replenishment plan for
suppliers (Abdul-Jalbar et al., 2003). Chen and Chen analyzed a multi-item two-
echelon supply chain with deterministic demand (Chen and Chen, 2005). However
in their decentralized system, orders for different items are separately placed, and
hence no joint replenishment or collaboration is achieved (Chen and Chen, 2005).
Baboli et al. considered both centralized and decentralized policies for a single-supplier
single-retailer model with transportation cost (Baboli et al., 2008). They proposed
an algorithm to find the optimal centralized solution, and a cost-sharing mechanism
through a quantity discount for the decentralized model (Baboli et al., 2008). Chu
and Leon presented a decentralized OWMR model, where coordination is achieved
under negotiation (Chu and Leon, 2008). All of these papers considered decentralized
performance for a single supplier model within a single class of policies; in contrast,
in our decentralized models, we evaluate the performance of decentralized policies
for multi-supplier and multi-retailer settings, and specifically develop, analyze, and
optimize three stationary policies with guaranteed effectiveness.

2.4 Logistic Collaboration and General Transporta-

tion Cost Models

The bulk of papers discussed above consider simple transportation cost structures –
either linear or affine in the quantity being shipped – and no transportation collabo-
ration. In fact, truck sharing for collaboration has been widely studied in literature.
Burns et al. analytically compared the tradeoff between direct shipping and truck
sharing strategies (Burns et al., 1985). Daganzo explored the operational benefits of
freight consolidation through a consolidation center (Daganzo, 1988b). Daganzo also
compared systems adopting a truck sharing strategy of several delivery stops with sys-
tems featuring an intermediate warehouse center, and provided conditions under which
the latter system outperforms the former (Daganzo, 1988a).
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Logistic systems with more realistic, often nonlinear costs and characteristics of
transportation, such as per truck transportation cost and alternative modes, have
also been considered in the literature. Aucamp considered a step-wise transporta-
tion cost function in an EOQ setting and provided a closed-form solution (Aucamp,
1982). Later, Chan et al. considered a finite horizon OWMR problem with quantity
discount for transportation cost (Chan et al., 2002). They showed that there exists a
zero-inventory-ordering (ZIO) policy with no more than 4

3
of the optimal cost. They

also proposed two heuristics to find an effective ZIO policy (Chan et al., 2002). Jin and
Muriel considered a OWMR problem with truckload cost (Jin and Muriel, 2009). They
proposed a Lagrangian decomposition approach to solve the finite horizon OWMR. For
the continuous OWMR model, Gallego and Simchi-Levi evaluated the effectiveness of
a direct shipping strategy for OWMR (Gallego and Simchi-Levi, 1990). Rieksts and
Ventura proposed models with two modes of transportation: truckload (TL) and less
than truckload (LTL), with corresponding cost structures. They considered simple
model with one supplier and one retailer in both finite and infinite horizon setting, as
well as a more complicated OWMR system. They provided algorithms to obtain the
optimal solution as well as a heuristic PoT policy (Rieksts and Ventura, 2008). Chen
derived optimal policies for multi-stage serial and assembly systems where materials
flow in fixed batches, like a full truckload (Chen, 2000).

While these papers have elements of either shared transportation or complex logis-
tics cost structures, as far as we know Chapter 4 in this thesis is the first to incorpo-
rate both per truck transportation cost along with logistics collaboration in a multiple
supplier multiple retailer setting, and characterize the cost of decentralization in this
setting.

2.5 Stochastic Multi-Echelon Collaboration

All the work we reviewed above focused mainly on deterministic models, so that in-
ventory position can be relatively easy to control beforehand, because demand rate is
fixed and known. But when we come to stochastic version of the problem, much fewer
results has been obtained.

2.5.1 Classic Stochastic Inventory Models

Several classes of policies have been widely studied in literature, and two main streams
of policies exist, depending on whether inventory is reviewed periodically or continu-
ously.

The (r,Q) policy is a widely used continuous review policy: when inventory position
drops to a reorder point r, an order of size Q is placed. When lead time is fixed and
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unmet demand is back-ordered, the (r,Q) policy has been shown to be optimal Snyder
and Shen (2011). Much research has been devoted to calculating optimal (r,Q) policies
efficiently when unmet demand is back-ordered Federgruen and Zheng (1992), Axsäter
(2000), De Bodt and Graves (1985). Our decentralized retailer policy is an aggregate
version of an (r,Q) policy, in which total demand for all products is monitored, and a
total of Q units (potentially of different products) are ordered.

The (s, S) policy is commonly used for periodic review systems with non-zero fixed
ordering cost. The (s, S) policy is very similar to (r,Q), except that each time the
order quantity may be different, as the inventory position is always raised to the same
level S.The optimality of (s, S) policy in a system with infinite horizon and with fixed
ordering cost was shown inZheng (1991). A variety of researchers have developed
efficient algorithms to find the optimal (s, S) policy Federgruen and Zipkin (1984),
Zheng and Federgruen (1991). In our decentralized supplier policy, suppliers are facing
several streams of demand with Erlang interarrival times and multinomial demand
quantity. We develop, analyze, and optimize a continuous review (s, S)-type policy,

A key issue in this stochastic decision relates to the policy implemented by suppliers
or the warehouse when there is insufficient inventory to meet downstream orders from
retailers. The unmet demand can either be backordered or lost. However in contrast to
backorder models, there is considerably less research on lost sales models in general.One
reason for this is that lost sales models are more difficult to model explicitly, and thus
more complicated to optimize Hadley and Whitin (1963). Although many researchers
have simplified the system by allowing only one outstanding order and thus significantly
reducing the complexity, the form of optimal solution to the general problem is still
unknown Archibald (1981). A comprehensive review of lost sales models can be found
in Bijvank and Vis (2011).

2.5.2 The Stochastic One Warehouse Multi-retailer Problem

The One Warehouse Multi-retailer (OWMR) Problem was first studied by Roundy
Roundy (1985). This two-echelon system with one upsteam warehouse supplying sev-
eral downstream retailers is NP-hard, even in the simple deterministic setting without
backorder Arkin et al. (1989). When demand is stochastic, the best known exact al-
gorithm is the projection algorithm, which iterates over all possible values of S0, the
warehouse base-stock level Axsäter (1990). However, total cost is nonconvex and each
round of cost evaluation is computationally expensive. Several heuristics have been
proposed for OWMR problem. Özer and Xiong decomposed the system into several
serial systems, solved each decomposed problem individually, and summed up to get a
solution Özer and Xiong (2008). Rong proposed a similar decomposition-aggregation
heuristic for distributon systesm Rong et al. (2011). To the best of our knowledge, all
existing methods are either computationally expensive or heuristic. In contrast, the
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algorithm we propose later in this paper can solve for aggregate (s, S) policy accurately
and effectively, while only requiring linear time cost evaluations.

2.5.3 The Stochastic Multi-supplier Multi-retailer System

Very little research has been conducted in a stochastic setting involving coordination
among multiple suppliers and multiple retailers. Hong et al. considered a vender-
managed inventory system where unmet demand is lost and show that under certain
scenarios, such a system performs better than systems that allow back-orders Hong
et al. (2016). Taleizadeh et al. considered a system of multiple suppliers and multiple
retailers with uniform demand. To determine optimal reorder point and safety stock,
they proposed a harmony search algorithm to solve the corresponding nonlinear integer
program Taleizadeh et al. (2011).

In contrast, in Chapter 5 we consider a setting with a single warehouse, multiple
suppliers, and multiple retailers, where there is no centralized control. This models
the decentralized collaboration we have seen achieved via MACCs. Retailers order
different products from the MACC in a single order using an aggregate (Q,S) policy,
i.e., inventory position is raised to S whenever the total demand at a retailer reaches
Q since its last replenishment. Suppliers replenish inventory at the warehouse in order
to satisfy orders from all retailers.
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Chapter 3

The Uncapacitated Model

3.1 The Centralized One Warehouse Multi-Supplier

Multi-Retailer Problem

For a stylized model of the collaboration between multiple suppliers and retailers when
all of the parties are controlled in a centralized fashion, we initially extend the classical
OWMR model to a multi-supplier setting (this can alternatively be viewed as a multi-
product setting, since we assume that each supplier provides a unique product). We
consider centralized control of orders and transportation, so each supplier can benefit
from combining deliveries to the warehouse that are ultimately intended for different
retailers in order to save on transportation, and retailers can save costs by ordering
products from different suppliers simultaneously. In the following, we first extend
the integer ratio policy of (Roundy, 1985) to our setting, and we provide an efficient
algorithm to solve the relaxed version of the integer-ratio problem, show that this is
a lower bound on the cost of an arbitrary policy, and use this to find a 94% effective
Power-of-Two policy. Where possible, we follow the development and notation of
(Roundy, 1985), extending the analysis to our multiple supplier/multi-item case.

Although Roundy and his co-authors also considered the multi-item case (Muck-
stadt and Roundy, 1987), they restrict their approach to nested and stationary policies,
which as they show can be arbitrarily bad.

3.1.1 The Model

In the One Warehouse Multi-Retailer Multi-Supplier (OWMRMS) problem, we con-
sider a two-echelon supply chain with n suppliers and m retailers sharing a common
warehouse. The warehouse serves as both outbound storage for suppliers and a distri-
bution center for the retailers. Each supplier manufactures a unique product (so we
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can refer to products and suppliers interchangeably in what follows) and supplies that
product to all of the retailers. Each retailer faces constant (possibly zero) consumer
demand for each product, and this demand must be met without backlogging. A fixed
cost is incurred whenever a supplier replenishes its inventory at the warehouse, or a
retailer places an order from the warehouse. Linear inventory holding costs are charged
both at the warehouse and at retailers. The holding costs, fixed costs, and demand
rates are constant over time and can be different at each facility. We detail our notation
below, where for ease of exposition we use i as the index associated with suppliers and
j as the index associated with retailers:

• S = {1, · · · , n}: the set of suppliers

• R = {1, · · · ,m}: the set of retailers

• dij: demand for product from supplier i at retailer j

• ksi : fixed cost for delivery from supplier i to the warehouse

• krj : fixed cost for delivery from the warehouse to retailer j

• hi: holding cost rate of the product of supplier i at the warehouse

• hij: holding cost rate of the product from supplier i at retailer j

• h′ij = hij − hi: echelon holding cost rate of product from supplier i at retailer j;
We assume that hi ≤ hij, so that h′ij ≥ 0.

We call the problem of minimizing the long-run average cost under centralized control
in the One Warehouse Multi-Retailer Multi-Supplier (OWMRMS) problem, while sat-
isfying all demand, Problem (P). Unfortunately, this problem is NP −hard even with
only one supplier (Arkin et al., 1989). As the optimal policy can be extremely compli-
cated, with non-stationary order quantities and order intervals, we focus on quantifying
the effectiveness of heuristics. Note that in this deterministic model, replenishments
are made only when inventory drops to zero (a zero-inventory-ordering, or ZIO policy);
otherwise, we can postpone the replenishment or reduce earlier shipping quantity and
save inventory cost.

To develop a lower bound on the optimal long run average cost of Problem (P), we
characterize an heuristic policy for the problem, find a lower bound on that heuristic,
and then show that this lower bound is a lower bound on any feasible solution to the
problem.

Among all possible feasible policies, we first consider an easy to implement policy,
the integer ratio policy, which is a special case of a periodic policy. A periodic policy
is one in which each supplier and retailer have a constant order interval, and all order
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intervals have a common multiple. We represent the order intervals for suppliers as
Ts = (T s1 , T

s
2 , · · · , T sn), where T si is the order interval for supplier i. Similarly, Tr =

(T r1 , T
r
2 , · · · , T rm) captures order intervals for retailers.

An integer ratio policy is a periodic policy where ∀i ∈ S and ∀j ∈ R, T si /T rj ∈W,
where W is the set of all positive integers and their reciprocals.

We introduce the following problem for OWMRMS under an integer ratio policy:

(PI) min CI(T
s,Tr) =

∑
i∈S

ksi
T si

+
∑
j∈R

krj
T rj

+
1

2

∑
i∈S,j∈R

max (T si , T
r
j )dijh

i

+
1

2

∑
i∈S,j∈R

T rj dijh
′
ij

s.t. T si , T
r
j > 0,∀i ∈ S, j ∈ R

T si /T
r
j ∈W,∀i ∈ S, j ∈ R (3.1)

This cost function CI(T
s,Tr) is similar to the function Roundy developed for the

single supplier OMWR. Roundy showed that for the single supplier case, CI(T
s
1 ,T

r)
is the exact total cost for the class of integer ratio policies, and the optimal cost of
a relaxed problem (defined later), CIR(T s∗1 ,Tr∗), is a lower bound on the long run
cost of any policy (Roundy, 1985). We first extend these results to our problem with
multiple suppliers. We show the cost function is still exact for integer ratio policies,
and the optimal solution to its relaxed problem (PIR), where integer ratio constraints
(3.1) are relaxed in (PI), is a lower bound for any arbitrary policy.

In the cost function CI(T
s,Tr), the first two terms are the fixed costs, and the

third and fourth terms are the echelon inventory holding costs at the warehouse and
retailers. In particular, as in Roundy’s paper (Roundy, 1985), we consider two cases.
If retailer j orders more frequently than the warehouse does for product from supplier
i, T si > T rj , the echelon inventory at the warehouse follows a standard “sawtooth”
pattern with order interval of T si , and the inventory at the retailer has interval T rj .
If the retailer orders no more frequently than the warehouse does for product from
supplier i, T si ≤ T rj , then we need only consider inventory cost incurred at the retailer.

Thus, CI(T
s,Tr) is the exact total cost for the OWMRMS when an integer ratio

policy is applied, so (PI) exactly models integer ratio policies. Later we prove, in
Section 3.1.6, that the optimal solution to the integer ratio relaxation of (PI), which
we denote (PIR) and define in Section 3.1.2, is a lower bound on any feasible policy
for Problem (P).

To simplify notation, it is traditional for this class of problems to substitute gij =
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1
2
dijh

′
ij and gij = 1

2
dijh

i. Making this substitution into Problem (PI), we get:

(PI′) min CI′(T
s,Tr) =

∑
i∈S

ksi
T si

+
∑
j∈R

krj
T rj

+
∑

i∈S,j∈R

max (T si , T
r
j ) · gij +

∑
i∈S,j∈R

T rj · gij

s.t. T si , T
r
j > 0,∀i ∈ S, j ∈ R

T si /T
r
j ∈W, ∀i ∈ S, j ∈ R

3.1.2 Relaxation of the Problem

We can relax the integer ratio constraints in Problem (PI′) to get

(PIR) min CIR(Ts,Tr) =
∑
i∈S

ksi
T si

+
∑
j∈R

krj
T rj

+
∑

i∈S,j∈R

max (T si , T
r
j ) · gij +

∑
i∈S,j∈R

T rj · gij

s.t. T si , T
r
j > 0,∀i ∈ S, j ∈ R

Observe that the objective function of this problem remains convex.
Given any solution (Ts, Tr) to (PIR), following Roundy (Roundy, 1985), we can

divide the retailers into sets as follows, where each retailer will be in multiple sets,
depending on the number of products sold at that retailer:

Li = {j ∈ R : T rj < T si }, Ei = {j ∈ R : T rj = T si }, Gi = {j ∈ R : T rj > T si }.

Of course, if there is only one supplier, there are only three sets, and each retailer
is in only one of these sets – indeed, this observation is a critical part of Roundy’s
solution approach. However, in our case there are multiple suppliers, so that as we
observed above, for each distinct supplier i, Li, Gi, and Ei can be different. Thus, we
need to find an alternative approach to partition R ∪ S.

A natural approach is to group retailers and suppliers with the same order interval
together. We denote that partition P (U1), P (U2), · · · , P (Uk), where Ul is the order
interval. That is,

P (Ul) = {i ∈ S : T si = Ul} ∪ {j ∈ R : T rj = Ul}.

Without loss of generality, we order Ul such that U1 < U2 · · · < Uk. Therefore the
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corresponding optimal cost can be decomposed as follows:

CIR(Tsi ,T
r
j ) =

∑
i∈S

ksi
T si

+
∑
j∈R

krj
T rj

+
∑

i∈S,j∈R

max (T si , T
r
j ) · gij +

∑
i∈S,j∈R

T rj · gij

=
∑
i∈S

ksi
T s∗i

+
∑
j∈R

krj
T rj

+
∑

i∈S,j∈Li
or i∈S,j∈Ei

T si · gij +
∑

j∈R,i:j∈Gi

T rj · gij +
∑

i∈S,j∈R

T rj · gij

=
∑

l∈{1,···,k}

(K(Ul)

Ul
+H(Ul) · Ul

)
,

∑
l∈{1,···,k}

CUl
IRS(Tr,Ts),

where
K(Ul) =

∑
i∈P (Ul)

ksi +
∑

j∈P (Ul)

krj ,

and
H(Ul) =

∑
i∈P (Ul)
j∈Li

gij +
∑

i∈P (Ul)
j∈P (Ul)

gij +
∑

j∈P (Ul)
i:j∈Gi

gij +
∑
i∈S

j∈P (Ul)

gij.

K(Ul) and H(Ul) can be viewed as aggregate fixed ordering cost and holding cost for
P (Ul).

Given these definitions, (PIR) can decomposed into a series of convex subproblems,
one for each partition P (Ul):

(PIRl) min CUl
IRS(Tr,Ts) =

K(Ul)

Ul
+H(Ul) · Ul

s.t. Ul > 0,∀l

By the first order necessary condition, we obtain the optimal solution to (PIRl) as:

U∗l =

√
K(Ul)

H(Ul)
. (3.2)

Thus, given any partition of retailers and suppliers, we can calculate aggregate fixed
cost and holding cost in each group, and thus find optimal order intervals. Therefore our
problem (PIR) is equivalent to finding the optimal partition of R∪S. The conditions
for optimality are specified in the following theorem:
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Theorem 1. The following conditions are necessary and sufficient for (Ts∗,Tr∗) to
be the optimal order intervals in (PIR):
(C1) For the corresponding ordered partition P (U1), P (U2), · · · , P (Uk) of R∪ S, where

U1 < U2 < · · · < Uk, we have Ul =
√

K(Ul)
H(Ul)

, where K(Ul) and H(Ul) are the aggregate

fixed and holding cost of P (Ul).
(C2) ∀l,∀ subset P ⊂ P (U∗l ),√√√√√√

∑
i∈P

ksi +
∑
j∈P

krj∑
i∈S,j∈P

gij +
∑

i∈P,j∈Li
gij +

∑
j∈P,i:j∈Gi

gij +
∑

j∈P,j∈P
gij
≤ U∗l ≤

√√√√√√
∑
i∈P

ksi +
∑
j∈P

krj∑
i∈S,j∈P

gij +
∑

j∈P,j∈P
gij

.

The proof of Theorem 1 can be found in Appendix A.1. In Theorem 1, (C1)
guarantees first order conditions for each group, and (C2) ensures no deviation from
the partition could improve cost.

3.1.3 MSIRR Algorithm

From our previous analysis, we know that finding the optimal solution to (PIR) is
equivalent to finding an optimal partition of R∪S. Therefore our goal is to determine
the partition and the order intervals simultaneously while satisfying conditions (C1)
and (C2) in Theorem 1.

In this subsection, we introduce an algorithm which we call Multi-Supplier Integer
Ratio Relaxation (MSIRR) algorithm, and prove that the solution obtained by the
MSIRR algorithm satisfies (C1) and (C2) and is thus optimal to (PIR). The MSIRR
algorithm determines order intervals from the largest to the smallest iteratively. In
each iteration, some suppliers and retailers have already been assigned to some ordered
groups in previous iterations, and the remaining are unassigned. Existing groups are
ordered by order intervals of the group, where more recently formed groups have smaller
order interval. For those suppliers and retailers, we sequentially assume that each
supplier, each retailer, and each pair of one supplier and one retailer has the largest
order interval among all the unassigned candidates, and calculate the corresponding
order interval. We pick the largest such order interval as a candidate to enter the set of
assigned groups. If it is smaller than the order intervals of all existing groups (and in
particular, smaller than the most recently formed group), the corresponding supplier,
retailer, or pair forms a new group, otherwise it is assigned to the most recently formed
group, and we recalculate the order interval for the new group according to (3.2). If
the new order interval is larger then that of some other existing group, we combine the
groups again until (C1) is satisfied.
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In the following Algorithm, S̄ and R̄ are the sets of unassigned suppliers and retail-
ers, τ is the most recently formed group, and ListG is the list of all existing groups.
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Algorithm: MSIRR Algorithm

Initialize: τ ← ∅, listG ← ∅ , Tcur ←∞, R̄← R, S̄ ← S, Ts ← 0, Tr ← 0;
while R̄ ∪ S̄ 6= ∅ do

forall i ∈ S̄ do

T si ←
√

ksi∑
j∈R̄

gij
;

end
forall j ∈ R̄ do

T rj ←
√

krj∑
i∈S̄

gij+
∑
i∈S̄

gij
;

end
forall i ∈ S̄, j ∈ R̄ do

Tij ←
√

ksi+krj∑
i∈S̄

gij+
∑
i∈S̄

gij+
∑
k∈S̄

gkj+
∑
k∈R̄

gik−gij ;

end

i0 ← arg max
i∈S̄

T si , j0 ← arg max
j∈R̄

T sj , (î0, ĵ0)← arg max
i∈S̄,j∈R̄

Tij ;

if max(T si0 , T
r
j0
, Tî0 ĵ0 ) < Tcur then

Tcur ← max(T si0 , T
r
j0
, Tî0 ĵ0 ), append τ to the end of listG;

if T si0 = max(T si0 , T
r
j0
, Tî0 ĵ0 ) then

τ ← {i0}, S̄ ← S̄ \ {i0};
else if T si0 = max(T si0 , T

r
j0
, Tî0 ĵ0 ) then

τ ← {j0}, R̄← R̄ \ {j0};
else

τ ← {î0, ĵ0}, S̄ ← S̄ \ {î0}, R̄← R̄ \ {ĵ0};
end

else if max(T si0 , T
r
j0
, Tî0 ĵ0 ) = Tcur then

if T si0 = max(T si0 , T
r
j0
, Tî0 ĵ0 ) then

τ ← τ ∪ {i0}, S̄ ← S̄ \ {i0};
else if T si0 = max(T si0 , T

r
j0
, Tî0 ĵ0 ) then

τ ← τ ∪ {j0}, R̄← R̄ \ {j0};
else

τ ← τ ∪ {î0, ĵ0}, S̄ ← S̄ \ {î0}, R̄← R̄ \ {ĵ0};
end

else
if T si0 = max(T si0 , T

r
j0
, Tî0 ĵ0 ) then

τ ← τ ∪ {i0};
else if T rj0 = max(T si0 , T

r
j0
, Tî0 ĵ0 ) then

τ ← τ ∪ {j0};
else

τ ← τ ∪ {î0, ĵ0};
end
S̄ ← S̄ ∪ τ ∩ S, R̄← R̄ ∪ τ ∩R;
Kτ ←

∑
i∈τ∩S̄

ksi +
∑

j∈τ∩R̄
krj ;

Hτ ←
∑
i∈τ

j∈R̄\τ

gij +
∑
i∈τ
j∈τ

gij +
∑
j∈τ
i∈S̄\τ

gij +
∑
i∈S̄
j∈τ

gij ;

Tcur ←
√
Kτ
Hτ

;

forall i ∈ τ , j ∈ τ do
T si ← Tcur; T rj ← Tcur;

end
S̄ ← S̄ \ τ , R̄← R̄ \ τ ;

end

end
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In each iteration, it takes O(nm) operations to find i0, j0 and (î0, ĵ0). In each
iteration, either a new group is formed, or two existing groups are combined. Thus in
the entire algorithm, grouping happens at most n+m times, because combined groups
are never later partitioned, and this leads to an overall complexity of O(nm · (n+m)).

Lemma 1. This MSIRR algorithm finds the optimal solution to problem (PIR).

A proof of Lemma 1 can be found in Appendix A.2. If Ts∗ and Tr∗ denote the
optimal solution to (PIR) obtained from MSIRR algorithm, the corresponding average
cost is

CIR(Ts∗,Tr∗) =
∑

l∈{1,···,k}

2
√
K(U∗l ) ·H(U∗l ). (3.3)

where K(U∗l ) and H(U∗l ) are the aggregate fixed and holding cost in optimal partition
P (U∗l ), as defined above.

3.1.4 Second Order Cone Approach

As we analyze in previous Section 3.1.2, (PIR) is nonlinear but convex. In this section,
we propose a different approach to transform the problem into a conic program, which
can be solved directly by standard optimization software packages such as CPLEX,
Gurobi or Mosek.

By introducing auxiliary variables Tij, ti and tj ≥ 0 to represent nonlinear term in
the objective, we can reformulate (PIR) as:

(PIR2) min CSOC(Ts,Tr) =
∑
i∈S

ksi ti +
∑
j∈R

krj tj +
∑

i∈S,j∈R

Tijg
ij +

∑
i∈S,j∈R

T rj gij

s.t. Tij ≥ T si , ∀i ∈ S, j ∈ R (3.4)

Tij ≥ T rj ,∀i ∈ S, j ∈ R (3.5)

ti ≥
1

T si
,∀i ∈ S (3.6)

tj ≥
1

T rj
,∀j ∈ R (3.7)

T si , T
r
j , Tij, ti, tj ≥ 0,∀i ∈ S, j ∈ R

We notice in (PIR2), (3.4) and (3.5) guarantees Tij ≥ max(Ti, Tj). In a minimization
problem with all non-negative coefficients, (PIR2) is equivalent to (PIR).
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Next we transform the fractional constraint (3.6),

ti ≥
1

T si
, T si > 0⇔ tiT

s
i ≥ 1, T si ≥ 0

⇔ (ti + T si )2

4
≥ (ti − T si )2

4
+ 1, T si ≥ 0

⇔ ti + T si
2

≥
√

(ti − T si )2

4
+ 1, T si ≥ 0 (3.8)

(3.8) is a second order cone, and similarly (3.7) can be reformulated as

tj + T rj
2

≥
√

(tj − T rj )2

4
+ 1, T rj ≥ 0 (3.9)

Therefore, (PIR2) can be reformulated as:

(PSCOP) min CSOC(Ts,Tr) =
∑
i∈S

ksi ti +
∑
j∈R

krj tj +
∑

i∈S,j∈R

Tijg
ij +

∑
i∈S,j∈R

T rj gij

s.t. Tij ≥ T si ,∀i ∈ S, j ∈ R
Tij ≥ T rj ,∀i ∈ S, j ∈ R

ti + T si
2

≥
√

(ti − T si )2

4
+ 1,∀i ∈ S

tj + T rj
2

≥
√

(tj − T rj )2

4
+ 1,∀j ∈ R

T si , T
r
j , Tij, ti, tj ≥ 0,∀i ∈ S, j ∈ R

Notice that the objective of (PSCOP) is linear, and all constraints are either lnear
or quadratic, which fits into Second Order Cone Program (SCOP). Later in Section
3.6, we compare the efficiency of our MSIRR Algorithm and SCOP using CPLEX, and
show our algorithm is much faster than SCOP and can handle problems of larger scale.

3.1.5 The Power-of-Two Policy

In this section, we consider a special case of integer ratio policies, the Power-of-Two
(PoT) policy. Recall that a PoT policy is a periodic ordering policy such that T si ∈
{m ∈ N : 2m · T0}, where T0 is a base order interval. A PoT policy is implemented so
that two parties with the same order interval always order at the same time.

(PPOT) minCPOT (Ts,Tr) =
∑
i∈S

ksi
T si

+
∑
j∈R

krj
T rj

+
∑

i∈S,j∈R

max (T si , T
r
j )gij +

∑
i∈S,j∈R

T rj gij

s.t.T si , T
r
j ∈ {2k · T0, k ∈ N},∀i ∈ S, j ∈ R
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In the following we show that the PoT policy obtained from (Ts∗,Tr∗) is an easy-
to-implement policy with worst case ratio of 94%. In other words, the cost of the PoT
policy is at most 6% more than the optimal cost of (PIR).

We use (Ts∗,Tr∗), the optimal solution to (PIR), to construct a PoT solution as
follows:

T s∗i,P = min {2mT0 : 2mT0 ≥
T s∗i√

2
}.

That is,
T s∗i√

2
≤ T s∗i,P <

√
2T s∗i .

Recall that in the MSIRR algorithm, we greedily determine order intervals of sup-
pliers and retailers sequentially from largest to smallest. In each iteration, we either
create a new group or combine existing groups whenever condition (C2) of Theorem 1
is violated. Recall that we group suppliers and retailers with the same order interval
into a partition, so that some members of the set P (U∗l ) (the set of suppliers and re-
tailers with order interval U∗l ) may be combined after rounding, because different U∗l
values could be rounded to the same PoT interval. However, to facilitate our analysis,
we continue to consider them separately. Hence, the previous partition for R ∪ S still
applies, so that P (U∗l ) = P (UP∗

l ). Next, we bound the worst case performance for this
feasible PoT policy.

Theorem 2. CPOT (Ts∗P ,Tr∗P ) ≤ 1
2
(
√

2 +
√

2
2

)CIR(Ts∗,Tr∗). That is, the total cost

of the PoT policy we obtain from rounding (Ts∗,Tr∗) is no more than about 1.06 the
optimal centralized cost.

A proof of Theorem 2 can be found in Appendix A.3. In the computational anal-
ysis in Section 3.6, we show that when per truck transportation cost is moderate,
PoT rounding works well. In fact, an extremely large or extremely small per truck
transportation cost is required to drive the capacitated optimal solution far from the
uncapacitated solution, to come close to the worst case bound of 2.

3.1.6 The Lower Bound

For the OWMR system with one supplier, Roundy proved that the optimal integer
relaxation objective is a lower bound on the cost of an arbitrary policy (Roundy,
1985). In this subsection we extend the result to the multiple supplier case.

Theorem 3. CIR(Ts∗,Tr∗) is a lower bound on the average cost of any policy for
Problem (P).
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A proof of Theorem 3 is in Appendix A.4. This theorem implies that the Power-of-
Two policy finds a solution with a worst case performance ratio of 94% with respect
to any feasible policy. Note that this is significantly stronger than previous results in
literature that focus on nested and stationary policies, which can be arbitrarily bad.

3.2 Decentralized Zero-Inventory Ordering Policy

In the previous section, we assumed that the system was operated under centralized
control, so that shipments from different suppliers to the warehouse, and shipments
from the warehouse to retailers could be coordinated to minimize overall system costs.
In this section, we consider a decentralized model where suppliers and retailers make
their own decisions based on information locally available to them. As discussed in the
introduction, we are motivated by current practice, where (at least at the MACC with
which we worked), suppliers deliver products to the warehouse, paying transportation
costs, unloading costs, and holding costs until goods are shipped to retailers, and
retailers order from the warehouse, paying transportation costs.

Specifically, we assume that suppliers pay a fixed transportation cost per shipment
as well as holding cost at the warehouse, and must meet retailer demand. Similarly,
we assume that retailers must pay a fixed ordering cost for deliveries, as well as the
holding cost at their own stores, and must meet customer demand without backorder.

We also assume that retailers first optimize their own strategy, and then suppliers
must react to this strategy, in line with what we have observed in practice. In this
section, we analyze the optimal retailers’ strategy and propose a stationary fixed order
interval heuristic for the challenging-to-optimize suppliers’ problem, a stationary ZIO
policy.

We summarize the new notation for this section below. We use Γ to denote order
intervals under decentralized models.

• Γrj (Γr∗j ) : (optimal) order interval for retailer j in the decentralized model

• Γr∗ = (Γr∗1 ,Γ
r∗
2 , · · · ,Γr∗m): vector of optimal order intervals for all retailers in the

decentralized model

• Γsi (Γs∗i ) : (optimal) order interval for supplier i in the decentralized model

• Γs∗ = (Γs∗1 ,Γ
s∗
2 , · · · ,Γs∗n ): vector of optimal order intervals for all suppliers

• Iwij (t) : the inventory level at time t of product i at the warehouse that is ulti-
mately intended for retailer j

• Iij(t) : the inventory at time t of product i at retailer j
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• EIwij (t) = Iwij (t) + Iij(t) : echelon inventory of product i intended for retailer
j (that is, inventory at warehouse intended for retailer j plus the inventory at
retailer j)

3.2.1 Retailers’ Policy

Note that each retailer will have an optimal ZIO policy (indeed, this can be viewed
as an EOQ problem at the retailer). Each order will thus contain products from all
suppliers sufficient to cover demand during that cycle. Hence, as in the EOQ, the
optimal strategy is a fixed order interval strategy, and the problem for retailer j is:

(PDRj) minCr
j (Γ

r
j) =

krj
Γrj

+
∑
i∈S

1

2
dijhijΓ

r
j =

krj
Γrj

+
∑
i∈S

(gij + gij)Γ
r
j .

By the first order conditions, we obtain the optimal order interval for retailer j:

Γr∗j =

√√√√ krj∑
i∈S

(gij + gij)
.

The optimal decentralized cost per unit time for retailer j is therefore:

Cr
j (Γ

r∗
j ) = 2

√
krj

(∑
i∈S

(gij + gij)
)
.

Theorem 4. The optimal order interval for each retailer is longer in centralized model
than in the decentralized model. That is, Γr∗j ≤ T r∗j .

Compared with centralized model, it is easily seen that Γr∗j =
√

krj∑
i∈S

(gij+gij)
≤√

krj∑
i∈S

gij+
∑

i:j∈Li∪Ei
gij
≤ T r∗j . This follows because in the centralized model, the ship-

ping decision is made based on the marginal additional holding cost at the retailer,
whereas in the decentralized model the shipping decision accounts for the fact that all
of the holding cost is paid by the retailer.

3.2.2 The Zero-Inventory-Ordering Supplier Policy

Each time a supplier makes a delivery to the warehouse, it needs to ensure that there
is enough inventory to cover demands from retailers until the next delivery. However,
since orders may not line up, some retailers may order during a particular supplier
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interval to cover demand during the next supplier order interval, so that the demand
from a retailer in a particular supplier interval may exceed the demand that the retailer
faces during this interval. Thus, the optimal supply policy may be complex and non-
stationary, even if the retailer ordering pattern is known and stationary, and we are
motivated to consider heuristics for supplier policy.

Recall that although aggregate demand from retailers to a supplier is discrete and
likely time variant (since retailers are heterogeneous), it is deterministic. Thus, each
time a supplier makes a shipment to the warehouse, it can calculate precisely the
amount that will be demanded by retailers until the supplier makes its next shipment.
This will result in a ZIO policy at the warehouse.

Specifically, for supplier i, given any order interval Γsi , the replenishment quantity
at the start of that interval can be set equal to the total amount of retailer orders for
that product during the interval, resulting in a ZIO policy. To calculate the expected
cost for each supplier, as before we decompose inventory at the warehouse by supplier
and intended retailer, and determine the holding cost associated with each retailer and
product.

Inventory Cost at the Warehouse

We first characterize inventory cost at the warehouse for three cases. We introduce
more notation in this section for convenience.

• He
ij(Γ

s
i ,Γ

r
j): the average holding cost per unit time at the warehouse for product

i ultimately intended for retailer j if Γsi = Γrj

• Hg
ij(Γ

s
i ,Γ

r
j): the average holding cost if Γsi < Γrj

• H l
ij(Γ

s
i ,Γ

r
j) be the average holding cost if Γsi > Γrj

• Ĥg
ij(Γ

s
i ,Γ

r
j): an upper bound on Hg

ij(Γ
s
i ,Γ

r
j)

• Ĥ l
ij(Γ

s
i ,Γ

r
j): an upper bounds on H l

ij(Γ
s
i ,Γ

r
j)

• bij : integer part of
Γsi
Γr∗j

• aij : fractional part of
Γsi
Γr∗j

, if aij is rational, we further let aij =
pij
qij

where integers

pij and qij are coprime.

• b̃ij, ãij: integer part and fractional part of
Γr∗j
Γsi

, and we define ãij =
p̃ij
q̃ij

corre-

spondingly if ãij rational.
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The holding cost associated with Iwij depends on the relationship between Γsi and
Γr∗j . We consider the three possible cases below:

1. Γsi = Γr∗j :
We assume that for each supplier and each retailer, the first order occurs at the
start of the horizon. Thus Γsi = Γr∗j implies that retailer j and supplier i always
order simultaneously, so there is no inventory held at the warehouse for retailer
j. That is,

He
ij(Γ

s
i ,Γ

r∗
j ) = 0.

2. Γsi > Γr∗j :
As we see from Figure 3.1, within each order interval, supplier i faces bij or bij +1
orders from retailer j.

Figure 3.1: Γsi > Γr∗j , inventory from supplier i to retailer j

This observation allows us to exactly characterize H l
ij(Γ

s
i ,Γ

r∗
j ), the holding cost

of Iwij (t) if Γsi < Γr∗j .

Theorem 5.

H l
ij(Γ

s
i ,Γ

r∗
j ) =

{
(Γsi −

Γr∗j
qij

)gij, if
Γsi
Γr∗j
∈ Q

gijΓsi , otherwise
.

A proof of Theorem 5 is in Appendix A.6. From Theorem 5, it is straightforward
to see that

Ĥijl(Γsi ,Γ
r∗
j ) , Γsig

ij (3.10)
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is an upper bound on H l
ij(Γ

s
i ,Γ

r∗
j ).

3. Γsi < Γr∗j :
Supplier i only transfers inventory for retailer j for cycles when retailer j places
an order, as illustrated in Figure 3.2.

Figure 3.2: Γsi < Γr∗j , inventory from supplier i to retailer j

To evaluate Hg
ij(Γ

s
i ,Γ

r∗
j ), we first introduce a technical lemma:

Lemma 2. Let ∆ij(k) be the time between kth order of retailer j, and supplier
i’s last replenishment before retailer j’s order. If supplier i replenishes inventory
simultaneously with kth order from retailer j, we let ∆ij(k) = 0. Then the long
run average of ∆ij(k) is

1

N

N∑
k=1

∆ij(k)
N→∞−−−→

{
Γsi (q̃ij−1)

2q̃ij
if

Γr∗j
Γi
∈ Q

Γsi
2
, otherwise

.

Similarly, we let ∆ij(k) be the time between kth order of retailer j, and supplier
i’s next order after retailer j’s order. We assume ∆ij(k) = Γsi if supplier i and
retailer j replenishes inventory at the same time. Then the long run average of
∆ij(k) is

1

N

N∑
k=1

∆ij(k)
N→∞−−−→

{
Γsi (q̃ij+1)

2q̃ij
if

Γr∗j
Γi
∈ Q

Γsi
2
, otherwise

.

A proof of Lemma 2 is in Appendix A.7. We use this lemma to prove the following
results:
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Theorem 6. If Γsi < Γrj , the average holding cost per unit time for the warehouse
inventory of product i intended for retailer j is:

Hg
ij(Γ

s
i ,Γ

r∗
j ) =

{
q̃ij−1

q̃ij
gijΓsi , if

Γr∗j
Γsi
∈ Q

gijΓsi , otherwise
. (3.11)

A proof of Theorem 6 is in Appendix A.8. A natural lower bound is observed
from (3.11),

Ĥg
ij(Γ

s
i ,Γ

r∗
j ) = gijΓsi .

Combining these cases results in an upper bound on the cost faced by supplier i
under a ZIO policy. Thus the problem for supplier i is:

(PDSzio
i ) minCzio

i (Γsi ) =
ksi
Γsi

+
∑
j∈Li

Ĥ l
ij(Γ

s
i ,Γ

r∗
j ) +

∑
j∈Ei

He
ij(Γ

s
i ,Γ

r∗
j ) +

∑
j∈Gi

Ĥg
ij(Γ

s
i ,Γ

r∗
j )

=
ksi
Γsi

+
∑

j∈Li∪Gi

gijΓsi .

Optimal order intervals for suppliers

To solve (PDSzio
i ), we separate the feasible region into two parts, depending on whether

or not the supplier i has the same order interval as any retailer. Though (PDSzio
i ) is

nonconvex, we show the following optimal solution Γs∗i,zio can be found in a finite set.

Theorem 7. The optimal order interval for supplier i in decentralized ZIO policy
∈ {Γr∗1 ,Γr∗2 , · · · ,Γr∗m , Γ̃s∗i }.

A proof of Theorem 7 can be found in Appendix A.9. Hence we can solve (PDSzio
i )

by comparing all of Czio
i (Γr∗j ) and Czio

i (Γ̃s∗i ), and selecting the interval generating the

smallest cost. There are at most m different values for Γr∗j and Czio
i (Γ̃s∗i ) can be

obtained by (A.13). Thus (PDSzio
i ) can be solved efficiently.

3.3 Decentralized Order-up-to Policy

In contrast to the ZIO policy in the previous section, here we analyze the optimal
stationary order-up-to policy for suppliers. Further, we characterize a bound on the
worst-case ratio of the cost of the order-up-to policy to the optimal centralized policy
of 2.5.
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Specifically, we consider a setting in which each supplier utilizes an order-up-to
policy with a fixed order interval. Since orders from different retailers are indepen-
dent, in each shipment to the warehouse, supplier i decides quantities to satisfy orders
from different retailers separately. The inventory cost is thus naturally decomposed
according to which retailer the inventory will be delivered to.

In this policy, each time when supplier i replenishes inventory at warehouse, it
raises Iwij to the same retailer-dependent level. These order-up-to levels are determined
by the maximum number of orders each retailer may place in each cycle of supplier i.
For example, if Γsi < Γr∗j , supplier i always raises Iwij to Γr∗j dij. This is because in each
order cycle of supplier i, retailer j will place at most one order. We characterize this
stationary order-up-to policy below.

3.3.1 Inventory Cost at the Warehouse

To distinguish notation from analysis in Section 3.2.2, we introduce the following no-
tation for order-up-to policy:

• He
ij(Γ

s
i ,Γ

r
j): the average holding cost per unit time at the warehouse for product

i ultimately intended for retailer j if Γsi = Γrj

• Hg
ij(Γ

s
i ,Γ

r
j): the average holding cost if Γsi < Γrj

• H l
ij(Γ

s
i ,Γ

r
j) be the average holding cost if Γsi > Γrj

• Ĥ
g

ij(Γ
s
i ,Γ

r
j): an upper bound on Hg

ij(Γ
s
i ,Γ

r
j)

• Ĥ
l

ij(Γ
s
i ,Γ

r
j): an upper bounds on H l

ij(Γ
s
i ,Γ

r
j)

We characterize the holding cost in 3 different scenarios:

1. Γsi = Γr∗j :
Similar to Section 3.2.2,

He
ij(Γ

s
i ,Γ

r∗
j ) = He

ij(Γ
s
i ,Γ

r∗
j ) = 0.

2. Γsi < Γr∗j :
In this case, supplier i always raises inventory level for retailer j to Γr∗j dij, which
is the quantity retailer j orders each time. Hence, in those order cycles where
retailer j does not place any order, the warehouse holds full inventory for retailer
j.
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Figure 3.3: Γsi < Γr∗j , inventory from supplier i to retailer j

Theorem 8. If Γsi < Γrj , the average holding cost per unit time for the inventory
of product i intended for retailer j is:

Hg
ij(Γ

s
i ,Γ

r∗
j ) =

{
(2Γr∗j −

q̃ij+1

q̃ij
Γsi )g

ij, if
Γr∗j
Γsi
∈ Q

(2Γr∗j − Γsi )g
ij, otherwise

.

A proof of Theorem 8 is in Appendix A.10. Observe from Theorem 8 that
Ĥ
g

ij(Γ
s
i ,Γ

r∗
j ) = (2Γr∗j − Γsi )g

ij is an upper bound of Hg
ij(Γ

s
i ,Γ

r∗
j ).

3. Γsi > Γr∗j :
In this case, although retailer j has a constant order interval, during a replenish-
ment cycle of supplier i, retailer j may place different numbers of orders. Recall
that

Γsi
Γr∗j

= bij + aij, where bij is the integer part and aij is the fractional part.

Within each supplier order interval, supplier i faces bij orders from retailer j if
aij = 0, otherwise faces either bij or bij + 1 orders from retailer j. Therefore for
supplier i, the minimum order-up-to level that can satisfy all demand is

(bij + 1aij 6=0)dijΓ
r∗
j .

In appendix, we use the notion of echelon inventory to evaluate H l
ij(Γ

s
i ,Γ

r∗
j ).

Installation inventory at warehouse can be obtained from the difference of echelon
inventory at the warehouse and echelon inventory at retailer j, as the latter two
are easier to analyze. We use this notion to show the following result:

Lemma 3. Ĥ
l

ij(Γ
s
i ,Γ

r∗
j ) = (Γsi + 2Γr∗j )gij is an upper bound on H l

ij(Γ
s
i ,Γ

r∗
j ).

31



Figure 3.4: Γsi > Γr∗j , inventory from supplier i to retailer j

A proof of Lemma 3 is in Appendix A.11.

Based on these three cases, we have the following upper bound on the the cost faced
by supplier i when this order-up-to policy is employed:

(PDSout
i ) minCout

i (Γsi ) =
ksi
Γsi

+
∑
j∈Li

Ĥ
l

ij(Γ
s
i ,Γ

r∗
j ) +

∑
j∈Ei

He
ij(Γ

s
i ,Γ

r∗
j ) +

∑
j∈Gi

Ĥ
g

ij(Γ
s
i ,Γ

r∗
j )

=
ksi
Γsi

+
∑
j∈Li

gijΓsi −
∑
j∈Gi

gijΓsi + 2
∑

j∈Li∪Gi

gijΓr∗j .

3.3.2 Optimal Order Intervals for Suppliers

For the convenience of analysis, we order retailers such that Γr∗1 ≤ Γr∗2 ≤ · · · ≤ Γr∗m .
Γr∗ divides (0,∞) into ≤ m + 1 open intervals: (0,Γr∗1 ), (Γr∗1 ,Γ

r∗
2 ), · · · , (Γr∗m ,∞). In

each open interval, Cout
i (Γsi ) is piecewise convex and continuous in Γsi everywhere except

points Γr∗j , as illustrated in Figure 3.5.
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Figure 3.5: Decentralized cost for supplier i
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To solve (PDSout
i ), we find the locally optimal solution, which we denote Γs∗i,k, in

each interval, and then search for the global optimal order interval for supplier i.

In each open interval (Γr∗k ,Γ
r∗
k+1), both

∑
j∈Li∪Gi

2gijΓr∗j =
k∑
j=1

2gijΓr∗j and
∑
j∈Li

gij −∑
j∈Gi

gij are constant. Thus finding locally optimal solution to (PDSout
i ) in (Γr∗k ,Γ

r∗
k+1)

is equivalent to solving

(PDSout
i,k ) minCout

i (Γsi ) =
ksi
Γsi

+

(∑
j∈Li

gij −
∑
j∈Gi

gij
)

Γsi

s.t. Γsi ∈ (Γr∗k ,Γ
r∗
k+1)

We consider two cases depending on Γsi :

1. If
∑
j∈Li

gij −
∑
j∈Gi

gij > 0:

We take first order condition and obtain:

Γ̂s∗i,k =

√√√√ ksi∑
j∈Li

gij −
∑
j∈Gi

gij
.

Hence the locally optimal order interval is:

Γs∗i,k =

{
Γ̂s∗i,k, if Γ̂s∗i,k ∈ (Γr∗k ,Γ

r∗
k+1)

does not exist, otherwise
.
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2. If
∑
j∈Li

gij −
∑
j∈Gi

gij ≤ 0:

Cout
i,k (Γsi ) is decreasing on (Γr∗k ,Γ

r∗
k+1), hence the locally optimal solution in the

open interval (Γr∗k ,Γ
r∗
k+1) does not exist either.

Next we show that for each open interval (Γr∗k ,Γ
r∗
k+1), if Γs∗i,k does not exist, Cout

i (Γsi )
in the interval is lower bounded by the minimum of the two endpoints, Cout

i (Γr∗k ) and
Cout
i (Γr∗k+1). Otherwise, we claim that there exists at most one index k such that

Γ̂s∗i,k ∈ (Γr∗k ,Γ
r∗
k+1), which we denote k′. Then as we state in the main paper:

Theorem 9. The optimal solution to minimizing Cout
i (Γsi ) is either one of Γr∗i or Γ̂s∗i,k′.

A proof of Theorem 9 is in Appendix A.12.
We proved in Theorem 4 that retailers order less frequently in centralized model

compared to decentralized model. Unfortunately, we have not found such results for
suppliers. As a result, each supplier need to search all m+ 1 candidates to determine
the optimal one.

Alhough this order-up-to policy may generate higher inventory cost, it is easy to
implement, and has a bounded worst case ratio of 2.5 (Theorem 12).

3.4 Semi-Decentralized Model with PoT Control

In Section 3.2, we proposed two retailer-driven decentralized policies, where both sup-
pliers and retailers have full flexibility in choosing reorder intervals.

In this section, we consider a semi-decentralized model where suppliers and retailers
still make their own plans, but under certain restriction. In particular, they are required
to use stationary PoT policies with given base cycle T0. That is, their order interval
must be belong to {2mT0 : m ∈ N}.

Below, we characterize supplier and retailer policies in this setting, and then bound
the ratio of the cost of this semi-decentralized policy to the centralized policy. We see
that this bound is almost as good as that of the ZIO policy. In Section 3.6, we show
that in practice, this policy performs better than both decentralized policies.

We use τ to denote order intervals under this semi-decentralized model with PoT
requirements.

• τ rj (τ r∗j ) : (optimal) order interval for retailer j in semi-decentralized model with
PoT restriction

• τr∗ = (τ r∗1 , τ r∗2 , · · · , τ r∗m ): vector of optimal order intervals for all retailers

• τ si (τ s∗i ) : (optimal) order interval for supplier i in semi-decentralized model with
PoT restriction
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• τs∗ = (τ s∗1 , τ
s∗
2 , · · · , τ s∗n ): vector of optimal order intervals for all suppliers

3.4.1 Retailers’ Policy

Under Power-of-Two restrictions, the subproblem for retailer j is:

(PDPRj) minCr
j,p(τ

r
j ) =

krj
τ rj

+
∑
i∈S

1

2
dijhijτ

r
j =

krj
τ rj

+
∑
i∈S

(gij + gij)τ
r
j

s.t. τ rj ∈ {2mT0 : m ∈ N}

For (PDPRj), we first solve the relaxed problem:

Γr∗j =

√√√√ krj∑
i∈S

(gij + gij)
.

Then apply Power-of-Two rounding:

τ r∗j = min
{

2mT0 : 2mT0 ≥
Γr∗j√

2

}
.

Theorem 10. Cr
j,p(τ

r∗
j ) ≤ 1

2
(
√

2 +
√

2
2

)Cr
j (Γ

r∗
j )

This follows from standard Power-of-Two rounding analysis. Under the Power-of-
Two policy, the cost for each retailer is no more than 1.06 Cr

j (Γ
r∗
j ), the decentralized

(full flexibility) optimal cost. That is, the PoT restriction increases retailer costs by at
most 6%.

3.4.2 Suppliers’ Policy

Under the Power-of-Two policy requirement, orders from retailers are more likely to
“line up.” To characterize the holding cost at the warehouse, we consider two cases:

1. τ si > τ r∗j :
Since τ si , τ r∗j ∈ {2mT0 : m ∈ N}, τ si is a multiple of τ r∗j . Hence the average
inventory cost of Iwij (t) is:

(τ si − τ r∗j )
1

2
dijh

i = (τ si − τ r∗j )gij.

2. τ si ≤ τ r∗j :
In this case, supplier i places an order each time retailer j orders, thus supplier
i does not need to store inventory at the warehouse for retailer j. That means
Iwij (t) = 0, and thus the corresponding inventory cost is also 0.
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Thus, the average inventory cost associated with Iwij (t) is

( max(τ si , τ
r∗
j )− τ rj ∗) · gij. (3.12)

The problem faced by the supplier is therefore:

(PDPSi) minCs
i,p(τ

s
i ) =

ksi
τ si

+
∑
j∈Li

gij(τ si − τ r∗j )

s.t. τ si ∈ {2mT0 : m ∈ N}

Optimal Supplier Order Interval

We consider the following relaxation problem of (PDPSi) where PoT constraints are
relaxed:

(PDPSRi) minCs
i,P (τ si ) =

ksi
τ si

+
∑
j∈Li

gij(τ si − τ r∗j )

s.t. τ si > 0

Cs
i,P (τ si ) is continuous in τ si and its gradient is:

dCs
i,P (τ si )

dτ si
=
−ksi
(τ si )2

+
∑

j:τ≥τr∗j

gij. (3.13)

(3.13) is increasing, which implies Cs
i,P (τ si ) is convex. Therefore, ∃τ̂ si such that the

gradient vanishes at τ̂ si , so τ̂ si is the optimal solution to (PDPSRi).
Next we round τ̂ si to the two nearest PoT solutions τ si and τ si . One of these must

be the optimal solution to (PDPRi). That is,

τ s∗i = argmin{Ci,P (τ si ), Ci,P (τ si )}, (3.14)

where

τ si = max
τ

{ksi
τ 2
≥

∑
j:τ≥τr∗j

gij, τ ∈ {2mT0 : m ∈ N}
}

τ si = min
τ

{ksi
τ 2
≤

∑
j:τ≥τr∗j

gij, τ ∈ {2mT0 : m ∈ N}
}
.
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3.5 Cost of Decentralization

In this section, we consider the worst case performance (with respect to optimal
centralized performance) of the two decentralized policies proposed in Section 3.2,
Section 3.3 and a semi-decentralized policy proposed in Section 3.4 using the bound
CIR(Ts∗,Tr∗) developed in Section 3.1.6 as a benchmark – in effect, we bound the
cost increase due to decentralization. The worst case performance is bounded in both
zero-inventory-ordering and order-up-to supplier policies.

3.5.1 The Cost of Decentralization Using the Decentralized
ZIO Policy

In our decentralized model, the total cost suppliers and retailers pay in the optimal
solution is:

Czio(Γ
s∗,Γr∗) =

∑
i∈S

Czio
i (Γs∗i ) +

∑
j∈R

Cr
j (Γ

r∗
j ). (3.15)

In this subsection, we analyze how well our decentralized model performs relative to
the optimal centralized policy. In Section 3.1.6, we saw that CIR(Ts∗,Tr∗) is a lower
bound on optimal centralized cost. Therefore, the performance of the decentralized
ZIO policy (and thus the optimal decentralized policy) is bounded by:

Czio(Γ
s∗
zio,Γ

r∗)

Optimal Centralized Cost
≤
Czio(Γ

s∗
zio,Γ

r∗)

CIR(Ts∗,Tr∗)
.

Building on this development, we bound the ratio of total decentralized cost under the
ZIO policy to optimal centralized cost:

Theorem 11. Czio(Γ
s∗
zio,Γ

r∗) ≤ 3
2
CIR(Ts∗,Tr∗). That is, the total cost of the ZIO

decentralized system is no more than 3
2

times the optimal cost in the centralized system.

A proof of Theorem 11 is provided in Appendix A.13.

3.5.2 The Cost of Decentralization Using the Decentralized
OUT Policy

Similarly, we use CIR(Ts∗, T r∗) to bound the performance of the decentralized OUT
policy analyzed in Section 3.3.

Theorem 12. Czio(Γ
s∗
out,Γ

r∗) ≤ 5
2
CIR(Ts∗,Tr∗). That is, the total cost of the

OUT decentralized system is no more than 5
2

times the optimal cost in the centralized
system.

A proof of Theorem 12 is in Appendix A.14.
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3.5.3 The Cost of Semi-Decentralization Using POT Policy

In this subsection, we show that the ratio of the cost of this semi-decentralized model
to the optimal centralized cost is bounded. First, we characterize a bound on the ratio
of Cs

i,p(τ
s∗
i ) to C

′
i(Γ̃

s∗
i ):

Theorem 13. Let Cs∗
i,p = Cs

i,P (τ s∗i ) be the optimal cost for Problem (PDPSi), and

recall that C
′
i(Γ̃

s∗
i ) = min

Γsi

(
ksi
Γsi

+
∑
j∈R

gijΓsi

)
. We have Cs∗

i,p ≤ (
√

2 +
√

2
2

) · C ′i(Γ̃s∗i ).

A proof of Theorem 13 is in Appendix A.15. We use this result to prove that:

Theorem 14. The total cost of semi-decentralized system is no more than 3
4
(
√

2 +
√

2
2

)CIR(Ts,Tr).

A proof of Theorem 14 is in Appendix A.16. Note that this bound is slightly worse
than the bound for the ZIO policy, although in computational testing, this algorithm
generally performs better.

3.6 Computational Study

We use a computational study to better understand the relative performance of our
centralized and decentralized polices in various settings. In particular, we explore the
following questions:

• How does changing the number of suppliers relative to number of retailers affect
the system performance?

• How do variations in costs affect performance of different policies?

• What is the impact of reducing warehouse cost?

• How do correlated costs affect centralization and decentralization?

Before we dig into all these questions, we first compare the efficiency of our MSIRR
Algorithm and SCOP approach in Section 3.6.1.

All computational study is run on a MacBook Pro with 2.7 GHz Intel Core i5
processor and 8 GB 1867 MHz DDR3 memory.
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3.6.1 MSIRR vs SCOP

In this subsection, we focus more on scale of the problem and speed of the approaches,
so we randomly generate all parameters h′ij, h

i, dij, k
s
i , k

r
j ∼ Unif(1, 2). We im-

plemented MSIRR in R 3.0.3 and use CPLEX 12.6 to solve SCOP. All results are
summarized in Table 3.1.

Table 3.1: Comparison of MSIRR and CPLEX

MSIRR CPLEX
n m Time (s) Cost Time (s) Cost

50 50 0.479 1329.69 5.83 1329.69
100 100 3.58 3595.23 22.66 3595.23
200 200 24.12 10903.95 336.39 10903.95
500 500 396.18 43028.00 — —
1000 1000 3612.00 118833.15 — —

We compare the two methods in following three aspects:

• Optimality:
From Table 3.1 we can see that, on relatively small scale problems, both MSIRR
and CPLEX obtains the optimal solution (the optimality of MSIRR is proved in
Lemma 1).

• Efficiency:
MSIRR runs about 10 times faster than CPLEX on those problems solved by
both.

• Problem Scale:
When we transform (PIR) to (PSCOP), variable number increases from n+m
to n ·m due to linearization. For our case with 500/1000 suppliers and retailers,
CPLEX cannot solve the corresponding SCOP on the platform. But our MSIRR
algorithm is able to handle large scale problem with complexity of O(mn(m+n)).

Now we show MSIRR is both faster and can handle problems of larger scales, so
throughout following computational study, we apply our MSIRR Algorithm to compute
CIR(Ts,Tr) as a benchmark for optimal centralized cost. Then we search for the
optimal ZIO, order-up-to, and Power-of-Two policies based on Theorem 7, Theorem 9,
and (3.14). Given these, we calculate ratios of (semi-) decentralized costs to centralized
cost. All parameters are randomly generated, and for each set of parameter generating
distributions, we generate 20 cases and record the average cost ratio as well as the
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largest (worst) cost ratio. We also calculate coefficient of variation (ratio of standard
deviation to mean) for each set of experiments, but it was very small (for most cases
< 5%), so for clarity of presentation we omitted it. We ran over 100, 000 cases with
different parameter settings, and we summarize our results below.

3.6.2 Number of Suppliers/Retailers

In this subsection, we analyze cost ratios for different policies while varying the number
of suppliers and retailers. All suppliers and retailers are assumed to be identical.

We tested a variety of distributions, and observed similar results given similarly
scaled parameters, so we report our results for parameters generated using uniform
distributions for illustration: h′ij ∼ Unif(0, 1), hi ∼ Unif(0, 1), dij ∼ Unif(1, 2),
ksi ∼ Unif(1, 2), krj ∼ Unif(1, 2). We initially let m = 8, n ∈ {1, 2, · · · , 50}, and
explored how the number of suppliers affects cost ratio. We generated 20 sets of
parameters for each m, and calculated the worst case ratio and average ratio for the
three decentralized policies. Next, we let n = 8,m ∈ {1, 2, · · · , 50} and reran the
experiments.

Figure 3.6: Decentralized to centralized ratio with differing supplier number n / retailer
number m

As can be observed in Figure 3.6, as the number of retailers or suppliers increases,
the order-up-to policy becomes increasingly bad, while ZIO and PoT policy performs
better. In general, when all costs are of the same order of magnitude, the PoT policy
performs best among the three decentralized policies, in both average and worst case
performance. This is because in the PoT policy, suppliers and retailers are better
coordinated by “lining up” their orders.
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3.6.3 Cost Variation

In this subsection, we explore how diversity in costs affects the performance of the
different policies.

Diversity in Fixed Cost

We use the same strategy to generate costs: h′ij ∼ Unif(0, 1), hi ∼ Unif(0, 1), dij ∼
Unif(1, 2), m = 8, n = 8. To analyze the impact of diversity in supplier fixed cost, we

keep krj ∼ Unif(1, 2) and differentiate suppliers by letting ksi ∼

{
Unif(0, 2− 2k

51
), if i ≤ 4

Unif(2k
51
, 2), if i > 4

,

where k ∈ {1, 2, · · · , 50}. We generate ki in this way to guarantee that changes in cost
ratio purely comes from diversity of ksi , but not the scale of ksi . Similarly, we run

experiments with krj ∼

{
Unif(0, 2− 2k

51
), if j ≤ 4

Unif(2k
51
, 2), if j > 4

, where k ∈ {1, 2, · · · , 50}.

Figure 3.7: Decentralized to centralized ratio with diversity of supplier/retailer fixed
costs

We observe in Figure 3.7 that if costs are of the same order of magnitude, decen-
tralization is most effective when krj are extremely diverse.

Scaling in Fixed Cost

We again use a similar strategy to generate cost parameters: h′ij ∼ Unif(0, 1), hi ∼
Unif(0, 1), dij ∼ Unif(1, 2), m = 8, n = 8. We keep krj ∼ Unif(1, 2) and differentiate

suppliers by letting ksi ∼

{
Unif(1, k), if i ≤ 4

Unif(1, 2), if i > 4
, where k ∈ {30, 60, · · · , 1500}. We
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generate 20 sets of parameters for each k, apply different policies and record the average
and worst case cost ratios. Similarly, we run experiments with ksi ∼ Unif(1, 2) and

retailers’ fixed cost krj ∼

{
Unif(1, k), if j ≤ 4

Unif(1, 2), if j > 4
, on same set of k.

Figure 3.8: Decentralized to centralized ratio with diversity of supplier/retailer fixed
cost scaling

Observe in Figure 3.8 that the semi-decentralized PoT policy is relatively stable
under fixed cost variations. The decentralized ZIO policy works well when there is very
large differentiation, whether among suppliers or retailers. The order-up-to policy also
performs well with differentiated supplier fixed costs, but not with diverse retailer fixed
costs. In general, this is true because more diverse suppliers or retailers are, the less
benefits result from centralization. On the other hand, since our decentralized policies
are all retailer-driven, diversification of suppliers does not affect decentralized policies
significantly. However, suppliers might pay higher holding cost under the order-up-to
policy when retailers are more diverse.

Variation in Holding Cost

We next explore how holding cost variations affect system performance. As before,
we generate costs as follows: dij ∼ Unif(1, 2), m = 8, n = 8, ksi ∼ Unif(1, 2),
krj ∼ Unif(1, 2). To explore the effect of holding cost at the warehouse, we let h′ij ∼
Unif(0, 1), hi ∼ Unif(0, k) where k ∈ {1, 2, · · · , 50}. Similarly, we let h′ij ∼ Unif(0, k),
hi ∼ Unif(0, 1) to analyze effect of echelon holding costs at retailers.
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Figure 3.9: Decentralized to centralized ratio with holding cost variation at the ware-
house/retailers

As illustrated in Figure 3.9, differentiation of echelon holding cost at warehouse
does not affect cost ratios significantly. This is because echelon holding cost for the
same product is the same across retailers, so we still benefit from centralization even
if echelon holding costs at the warehouse are diversified. However, if holding costs
at retailers are differentiated, retailers and suppliers are less likely to group in the
centralized model, and therefore the difference between decentralized and centralized
models decreases.

Diversified Retailers with Correlated Costs

In the previous experiments, we generated costs at different locations for different
products from independent distributions. In reality, holding costs for different products
at the same location are typically correlated. This is particularly relevant for the
grocery market, where holding costs depend on the location of the retailer. To generate
correlated holding cost, we first generate a base holding cost associated with each
retailer as ĥj ∼ Unif(0, 1), and i.i.d. ĥ′ij ∼ Unif(0, 1). Then we let h′ij = ρĥj + (1 −
ρ)ĥ′ij. It is easy to check that Cor(h′i1j, h

′
i2j

) = ρ.
Observe in Figure 3.10 that correlation of holding costs for products at the same

retailer has little effect on cost ratios, as long as holding costs at different retailers are
of same order of magnitude. Next, we fix ρ = 0.8 and explore how diversity among
retailers affects cost ratios. We let ĥj ∼ Unif(0, k) where k ∈ {1, 2, · · · , 50}, and let

h′ij = 0.8ĥj + 0.2ĥ′ij with ĥ′ij ∼ Unif(0, 1).
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Figure 3.10: Decentralized to centralized ratio with correlated holding cost at diversi-
fied retailers

The right half of Figure 3.10 also presents cost ratios with this differentiation among
retailers. The more differentiated holding costs among retailers are, the less we lose
due to decentralization.

3.6.4 Summary

Based on all of our experiments, centralization does not lead to dramatic benefits.
Indeed, our decentralized policies, especially the semi-decentralized and ZIO policies
work well, especially when holding costs at different retailers are well differentiated,
when holding costs at warehouse are relatively lower than at the retailers, or when
fixed costs at suppliers are diverse.
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Chapter 4

Per-truck Transportation Cost

In this chapter, we consider a generalized cost structure with per truck transportation
cost instead of fixed ordering cost for each retailer. This cost structure is also moti-
vated by the actual policy of ES3: they charge retailers per truck transportation cost
whenever retailers order at ES3’s warehouse. Because suppliers that serve a large num-
ber of retailers typically face large aggregate demand, they often ship by TL. Hence in
this paper, we do not worry about transportation cost for suppliers.

In Chapter 3, we built models for simple settings that we used to analyze consoli-
dation between multiple suppliers and retailers in a both centralized and decentralized
settings. In this chapter, we extend the cost structure to incorporate truck transporta-
tion. Similar to the way that ES3 operatess their warehouse centers, each retailer pays
a per truck transportation cost, which is independent of how much of the truck’s ca-
pacity is utilized. We modify our previous models to incorporate transportation cost,
and consider centralized control of orders, so that suppliers can benefit from combining
deliveries ultimately intended for different retailers in order to save on transportation,
and retailers can save by ordering products from different suppliers simultaneously.
Later we show that each retailer will order only one truck each time because they pay
per truck transportation cost.

In the following, we first generalize our previous results to the new setting with
transportation cost. We then argue that the problem is equivalent to a capacitated
One Warehouse Multi-retailer Multi-supplier problem, since each retailer only orders
one truck in each order. We provide a modified MSIRR algorithm to solve the integer
relaxation problem, and prove it to be a lower bound on the cost of an arbitrary
policy when per truck transportation cost is considered. We then implement the order
intervals obtained in relaxation problem to both a feasible ZIO policy and a PoT policy,
with worst case cost ratio of 3

2
and 2 respectively.
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4.1 The Centralized Lower Bound

4.1.1 The Model

We consider a similar setting to that in Chapter 3, where the warehouse serves as both
the outbound warehouse for suppliers and the inbound warehouse for retailers. Each
supplier manufactures a unique product and supplies all the retailers. At each retailer,
customer demand for each product occurs at constant rate. Demand must be met
without backlogging. A fixed ordering cost is incurred whenever a supplier replenishes
its inventory at the warehouse. As for transportation cost, suppliers usually have a
large amount to ship, thus their transportation cost to the warehouse is linear and
can be omitted. However for retailers, based on observation from reality, their cost is
incurred by each truckload they use. The per truck cost is assumed independent of
the truckload. Linear holding costs are charged both at the warehouse and at retailers
for inventory. The holding costs, fixed ordering and transportation costs, and demand
rates are constant over time and different at each facility. We follow our previous
notation and introduce more for the transportation cost:

• cj: per truck shipping cost for delivery from the warehouse to retailer j

• q: truck capacity

Figure 4.1: Collaboration with Truck Transportation Cost

Our goal is find a policy with minimum long-run average cost while satisfying all the
demand, and we denote this Problem (PT). Unfortunately, this problem is NP −hard
even in special case of only one supplier and unlimited capacity Arkin et al. (1989).
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One degenerate case is discussed in Chapter 3, where truck capacity is set to infinity.
The optimal policy to this problem can be extremely complicated, with non-stationary
order quantities and order intervals. Thus we focus on quantifying the effectiveness of
heuristics.

Among all the feasible policies, we first consider an easy to implement policy, the
integer ratio policy. Thus the problem can be formulated as:

(PTI) min CTI(T
s,Tr) =

∑
i∈S

ki
T si

+
∑
j∈R

cj
T rj
d
∑

i∈S dijT
r
j

q
e+

∑
i∈S,j∈R

max (T si , T
r
j )gij

+
∑

i∈S,j∈R

T rj gij

s.t. T si , T
r
j > 0,∀i ∈ S, j ∈ R

T si /T
r
j ∈W, ∀i ∈ S, j ∈ R (4.1)

where dxe is the smallest integer ≥ x.
This cost function CTI(T

s,Tr) is generalized from the function Roundy developed
for OWMR and we developed in Chapter 3 without transportation cost. When capacity
q → ∞, (PTI) degenerates to OWMRMS without transportation. In Chapter 3, we
showed that the optimal cost of OWMRMS relaxed problem is a lower bound on the
long run cost of any policy. In this chapter, we first extend these results to our problem
with multiple suppliers and a per truck transportation cost structure. That is, each
retailer pays a fixed cost per truck, rather than per delivery (where a delivery could be
more than one truck). We show CTI(T

s,Tr) is still exact for integer ratio policies, and
the optimal solution to a version of the problem where the integer ratio constrinats are
relaxed, Problem (PTR), is also a lower bound for any arbitrary policy for Problem
(P). Later in Section 4.5 and Section 4.6.2, we use this lower bound to characterize
the cost of decentralized operation in this system.

In the cost function CTI(T
s,Tr), the first two terms are the fixed costs for suppliers

and transportation costs for retailers, while the latter two terms are the inventory

holding costs at the warehouse and retailers. In particular, d
∑
i∈S dijT

r
j

q
e is the number

of trucks retailer j requires in each replenishment. As for holding cost, we consider two
cases following analysis in Chapter 3. If retailer j orders no more frequently than the
warehouse does for product from supplier i, then under an integer ratio policy, we only
need to consider inventory holding cost incurred at retailers. If the retailer orders less
frequently than warehouse does for product from supplier i, the echelon holding cost
at the warehouse follows a “sawtooth” pattern with order interval of T si , and inventory
at the retailer has interval T rj .

Thus, CTI(T
s,Tr) is the exact total cost for the centralized OWMRMS with per

truck transportation cost under an integer ratio policy, so (PTI) exactly models (PT)
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under an integer ratio policy. Later we prove in Section 4.1.4 that the optimal solution
to a relaxed version of (PTI), which we denote (PTR), is a lower bound on any feasible
policy for Problem (PT).

4.1.2 Equivalent Capacitated OWMRMS

In this section, we transform the relaxation problem into an equivalent capacitated
problem, and solve it by modified MSIRR algorithm proposed later. We first relax the
integer ratio constraints in Problem (PTI’) to get

(PTR) min CTIR(Ts,Tr) =
∑
i∈S

ki
T si

+
∑
j∈R

cj
T rj
d
∑

i∈S dijT
r
j

q
e+

∑
i∈S,j∈R

max (T si , T
r
j ) · gij

+
∑

i∈S,j∈R

T rj · gij

s.t T si , T
r
j > 0,∀i ∈ S, j ∈ R

The objective function of this problem contains a ceiling function, making the
problem challenging to analyze. However, the following lemma enables us to simplify
the formulation:

Lemma 4. In the optimal solution to (PTR), exactly one truck will be sent to each
retailer at a time.

A proof of Lemma 4 is in Appendix A.17.It follows from Lemma 4 that Problem
(PIR) is equivalent to the following relaxation of a capacitated OWMRMS problem:

(PCR) min CC(Ts,Tr) =
∑
i∈S

ki
T si

+
∑
j∈R

cj
T rj

+
∑

i∈S,j∈R

max (T si , T
r
j ) · gij +

∑
i∈S,j∈R

T rj · gij

s.t T si , T
r
j > 0,∀i ∈ S, j ∈ R

T rj ≤ T r0j =
q∑

i∈S dij

The objective of (PCR) is the maximum of several convex functions, thus it is still
convex. Given any solution (Ts, Tr) to (PCR), following our approach in Chapter 3,
we partition suppliers and retailers based on their order intervals, and group retailers
and supplier with the same order interval together. We denote the partition P (U1),
P (U2), · · · , P (Uk), where Ul is the order interval. That is,

P (Ul) = {i ∈ S : T si = Ul} ∪ {j ∈ R : T rj = Ul}.
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Without loss of generality, we order Ul such that U1 < U2 · · · < Uk. Therefore the
corresponding optimal cost can be decomposed as follows:

CTIR(Tsi ,T
r
j ) =

∑
i∈S

ki
T si

+
∑
j∈R

cj
T rj

+
∑

i∈S,j∈R

max (T si , T
r
j ) · gij +

∑
i∈S,j∈R

T rj · gij

=
∑
i∈S

ki
T s∗i

+
∑
j∈R

cj
T rj

+
∑

i∈S,j∈Li
or i∈S,j∈Ei

T si · gij +
∑

j∈R,i:j∈Gi

T rj · gij +
∑

i∈S,j∈R

T rj · gij

=
∑

l∈{1,···,k}

(K(Ul)

Ul
+H(Ul) · Ul

)
,

∑
l∈{1,···,k}

CUl
TIRS(Tr,Ts)

where
K(Ul) =

∑
i∈P (Ul)

ki +
∑

j∈P (Ul)

cj

and
H(Ul) =

∑
i∈P (Ul)
j∈Li

gij +
∑

i∈P (Ul)
j∈P (Ul)

gij +
∑

j∈P (Ul)
i:j∈Gi

gij +
∑
i∈S

j∈P (Ul)

gij

K(Ul) and H(Ul) can be viewed as aggregate transportation cost and holding cost for
P (Ul).

Given these definitions, (PTR) can be decomposed into a series of convex subprob-
lems, one for each partition P (Ul):

(PCl) min CUl
TIRS(Tr,Ts) =

K(Ul)

Ul
+H(Ul) · Ul

s.t. Ul ≥ 0

Ul ≤ T r0j ,∀l, j ∈ P (Ul)

Lemma 5. The optimal solution to decomposed problem (PCl) is

U∗l = min
j∈G(Ul)

(√
K(Ul)

H(Ul)
, T r0j

)
.

A proof of Lemma 5 is in Appendex A.18.
Thus, given any partition of retailers and suppliers, we can calculate aggregate fixed

costs and holding cost in each group, and thus find optimal order intervals. Therefore
our problem (PCR) is equivalent to finding the optimal partition of R ∪ S. The
conditions for optimality are specified in the following theorem:
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Theorem 15. The following conditions are necessary and sufficient for (Ts∗,Tr∗)
to be the optimal order intervals in (PCR):
(C1) For the corresponding ordered partition P (U∗1 ), P (U∗2 ), · · · , P (U∗k ) of R∪S, where

U∗1 < U∗2 < · · · < U∗k , we have U∗l = min
j∈G(Ul)

(√
K(Ul)
H(Ul)

, T r0j

)
, where K(Ul) and H(Ul)

are the aggregate fixed and holding cost of P (Ul).
(C2) ∀l,∀ subset P ⊂ P (U∗l ),

U∗l ≥ min
j∈P

{
T r0j ,

√√√√√√
∑
i∈P

ki +
∑
j∈P

cj∑
i∈S,j∈P

gij +
∑

i∈P,j∈Li
gij +

∑
j∈P,i:j∈Gi

gij +
∑

j∈P,j∈P
gij

}

U∗l ≤ min
j∈P

{
T r0j ,

√√√√√√
∑
i∈P

ki +
∑
j∈P

cj∑
i∈S,j∈P

gij +
∑

j∈P,j∈P
gij

}

A proof of Theorem 15 is in Appendix A.19. In Theorem 15, (C1) guarantees KKT
conditions are met for each group, and (C2) ensures no deviation from the partition
could improve cost.

4.1.3 Modified MSIRR Algorithm

From our previous analysis, we know that finding the optimal solution to (PCR) is
equivalent to finding an optimal partition of R∪S. Therefore our goal is to determine
the partition and the order intervals simultaneously, while satisfying conditions (C1)
and (C2) in Theorem 15.

In Chapter 3, we proposed the MSIRR Algorithm to solve the uncapacitated OWMSMR
relaxation problem. In this subsection, we introduce a modified MSIRR algorithm and
prove that the solution obtained by the MSIRR algorithm satisfies (C1) and (C2)
and is thus optimal to (PCR). The modified MSIRR algorithm also determines or-
der intervals from the largest to the smallest iteratively. A major difference is in this
capacitated problem, order cycles of retailers are upper bounded because of truck ca-
pacity. In each iteration, some suppliers and retailers have already been assigned to
some ordered groups in previous iterations, and the remaining are unassigned. Exist-
ing groups are ordered by order intervals of the group, where more recently formed
groups have smaller order interval. For those suppliers and retailers, we sequentially
assume that each supplier, each retailer, and each pair of one supplier and one retailer
has the largest order interval among all the unassigned candidates, and calculate the
corresponding order interval according to Lemma 5, so that order interval is upper
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bounded. We then pick the largest such order interval as a candidate to enter the set
of assigned groups. If it is smaller than the order intervals of all existing groups (and in
particular, smaller than the most recently formed group), the corresponding supplier,
retailer, or pair forms a new group, otherwise it is assigned to the most recently formed
group, and we recalculate the order interval for the new group according to Lemma 5.
If the new order interval is larger then that of some other existing group, we combine
the groups again until (C1) is satisfied.
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Algorithm: Modified MSIRR Algorithm

Initialize: τ ← ∅, listG ← ∅ , Tcur ←∞, R̄← R, S̄ ← S, Ts ← 0, Tr ← 0;
while R̄ ∪ S̄ 6= ∅ do

forall i ∈ S̄ do

T si ←
√

ksi∑
j∈R̄

gij
;

end
forall j ∈ R̄ do

T rj ← min

(
T r0j ,

√
krj∑

i∈S̄
gij+

∑
i∈S̄

gij

)
;

end
forall i ∈ S̄, j ∈ R̄ do

Tij ← min

(
T r0j ,

√
ki+k

r
j∑

i∈S̄
gij+

∑
i∈S̄

gij+
∑
k∈S̄

gkj+
∑
k∈R̄

gik−gij

)
;

end

i0 ← arg max
i∈S̄

T si , j0 ← arg max
j∈R̄

T sj , (î0, ĵ0)← arg max
i∈S̄,j∈R̄

Tij ;

if max(T si0 , T
r
j0
, Tî0 ĵ0 ) < Tcur then

Tcur ← max(T si0 , T
r
j0
, Tî0 ĵ0 ), add τ to the end of listG;

if T si0 = max(T si0 , T
r
j0
, Tî0 ĵ0 ) then

τ ← {i0}, S̄ ← S̄ \ {i0};
else if T si0 = max(T si0 , T

r
j0
, Tî0 ĵ0 ) then

τ ← {j0}, R̄← R̄ \ {j0};
else

τ ← {î0, ĵ0}, S̄ ← S̄ \ {î0}, R̄← R̄ \ {ĵ0};
end

else if max(T si0 , T
r
j0
, Tî0 ĵ0 ) = Tcur then

if T si0 = max(T si0 , T
r
j0
, Tî0 ĵ0 ) then

τ ← τ ∪ {i0}, S̄ ← S̄ \ {i0};
else if T si0 = max(T si0 , T

r
j0
, Tî0 ĵ0 ) then

τ ← τ ∪ {j0}, R̄← R̄ \ {j0};
else

τ ← τ ∪ {î0, ĵ0}, S̄ ← S̄ \ {î0}, R̄← R̄ \ {ĵ0};
end

else
if T si0 = max(T si0 , T

r
j0
, Tî0 ĵ0 ) then

τ ← τ ∪ {i0};
else if T rj0 = max(T si0 , T

r
j0
, Tî0 ĵ0 ) then

τ ← τ ∪ {j0};
else

τ ← τ ∪ {î0, ĵ0};
end
S̄ ← S̄ ∪ τ ∩ S, R̄← R̄ ∪ τ ∩R;
Kτ ←

∑
i∈τ∩S̄

ki +
∑

j∈τ∩R̄
cj ;

Hτ ←
∑
i∈τ

j∈R̄\τ

gij +
∑
i∈τ
j∈τ

gij +
∑
j∈τ
i∈S̄\τ

gij +
∑
i∈S̄
j∈τ

gij ;

Tcur ← minj∈R{
√
Kτ
Hτ

, T r0j };
forall i ∈ τ , j ∈ τ do

T si ← Tcur; T rj ← Tcur;

end
S̄ ← S̄ \ τ , R̄← R̄ \ τ ;

end

end
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In each iteration, it takes O(nm) to find i0, j0 and (î0, ĵ0). In each iteration,
either a new group is formed, or two existing groups are combined. Thus in the entire
algorithm, grouping occurs at most m + n times, because combined groups are never
later partitioned, and this lead to total complexity of O((n+m)nm).

Lemma 6. The Modified MSIRR algorithm obtains the optimal solution to Problem
(PCR), and thus to Problem (PTR).

A proof of Lemma 6 is in Appendix A.20. If Ts∗ and Tr∗ denote the optimal solu-
tion to (PCR) obtained from Modified MSIRR algorithm, the corresponding average
cost

CC(Ts∗,Tr∗) = CTIR(Ts∗,Tr∗) =
∑

l∈{1,···,k}

K(U∗l )

U∗l
+H(U∗l ) · U∗l , (4.2)

where K(U∗l ) and H(U∗l ) are the aggregate fixed and holding cost in optimal partition
P (U∗l ), as defined above.

4.1.4 The Lower Bound

For OWMRMS without truck capacity, we proved in the previous chapter that the
optimal integer relaxation objective is a lower bound on the cost of an arbitrary policy.
In this subsection we extend the result to model with general truck transportation cost.
In Theorem 16, we show that CC(Ts∗,Tr∗) is a lower bound on the long run cost of
any policy.

Theorem 16. CC(Ts∗,Tr∗) (thus CTIR(Ts∗,Tr∗)) is a lower bound on the average
cost of any policy for Problem (PT).

A proof of Theorem 16 is in Appendix A.21. Later we use this lower bound as a
benchmark to evaluate the performance of decentralized policies, as well as the perfor-
mance of heuristics for this NP-hard centralized problem.

4.2 Centralized Heuristics

Before we propose decentralized policies, we introduce two kinds of centralized heuris-
tics for comparison. Later in the computational study, performance of these policies
is compared with that of decentralized policies. Note that the centralized problem is
NP-hard Arkin et al. (1989).
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4.2.1 The Power-of-Two Policy I

In this subsection, we consider a special case of integer ratio policies, the Power-of-
Two (PoT) policy. Recall that a PoT policy is a periodic ordering policy such that
T si ∈ {m ∈ N : 2m · T0}, where T0 is the base order interval. A PoT policy is
implemented so that two parties with the same reorder interval always order at the
same time. It is typical in related literature to build on a lower bound of the type we
developed in Section 4.1.4 to develop and analyze a PoT heuristic.

(PPoT) minCPoT (Ts,Tr) =
∑
i∈S

ki
T si

+
∑
j∈R

cj
T rj
d
∑

i∈S dijT
s
j

q
e+

∑
i∈S,j∈R

max (T si , T
r
j )gij

+
∑

i∈S,j∈R

T rj gij

s.t. T si , T
r
j ∈ {2m · T0,m ∈ N},∀i ∈ S, j ∈ R

In the following we show that the PoT policy obtained from (Ts∗,Tr∗) is an easy-
to-implement policy with a worst case ratio of 2. Note that this is significantly worse
than the PoT rounding ratio in the uncapacitated problem, where PoT rounding can
be done in several EOQ style subproblems and generates a worst case ratio of 1.06.
In (PCR), there are two factors affecting the effectiveness in the rounding. One is
capacity constraints may drive the optimal solution far from the optimal solution to
uncapacited problem, thus we might not benefit from robustness near EOQ optimal
solution. The other reason is rounding up to the nearest PoT solution may be infeasible
because of capacity constraints.

We use (Ts∗,Tr∗), the optimal solution to (PCR), to construct a PoT solution
as:

T s∗i,P = max {2mT0 : 2mT0 ≤ T s∗i } (4.3)

In other words, we round (Ts∗,Tr∗) down to the nearest PoT solution. Because we
are rounding down the order intervals, capacity constraints are still satisfied. With
this rounding rule, we preserve the order of intervals in the solution. That is:

T s∗i ≥ T r∗j ⇒ T s∗i,P ≥ T r∗j,P .

PoT rounding leads to a new partition:

U∗l
2
< UP∗

l ≤ U∗l

Recall that in the MSIRR algorithm, we greedily determine order intervals of suppliers
and retailers sequentially from largest to smallest. In each iteration, we either create
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a new group or combine existing groups whenever condition (C2) of Theorem 15 is
violated. Recall that we group suppliers and retailers with the same order interval into
a partition, so that some members of the set P (U∗l ) (the set of suppliers and retailers
with order interval U∗l ) may be combined after rounding, because different U∗l values
could be rounded to the same PoT interval. However, to facilitate our analysis, we
continue to consider them separately. Hence, the previous partition for R ∪ S still
applies, so that P (U∗l ) = P (UP∗

l ). Next, we bound the worst case performance for this
feasible PoT policy.

Theorem 17. CPOT (Ts∗P ,Tr∗P ) ≤ 2CTIR(Ts∗,Tr∗). That is, the total cost of the

PoT policy we obtain from rounding (Ts∗,Tr∗) is no more than twice the optimal
centralized cost.

A proof of Theorem 17 is in Appendix A.22. In the computational analysis in Sec-
tion 4.7, we show that when per truck transportation cost is moderate, PoT rounding
works well. In fact, an extremely large or extremely small per truck transportation
cost is required to drive the capacitated optimal solution far from the uncapacitated
solution, to come close to the worst case bound of 2.

4.2.2 The Power-of-Two Policy II

In this section, we consider another rounding approach to obtain a feasible PoT policy.
In Section 4.2.1, we round down (Ts∗,Tr∗) to satisfy capacity constraints. However,
such a rounding rule may lead to a low number of truckloads in shipment, thus we
consider a different method in this section. We apply the normal PoT rounding rule
to come to the nearest PoT solution, and we send two trucks if the capacity constraint
is violated. the optimal solution to (PCR), to construct a PoT solution as:

T s∗
i,P̂

= min {2mT0 : 2mT0 ≥
T s∗i√

2
}. (4.4)

That is,
T s∗i√

2
≤ T s∗

i,P̂
<
√

2T s∗i .

With this rounding rule, we preserve the order of intervals in the solution. That is

T s∗i ≥ T r∗j ⇒ T s∗
i,P̂
≥ T r∗

j,P̂

PoT rounding leads to a new partition:

U∗l√
2
< U P̂∗

l ≤
√

2U∗l
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While some of P (U∗l ) may be combined after rounding, for the convenience of compar-
ison, we continue to consider them separately. Hence the previous partition for R ∪ S
still applies so that is P (U∗l ) = P (U P̂∗

l ). Therefore

CPoT (Ts∗
P̂

,Tr∗
P̂

) =
∑

l∈{1,···,k}

(K(U P̂∗
l )

U P̂∗
l

+H(U P̂∗
l ) · U P̂∗

l

)

After rounding, capacity constraints for retailers may be violated, thus a second truck
may be assigned in some cases.

Theorem 18. The worst case performance for this PoT rounding is 2.

A proof of Theorem 18 is in Appendix A.23.

4.2.3 Centralized Zero-Inventory-Ordering Policy

In this subsection, we consider a Zero-Inventory-Ordering (ZIO) policy. Instead of
doing rounding to get a feasible integer ratio solution, we use the exact solution Ts∗
and Tr∗ obtained in modified MSIRR Algorithm, but changes the quantity to ship in
each replenishment of suppliers, to construct a ZIO policy.

The policy is stationary in that each supplier and each retailer has a fixed order
interval. Since the policy might not be in the class of integer ratio policies, the same
supplier may face different number of orders from same retailers in different order
cycles. To help evaluate long run costs of each supplier, we recall previous notation:
• Iwij (t) : the inventory level at time t of product i at the warehouse that is ulti-

mately intended for retailer j
• Iij(t) : the inventory at time t of product i at retailer j
• EIwij (t) = Iwij (t) + Iij(t) : echelon inventory of product i intended for retailer
j (that is, inventory at warehouse intended for retailer j plus the inventory at
retailer j

Cost at Retailers

The transportation and installation inventory cost associated with retailer j is:

Cr
j (T

r
j ) =

crj
T rj
d
∑

i∈S dijT
r
j

q
e+

∑
i∈S

1

2
dijhijT

r
j =

crj
T rj
d
∑

i∈S dijT
r
j

q
e+

∑
i∈S

(gij + gij)T
r
j
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Cost at Suppliers

Each time a supplier makes a delivery to the warehouse, it needs to ensure that there
is enough inventory to cover demands from retailers until the next delivery. However,
since orders may not line up, some retailers may order during a particular supplier
interval to cover demand during the next supplier order interval, so that the demand
from a retailer in a particular supplier interval may exceed the demand that the retailer
faces during this interval.

Although the total demand from all the retailers for a single supplier is time-variant
and discrete, it is deterministic and known before suppliers make decisions. In par-
ticular, each time when a supplier replenishes inventory at warehouse, it knows exact
how many orders will occur in the this replenishment cycle, and it can ship the exact
amount of product to cover them all.

For supplier i, given any order interval T si , the replenishment quantity can be
set equal to the total amount of retailer orders for that product during the interval,
resulting in a ZIO policy. To calculate the expected cost for each supplier, as before,
we decompose inventory at the warehouse by supplier and intended retailer, and then
determine the holding cost associated with each retailer and product.

From derivations in the previous chapter, the cost at supplier i is:

Czio
i (T si ) =

ksi
T si

+
∑

j∈Li∪Gi

gijT si

Policy Effectiveness

The total cost to suppliers of the ZIO policy is:

Czio(T
s,Tr) =

∑
i∈S

Czio
i (T si ) +

∑
j∈R

Cr
j (T

r
j )

=
∑
i∈S

{
ksi
T si

+
∑

j∈Li∪Gi

gijT si

}
+
∑
j∈R

{
crj
T rj
d
∑

i∈S dijT
r
j

q
e+

∑
i∈S

(gij + gij)T
r
j

}
.

(4.5)

In Section 4.1.4 we showed that CC(Ts∗,Tr∗) is a lower bound on optimal cost.
Hence it suffices to evaluate the worst case ratio of Czio(T

s∗,Tr∗) to CC(Ts∗,Tr∗).
In the next theorem, we prove the effectiveness of this ZIO policy with Ts∗ and

Tr∗ is at least 2
3
.

Theorem 19. Czio(T
s∗,Tr∗) ≤ 3

2
CC(Ts∗,Tr∗)

A proof of Theorem 19 is in Appendix A.24.
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4.3 Comparison with the Solution from the Unca-

pacitated Model

In this section, we compare our truck cost models with our simple fixed cost models
from Chapter 3. If we apply our simple model with fixed transporation cost here,
the optimal solution of uncapacitated problem may exceed a full truckload for some
retailers. In that case, we ship multiple trucks in the same replenishment and pay more
for transportation cost. We show that the worst case ratio is 8

5
, and the bound is tight.

If we denote T̃ s∗ T̃ r∗ as the optimal solution from MSIRR in Section 3.1.3, then
the corresponding cost is

Csim(T̃ s∗, T̃ r∗) =
∑
i∈S

ksi
T̃ s∗i

+
∑
j∈R

crj

T̃ r∗j
d
∑

i∈S dijT̃
r∗
j

q
e

+
∑

i∈S,j∈R

max(T̃ s∗i , T̃
r∗
j )gij +

∑
i∈S,j∈R

T̃ r∗j gij

Theorem 20. sup

{
Csim(T̃s∗,T̃r∗)

CC(Ts∗,Tr∗)

}
≥ 8

5
. That is, the worst case performance using

a simple model incurs at least 60% cost increase.

A proof of Theorem 20 is in Appendix A.25. Thus we know if we only use simple
model without differentiating the number of trucks each retailer use, the worst case
performance can incure at least 60% cost increase, and this bad case is easily obtained
when the optimal number of trucks is slightly more than two in the simple model.

4.4 A Retailer-Driven Decentralized ZIO Policy

In the previous section, we assumed that the system was operated under centralized
control, so that shipments from different suppliers to the warehouse, and shipments
from the warehouse to retailers could be coordinated to minimize overall system costs.
In this section, we consider a decentralized model where suppliers and retailers make
their own decisions based on their information. As discussed in the introduction, we are
motivated by current practice, where (at least at the MACC with which we worked),
suppliers deliver products to the warehouse, paying transportation costs, unloading
costs, and holding costs until goods are shipped to retailers, and retailers order from
the warehouse, paying transportation costs.

Specifically, we assume that suppliers pay a fixed transportation cost per shipment
as well as holding cost at the warehouse, and must meet retailer demand. Similarly,
we assume that retailers must pay a per truck transportation cost for deliveries, as
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well as the holding cost at their own stores, and must meet customer demand without
backorder.

We assume that retailers first optimize their own strategy, and then suppliers must
react to this strategy, in line with what we have observed in practice. In this section, we
analyze the optimal retailers’ strategy and propose one stationary fixed order interval
heuristics for the challenging-to-optimize suppliers’ problem, which is a ZIO policy.

We summarize the new notation for this section below. We use Γ to denote order
intervals under decentralized models.

• Γrj (Γr∗j ) : (optimal) order interval for retailer j in the decentralized model

• Γr∗ = (Γr∗1 ,Γ
r∗
2 , · · · ,Γr∗m): vector of optimal order intervals for all retailers in the

decentralized model

• Γsi (Γs∗i ) : (optimal) order interval for supplier i in the decentralized model

• Γs∗ = (Γs∗1 ,Γ
s∗
2 , · · · ,Γs∗n ): vector of optimal order intervals for all suppliers

4.4.1 Retailers’ Policy

Note that each retailer will have an optimal ZIO policy (indeed, this can be viewed as a
capacitated EOQ problem at the retailer). Each order will thus contain products from
all suppliers sufficient to cover demand during that cycle. Hence, the optimal strategy
is a fixed order interval strategy, and the problem for retailer j is:

(PTDRj) minCr
j (Γ

r
j) =

crj
Γrj
d
∑

i∈S dij

q
e+

∑
i∈S

1

2
dijhijΓ

r
j =

crj
Γrj
d
∑

i∈S dij

q
e+

∑
i∈S

(gij + gij)Γ
r
j

Follow the same logic, each time retailer orders exact one truckload. Hence (PTDRj)
is the same as a capacitated EOQ problem:

(PDRCj) minCr
C,j(Γ

r
j) =

crj
Γrj

+
∑
i∈S

(gij + gij)Γ
r
j

s.t. Γrj ≤ T r0j

By the KKT condition, we obtain the optimal order interval for retailer j:

Γr∗j = min

{
T r0j ,

√√√√ krj∑
i∈S

(gij + gij)

}
.

The optimal decentralized cost per unit time for retailer j is therefore:

Cr
C,j(Γ

r∗
j ) =

cj
Γr∗j

+ Γr∗j (gij + gij). (4.6)
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Theorem 21. The optimal order interval for each retailer is longer in centralized model
than in the decentralized model. That is, Γr∗j ≤ T r∗j .

A proof of Theorem 21 is in Appendix A.26.
This follows because in the centralized model, the shipping decision is made based

on the marginal additional holding cost at the retailer, whereas in the decentralized
model the shipping decision accounts for the fact that all of the holding cost is paid
by the retailer.

4.4.2 Suppliers’ Policy: The Zero-Inventory-Ordering Policy

Similar to what we derive in Section 3.2, under a ZIO policy, the problem for supplier
i is:

(PDSzio
i ) minCzio

i (Γsi ) =
ksi
Γsi

+
∑
j∈Li

Ĥ
l

ij(Γ
s
i ,Γ

r∗
j ) +

∑
j∈Ei

He
ij(Γ

s
i ,Γ

r∗
j ) +

∑
j∈Gi

Ĥ
g

ij(Γ
s
i ,Γ

r∗
j )

=
ksi
Γsi

+
∑

j∈Li∪Gi

gijΓsi

And the optimal solution is selected from the same limited set:

Theorem 22. The optimal order interval in the decentralized ZIO policy

Γs∗i ∈ {Γr∗1 ,Γr∗2 , · · · ,Γr∗m , Γ̃s∗i }, where Γ̃s∗i =

√√√√ ksi∑
j∈R

gij
.

A proof of Theorem 22 can be found in Appendix A.9.

4.5 An Easily Implementable Retailer-Driven De-

centralized Policy

4.5.1 Suppliers’ Policy: The Order-Up-To Policy

As in Section 3.3, we have the following upper bound on the the cost faced by supplier
i when this order-up-to policy is employed:

(PDSout
i ) minCout

i (Γsi ) =
ksi
Γsi

+
∑
j∈Li

gijΓsi −
∑
j∈Gi

gijΓsi + 2
∑

j∈Li∪Gi

gijΓr∗j
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Theorem 23. The optimal order interval for supplier i ∈ {Γr∗1 ,Γr∗2 , · · · ,Γr∗m ,Γs∗i,k′},
where k′ is the only index such that Γ̂s∗i,k ∈ (Γr∗k ,Γ

r∗
k+1). That is,

Γs∗i = argmin

{
Cout
i (Γsi ) : Γsi ∈

{
Γr∗j ,∀j, or Γs∗i,k′

}}
,

where Γs∗i,k′ is the only solution that satisfies local optimality.

Though this order-up-to policy may generate higher inventory cost, it is easy to
implement in reality with a bounded worst case ratio, as we show in next subsection.

4.6 Cost of Decentralization

In this section, we consider the worst case performance (with respect to optimal central-
ized performance) of the two decentralized policies proposed in Section 4.4 and Section
4.5, using the bound CTIR(Ts∗,Tr∗) developed in Section 4.1.4 as a benchmark – in
effect, we bound the cost increase due to decentralization. The worst case performance
is bounded in both zero-inventory-ordering and order-up-to supplier policies.

4.6.1 The Cost of Decentralization Using the Decentralized
ZIO Policy

Building on this development, inn our decentralized ZIO model, the total cost suppliers
and retailers pay in the optimal solution is:

Czio(Γ
s∗,Γr∗) =

∑
i∈S

Czio
i (Γs∗i ) +

∑
j∈R

Cr
j (Γ

r∗
j ). (4.7)

In Theorem 16 we also showed CC(Ts∗, T r∗) is a lower bound on the cost of central-
ized model. Therefore performance of decentralized ZIO policy is bounded by:

Czio(Γ
s∗,Γr∗)

Optimal Centralized Cost
≤ Czio(Γ

s∗,Γr∗)

CTIR(Ts∗,Tr∗)

bound the ratio of total decentralized ZIO cost to optimal centralized cost:

Theorem 24. The total cost of the ZIO decentralized system is no more than 3
2

times
the optimal cost in the centralized system.

A proof of Theorem 24 is provided in Appendix A.27. Note that we proved in
Theorem 21 that retailers order less frequently in centralized model compared to de-
centralized model. Unfortunately, we have not found such results for suppliers. As a
result, each supplier need to search all m+ 1 candidates to determine the optimal one.
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4.6.2 The Cost of Decentralization Using the OUT Policy

In our decentralized order-up-to model, the total cost suppliers and retailers pay in the
optimal solution is:

Cout(Γ
s∗,Γr∗) =

∑
i∈S

Cout
i (Γs∗i ) +

∑
j∈R

Cr
j (Γ

r∗
j ). (4.8)

In this subsection, we analyze how well our decentralized model is performed com-
pared to the optimal policy in centralized setting. In Section 4.1.4 we have shown that
CTIR(Ts∗,Tr∗) is a lower bound on optimal centralized cost. Hence it suffices to
evaluate the worst case ratio of CC(Γs∗,Γr∗) to CC(Ts∗,Tr∗). The ratio of optimal
decentralized cost to the optimal centralized cost is called “price of anarchy”.

In the next theorem, we prove price of anarchy for this order-up-to policy is at most
2.5.

Theorem 25. The total cost of decentralized system is no more than 5
2

times the cost
of centralized system.

A proof of Theorem 25 is in Appendix A.28.

4.6.3 Decentralized Policies are Effective

As we see from Theorem 24 and Theorem 25, both the decentralized zero-inventory-
ordering and order-up-to policies are relatively effective; indeed, the decentralized zero-
inventory-ordering policy is at most 1.5 times a lower bound on the optimal centralized
policy. In Section 4.7, we show using a computational study that the loss due to
decentralization is typically much smaller than its theoretical maximum. This serves
to motivate and justify current practice, where information sharing and centralized
control is strictly limited, and to suggest that it the additional effort and expensive to
centralize control (if it is possible) is likely not worth the trouble.

4.7 Computational Study

We use a computational study to better understand the cost of decentralization in var-
ious settings. We have shown in Theorem 19, Theorem 24, Theorem 25 and Theorem
18 that all our centralized and decentralized heuristics have bounded worst case per-
formance. Here, we explore how tight those bounds are, how these heurisitcs perform
in different scenarios, and how centralization benefits the system. In particular, we run
this simulation to explore the following questions:
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• How does changing the number of suppliers relative to number of retailers affect
the system performance?

• How do variations in costs affect performance of different policies?

• How does truck capacity affect centralized decentralized operation?

Throughout computational study, we apply our MSIRR Algorithm to compute
CTIR(Ts,Tr) as a benchmark for optimal centralized cost. Then we search for the
optimal decentralized ZIO and OUT policies based on Theorem 22 and Theorem 23.
Given these, we calculate ratios of decentralized costs to centralized cost. For com-
parison, we also calculate centralized ZIO and PoT heuristics according to MSIRR
Algorithm and (4.3). All parameters are randomly generated, and for each set of pa-
rameter generating distributions, we generate 20 cases and record the average cost ratio
as well as the largest (worst) cost ratio. We also calculate coefficient of variation (ratio
of standard deviation to mean) for each set of experiments, but it was very small (for
most cases < 5%), so for clarity of presentation we omitted it. We ran over 100, 000
cases with different parameter settings, and we summarize our results below.

4.7.1 General Observations

Overall, our computational study suggests that the cost of decentralization is rela-
tively insignificant, particularly, compared to the benefits of easy implementation and
information privacy. In the computational study, we use CTIR(T s∗, T r∗), obtained in
Section 4.1.3, as a benchmark, and evaluate the ratio of cost of each policy to this lower
bound. In Figure 4.2, we show the simulation results from 20, 000 runs, and plot cost
ratio histogram for a variety of different policies, where n,m ∼ unif{3, · · · , 20}, hij ∼
Unif(0, 1), hi ∼ Unif(0, 1), dij ∼ Unif(1, 2), ksi ∼ Unif(1, 2), krj ∼ Unif(1, 2). We
observe that the decentralized ZIO policy is quite stable, and its cost ratio is usually
less than 120%. The decentralized OUT policy incurs a higher holding cost, but even
then cost ratio to the lower bound is still less than 140% in most cases. Performance of
the centralized ZIO policy is almost the same as the decentralized version of the same
policy, but slightly more variable. The ratio of centralized PoT cost to the cost lower
bound is usually below 120%, but it fluctuates in certain scenario and performance can
be extremely bad.

In general, performance of all policies is much better than the theoretical worst case,
and the decentralized policies typically perform almost as well as centralized policies.
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Figure 4.2: Cost Ratios of Different Policies

4.7.2 Number of Suppliers/Retailers

In this subsection, we analyze cost ratios for different policies with varying the number
of suppliers and retailers. All suppliers and retailers are assumed to be identical. We
tested a variety of distributions, and observed similar results given similarly scaled
parameters, so we report our results for parameters generated using uniform distri-
butions for illustration: hij ∼ Unif(0, 1), hi ∼ Unif(0, 1), dij ∼ Unif(1, 2), ksi ∼
Unif(1, 2), krj ∼ Unif(1, 2). We ran simulation in two sets of scenarios, with small
truck capacity q = 5 and large truck capacity q = 20, and initially let m = 8, n ∈
{1, 2, · · · , 50}, and explored how the number of suppliers affects cost ratio. For each
m, we randomly generated 20 sets of parameters, and calculated the worst case ratio
and average ratio for the two centralized policy and two decentralized policies. Next,
we let n = 8,m ∈ {1, 2, · · · , 50} and reran the experiments.
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Figure 4.3: Number of participants

As can be observed in Figure 4.3, as the number of retailers or suppliers increases,
the decentralized OUT policy becomes increasingly bad, while other three policies
perform better. In general when all costs are of the same order of magnitude, the
centralized PoT policy and centralized ZIO policy perform best when truck capac-
ity is large and small, respectively. However, the performance of decentralized ZIO
policy is stable and very close to the best centralized policy in both cases, with cost
increase below 20% compared with the lower bound, demonstrating the effectiveness
of decentralization.

4.7.3 Cost Variation

In this subsection, we analyze how cost variation affects performance of different poli-
cies.

Scaling in Fixed Cost

We again use a similar strategy to generate cost parameters: h′ij ∼ Unif(0, 1), hi ∼
Unif(0, 1), dij ∼ Unif(1, 2), m = 8, n = 8. Different from last subsection, we keep

krj ∼ Unif(1, 2) and differentiate suppliers by letting ksi ∼

{
Unif(1, 2k), if i ≤ 4

Unif(1, 2), if i > 4
,

where k ∈ {1, 2, · · · , 50}. We test policy performance with large truck capacity (q = 30)
and small truck capacity (q = 5). We generate 20 sets of parameters for each k, apply
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different policies and record the average and worst case cost ratios. Similarly, we run ex-

periments with ksi ∼ Unif(1, 2) and retailers’ fixed cost krj ∼

{
Unif(1, k), if j ≤ 4

Unif(1, 2), if j > 4
,

on same set of k.

Figure 4.4: Fixed cost scaling with different truck capacity

From Figure 4.4 we observe that the decentralized ZIO policy performs best in
almost all cases when transportation costs at retailers are well differentiated. When
truck capacity is small, even the performance of the decentralized OUT policy is close
to the optimal. On the contrary, the performance of centralized PoT policy is relatively
unstable, and the performance of centralized ZIO heuristic is slightly worse than the
decentralized policy. In general, this is true because the more diversified suppliers or
retailers are, the less valuable centralization is, and thus, the less we lose because of
decentralization.

Variation in Holding Cost

We next explore how holding cost variations affect system performance. As before, we
analyze policy performance with relatively large (q=5) and small (q=1) truck capac-
ity and generate costs as follows: dij ∼ Unif(1, 2), m = 8, n = 8, ksi ∼ Unif(1, 2),
krj ∼ Unif(1, 2). To explore the effect of holding cost at the warehouse, we let h′ij ∼
Unif(0, 1), hi ∼ Unif(0, k) where k ∈ {1, 2, · · · , 50}. Similarly, we let h′ij ∼ Unif(0, k),
hi ∼ Unif(0, 1) to analyze effect of echelon holding costs at retailers.
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Figure 4.5: Holding cost scaling with different truck capacity

As we observe in Figure 4.5, decentralized policies outperform centralized policies
when holding costs at different retailers are differentiated, with no more than 10% cost
increase compared to the cost lower bound. On the other hand, when the holding
cost at warehouse is differentiated, the performance of decentralized policies is slightly
worse, but more stable than the performance of centralized policies. Even in the worst
case, the cost of decentralization is about 20%, but with the benefit of information
privacy.

Truck Capacity

Last but not least, we directly explore the influence of truck capacity. We let h′ij ∼
Unif(0, 1), hi ∼ Unif(0, 1), dij ∼ Unif(1, 2), m = 8, n = 8, krj ∼ Unif(1, 2), ksi ∼
Unif(1, 2), and we differentiate truck capacity by letting q ∈ {1

5
, 2

5
, · · · , 10}.
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Figure 4.6: Diversity in truck capacity

From Figure 4.6 we see that ZIO policies work best among all policies, and there
is no significant difference between the centralized and decentralized versions. The
decentralized OUT policy works slightly worse than ZIO policies because of additional
holding cost. The centralized PoT policy works almost as well as ZIO when truck
capacity is large enough, but performs worse than other policies otherwise. Thus we
do not save much by centralization, despite gathering the private information of all
retailers.

Comparison to the Simple Model

Another important question we would like to explore involves how much we lose if
we just use our simple model without truck capacity constraints, as in the previous
chapter.

It is natural to see that if the shipment is less that a truckload (LTL), then our
capacitated models actually degenerates to our simple model. However, for the case
when a full truck load is not enough for a single shipment, we need to pay more trans-
portation cost if we implement the solution obtained from previous our uncapacitated
model.

In the following graph we explore the difference between the capacitated models
proposed in this paper, and our simple uncapacitated model from previous paper. We
ran 20 cases and recorded the average cost ratio for each set of parameter distributions.
For the simple model, we use PoT policy which performs best among all policies in
uncapacitated case.
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Figure 4.7: Comparison with Uncapacitated Model

As we observe from Figure 4.7, both ZIO and order-up-to policies outperform simple
uncapacitated policies when truck capacity is an issue. Centralized and deventralized
ZIO policy has similar results for most of the cases, since they all use a full truck to
deliver products for retailers. The order-up-to policy generates higher cost compared to
ZIO for the higher inventory level it holds, but it is still better than the uncapacitated
PoT policy.

4.7.4 Summary

Based on all of our experiments, centralization does not lead to dramatic benefits.
Indeed, our decentralized policies, the ZIO and OUT policies, work well, especially
when holding costs at different retailers are well differentiated, when holding costs at
warehouse are relatively lower than at the retailers, or when fixed costs at suppliers are
diverse. The cost ratio relative to the lower bound associated with the decentralized
ZIO policy is usually no more than 10% relative to the cost lower bound, while the cost
increase of OUT policy is less than 30%. In comparison, the centralized ZIO performs
almost the same as the decentralized version, while the traditional centralized PoT
policy becomes unstable when we are approaching full truck load. Overall, decentral-
ization is a good choice for collaboration – its experimental performance dominates
theoretical bounds.
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Chapter 5

A Stochastic OWMRMS Model

In Chapter 3 and Chapter 4, we considered a deterministic version of this setting, and
showed that effective decentralized policies are easy to find, and perform almost as well
as challenging (or impossible) to implement centralized policies.

In this chapter, reflecting MACC’s that we have observed in practice, we assume a
stochastic decentralized setting, in which each supplier and each retailer operates via
an independent inventory policy, without sharing private information – suppliers do not
share the demand they face from each retailer with other retailers or other suppliers,
and retailers do not share their demand information between suppliers, or with other
retailers. Our goal is determine an effective operating strategy in this setting. To do
this, we consider a setting where several suppliers ship to several retailers through a
shared warehouse, so that outbound trucks from the warehouse contain the products of
multiple suppliers. We propose an aggregate (Q,S) policy for retailers where an order
is placed whenever total demand for all products accumulate to Q since last order.
Similarly, we use a typical (s, S) policy for suppliers. We further show that under
independent Poisson demand processes, optimal parameter settings are found by our
algorithm. All of these policies are also easy to monitor and implement in this setting.

5.1 Model Setting

We consider a model in which multiple suppliers and multiple retailers share a common
warehouse. Each supplier produces a unique product and supplies all retailers (thus
we refer to products and suppliers interchangeably in what follows). By using a central
warehouser, suppliers can transport all goods to the central warehouse together, re-
gardless of their ultimate retailer destinations. In the same way, outbound warehouse
trucks heading to a single retailer can carry multiple products. For simplicity of nota-
tion, in this paper we use i as the index associated with suppliers and j as the index
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associated with retailers. We assume independent Poisson demand with rate λij at
retailer j for product i. By the merging property of Poisson processes, total demand
for product i is λi =

∑
j λij, and total demand at retailer j is λj =

∑
i λij. We assume

constant lead times both from the warehouse to retailer (Lj) and from the supplier to
the warehouse (Li).

Figure 5.1: Multi-echelon inventory systen

Fixed cost ki is incurred whenever supplier i replenishes its inventory at the ware-
house, and similarly kj is charged when retailer j places an order from the warehouse.
Linear holding costs hi and hij per unit of inventory per unit time are charged both
at the warehouse and at retailer. Unmet demand is fully backlogged at retailer with
penalty rate pij per unit per unit time. For tractability and stability of the system, and
following a fairly common convention in related literature, we assume that if inventory
of some product at the warehouse is insufficient to cover orders from retailers, the
supplier must obtain supplemental product from other sources and pay an additional
fee p0

i for each unmet unit of demand (e.g., expediting higher-cost supply from other
sources).

For this model, the optimal policy is likely to be complicated and difficult to obtain.
Thus, we propose an intuitive (Q,S)-style decentralized policy. At aach retailer, an
order is placed whenever the total demand it experiences for all products since its last
replenishment reaches Qj, to raise the inventory position to Sij. Similarly each supplier
raises its inventory position at warehouse to Si whenever it drops to Si −Qi.

The decision flow in this setting is retailer-driven. More specifically, each retailer
makes an individual replenishment plan based on private information, and suppliers
observe retailer orders and then make ordering decisions. Each party focuses on mini-
mizing its own long run cost.

We summarize notation in the following table:
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Notation Description
λij Poisson demand rate of product i at retailer j
λi, λj total Poisson demand rate for product i, and at retailer j

Di
[t1,t2), D

ij
[t1,t2) total demand occured in time [t1, t2) of product i , and at retailer j

ki, kj fixed cost from supplier i to warehouse, and from warehouse to retailer j
hi, hij holding cost rate for product i at warehouse and at retailer j

h′ij = hij − hi echelon holding cost rate of product from supplier i at retailer j

pij backorder penalty cost for product i at retailer j
p0
i cost to replenish one unit of product i from outsource

Li, Lj lead time from supplier i to warehouse, and from warehouse to retailer j
Qi, Qj demand level that triggers replenishment from supplier and for retailer
Si, Sij Order-up-to levels at warehouse, and at retailer

5.2 Retailer Policy

In this section, we analyze an easy-to-implement decentralized policy for retailers. To
coordinate replenishments for all products, we propose a continuous review (Q,S)
policy for all retailers. That is, at any retailer j, we monitor the aggregate demand
for all products since that retailer’s last order, and whenever the aggregate demand
reaches Qj the retailer places an order at the warehouse to replenish inventory positions
for all products i to their order-up-to levels Sij.

Thus, the aggregate inventory position at each retailer follows a regenerative process
with renewal points at all replenishment times. For simplicity of notation, we define an
aggregate order-up-to level Sj =

∑
i Sij. Under the assumption of independent Poisson

demand processes, it is well known by renewal theory that aggregate inventory position
is uniformly distributed in {Sj, Sj−1, · · · , Sj −Qj + 1}. Next, we introduce additional
notation:

• Xij : aggregate demand for product i at retailer j since last replenishment

• Xj =
∑

i∈S Xij : aggregate demand at retailer j after the last replenishment

• Vij : difference between the inventory level for product i at retailer j and the
order-up-to level Sij

• θij =
λij
λj

: the probability that the next demand at retailer j is for product i
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5.2.1 Cost Evaluation

Since the demand for each products is independent, we knowXij|Xj = x0 ∼ Bin(xj, θij),
where Bin(n, p) is the binomial distribution with n trials and success probability p.
Therefore, the aggregate demand for product i at retailer j since last replenishment is
as follows:

P (Xij = x) , ui(x)

=

Qj−1∑
xj=x

P (Xj = xj) · P (Xij = x|Xj = xj)

=
1

Qj

Qj−1∑
xj=x

(
xj
x

)
θxij(1− θij)xj−x

Therefore

ui(x)θijQj =

Qj−1∑
xj=x

(
xj
x

)
θx+1
i (1− θij)xj−x

=

Qj−1∑
xj=x

P ((x+ 1)th success occurs at xj + 1)

= P ((x+ 1)th success occurs at or before Qj)

= P (at least (x+ 1) successes occurs at Qj)

= 1−B(x;Qj, θij), (5.1)

whereB(x;n, p) is the cumulative density function of the Binomial distributionBin(n, p).
In addition, we know that distribution of the inventory level at time t + Lj is deter-
mined by inventory position at time t, because replenishment orders placed after t will
not arrive by time t + Lj and that will have no effect on inventory level at that time.
Hence

P (Vij = v) , mi(v)

=

min{Qj ,v}∑
x=0

ui(x) · P (Dij
[t,t+Lj)

= v − x)

=
1

θijQj

min{Qj ,v}∑
x=0

(1−B(x;Qj, θij)) ·
e−λijLj(λijLj)

v−x

(v − x)!
(5.2)
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Therefore the long run average cost at retailer j is:

Cj(Qj, S1j, · · · , Snj) =
kj
Qj

λj +
∑
i∈S

hij

(
Sij −

λij(Qj − 1)

2
− λijLj

)
+
∑
i∈S

(pij + hij)
∑
v≥Sij

(v − Sij)mi(v). (5.3)

In (5.3), Sij− λij(Qj−1)

2
−λijLj is the average inventory level of product i at retailer

j, and
∑

v≥Sij(v − Sij)mi(v) is the average backorder.

5.2.2 Convexity in Sij and Qi

Cj(Qj, S1j, · · · , Snj) involves complicated calculations of Qj and Sij. Thus instead of
optimizing (5.3) directly, we first fix aggregate quantity Qj and analyze the optimal
order-up-to level accordingly.

Theorem 26. When aggregate order quantity Qj is fixed, the total cost Cj(Qj, S1j, · · · , Snj)
is convex in the order-up-to level Sij. The optimal S∗ij(Qj) = M−1

i

(
pij

pij+hij

)
is a

newsvendor-like quantity, where Mi(v) =
∑

t≤vmi(t) is the cumulative density function
of Vi(t).

A proof of Theorem 26 is in Appendix A.29. Notice that Mi(v) is a complicated
function of Qj from (5.2), but we can show the that S∗ij(Qj) is monotonic.

Theorem 27. S∗ij(Qj) is monotonically increasing in Qj.

A proof of Theorem 27 is in Appendix A.30. From (5.2) we see that Mi(v) is a com-
plicated function of Qj; however, we can further show that S∗ij(Qj) is also monotonic,
which can potentially simplify computation.

Theorem 28. When order-up-to levels Sij are fixed, the total cost Cj(Qj, S1j, · · · , Snj)
is convex in aggregate order quantity Qj. Thus the optimal aggregate level

Q∗ = argminQ∈Z{Q : Cj(Q+ 1, S1j, · · · , Snj) ≥ Cj(Q,S1j, · · · , Snj)}.

A proof of Theorem 28 is in Appendix A.31. Thus, optimal order-up-to levels can
be effectively found by using convexity and monotonicity. In the next theorem, we
evaluate the optimal Qj when order-up-to levels are fixed.
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5.2.3 Finding the Optimal Aggregate (Q,S) Policy

In Theorem 26 and Theorem 28 we show that cost for each retailer is convex in either
order-up-to levels Sij or the aggregate quantity Qj, although it might not be jointly
convex. However, since we show in Theorem 27 that the optimal order-up-to level
S∗ij(Qj) is non-decreasing, an iterative search algorithm can be used to find the optimal
policy for each retailer with complexity O(Q0), where Q0 is the maximum quantity each
truck can ship based on its capacity constraint.

Algorithm: Decentralized Retailer Algorithm

Initialize: Sij ← 0, Q← 1 , C∗ ←∞, Q∗ ← 1, S∗ij ← 0, Sij ← 0;

while Q ≤ Q0 do
forall i ∈ S do

Sij ← Sij;

Mcur ←Mi(Sij);
while Mcur <

pij
pij+hij

do

Sij ← Sij + 1;
Mcur ←Mcur +mi(Sij);

end
Sij ← Sij;

end
Ctmp = Cj(Qj, Si1, · · · , Snj);
if Ctmp < C∗ then

C∗ ← Ctmp;
S∗ij ← Sij;

Q∗ ← Q;

end
Q← Q+ 1;

end

We iteratively find the optimal S∗ij(Qj) for each Qj. In the process, we dynamically
update Sij, the lower bound for S∗ij(Qj), to reduce the search space. By monotonicity

in Theorem 27, we need to evaluate cost Cj(Qj, S1j, · · · , Snj) at most Q0 times.

5.3 Supplier Policy

In this section, we characterize a decentralized policy for suppliers. As with the retailer
policy, we propose a (Q,S) policy for suppliers. At the warehouse, however, suppliers
replenish their products individually, and thus the (Q,S) policy is equivalent to a
typical (s, S) policy. More specifically, whenever the installation inventory position of
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product i falls to or below (Si − Qi) at the warehouse, we place an order to raise the
inventory position to Si.

From the analysis in Section 5.2, we know orders from each retailer follow a binomial
distribution with Erlang time intervals. However, suppliers can only observe historical
orders, and in this setting, combine orders from different retailers, ignoring which
retailer places each order. Hence, in making replenishment decisions, each supplier
only needs to estimate two parameters: the interarrival times of retailers’ orders, and
the size of each order.

5.3.1 Demand Approximation

We first characterize the distribution of size of each order that each supplier faces at
warehouse. The order process from each retailer follows an independent Erlang process,
and hence the long run arrival rate of aggregate orders from all retailers at warehouse
is:

λ0 ,
∑
j∈R

λj
Qj

.

Thus, the long run the probability that an order at the warehouse comes from retailer
j is:

Pj(Qj) =
λj/Qj

λ0

.

Then, we obtain the distribution of order size:

OS(x) = Prob(order size = x) =
∑
j∈R

Pj(Qj) ·
(
Qj

x

)
θxij(1− θij)Qj−x. (5.4)

The expected of order size is:

E(OS) =
∑
j∈R

λj/Qj

λ0

·Qj ·
λij
λj

=
∑
j∈R

λij
λ0

. (5.5)

The variance of order size is:

V ar(OS) =
∑
j∈R

(λj/Qj

λ0

)2

·Qj ·
λij
λj

(1− λij
λj

) =
∑
j∈R

λij(λj − λij)
λ2

0Qj

. (5.6)

The demand size at the warehouse for each supplier actually follows a compound Bino-
mial distribution, but it is complicated to estimate (Q,S,λ) individually since these
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are based on the private information of each retailer. In addition, it is not necessary to
do so since the supplier does not care which specific retailer places an order. Typically,
the number of retailers in this setting is large enough that suppliers can use the sample
distribution from historical orders as a good approximation.

Next we analyze the interarrival times of orders from all retailers. We have cal-
culated the rate of aggregate orders from all retailers at the warehouse: λ0. We also
know that under a (Q,S) policy, the order interval from each retailer follows an Erlang
distribution, and orders from different retailers are independent.

From the literature, we know that the superposition of independent renewal pro-
cesses can be asymptotically well-approximated by a Poisson process Teresalam and
Lehoczky (1991). As we observe in Figure 5.2, when the number of retailers is rel-
atively large (hundreds of retailers are common in the settings that motivated this
work), the arrivals of orders at the warehouse can in fact be well-approximated by a
Poisson process. Hence, each supplier can estimate the demand arrival rate using the
average interarrival time.

Figure 5.2: Distribution of Aggregate Orders at Warehouse

As we calculated above, λ0 is the rate for the approximate Poisson demand process.
For each supplier, this rate can be obtained from historical ordering data, without
requiring detailed information from each retailer. Thus, in the following derivation, we
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use the compound Poisson process to approximate orders from all retailers at ware-
house.

To evaluate the long run cost for each supplier at the warehouse, we introduce a
Markov chain. We define a cycle as the time between two consecutive arrivals of replen-
ishments at the warehouse, as illustrated in Figure 5.3. We first evaluate average cycle
cost conditioning on cycle starting inventory s0, we then characterize the stationary
distribution of cycles with different starting inventory, and finally we take the weighted
average to calculate the long run average cost.

Figure 5.3: Installation (s, S) policy for suppliers

5.3.2 Demand During Lead Time

As we discuss above, aggregate orders from different retailers can be viewed as a com-
pound Poisson process at the warehouse, where the rate and distribution of demand
size can be obtained from historical data. Beckman proved that an (s, S) policy is op-
timal for such a system if unmet demand is backordered Beckmann (1961). However,
in our model, suppliers must meet retailers’ orders and we assume there is a penalty
cost associated with each unmet demand (e.g., a cost to expedite delivery from other
sources), so the model is actually equivalent to a lost sales model.

In our model, each supplier follows an installation (s, S) policy. That is, each sup-
plier places an order to raise warehouse inventory position to S whenever its warehouse
inventory position drops to or below s. For mathematical convenience, we also assume
there is at most one replenishment on delivery, e.g., s < S − s.. This is the same
simplifying assumption as in Archibald and Silver (1978), which only slightly changes
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the result but significantly simplifies analysis.
We introduce more notation in this cost evaluation, as illustrated in Figure 5.4.

Since we evaluate cost for each supplier separately, subscript i for supplier is omitted
from now on.

• pi: probability of demand size i, i = 0, 1, · · · , D, where D is the largest demand
size (notice that demand size can be 0 when the retailer only orders other prod-
ucts)

• s0: the starting inventory position (also inventory level) of the cycle

• T (s0,m): the long run average time spent in state m when the cycle starting
inventory level is s0. We label inventory s0 state 0 (so the same inventory level
can be different states in different cycles when s0 is different)

• P (s0,m): the probability that state m is ever visited in a cycle with starting
inventory s0

• L(s0): the long run average cycle length with starting inventory s0

• D(k): the probability that the total units of the product required by all retailers
during lead time equals k

Figure 5.4: Transition states of inventory levels
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Since we define cycle starting inventory to be s0, we know

P (s0, 0) = 1. (5.7)

When a replenishment has not been triggered, so k = 1, 2, · · · , s0 − s + 1, and the
next order from a retailer occurs in the same cycle, we have the following transition
function:

P (s0, k) =
p1

1− p0

· P (s0, k − 1) + · · ·+ pk
1− p0

· P (s0, 0)

=
1

1− p0

min(D,k)∑
j=1

pj · P (s0, k − j) (5.8)

where pi
1−p0

is the conditional probability when demand is strictly positive. Further-
more, once a state is visited, the number of periods the system stays in the same state
follows a geometric distribution, and therefore

T (s0, k) =
P (s0, k)

λ0 · (1− p0)
. (5.9)

Combining (5.8) and (5.9), we have

T (s0, k) · λ0 · (1− p0) =
k−1∑
i=0

pi · T (s0, i) · λ0.

That is,

T (s0, 0) =
1

λ0(1− p0)

T (s0, k) =
k−1∑
i=0

pi
1− p0

T (s0, i). (5.10)

Therefore the average cycle length is the sum of lead time and the time before a
replenishment is triggered. That is,

L(s0) = L+

s0−s−1∑
i=0

T (s0, i). (5.11)

Next we characterize the distribution of total demand during leadtime. As a compound
Poisson process, the total demand during a given time can be calculated by probabil-
ity generating function (PGF). By extending Adelson’s result for PGF of compound
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Poisson process Adelson (1966), we know that the PGF for the lead time demand is:

PGF (lead time demand) = exp
(
−

D∑
i=0

λ0Lpi

)
· exp

( D∑
i=0

λ0Lpix
i
)
. (5.12)

Thus

D(k + 1) =
λ0L

k + 1

(
p1D(k) + 2p2D(k − 1) + · · ·+ (k + 1)pk+1D(0)

)
=

λ0L

k + 1

(min(D,k+1)∑
j=1

j · pj ·D(k + 1− j)
)

(5.13)

where

D(0) = exp
(
−

D∑
i=1

λ0Lpi

)
= exp(− λ0L(1− p0)). (5.14)

Then, according to (5.13) and (5.14), we can recursively calculate the distribution of
lead time demand.

5.3.3 Inventory Holding Cost at the Warehouse

In this subsection, we calculate the average inventory holding in a cycle with starting
inventory s0. Before a replenishment is triggered (that is when k > s0 − s), T (s0, k)
characterizes the average time in state k in the current cycle. Thus, the average
inventory cost incurred before replenishment is:

s0−s−1∑
i=0

T (s0, i) · (s0 − i). (5.15)

If the lead time is infinity, the average inventory holding cost incurred during lead time
is:

s0∑
i=s0−s

T (s0, i) · (s0 − i). (5.16)

However, in our case with finite lead time L, (5.16) over-calculates the inventory holding
cost when cycle ending inventory is positive. If we denote average on hand inventory
after a lead time L bys:

W (k) =
k−1∑
i=0

(k − i)D(i) (5.17)
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the average inventory holding cost after L is:

s0∑
i=s0−s

P (s0, i)
∑s0−i

j=0 (s0 − i− j) ·D(j)

(1− p0)λ0

=

s0∑
i=s0−s

T (s0, i)

s0−i∑
j=0

(s0 − i− j) ·D(j)

=

s0∑
i=s0−s

T (s0, i) ·W (s0 − i). (5.18)

Combining (5.15), (5.16) and (5.18), we obtain the inventory holding cost for the cycle:

H(s0) ,
s0∑
i=0

T (s0, i) · (s0 − i)−
s0∑

i=s0−s

T (s0, i)

s0−i∑
j=0

(s0 − i− j) ·D(j). (5.19)

5.3.4 Lost Sales Cost at the Warehouse

In this subsection, we calculate the penalty cost for suppliers when their inventory
at the warehouse is insufficient to cover orders from retailers. Since suppliers are
required to fulfill the unmet demand from other sources, the penalty cost can be viewed
equivalently as a lost sales cost. To simply calculation, we denote the average demand
size of orders from retailers:

d =
D∑
i=1

i · pi.

Thus the average inventory level by the end of the cycle is:

s0 − λ0Ld−
( s0−s−1∑

i=0

T (s0, i)
)
λ0d. (5.20)

Since suppliers must satisfy all orders from retailers, so warehouse inventory cannot
be negative, (5.20) is actually the sum of two components: average inventory on hand
(always nonnegative) and average lost sales. Inventory on hand can be calculated by
the convolution of the last inventory position before the replenishment trigger point
and the demand during the lead time:

s0−s−1∑
i=0

P (s0, i)

s0−i∑
j=s0−s−i

pj ·W (s0 − i− j) =

s0−s−1∑
i=0

P (s0, i)

min(D,s0−i)∑
j=s0−s−i

pj ·W (s0 − i− j).

(5.21)
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Therefore the average lost sales in a cycle is:

LS(s0) , −s0 + λ0Ld+
( s0−s−1∑

i=0

T (s0, i)
)
λ0d+

s0−s−1∑
i=0

P (s0, i)

min(D,s0−i)∑
j=s0−s−i

pj ·W (s0 − i− j).

(5.22)

5.3.5 Long Run Average Cost

In each cycle with starting inventory s0, we know by renewal theory that the average
cost can be obtained as follows:

c(s0, s) =
ki + p0

i · LS(s0) + hi ·H(s0)

L(s0)
. (5.23)

Thus, we only need to determine the probability of different cycle starting inventories.
The weighted average of cycle cost is the long run average cost. The starting inventory
of the next cycle only depends on the starting inventory of current cycle. That is,
the cycle starting inventory is Markovian. It is easy to see that this system if posi-
tive recurrent and thus this stationary distribution exists. Next, we characterize the
transition probabilities. We introduce more notation to simplify derivation:

• Pij(s, S): the transition probability of starting inventory state i to starting in-
ventory state j when an (s, S) policy is implemented (where states defined as
before)

• fk(s0): the probability that state k is the first state immediately after a replen-
ishment is made, in a cycle of starting inventory s0

fk(s0) can be calculated by conditioning on the last state before a replenishment is
triggered:

fk(s0) =


s0−s−1∑
m=0

P (s0,m)pk−m
1−p0

, ∀k = s0 − s, · · · , s0 − 1

1−
s0−1∑

m=s0−s
fm(s0), k = s0.

(5.24)

The starting inventory of the next cycle only depends on fk(s0) and the demand during
the lead time. Then, we can calculate the transition matrix as follows. If j = S, then
either no demand occurs during lead time, or the inventory has droped to 0 when
the replenishment is made (so that under a lost sales model the inventory level stays
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the same until the next cycle);if s < j < S, we also consider two cases depending on
whether the inventory levels drops to 0 during lead time. Therefore

Pij(s, S)

=



i−(S−j)−1∑
k=i−s

fk(i) ·D(S − j) + fi−(S−j)(i) · (1−
S−j−1∑
k=0

D(k)), j ∈ {S − s, · · · , S − 1}

and i ∈ {s+ 1, · · · , S},

1−
i−1∑
k=i−s

fk(i) +D(0) · (1− fi(i)) = fi(i) +D(0) · (1− fi(i)), i ∈ {s+ 1, · · · , S}, j = S

0, otherwise.

(5.25)

Finally, using transition matrix {Pij(s, S)} in the continuous Markov Chain, we obtain
the stationary distribution πi(s, S). The long run average cost is therefore

C(s, S) =

S∑
i=s+1

πi(s, S) · c(i, s, S) · L(s0)

S∑
i=s+1

πi(s, S) · L(s0)

. (5.26)

5.3.6 Analysis of c(s0, s)

To evaluate long run average cost for the system, we need to calculate c(s0, s) and the
corresponding transition matrix, which can be extremely time consuming. Thus we
first analyze c(s0, s). By the definition of an (s, S) policy, we know that s < s0 ≤ S.
In Figure 5.5 we plot the holding cost, inventory-deficiency cost, and total cost, when
the replenishment trigger point s and cycle start inventory s0 vary.
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Figure 5.5: Cost for c(s0, s)

As we see from Figure 5.5, the total cost c(s0, s) appears to be monotonic and convex
in (s0, s), although of course this might not hold true for the general case, depending
on cost parameters. When the order-up-to level S is fixed, s0 almost determines the
cycle length as well as the average lost sales, because lead time is fixed after the
replenishment is triggered. Thus, when average cost is taken as the ratio of the two,
the lost sales cost appears (numerically) to be monotonic in s and s0. On the other
hand, the holding cost depends on the average inventory on hand as well as the cycle
length. The larger s0 − s is, the longer the cycle length will be. Thus, we can search
to find the optimal (s∗0, s

∗). Notice that cycle cost c(s0, s) does not depend on S, so s∗0
and s∗ are optimal for all S.

5.3.7 Optimizing Exact C(s, S)

Now that we have completed the evaluation of each c(s0, s), we can combine them
to obtain C(s, S). An exact solution can be found by calculating all c(s0, s) and
then applying (5.26). We assume that there exists at most one outside order, to that
s < S−s, and conduct a numerical study to evaluate C(s, S) for different combinations
of basestock s and order-up-to level S.
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Figure 5.6: Exact cost for C(s, S)

As we observe in Figure 5.6, the total cost for (s, S) policy appears numerically to
be convex. Thus, we can efficiently search to find the optimal s∗ and S∗.

5.3.8 An Approximation of C(s, S)

In the exact method of C(s, S) evaluation detailed in the previous subsection, it is very
time consuming to calculate the stationary distribution of s0 using (5.25).

Thus, we also propose the following heuristic to evaluate C(s, S): After an order
is placed, the time to next cycle is fixed to the lead time L, and the current inventory
position is S. Thus, the starting inventory s0 of the next cycle depends on how many
units of demand are consumed from the current inventory. Notice that this is not
equivalent to the demand that occurs during the lead time, because when inventory
drops to 0, all subsequent demand is satisfied from an outside source, and thus does
not affect inventory position at the warehouse. Furthermore, by our assumption that
s < S−s, the starting inventory position is at least S−s. Hence, we use the truncated
lead time demand to replace actual inventory level change. That is,

C(s, S) ≈ C̃(s, S) =

∑S
i=S−sD(S − i) · c(i, s) · L(i)∑S

i=S−sD(S − i) · L(i)
. (5.27)

The loss due to this approximation is minor. As we observe from Figure 5.7, the
total cost approximation is almost the same as the exact solution, but it is much
faster and easier to calculate. We can also search a to find s∗ and S∗ based on this
approximation.
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Figure 5.7: Cost for C(s, S) and C̃(s, S)

Figure 5.8: Histogram of cost ratio C̃(s,S)
C(s,S)

5.3.9 Approximation of s∗ and S∗

Alternatively, we can adopt a heuristic heuristic from Archibald (1981) to solve for s∗

and S∗. Recall that we have already solved for s∗ and s∗0 in the last subsection. If we
compare c(s0, s) and C(s, S) in Figure 5.9, C(s, S) is a linear combination of all feasible
c(s0, s) over different s0, where the coefficients are determined by S. c(s0, s) appears
to be relatively robust near (s∗0, s

∗), and thus we can approximate S∗ as follows:

S̃∗ = ds∗0 + d̄λL− LS(s∗0)e, (5.28)
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where d̄λL is the average demand occured during lead time, and d̄λL− LS(s∗0) is the
average inventory decrease during lead time.

Figure 5.9: Comparison of cycle cost and long run cost

5.4 Conclusion

In this chapter, we consider a stochastic one warehouse multi-supplier multi-retailer
problem operated in a decentralized fashion. We assume independent Poisson demand
for each product occurs at each retailer. To coordinate replenishment, each retailer
follows an aggregate (Q,S) policy, i.e., an order is placed to raise inventory position
to S whenever total demand since the last order at that retailer reaches Q. In this
setting, demand at the warehouse can be well-approximated by a compound Poisson
process, and thus inventory at the warehouse is managed via an (s, S) policy. We
develop optimal and heuristic algorithms to optimize parameters for these policies in
this model.

Our ultimate goal is to better understand how to effectively operate collaborative
logistics systems in settings similar to the one analyzed in this paper. Thus, we are
currently working to extend these models to more general operating policies.
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Chapter 6

Conclusions

In this dissertation, we analyze decentralized collaboration among multiple suppliers
and multiple retailers. A central warehouse serves as both the outbound warehouse for
suppliers and inbound warehouse for retailers to motivate collaboration. Suppliers send
their products for different retailers to the warehouse first, and thge warehouse will send
products from different suppliers to the same retailer in the same delivery. In Chapter 3
and Chapter 4, we modeled setting models in both uncapacitated and truck-capacitated
deterministic versions, where suppliers and retailers each make their own decision.
By comparing centralized lower bounds and decentralized policies, we showed that
decentralized policies are easy to implement in practice, and can protect information
privacy, while the loss due to decentralization is minor. Thus it is unnecessary to make
a huge effort to centralize these system, and this decentralized mode of operation is
consistent with our observation of many 3PL companies.

We also considered a stochastic version of the problem in Chapter 5, where indepen-
dent Poisson demand occurs at different retailers for different products. To coordinate
replenishment, each retailer follows an aggregate (Q,S) policy, i.e., an order is placed
to raise inventory position to S whenever total demand since the last order at that
retailer reaches Q. In this setting, demand at the warehouse can be well-approximated
by a compound Poisson process, and thus inventory at the warehouse is managed via
an (s,S) policy. We develop optimal and heuristic algorithms to optimize parameter
settings in this model.
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Axsäter, S. (1990). Simple solution procedures for a class of two-echelon inventory
problems. Operations Research, 38(1):64–69.
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Appendix A

A.1 Proof of Theorem 1

Proof. Proof. Notice CIR(Ts,Tr) is the sum of several maximum functions which are
strictly convex, thus CIR(Ts,Tr) is strictly convex. Therefore the local minimum is
also global minimum.

Let T = (Ts∗,Tr∗) and ∀ direction v = (vs,vr) = (vs1, · · · , vsn, vr1, · · · , vrm). T is
a local minimum if and only if the directional derivatives are nonnegative, so that:

∂CIR
∂v+

= lim
t→0+

CIR(T + tv)− CIR(T )

t
≥ 0.

We do not need to consider the left derivative because:

∂CIR
∂v−

=
∂CIR
∂(−v)+

.

CIR(T ) =
∑
i∈S

ki
Ti

+
∑
j∈R

kj
Tj

+
∑
i∈S

∑
j∈R

gijTj +
∑
i∈S

∑
j∈Li∪Gi

max(Ti, Tj)g
ij,

so

∂CIR
∂v+

=
∑
i∈S

− ksi v
s
i

(T si )2
+
∑
j∈R

−
krjv

r
j

(T rj )2
+
∑
i∈S

∑
j∈Li

vsi g
ij +

∑
i∈S

∑
j∈Gi

vrjg
ij

+
∑
i∈S

∑
j∈Ei

max(vsi , v
r
j )g

ij +
∑
i∈S

∑
j∈R

vrjgij. (A.1)

We first consider any positive and negative basic directions (v+,v−) where given
any subset W ⊂ S ∪R:

v+:


vsi = 1, ∀i ∈ W
vrj = 1, ∀j ∈ W
vsi = vrj = 0, otherwise.

and v−:


vsi = −1, ∀i ∈ W
vrj = −1, ∀j ∈ W
vsi = vrj = 0, otherwise.
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Hence

∂CIR
∂v+

+

=
∑
i∈W

− ksi
(T si )2

+
∑
j∈W

−
krj

(T rj )2
+
∑
i∈W

∑
j∈Li

gij +
∑
j∈W

∑
i:j∈Gi

gij +
∑

i∈W or j∈W,
j∈Ei

gij +
∑
j∈W

gij(A.2)

∂CIR
∂v+
−

=
∑
i∈W

ksi
(T si )2

+
∑
j∈W

krj
(T rj )2

−
∑

i∈W or j∈W,
j∈Ei

gij −
∑
j∈W

gij. (A.3)

If W = P (U∗l ) for some l, then by first order necessary conditions ∂CIR
∂v+ = 0.

Thus from (A.2) and (A.3) we obtain (C1). If W is a subset of P (U∗l ) for some l,
then ∂CIR

∂v+ ≥ 0. From (A.2) and (A.3) we obtain (C2). Therefore (C1) and (C2) are
necessary conditions of optimality. To prove sufficiency, for any non-basic direction v,
we can decompose the direction v = b1v1 + (b2− b1)v2 + ...+ (bp− bp−1)vp, where vx
are basic directions with their coefficients vix, v

j
x ∈ {0, 1,−1} and b1 ≤ b2 ≤ · · · ≤ bp.

Then we observe ∂CIR
∂v+ = b1

∂CIR
∂v+

1
+ (b2− b1)∂CIR

∂v+

2
+ ...+ (bp− bp−1)∂CIR

∂v+

p
. That means any

direction can be decomposed into a summation of basic directions. Thus if (C1) and
(C2) hold, ∂CIR

∂v+ ≥ 0, which guarantees optimality.

A.2 Proof of Lemma 1

Proof. Proof. At the beginning of each round, we pick the largest order interval that
can be obtained from the remaining suppliers and retailers. Then we delete that
supplier, retailer, or the pair from the problem. By repeating the above procedure,
R∪S is partitioned into several groups, which satisfies the condition (C1) in Theorem
1. Notice that the order interval will increase after grouping, so we can prove optimality
by contradiction.

Assume the solution (Ts∗, T r∗) we obtained from MSIRR algorithm is not opti-
mal, then there exist a base direction v such that ∂CIR

∂v+ < 0. That is, there exists at
least one set A of suppliers and retailers that can form a new group with a larger order
interval and smaller total cost. A cannot be a single supplier (or a single retailer), oth-
erwise the supplier (retailer) will be selected and form a single cluster by the algorithm.
Then we know the new order interval is:

TA =

√√√√√√
∑
i∈A

ksi +
∑
j∈A

krj∑
i∈A,j∈Li

gij +
∑

j∈A,i:j∈Gi
gij +

∑
j∈A,i∈S

gij +
∑

i∈A,j∈A
gij
.

Since max
l

( kl
hlthen,

) ≥
∑
i ki∑
i hi

, there exists at least one supplier î and one retailer ĵ
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such that

Tîĵ =

√√√√√ ks
î

+ kr
ĵ∑

j∈Lî
gîj +

∑
i:ĵ∈Gi

giĵ +
∑
i∈S

giĵ + gîĵ
> TA.

However, î and ĵ are grouped by the algorithm, and the grouping is made in the
order of T calculated in step 2. Therefore, T s∗

î
= T r∗

ĵ
> Tîĵ > TA > T s∗

î
by the

assumption of TA and the observation that T increases after grouping.

A.3 Proof of Theorem 2

With this rounding rule, we preserve the order of intervals in the solution. That is;

T s∗i ≥ T r∗j ⇒ T s∗i,P ≥ T r∗j,P .

PoT rounding leads to a new partition:

U∗l√
2
≤ UP∗

l <
√

2U∗l .

While some of the P (U∗l ) may be combined after rounding, for the convenience of
comparison, we continue to consider them separately. Hence, the previous partition
for R ∪ S still applies, so that P (U∗l ) = P (UP∗

l ). Therefore

CPOT (Ts∗P ,Tr∗P )

=
∑
i∈S

ksi
T s∗i,P

+
∑
j∈R

krj
T r∗j,P

+
∑

i∈S,j∈R

max (T s∗i,P , T
r∗
j,P ) · gij +

∑
i∈S,j∈R

T r∗j,P · gij

=
∑
i∈S

ksi
T s∗i,P

+
∑
j∈R

krj
T r∗j,P

+
∑

i∈S,j∈Li∪Ei

T s∗i,P · gij +
∑

j∈R,i:j∈Gi

T r∗j,P · gij +
∑

i∈S,j∈R

T r∗j,P · gij

=
∑

l∈{1,···,k}

(K(UP∗
l )

UP∗
l

+H(UP∗
l ) · UP∗

l

)
.

Following the standard approach, for each P (U∗l ) we can apply the PoT optimality
bound:

C
U∗l
IRS(Ts∗,Tr∗) =

K(UP∗
l )

UP∗
l

+H(UP∗
l )) · UP∗

l

< C
√

2U∗l
IRS (

√
2Ts∗,

√
2Tr∗)

= C
Ul∗√

2

IRS(
Ts∗√

2
,
Tr∗√

2
).
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Therefore

C
UP∗l
IRS (Ts∗P ,Tr∗P ) <

1

2

(
C
√

2U∗l
IRS (

√
2Ts∗,

√
2Tr∗) + C

U∗l√
2

IRS(
Ts∗√

2
,
Tr∗√

2
)
)

=
1

2
(
√

2 +

√
2

2
)C

U∗l
IRS(Ts∗,Tr∗).

Summing over the C
UP∗l
IRS (Ts∗P ,Tr∗P ), we get the standard Power-of-Two perfor-

mance bound: 1
2
(
√

2 +
√

2
2

).

A.4 Proof of Theorem 3

Proof. Proof. We use a similar methodology to Roundy’s approach (Roundy, 1985) to
show CIR(Ts∗, T r∗) is a cost lower bound. We start by creating exactly the same
model except that cost gij and gij are replaced by ηij and ηij. We observe that the total
cost of an arbitrary policy can be decomposed into several EOQ-like problems. Next
we carefully select alternative parameters ηij and ηij to satisfy the following conditions:

(C3) The sum of optimal decomposed costs with alternative parameters is the same
as CIR(Ts∗,Tr∗)

(C4) Any feasible policy costs no more with alternative cost parameters ηij and ηij

than with original parameters gij and gij.

We introduce additional notation for this proof:
• ηij and ηij: alternative cost parameters (the original parameters are gij and gij)
• ηi =

∑
j∈R η

ij: total cost associated with supplier i
• ηj =

∑
i∈S ηij: total cost associated with retailer j

• ni(t): the number of orders placed by warehouse to supplier i in [0, t)
• nj(t): the number of orders placed by retailer j to warehouse in [0, t)
• Iij(t): the inventory of product i at retailer j at time t
• Sij(t) ≥ Iij(t): the inventory of product i at retailer j or at warehouse but will

be sent to retailer j at time t
• Ii(t) = 1

ηi

∑
j∈R

ηijSij(t): weighted average inventory of product i at time t, weighted

by the associated alternative cost over all retailers
• Ij(t) = 1

ηj

∑
i∈S

ηijIij(t): weighted average inventory at retailer j, weighted by the

associated cost over all products.
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Therefore for an arbitrary policy, the total cost in [0, t) can be decomposed:∑
i∈S

ni(t)k
s
i +

∑
j∈R

nj(t)k
r
j +

∑
j∈R

∑
i∈S

∫ t′

0

(ηijIij(t) + ηijSij(t))dt

=
∑
i∈S

(
ni(t)k

s
i +

∫ t′

0

ηiIi(t)dt

)
+
∑
j∈R

(
nj(t)k

r
j +

∫ t′

0

ηjIj(t)dt

)
. (A.4)

Ii(t) and Ij(t) are different from system inventory since they are weighted by cost.
However, Ii(t) is right continuous in t, decreases linearly with constant slope, and
jumps only when the warehouse replenishes inventory of product i. Similarly Ij(t) also
decreases linearly with constant slope and jumps whenever retailer j places an order.
Hence Ij(t) and Ii(t) functions as inventory does in EOQ models. Therefore the sum
of optimal decomposed costs is a lower bound of cost of arbitrary policy.

To satisfy (C3), we need the sum of optimal EOQ costs equal to CIR(Ts∗,Tr∗).
By (3.3) and (A.4), (C3) is equivalent to:∑

i∈S

2
√
ksi ηi +

∑
j∈R

2
√
krjηj =

∑
l∈{1,···,k}

2
√
K(U∗l ) ·H(U∗l ) = 2

∑
i∈S

ksi
T s∗i

+ 2
∑
j∈R

krj
T r∗j

.,

(A.5)

By the first order condition of the decomposed costs, it is sufficient to show (Ts∗,Tr∗)
are the optimal solutions to the decomposed EOQ-like problems, that is

∑
i∈S

ηij = ηj =
krj

(T r∗j )2 , ∀j ∈ R∑
j∈R

ηij = ηi =
ksi

(T s∗i )2 , ∀i ∈ S.
. (A.6)

To satisfy (C5) we need∑
j∈R

∑
i∈S

∫ t′

0

(ηijIij(t) + ηijSij(t))dt ≤
∑
j∈R

∑
i∈S

∫ t′

0

(gijIij(t) + gijSij(t))dt. (A.7)

Since Iij(t) ≤ Sij(t), we only need
ηij ≥ gij, ∀i ∈ S, j ∈ R
ηij + ηij = gij + gij, ∀i ∈ S, j ∈ R
ηij, ηij ≥ 0, ∀i ∈ S, j ∈ R

(A.8)

Now we have shown (A.6) and (A.8) are sufficient conditions for (C3) and (C4). It
remains to show that there exist alternative parameters ηij and ηij satisfying (A.6) and
(A.8). In the following proof we use the subdifferential to show the existence of ηij and
ηij.
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Claim 1. There exist alternative cost parameters satisfying (A.6) and (A.8).

Proof. Proof. ηij and ηij defined in (A.9) satisfy (A.8) for all 0 ≤ Aij ≤ gij:

ηij =


gij if T r∗j < T s∗i
gij + gij if T r∗j > T s∗i
gij + Aij if T r∗j = T s∗i

and ηij =


gij if T r∗j < T s∗i
0 if T r∗j > T s∗i
gij − Aij if T r∗j = T s∗i

(A.9)

We determine appropriate Aij to satisfy (A.6) later.
By Danskin’s theorem, the subdifferential of a finite pointwise maximum function

is the convex hull of the subdifferential of corresponding active functions (Bertsekas,
1999). Hence

∂( max(T si , T
r
j )) =


∂T rj , if T si < T rj
∂T si , if T si > T rj
αij · ∂T si + (1− αij) · ∂T rj , if T si = T rj

Therefore the subdifferential of CIR(Ts,Tr) is

∂CIR(Ts,Tr) =
∑
i∈S

−ksi
(T si )2

∂T si +
∑
j∈R

−krj
(T rj )2

∂T rj +
∑
i∈S

∑
j∈Li

gij∂T si +
∑
i∈S

∑
j∈Gi

gij∂T rj

+
∑
i∈S

∑
j∈Ei

gij
(
αij · ∂T si + (1− αij) · ∂T rj

)
+
∑
i∈S

∑
j∈R

gij∂T
r
j . (A.10)

Since (Ts∗, T r∗) is the optimal solution to (PIR), which is convex, we know 0 ∈
∂CIR(Ts∗, T r∗).

We substitute 0 for each entry in ∂CIR(Ts∗, T r∗), and by definition there exists
αij ∈ [0, 1] such that

− ki
(T ∗i )2 +

∑
j∈Li

gij +
∑
j∈Ei

αijg
ij = 0, ∀i ∈ S

− cj
(T ∗j )2 +

∑
i:j∈Gi

gij +
∑

i:j∈Ei
(1− αij)gij +

∑
i∈S

gij = 0, ∀j ∈ R
(A.11)

We let Aij = (1− αij)gij and substitute into (A.11), then we get all the equations
in (A.6). Therefore Claim 1 is proved.
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In summary, combining (A.4), (A.7) and (A.5), we know:

∑
i∈S

ksini(t
′) +

∑
j∈R

krjnj(t
′) +

∑
j∈R

∑
i∈S

∫ t′

0

(gijIij(t) + gijSij(t))dt

≥
∑
i∈S

(
ksi
T si

+ ηiT
s
i ) +

∑
j∈R

(
krj
T rj

+ ηjT
r
j )

≥CIR(Ts∗,Tr∗).

A.5 Proof of Theorem 4

Proof. Proof. Compared to the optimal order interval in the centralized model,

Γr∗j =

√√√√ krj∑
i∈S

(gij + gij)

≤
√√√√ krj∑

i∈S
gij +

∑
i:j∈Li∪Ei

gij
≤ T r∗j .

A.6 Proof of Theorem 5

Proof. Proof. In this proof, we use {x} to denote fractional part of x. We first consider

the case when aij =
pij
qij

is rational. Because the set {n Γsi
Γr∗j
}, {(n + 1)

Γsi
Γr∗j
}, · · · , {(n +

qij − 1)
Γsi
Γr∗j
} is equivalent to the set of 0, 1

qij
, 2
qij
, · · · , qij−1

q
, ∀n ∈ N, Iwij (t) is cyclic with

cycle length qijΓ
s
i . Due to symmetry, we can calculate the long run average inventory

A(Iwij ) by “moving and adding” inventory levels for every qij consecutive order cycles
of supplier i to form “blocks”, as illustrated in Figure A.1:
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Figure A.1: Γsi > Γr∗j , inventory from supplier i to retailer j

Next we need to determine the fraction of blocks that are of height bijdijΓ
r∗
j . Notice

that {n Γsi
Γr∗j
} ·Γr∗j is the time between the nth replenishment from supplier i and retailer

j’s last order until then, assuming the 0th order is placed at time 0. Therefore, if
1
qij
≤ {nΓr∗j

Γsi
} ≤ pij−1

qij
, then in the nth order cycle of supplier i, (between the nth and

(n − 1)th order of supplier i), supplier i needs to raise inventory to (bij + 1)Γr∗j dij.

Otherwise it only raises the inventory level to bijΓ
r∗
j dij. Notice that when {nΓr∗j

Γsi
} = 0,

even though retailer j places bij + 1 orders, supplier i only needs to raise inventory to
bijΓ

r∗
j dij. This is because one of retailer j’s order is placed simultaneously with the

replenishment of supplier i. Consequently,

Hijl(Γsi ,Γ
r∗
j ) =

1

2

(
(bij + 1)

pij − 1

qij
+ bij

qij + 1− pij
qij

)
Γjh

idij

=
1

2

(
bij +

pij
qij
− 1

qij

)
Γjh

idij

=
1

2
(
Γsi
Γrj
− 1

qij
)Γjh

idij

= (Γsi −
Γrj
qij

)gij

For the case of irrational bij, we let qij →∞ and get Hijl(Γsi ,Γ
r∗
j ) = Γsig

ij

A.7 Proof of Lemma 2

Proof. We first claim the following technical result:
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Claim 2. Let {x} return the fractional part of x. ∀a > 0,∀b ∈ (0, 1) and N ∈ N, we
consider two cases. If a is irrational, then

1

N

N∑
n=1

1({na} ∈ [b, b+ ε])
N→∞−−−→ ε, ∀b s.t. b+ ε ≤ 1.

Otherwise a = p
q
, where p and q are coprime, then {na} only takes value in

0, 1
q
, · · · , q−1

q
, and

1

N

N∑
n=1

1({na} =
k

q
)
N→∞−−−→ 1

q
, k = 0, 1, · · · , q − 1.

Claim 2 is a corollary of a classical result, Weyl’s Equidistribution Theorem (see,
e.g., (Weyl, 1910)). Then we know

∆ij(k) = {
kΓr∗j
Γsi
} · Γsi .

This is because the kth order of retailer j occurs at kΓr∗j , and supplier i has placed

bkΓr∗j
Γsi
c orders up to then. Thus, the last order from supplier i is placed at bkΓr∗j

Γsi
c · Γsi .

The time difference is therefore kΓr∗j − b
kΓr∗j
Γsi
c · Γsi = {kΓr∗j

Γsi
} · Γsi .

Then we substitute a by
Γr∗j
Γsi

in Claim 2. If
Γr∗j
Γsi

is rational, we have

1

N

N∑
k=1

∆ij(k) =
Γsi
N

N∑
k=1

{
kΓr∗j
Γsi
} N→∞−−−→ Γsi

q̃ij

q̃ij−1∑
k=0

k

q̃ij
=

Γsi (q̃ij − 1)

2q̃ij
.

On the other hand, ∆ij(k) + ∆ij(k) = Γsi because the sum is the time between last
and next order of supplier i. Therefore

1

N

N∑
k=1

∆ij(k) =
1

N

N∑
k=1

(Γsi −∆ij(k))
N→∞−−−→ Γsi −

Γsi (q̃ij − 1)

2q̃ij
=

Γsi (q̃ij + 1)

2q̃ij
.

The proof is similar when
Γr∗j
Γsi

is irrational.

A.8 Proof of Theorem 6

Proof. We first consider the case when bij is irrational. In each order cycle of retailer
j, inventory is held from the last replenishment of supplier i in this cycle, to the end
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of the cycle when retailer j orders the inventory. The long run average of this holding
time is

Γsi
2

(from Lemma 2). The inventory level is dijΓ
r
j , the size of each order from

retailer j. Hence the long run average total cost in a cycle of retailer j is
Γsi
2
dij ·Γrj · hi.

Cost per unit time of Iwij (t) is
Γsi
2
dij · Γrj · hi/Γr∗j = gijΓsi . The case when bij is rational

is similar. In summary,

Hg
ij(Γ

s
i ,Γ

r∗
j ) =


1

Γr∗j
(Γr∗j h

idij · q̃ij−1

2q̃ij
Γsi ) =

q̃ij−1

q̃ij
gijΓsi , if

Γr∗j
Γsi
∈ Q

1
Γr∗j

(Γr∗j h
idij · 1

2
Γsi ) = gijΓsi , otherwise

.

A.9 Proof of Theorem 7

To solve (PDSzio
i ), we separate the feasible region into two parts, depending on whether

or not the supplier i has the same order interval as any retailer. We find the local
optimal order interval in each case, and then search for the global optimal solution.

1. ∀j ∈ R,Γsi 6= Γr∗j :
In this case

∑
j∈Li∪Gi

gij =
∑
j∈R

gij is a constant, so

Czio
i (Γsi ) =

ki
Γsi

+
∑

j∈Li∪Gi

gijΓsi =
ki
Γsi

+
∑
j∈R

gijΓsi . (A.12)

By the first order condition,

Γ̃s∗i =

√√√√ ki∑
j∈R

gij
. (A.13)

2. Γsi = Γr∗j for some j ∈ R:

In this case
∑

l∈Li∪Gi
gil =

∑
l∈R

gil − gij, and we know

Czio
i (Γr∗j ) =

ki
Γr∗j

+
∑
l∈R

gilΓr∗j − gijΓr∗j .

Compared to (A.12), Czio
i (Γsi ) decreases by gijΓr∗j at all Γr∗j , so Γr∗j is a local

optimum of Czio
i (Γsi ).
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A.10 Proof of Theorem 8

Proof. The proof is also a corollary of the classical Weyl’s Equidistribution Theorem
(see, e.g., (Weyl, 1910)). We first consider the case where ãij is irrational. In each
order cycle of retailer j, inventory is held from the first replenishment of supplier i in
this cycle until the end cycle when retailer j orders the inventory. Applying Lemma 2,
the average time between retailer j’s order to next supplier i’s order is

Γsi
2

, and this is
the average time in retailer j’s order cycle that supplier does not have any inventory.
Hence the remaining time Γr∗j −

Γsi
2

is the long run average time that supplier i holds
inventory in each cycle. The order-up-to level is dijΓ

r
j , which is the size of each order

placed by retailer j. Hence the long run average total cost in a cycle of retailer j is
(Γr∗j −

Γsi
2

)dij · Γrj · hi, so that the holding cost per unit time of Iwij (t) is

(Γr∗j −
Γsi
2

) · dijΓrj · hi/Γrj = (Γr∗j −
Γsi
2

)dij · hi.

The case when bij is rational is similar. In summary,

Hg
ij(Γ

s
i ,Γ

r∗
j ) =


1

Γr∗j
(Γr∗j h

idij · (Γr∗j −
q̃ij+1

2q̃ij
Γsi )) = (2Γr∗j −

q̃ij+1

q̃ij
Γsi )g

ij, if
Γr∗j
Γsi
∈ Q

1
Γr∗j

(Γr∗j h
idij · (Γr∗j − 1

2
Γsi )) = gij(2Γr∗j − Γsi ), otherwise.

.

A.11 Proof of Lemma 3

Proof. Throughout the proof, we define A(x) as long run average of x. That is,

A(x(t)) ,

 lim
T→∞

1
T

∫ T
t=0

x(t)dt, if x(t) is continuous

lim
K→∞

1
K

∑K
k=1 x(k), if x(k) is disctete

We do not worry about existence of A(·) because all inventory levels we consider
here are bounded and piecewise continuous.

To evaluate H l
ij(Γ

s
i ,Γ

r∗
j ), we use echelon inventory:

H l
ij(Γ

s
i ,Γ

r∗
j ) = hi ·

(
lim
T→∞

1

T

∫ T

t=0

Iwij (t)dt

)
= hi · A(Iwij (t)) = hi · A

(
EIwij (t)− Iij(t)

)
.

(A.14)

Since the inventory level at retailer j is cyclic, we obtain

A(Iij(t)) = lim
T→∞

1

T

∫ T

t=0

I ij(t)dt =
1

2
dijΓ

r∗
j . (A.15)
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For A
(
EIwij (t)

)
, we consider two cases:

1. If
Γsi
Γr∗j

is rational:

We first calculate the long run average of starting and ending inventory levels of
supplier i’s replenishment cycles:

A(EIwij (t0−)) = lim
k→∞

1

K

k∑
k=1

EIwij (kΓsi−),

A(EIwij (t0+)) = lim
k→∞

1

K

k∑
k=1

EIwij (kΓsi+),

where t0 ∈ {Γsi , 2Γsi , · · · , kΓsi , · · ·} is a replenishment time for supplier i. Here
t0+ and t0− denote the time immediately before and after replenishment. Thus
EIwij (t0+) and EIwij (t0−) are starting and ending inventory levels of supplier i’s
replenishing cycles. Because EIwij decreases at a constant rate except at replen-
ishment time, it follows that

A
(
EIwij (t)

)
=

1

2

(
A(EIwij (t0−)) + A(EIwij (t0+))

)
.

For the average starting inventory, we claim that immediately after kth replen-
ishment of supplier i, product i’s inventory level at retailer j is:

Iij(kΓsi+) =
(

Γr∗j − Γr∗j {
kΓsi
Γr∗j
}
)
dij.

This is because Γr∗j {
kΓsi
Γr∗j
}dij is the quantity of product i that has been consumed

at retailer j in current cycle of retailer j. Hence
(

Γr∗j − Γr∗j {
kΓsi
Γr∗j
}
)
dij is the

remaining inventory.

From Claim 2, we derive the long run average of Iij(t0+) as follows:

A(Iij(t0+)) = lim
K→∞

1

K

K∑
k=1

Iij(kΓsi+) = lim
K→∞

1

K

K∑
k=1

(
1− {kΓsi

Γr∗j
}
)

Γr∗j dij =
qij + 1

2qij
· Γr∗j dij.

Notice that A(Iij(t0+)) 6= A(Iij(t)) because t0 is restricted in supplier i’s replen-
ishing time. From the setting of the order-up-to policy, we also know

Iwij (t0+) = (bij + 1aij 6=0)Γr∗j dij = A(Iwij (t0+)).
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Therefore

A(EIwij (t0+)) = A(Iij(t0+)) + A(Iwij (t0+)) =
qij + 1

2qij
· Γr∗j dij + (bij + 1aij 6=0)Γr∗j dij.

(A.16)

Since product i is consumed at retailer j at a constant rate, in each order cycle
of supplier i, echelon inventory level Iwij drops by the same amount Γsidij. Hence

A(EIwij (t0−)) = A(EIwij (t0+))− Γsidij. (A.17)

Combining (A.16) and (A.17), we derive the long run average of EIwij (t) as:

A(EIwij (t)) =
1

2

(
A(EIwij (t0+)) + A(EIwij (t0−))

)
=
qij + 1

2qij
· Γr∗j dij + (bij + 1aij 6=0)Γr∗j dij −

1

2
Γsidij

≤ qij + 1

2qij
· Γr∗j dij + (

Γsi
Γr∗j
− 1

qij
+ 1)Γr∗j dij −

1

2
Γsidij (A.18)

≤ 1

2
Γsidij +

3

2
Γr∗j dij (A.19)

In the above derivation, (A.18) holds because bij is the integer part of
Γsi
Γr∗j
. Thus

if aij = 0, then bij =
Γsi
Γr∗j
≤ Γsi

Γr∗j
− 1

qij
+ 1; else

Γsi
Γr∗j
≥ bij + 1

qij
.

2. If
Γsi
Γr∗j

is irrational:

From Lemma 2, we derive Iwij (t0+) = (bij + 1)Γr∗j dij and A(Iij(t0+)) = 1
2
Γr∗j dij.

Similar to the previous case,

A(EIwij (t)) =
1

2

(
A(EIwij (t0+)) + A(EIwij (t0−))

)
=

1

2
· Γr∗j dij + (bij + 1)Γr∗j dij −

1

2
Γsidij

≤ 1

2
Γsidij +

3

2
Γr∗j dij (A.20)

From (A.19) and (A.20),

A(EIwij (t)) ≤
1

2
Γsidij +

3

2
Γr∗j dij. (A.21)

Finally, substituting (A.15) and (A.21) into (A.14),

H l
ij(Γ

s
i ,Γ

r∗
j ) ≤ 1

2
Γsidij +

3

2
Γr∗j dij −

1

2
Γr∗j dij = (Γsi + 2Γr∗j )gij.
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A.12 Proof of Theorem 9

Proof. We first show that there exist at most one k satisfying Γ̂s∗i,k ∈ (Γs∗k ,Γ
s∗
k+1). We

assume by contradiction that ∃k1 > k2 that both satisfy the condition. Then we come
to

Γ̂s∗i,k1
> Γ̂s∗i,k2

=

√√√√√ ksi
k2−1∑
j=1

gij −
m∑

j=k2+1

gij
>

√√√√√ ksi
k1−1∑
j=1

gij −
m∑

j=k1+1

gij
= Γ̂s∗i,k1

,

which is a contradiction.
Next, we claim that if Γ̂s∗i,k does not exist, Cout

i (Γsi ) is lower bounded by one of the
two end points. This is because Cout

i (Γsi ) is piecewise convex, and it has discontinuities
at Γr∗j . We detail our proof below.

If
∑k

j=1 g
ij −

∑m
j=k+1 g

ij < 0, i.e. Γ̂s∗i,k does not exist, then Cout
i (Γsi ) is decreasing on

(Γs∗k ,Γ
s∗
k+1].

If Γ̂s∗i,k > Γs∗k+1, from piecewise convexity we know ∀Γsi ∈ (Γr∗k ,Γ
r∗
k+1),

Cout
i (Γsi ) >

ksi
Γr∗k+1

+
(∑
j∈Li

gij −
∑
j∈Gi

gij
)

Γr∗k+1 +
∑

j∈Li∪Gi

2gijΓr∗j

= Cout
i (Γr∗k+1)

Similarly If Γ̂s∗i,k < Γs∗k , we conclude Cout
i (Γsi ) > Cout

i (Γr∗k ) holds for ∀Γsi ∈ (Γr∗k ,Γ
r∗
k+1).

We have partitioned the real line into many open intervals and many isolated points,
and analyzed the local optimal solution in each interval. Therefore the globally optimal
solution to Cout

i (Γsi ) must be selected from Γr∗ and Γs∗i,k′ .

A.13 Proof of Theorem 11

Proof. From Theorem 3, we know that CIR(Ts∗,Tr∗) is a lower bound on the cost
of the centralized model.

CIR(Ts∗,Tr∗) =
∑
i∈S

ksi
T s∗i

+
∑
j∈R

krj
T r∗j

+
∑

i∈S,j∈R

max (T s∗i , T
r∗
j )gij +

∑
i∈S,j∈R

T r∗j gij.

In the following we show

3

2
CIR(Ts∗,Tr∗) ≥

∑
i∈S

Czio
i (Γs∗i ) +

∑
j∈R

Cr
j (Γ

r∗
j ),
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where the right hand side is the cost of the optimal ZIO policy we obtained in Section
3.2.

3

2
CIR(Ts∗,Tr∗) ≥

{∑
i∈S

ksi
T s∗i

+
∑
j∈R

krj
T r∗j

+
∑

i∈S,j∈R

T r∗j g
ij +

∑
i∈S,j∈R

T r∗j gij

}
+

1

2

{∑
i∈S

ksi
T s∗i

+
∑
j∈R

krj
T r∗j

+
∑

i∈S,j∈R

max (T s∗i , T
r∗
j )gij +

∑
i∈S,j∈R

T r∗j gij

}
(A.22)

=

{∑
j∈R

krj
T r∗j

+
∑

i∈S,j∈R

T r∗j g
ij +

∑
i∈S,j∈R

T r∗j gij

}
+
∑
i∈S

ksi
T s∗i

+

{ ∑
i∈S,j∈R

max (T s∗i , T
r∗
j )gij +

∑
i∈S,j∈R

T r∗j gij

}
(A.23)

≥
∑
j∈R

Cr
j (Γ

r∗
j ) +

{∑
i∈S

ksi
T s∗i

+
∑

i∈S,j∈R

T s∗i g
ij
}

(A.24)

≥
∑
i∈S

Czio
i (Γs∗i ) +

∑
j∈R

Cr
j (Γ

r∗
j ) (A.25)

In the above derivation, (A.22) is true because of the property of maximum func-
tion; (A.23) is true because of convexity in the optimal centralized solution; (A.24) is
true since Γr∗j is the optimal decentralized policy of retailers in Section 4.4.1, and we

eliminate positive terms
∑
T r∗j gij; (A.25) is true because Γ̃s∗i minimize Czio

i (Γsi ).
From the analysis above, we know that an upper bound on the decentralized cost

is no more than 3
2

of the lower bound of the centralized cost. Hence, the ratio of
decentralized to optimal centralized cost is bounded by 3

2
.
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A.14 Proof of Theorem 12

Proof.

5

2
· CIR(Ts∗,Tr∗)

=
3

2

{∑
i∈S

ksi
T s∗i

+
∑
j∈R

krj
T r∗j

+
∑

i∈S,j∈R

max (T s∗i , T
r∗
j )gij +

∑
i∈S,j∈R

T r∗j gij

}
+
∑
i∈S

ksi
T s∗i

+

{∑
j∈R

krj
T r∗j

+
∑

i∈S,j∈R

T r∗j (gij + gij)

}
+

∑
i∈S,j∈R

(max (T s∗i , T
r∗
j )− T r∗j )gij

(A.26)

≥ 3

2

{∑
i∈S

ksi
T s∗i

+
∑
j∈R

krj
T r∗j

+
∑

i∈S,j∈R

max (T s∗i , T
r∗
j )gij +

∑
i∈S,j∈R

T r∗j gij

}
+
∑
i∈S

ksi
T s∗i

+
∑
j∈R

Cr
j (Γ

r∗
j )

(A.27)

=
3

2

{ ∑
i∈S,j∈R

2 max (T s∗i , T
r∗
j )gij +

∑
i∈S,j∈R

2T r∗j gij

}
+
∑
i∈S

ksi
T s∗i

+
∑
j∈R

Cr
j (Γ

r∗
j ) (A.28)

≥
{ ∑
i∈S,j∈Li

(2T r∗j + T s∗i )gij +
∑

i∈S,j∈Gi

3(T s∗i + (T r∗j − T s∗i ))gij
}

+
∑
i∈S

ksi
T s∗i

+
∑
j∈R

Cr
j (Γ

r∗
j )

(A.29)

≥
{ ∑
i∈S,j∈Li

(2Γr∗j + T s∗i )gij +
∑

i∈S,j∈Gi

T s∗i g
ij +

∑
i∈S,j∈Gi

2(T r∗j − T s∗i )gij
}

+
∑
i∈S

ksi
T s∗i

+
∑
j∈R

Cr
j (Γ

r∗
j )

(A.30)

≥
∑
i∈S

Cout
i (Γs∗i ) +

∑
j∈R

Cr
j (Γ

r∗
j ) (A.31)

In the above derivation, (A.26) is true due to rearrangement of the maximum function
in cost evaluation CIR(Ts∗,Tr∗); (A.27) is true because we eliminate

∑
i∈S,j∈R

(max (T s∗i , T
r∗
j )−

T r∗j )gij, and because Γr∗j is the optimal decentralized policy of retailers in Section 4.4.1;
(A.28) is implied by (C1) and first order condition of CIR(Ts,Tr); (A.29) is true by
the definition of maximum function and Gi, Li; (A.30) comes from deleting and rear-
ranging terms; (A.31) is true because Γs∗i is the minimizer of Cout

i (Γs∗i ).
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A.15 Proof of Theorem 13

Proof. Since τ̂ si is the optimal solution to (PDPSRi), we have

Cs
i,p(τ̂

s∗
i ) =

ksi
τ̂ s∗i

+
∑

j:τs∗i >τr∗j

gij(τ̂ s∗i − τ r∗j ) <
ksi
Γs∗i

+
∑

j:Γs∗i >τ
r∗
j

gijΓs∗i ≤ C
′

i(Γ̃
s∗
i ).

We let Γ̃s∗i,p = min{2mΓs∗i : 2mΓs∗i ≥
Γs∗i√

2
} be PoT rounding of Γs∗i , then

Ci,p(τ
s∗
i ) ≤ Cs

i,p(Γ̃
s∗
i,p) < C

′

i(Γ̃
s∗
i,p) ≤

1

2
(
√

2 +

√
2

2
)C
′

i(Γ̃
s∗
i ).

A.16 Proof of Theorem 14

Proof. We denote θ = 1
2
(
√

2 +
√

2
2

) for convenience.

3

2
θCIR(Ts,Tr) =

θ

2

{∑
i∈S

ksi
T s∗i

+
∑
j∈R

krj
T r∗j

+
∑

i∈S,j∈R

max (T s∗i , T
r∗
j )gij +

∑
i∈S,j∈R

T r∗j gij

}
+ θ
(∑
i∈S

ksi
T s∗i

+
∑
j∈R

krj
T r∗j

+
∑

i∈S,j∈R

(max (T s∗i , T
r∗
j )− T r∗j )gij +

∑
i∈S,j∈R

T r∗j (gij + gij)
)

(A.32)

≥ θ

2

{∑
i∈S

ksi
T s∗i

+
∑
j∈R

krj
T r∗j

+
∑

i∈S,j∈R

max (T s∗i , T
r∗
j )gij +

∑
i∈S,j∈R

T r∗j gij

}
+ θ
(∑
i∈S

ksi
T s∗i

+
∑

i∈S,j∈R

(max (T s∗i , T
r∗
j )− T r∗j )gij

)
+
∑
j∈R

Cr
j,p(τ

r∗
j )

(A.33)

≥ θ

2

{ ∑
i∈S,j∈R

2 max (T s∗i , T
r∗
j )gij +

∑
i∈S,j∈R

2T r∗j gij

}
+
∑
i∈S

θksi
T s∗i

+
∑
j∈R

Cr
j,p(τ

r∗
j )

(A.34)

≥ θ

( ∑
i∈S,j∈R

max (T s∗i , T
r∗
j )gij +

∑
i∈S

ksi
T s∗i

)
+
∑
j∈R

Cr
j,p(τ

r∗
j ) (A.35)

≥
∑
i∈S

Cs
i,p(τ

s∗
i ) +

∑
j∈R

Cr
j,p(τ

r∗
j ) (A.36)
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In the above derivation, (A.32) is true by rearrangement of CIR(Ts,Tr); (A.33) is true
by Theorem 10; (A.34) is true because we eliminate

∑
i∈S,j∈R(max (T s∗i , T

r∗
j ) − T r∗j )

which is nonnegative, and because of first order condition of CIR(Ts,Tr); (A.35) is
true because max (T s∗i , T

r∗
j ) ≥ T s∗i and by Theorem 13.

From the analysis above, we know that the ratio of decentralized to centralized cost
is < 3

2
θ.

A.17 Proof of Lemma 4

Proof. We define the one-full-truck reorder cycle as T r0j = q∑
i∈S dij

.

By linear rounding, we know transportation cost is minimized when we deliver full
truckload:

cj
T rj
d
∑

i∈S dijT
r
j

q
e ≥ cj

T rj

∑
i∈S dijT

r
j

q
=
cj
∑

i∈S dij

q

Holding cost is non-decreasing in T rj :

1

2

∑
i∈S,j∈R

max (T si , T
r
j )dijh

i +
1

2

∑
i∈S,j∈R

T rj dijh
′
ij

Therefore if T rj >
q∑

i∈S dij
, that is, retailer j orders more than one truckload, both

holding cost and truck transportation cost will be higher than if T rj = T r0j .

A.18 Proof of Lemma 5

Proof. By the property of (PCl), Slater’s condition holds thus strong duality holds.
By KKT conditions we know, 

0 ∈ ∂CU∗l
IRS + λl − µl

λl · (U∗l − T r0j ) = 0

U∗l − T r0j ≤ 0

µl · U∗l = 0

λl, µl ≥ 0

(A.37)

113



It is natural to see U∗l > 0, hence (A.37) is equivalent to
0 ∈ −K(U∗l )

(U∗l )2 +H(U∗l ) + λl

λl · (U∗l − T r0j ) = 0

U∗l − T r0j ≤ 0

λl ≥ 0

Therefore we obtain the optimal solution to (PCl) as:

U∗l = min
j∈G(Ul)

(√
K(Ul)

H(Ul)
, T r0j

)
.

A.19 Proof of Theorem 15

Proof. Notice CC(Ts,Tr) is the sum of several maximum functions which are strictly
convex, thus CC(Ts,Tr) is strictly convex. The feasible region of CC(Ts,Tr) is also
convex, therefore the local minimum is global minimum.

Let T = (Ts∗,Tr∗) and ∀ direction v = (vs,vr) = (vs1, · · · , vsn, vr1, · · · , vrm). T is
a local minimum if and only if all the feasible directional derivatives is nonnegative, so
that:

∂CIR
∂v+

= lim
t→0+

CIR(T + tv)− CIR(T )

t
≥ 0.

We do not need to consider left derivative because:

∂CIR
∂v−

=
∂CIR
∂(−v)+

.

So

∂CIR
∂v+

=
∑
i∈S

− ksi v
s
i

(T si )2
+
∑
j∈R

−
crjv

r
j

(T rj )2
+
∑
i∈S

∑
j∈Li

vsi g
ij +

∑
i∈S

∑
j∈Gi

vrjg
ij

+
∑
i∈S

∑
j∈Ei

max(vsi , v
r
j )g

ij +
∑
i∈S

∑
j∈R

vrjgij (A.38)

We first consider any positive and negative basic direction v+ v− where given any
subset W ⊂ S ∪R:

114



v+:


vsi = 1, ∀i ∈ W
vrj = 1, ∀j ∈ W
vsi = vrj = 0, otherwise.

and v−:


vsi = −1, ∀i ∈ W
vrj = −1, ∀j ∈ W
vsi = vrj = 0, otherwise.

Hence

∂CIR
∂v+

+

=
∑
i∈W

− ksi
(T si )2

+
∑
j∈W

−
crj

(T rj )2
+
∑
i∈W

∑
j∈Li

gij +
∑
j∈W

∑
i:j∈Gi

gij

+
∑

i∈W or j∈W,
j∈Ei

gij +
∑
j∈W

gij (A.39)

∂CIR
∂v+
−

=
∑
i∈W

ksi
(T si )2

+
∑
j∈W

crj
(T rj )2

−
∑

i∈W or j∈W,
j∈Ei

gij −
∑
j∈W

gij (A.40)

A direction v is feasible at T if and only if T + tv feasible for some t > 0. That
means in basic directions, vrj = 1 only when T rj < T r0j .

If W = P (U∗l ) for some l, then form KKT condition we obtain (C1). Therefore (C1)
and (C2) are necessary conditions of optimality. If W is a subset of P (U∗l ) for some l,
then ∂CIR

∂v+ ≥ 0 for all feasible direction. From requirement of feasibility, U∗l ≤ T r0j for
any j ∈ P (U∗l ). From (A.38) and (A.40) we obtain upper bound and lower bounds on
U∗l . Combining these bounds we obtain (C2). To prove sufficiency, for any non-basic
direction, we can decompose the direction

v = b1v1 + (b2 − b1)v2 + ...+ (bp − bp−1)vp,

where vx are basic directions with their coefficients vix, v
j
x ∈ {0, 1,−1} and b1 ≤ b2 ≤

· · · ≤ bp. Then we observe

∂CIR
∂v+

= b1
∂CIR
∂v+

1
+ (b2 − b1)

∂CIR
∂v+

2
+ ...+ (bp − bp−1)

∂CIR
∂v+
p
.

That means any direction can be decomposed into summation of basic directions. Thus
if (C1) and (C2) hold, ∂CIR

∂v+ ≥ 0, which guarantees optimality.

A.20 Proof of Lemma 6

Proof. At the beginning of each round, we pick the largest order interval that can be
obtained from the remaining suppliers and retailers. Then we delete that supplier,
retailer, or the pair from the problem. By repeating the above procedure, R ∪ S
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is partitioned into several groups, which satisfies the condition (C1) in Theorem 15.
Notice that order interval will increase after grouping, so we can prove optimality by
contradiction.

Assume the solution (Ts∗, T r∗) we obtained from MSIRR algorithm is not opti-
mal, then there exist a base direction v such that ∂CIR

∂v+ < 0. That is, there exists at
least one set A of suppliers and retailers that can form a new group with a larger order
interval and smaller total cost. A cannot be a single supplier (or a single retailer), oth-
erwise the supplier (retailer) will be selected and form a single cluster by the algorithm.
Then we know the new order interval is:

TA = min
j∈A

{
T r0j ,

√√√√√√
∑
i∈A

ksi +
∑
j∈A

crj∑
i∈A,j∈Li

gij +
∑

j∈A,i:j∈Gi
gij +

∑
j∈A,i∈S

gij +
∑

i∈A,j∈A
gij

}
.

Since max
i

( ki
hi

) ≥
∑
i ki∑
i hi

, there exist at least one supplier î and one retailer ĵ such that

Tîĵ = min

{
T r0
ĵ
,

√√√√√ ks
î

+ kr
ĵ∑

j∈Lî
gîj +

∑
i:ĵ∈Gi

giĵ +
∑
i∈S

giĵ + gîĵ

}
> TA.

However, î and ĵ are grouped by the algorithm, and the grouping is made in the
order of T calculated in step 2. Therefore, T s∗

î
= T r∗

ĵ
> Tîĵ > TA > T s∗

î
by the

assumption of TA and the observation that T increases after grouping.

A.21 Proof of Theorem 16

Proof. We use a similar methodology to Roundy’s approach Roundy (1985) to show
CC(Ts∗, T r∗) is a cost lower bound. We start by creating exactly the same model
except that cost gij and gij are replaced by ηij and ηij. We observe that total cost of
arbitrary policy can be decomposed into several capacitated EOQ-like problems. Next
we carefully select alternative parameters ηij and ηij to satisfy following conditions:

(C3) The sum optimal decomposed costs with alternative parameters is the same as
CC(Ts∗,Tr∗)

(C4) Any feasible policy costs no more with alternative cost parameters ηij and ηij

than with original parameters gij and gij.
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We introduce more notation for this proof:
• ηij and ηij: alternative cost parameters (the original parameters are gij and gij)
• ηi =

∑
j∈R η

ij: total cost associated with supplier i
• ηj =

∑
i∈S ηij: total cost associated with retailer j

• ni(t): the number of orders placed by warehouse to supplier i in [0, t)
• nj(t): the number of orders placed by retailer j to warehouse in [0, t)
• Iij(t): the inventory of product i at retailer j at time t
• Sij(t) ≥ Iij(t): the inventory of product i at retailer j or at warehouse but will

be sent to retailer j at time t
• Ii(t) = 1

ηi

∑
j∈R

ηijSij(t): weighted average inventory of product i at time t, weighted

by the associated alternative cost over all retailers
• Ij(t) = 1

ηj

∑
i∈S

ηijIij(t): weighted average inventory at retailer j, weighted by the

associated cost over all products.
Therefore for arbitrary policy, the total cost in [0, t) can be decomposed:

∑
i∈S

ni(t)k
s
i +

∑
j∈R

nj(t)c
r
j +

∑
j∈R

∑
i∈S

∫ t′

0

(ηijIij(t) + ηijSij(t))dt

=
∑
i∈S

(
ni(t)k

s
i +

∫ t′

0

ηiIi(t)dt

)
+
∑
j∈R

(
nj(t)c

r
j +

∫ t′

0

ηjIj(t)dt

)
(A.41)

Ii(t) and Ij(t) are different from system inventory since they are weighted by cost.
However, Ii(t) is right continuous in t, decreases linearly with constant slope, and
jumps only when warehouse replenishes inventory of product i. Similarly Ij(t) also
decreases linearly with constant slope and jumps whenever retailer j places an order.
Hence Ij(t) and Ii(t) works exactly the same as inventory of capacitated EOQ models.
The optimal decomposed cost is therefore

ki

T̂i
+ ηiT̂i and

kj

T̂j
+ ηjT̂j,

where T̂i =
√

ki
ηi

and T̂j = min{T 0
j ,
√

kj
ηj
}.

To satisfy (C3), we want the sum of optimal capacitated EOQ costs equal to
CC(Ts∗,Tr∗). By (4.2) and (A.41), (C3) is equivalent to∑

i∈S

ki

T̂i
+ ηiT̂i +

∑
j∈R

kj

T̂j
+ ηjT̂j =

∑
l∈{1,···,k}

K(U∗l )

U∗l
+ U∗l ·H(U∗l ) (A.42)
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To prove (A.42), it is sufficient to show (Ts∗,Tr∗) are the optimal solutions in de-
composed EOQ-like problems and the total cost remains the same, that is

T̂i = T s∗i , ∀i ∈ S
T̂j = T r∗j , ∀j ∈ R∑
i∈P (U∗l )

ηi +
∑

j∈P (U∗l )

ηj = H(U∗l ), ∀P (U∗l )
(A.43)

By the definitions of T̂i and T̂j, (A.43) is equivalent to

∑
j∈R

ηij = ηi =
ksi

(T s∗i )2 , ∀i ∈ S∑
i∈S

ηij = ηj =
crj

(T r∗j )2 , ∀j ∈ R, where T r∗j < T r0j∑
i∈S

ηij = ηj =
crj

(T r∗j )2 − λj ≤
crj

(T r∗j )2 , ∀j ∈ R, where T r∗j = T r0j∑
i∈P (U∗l )

ηi +
∑

j∈P (U∗l )

ηj = H(U∗l ), ∀P (U∗l )

(A.44)

To satisfy (C5) we need

∑
j∈R

∑
i∈S

∫ t′

0

(ηijIij(t) + ηijSij(t))dt ≤
∑
j∈R

∑
i∈S

∫ t′

0

(gijIij(t) + gijSij(t))dt (A.45)

Since Iij(t) ≤ Sij(t), we only need
ηij ≥ gij, ∀i ∈ S, j ∈ R
ηij + ηij = gij + gij, ∀i ∈ S, j ∈ R
ηij, ηij ≥ 0, ∀i ∈ S, j ∈ R

(A.46)

Now we have shown (A.44) and (A.46) are sufficient conditions for (C3) and (C4). It
remains to show there exist such alternative parameters ηij, η

ij and λj satisfying (A.44)
and (A.46). In the following lemma we use subdifferential to prove the existence of
these parameters.

Lemma 7. There exists alternative cost parameters satisfying (A.44) and (A.46).

Proof. ηij and ηij defined in (A.47) satisfy (A.46) for all 0 ≤ Aij ≤ gij:

ηij =


gij if T r∗j < T s∗i
gij + gij if T r∗j > T s∗i
gij + Aij if T r∗j = T s∗i

and ηij =


gij if T r∗j < T s∗i
0 if T r∗j > T s∗i
gij − Aij if T r∗j = T s∗i

(A.47)
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By Danskin’s theorem, the subdifferential of a finite pointwise maximum function
is the convex hull of the subdifferential of corresponding active functions Bertsekas
(1999). Hence

∂(max(T si , T
r
j )) =


∂T rj , if T si < T rj
∂T si , if T si > T rj
αij · ∂T si + (1− αij) · ∂T rj , if T si = T rj

Therefore the subdifferential of CIR(Ts,Tr) is

∂CIR(Ts,Tr) =
∑
i∈S

−ksi
(T si )2

∂T si +
∑
j∈R

−crj
(T rj )2

∂T rj +
∑
i∈S

∑
j∈Li

gij∂T si +
∑
i∈S

∑
j∈Gi

gij∂T rj

+
∑
i∈S

∑
j∈Ei

gij
(
αij · ∂T si + (1− αij) · ∂T rj

)
+
∑
i∈S

∑
j∈R

gij∂T
r
j (A.48)

Since (Ts∗, T r∗) is the optimal solution to (PC), which is convex. Slater condi-
tion is satisfied in (PC), thus from KKT condition we know

0 ∈ ∂CIR(Ts∗, T r∗) +
∑

j∈R λ
∗
j∂T

r∗
j

λ∗j(T
r∗
j − T r0j ) = 0

λ∗j ≥ 0

(A.49)

where λ∗j is the optimal solution of the dual problem. By definition of subdifferential,
there exist αij ∈ [0, 1] such that


− ki

(T ∗i )2 +
∑
j∈Li

gij +
∑
j∈Ei

αijg
ij = 0, ∀i ∈ S

− cj
(T ∗j )2 +

∑
i:j∈Gi

gij +
∑

i:j∈Ei
(1− αij)gij +

∑
i∈S

gij = 0, ∀j ∈ R, where T r∗j < T r0j

− cj
(T ∗j )2 +

∑
i:j∈Gi

gij +
∑

i:j∈Ei
(1− αij)gij +

∑
i∈S

gij + λ∗j = 0, ∀j ∈ R, where T r∗j = T r0j

(A.50)

We let Aij = (1−αij)gij and λj = λ∗j , then all the equations in (A.44) are satisfied
from (A.50).

In summary, combining (A.41), (A.45) and (A.42) we know:∑
i∈S

ksini(t
′) +

∑
j∈R

crjnj(t
′) +

∑
j∈R

∑
i∈S

∫ t′

0

(gijIij(t) + gijSij(t))dt

≥
∑
i∈S

(
ksi
T si

+ ηiT
s
i ) +

∑
j∈R

(
crj
T rj

+ ηjT
r
j )

≥CC(Ts∗,Tr∗)
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A.22 Proof of Theorem 17

We first decompose the cost according to the same partitions used previously:

CPOT (Ts∗P ,Tr∗P )

=
∑
i∈S

ki
T s∗i,P

+
∑
j∈R

cj
T r∗j,P

+
∑

i∈S,j∈R

max (T s∗i,P , T
r∗
j,P ) · gij +

∑
i∈S,j∈R

T r∗j,P · gij

=
∑
i∈S

ki
T s∗i,P

+
∑
j∈R

cj
T r∗j,P

+
∑

i∈S,j∈Li∪Ei

T s∗i,P · gij +
∑

j∈R,i:j∈Gi

T r∗j,P · gij +
∑

i∈S,j∈R

T r∗j,P · gij

=
∑

l∈{1,···,k}

(K(UP∗
l )

UP∗
l

+H(UP∗
l ) · UP∗

l

)
.

Thus, for each group P (U∗l ) in the partition, we consider its capacity constrained
problem (PCRl), and obtain the bound of 2 from PoT rounding:

C
UP∗l
IRS (Ts∗P ,Tr∗P ) =

K(UP∗
l )

UP∗
l

+H(UP∗
l ) · UP∗

l < C
U∗l
2
IRS(

1

2
Ts∗, 1

2
Tr∗) < 2C

U∗l
IRS(Ts∗,Tr∗)

Summing over cost of each of the decomposed problem, we get

CPOT (Ts∗P ,Tr∗P ) =
∑

l∈{1,···,k}

C
UP∗l
IRS (Ts∗P ,Tr∗P ) <

∑
l∈{1,···,k}

2C
U∗l
IRS(Ts∗,Tr∗) = 2CIR(Ts∗,Tr∗)

From Theorem 3, we know CIR(Ts∗,Tr∗) is a lower bound on an arbitrary policy.
Thus the worst case ratio for this centralized PoT policy is at most 2.

A.23 Proof of Theorem 18

We discuss rounding (Ts∗,Tr∗) to nearest PoT solution in two cases:

1. U∗l ≤ U P̂∗
l ≤

√
2U∗l :

When we round up order intervals to the nearest PoT solution, at most two trucks
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will be used in each shipment. Thus we can show

C
U P̂∗l
IRS (Ts∗

P̂
,Tr∗
P̂

) ≤
∑

i∈P (U P̂∗l )

ki

U P̂∗
l

+
∑

j∈P (U P̂∗l )

2cj

U P̂∗
l

+H(U P̂∗
l ) · U P̂∗

l

≤ 2K(U P̂∗
l )

U P̂∗
l

+H(U P̂∗
l ) · U P̂∗

l

≤ 2K(U∗l )

U∗l
+H(U P̂∗

l ) ·
√

2U∗l

≤ 2 · CU∗l
IRS(Ts∗,Tr∗)

2. 1√
2
U∗l ≤ U P̂∗

l ≤ U∗l :
When we round down order intervals, we can show a tighter bound:

C
U P̂∗l
IRS (Ts∗

P̂
,Tr∗
P̂

) ≤ K(U P̂∗
l )

1√
2
U P̂∗
l

+H(U P̂∗
l ) · U P̂∗

l ≤
√

2 · CU∗l
IRS(Ts∗,Tr∗)

Therefore, the worst case performance for this PoT rounding is also 2.

A.24 Proof of Theorem 19

Proof. From Theorem 16 we know CC(Ts∗,Tr∗) is a lower bound on the cost of the
centralized model. From KKT conditions we also know∑

i∈S

ki
T s∗i

+
∑
j∈R

cj
T r∗j
≥

∑
i∈S,j∈R

max (T s∗i , T
r∗
j ) · gij +

∑
i∈S,j∈R

T r∗j · gij (A.51)

In the following we show

3

2
CC(Ts∗,Tr∗) ≥

∑
i∈S

ki
T s∗i

+
∑
j∈R

cj
T r∗j

+
∑

i∈S,j∈Li∪Gi

T s∗i · gij +
∑

i∈S,j∈R

T r∗j · (gij + gij),
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where the right hand side is the cost of ZIO policy we obtaind in (4.5).

3

2
CC(Ts∗,Tr∗) =

3

2

(∑
i∈S

ki
T s∗i

+
∑
j∈R

cj
T r∗j

+
∑

i∈S,j∈R

max (T s∗i , T
r∗
j ) · gij +

∑
i∈S,j∈R

T r∗j · gij
)

≥
∑
i∈S

ki
T s∗i

+
∑
j∈R

cj
T r∗j

+ 2
( ∑
i∈S,j∈R

max (T s∗i , T
r∗
j ) · gij +

∑
i∈S,j∈R

T r∗j · gij
)

(A.52)

≥
∑
i∈S

ki
T s∗i

+
∑
j∈R

cj
T r∗j

+
( ∑
i∈S,j∈R

(T s∗i + T r∗j ) · gij +
∑

i∈S,j∈R

T r∗j · gij
)

(A.53)

= Czio(T
s∗,Tr∗)

In the above derivation, (A.52) is because of (A.51), and (A.53) is by the definition of
maximum function.

A.25 Proof of Theorem 20

We start from a simple case with one retailer and one supplier. From results in previous
paper, we know they must share the same order cycle and we can combine cost and
omit subscripts in notation for simplicity. The naive model in our previous paper
degenerated to the classical EOQ model, with cost function k

T
+hT and optimal solution

T ∗sim =
√

k
h
. If T ∗sim ≤ T 0 then the optimal solution in simple model only uses one

truckload, which is trivial. Otherwise we denote T ∗sim = pT 0 where p > 1, and

Csim(T ∗sim) =
k

T ∗sim
dpe+ hT ∗sim =

k

pT 0
dpe+ hpT 0, (A.54)

while the optimal solution to new model is T 0, and the corresponding cost is

CC(T 0) =
k

T 0
+ hT 0 (A.55)

Comparing (A.54) and (A.55), we come to

Csim(T ∗sim)

CC(T 0)
=

k
pT 0 dpe+ hpT 0

k
T 0 + hT 0

=
hpT 0dpe+ hpT 0

hpT 0p+ hpT 0

p

=
pdpe+ p

p2 + 1
(A.56)
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To evaluate the worst case bound, we only need to maximize (A.81) when p ≥ 1. We
discuss in different unit integer intervals. When p ∈ (n, n+ 1), n ∈ N

(A.81) =
p(n+ 1) + p

p2 + 1
= (n+ 2)

p

p2 + 1
, (A.57)

which is decreasing in (n, n+ 1). Thus

(A.82) < (n+ 2)
n

n2 + 1
=
n(n+ 2)

n2 + 1
, (A.58)

and the right hand side is tight when p→ n+. The derivative of (A.58) is

(2n+ 2)(n2 + 1)− 2n(n2 + 2)

(n2 + 1)2
= 2 · −n

2 + n+ 1

(n2 + 1)2
(A.59)

(A.85)> 0 only when n = 1, so the maximizer of (A.58) is obtained when n = 1 or
n = 2. Therefore the tight upper bound of (A.81) is 8

5
when p→ 2+.

Next, we consider more general case of multi-supplier multi-retailer. If optimal
partition in two models are the same, we can decompose and show that the worst case
performance of uncapacitated model is 8

5
, which is attainable. But in general partition

can be different, and the upper bound for worst case ratio is not clear yet. Therefore
we conclude the worst case cost increase of applying simple model is at least 60%.

A.26 Proof of Theorem 21

Proof. Compared to the optimal order interval in the centralized model,

Γr∗j = min

{
T r0j ,

√√√√ krj∑
i∈S

(gij + gij)

}
≤ min

{
T r0j ,

√√√√ krj∑
i∈S

gij +
∑

i:j∈Li∪Ei
gij

}
≤ T r∗j .

A.27 Proof of Theorem 24

Proof. From Theorem 16, we know CC(Ts,Tr) is a lower bound on cost of centralized
model.

CC(Ts,Tr) =
∑
i∈S

ksi
T s∗i

+
∑
j∈R

crj
T r∗j

+
∑

i∈S,j∈R

max (T s∗i , T
r∗
j )gij +

∑
i∈S,j∈R

T r∗j gij.
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In the following we show

3

2
CIR(Ts,Tr) ≥

∑
i∈S

Czio
i (Γs∗i ) +

∑
j∈R

Cr
j (Γ

r∗
j ),

where the right hand side is cost of the optimal ZIO policy we obtained in Section
4.2.3.

3

2
CC(Ts,Tr) ≥

{∑
i∈S

ksi
T s∗i

+
∑
j∈R

crj
T r∗j

+
∑

i∈S,j∈R

T r∗j g
ij +

∑
i∈S,j∈R

T r∗j gij

}
+

1

2

{∑
i∈S

ksi
T s∗i

+
∑
j∈R

crj
T r∗j

+
∑

i∈S,j∈R

max (T s∗i , T
r∗
j )gij +

∑
i∈S,j∈R

T r∗j gij

}
(A.60)

≥
{∑

j∈R

crj
T r∗j

+
∑

i∈S,j∈R

T r∗j g
ij +

∑
i∈S,j∈R

T r∗j gij

}
+
∑
i∈S

ksi
T s∗i

+

{ ∑
i∈S,j∈R

max (T s∗i , T
r∗
j )gij +

∑
i∈S,j∈R

T r∗j gij

}
(A.61)

≥
∑
j∈R

Cr
j (Γ

r∗
j ) +

{∑
i∈S

ksi
T s∗i

+
∑

i∈S,j∈R

T s∗i g
ij
}

(A.62)

≥
∑
i∈S

Czio
i (Γs∗i ) +

∑
j∈R

Cr
j (Γ

r∗
j ) (A.63)

In the above derivation, (A.60) is true because the property of maximum function;
(A.61) is true because of (A.51); (A.62) is true since Γr∗j is the optimal decentralized
policy of retailers in Section 4.2.3, and we eliminate positive terms

∑
T r∗j gij; (A.63) is

true because Γ̃s∗i minimize Czio
i (Γsi ).

From the analysis above, we know that an upper bound of decentralized cost is no
more than 3

2
of the lower bound of centralized cost. Hence, the price of anarchy is

bounded by 3
2
.
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A.28 Proof of Theorem 25

5

2
· CC(Ts∗,Tr∗)

=
3

2

{∑
i∈S

ksi
T s∗i

+
∑
j∈R

krj
T r∗j

+
∑

i∈S,j∈R

max (T s∗i , T
r∗
j )gij +

∑
i∈S,j∈R

T r∗j gij

}
+
∑
i∈S

ksi
T s∗i

+

{∑
j∈R

krj
T r∗j

+
∑

i∈S,j∈R

T r∗j (gij + gij)

}
+

∑
i∈S,j∈R

(max (T s∗i , T
r∗
j )− T r∗j )gij

(A.64)

≥ 3

2

{∑
i∈S

ksi
T s∗i

+
∑
j∈R

krj
T r∗j

+
∑

i∈S,j∈R

max (T s∗i , T
r∗
j )gij +

∑
i∈S,j∈R

T r∗j gij

}
+
∑
i∈S

ksi
T s∗i

+
∑
j∈R

Cr
j (Γ

r∗
j ) (A.65)

≥ 3

2

{ ∑
i∈S,j∈R

2 max (T s∗i , T
r∗
j )gij +

∑
i∈S,j∈R

2T r∗j gij

}
+
∑
i∈S

ksi
T s∗i

+
∑
j∈R

Cr
j (Γ

r∗
j ) (A.66)

≥
{ ∑
i∈S,j∈Li

(2T r∗j + T s∗i )gij +
∑

i∈S,j∈Gi

3(T s∗i + (T r∗j − T s∗i ))gij
}

+
∑
i∈S

ksi
T s∗i

+
∑
j∈R

Cr
j (Γ

r∗
j ) (A.67)

≥
{ ∑
i∈S,j∈Li

(2Γr∗j + T s∗i )gij +
∑

i∈S,j∈Gi

T s∗i g
ij +

∑
i∈S,j∈Gi

2(T r∗j − T s∗i )gij
}

+
∑
i∈S

ksi
T s∗i

+
∑
j∈R

Cr
j (Γ

r∗
j ) (A.68)

≥
∑
i∈S

Cout
i (Γs∗i ) +

∑
j∈R

Cr
j (Γ

r∗
j ) (A.69)

In the above derivation, (A.64) is true due to rearrangement of maximum function in
cost evaluation CC(Ts∗,Tr∗); (A.65) is true because we eliminate

∑
i∈S,j∈R

(max (T s∗i , T
r∗
j )−

T r∗j )gij, and because Γr∗j is the optimal decentralized policy of retailers in Section 4.2.3;
(A.66) is implied by (C1) and (A.51); (A.67) is true by the definition of maximum
function and Gi, Li; (A.68) comes from deleting and rearranging terms; (A.69) is true
because Γs∗i is the minimizer of Cout

i (Γs∗i ).
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A.29 Proof of Theorem 26

Proof. We first show Cj(Qj, S1j, · · · , Snj) is convex in Sij.

∆Cij(Sij) , Cj(Qj, S1j, · · · , Sij + 1, · · · , Snj)− Cj(Qj, S1j, · · · , Sij, · · · , Snj)

= hij + (pij + hij)
( ∑
v≥Sij+1

(v − Sij − 1)mi(v)−
∑
v≥Sij

(v − Sij)mi(v)
)

= hij − (pij + hij)
∑

v≥Sij+1

mi(v)− (Sij − Sij)mi(Sij)

= hij − (pij + hij)
(

1−
∑
v≤Sij

mi(v)
)

= −pij + (pij + hij)Mi(Sij),

It is easy to see ∆Cij(Sij) is monotone increasing in Sij. Thus

S∗ij(Qj) = min
{
Sij : −pij + (pij + hij)Mi(Sij) ≥ 0

}
= M−1

i

( pij
pij + hij

)

A.30 Proof of Theorem 27

Proof. To show the monotonicity, it is equivalent to show that Mi(v) is decreasing in
Q.

Mi(v) = P (Vi(t+ Lj) ≤ v) =
v∑

x=0

{
P (Dij

[t,t+Lj)
= x)

v−x∑
m=0

ui(m)
}

(A.70)

Therefore by (5.1) it is sufficient to show that the following U(x) is decreasing in
Qj:

U(x) ,
x∑

m=0

ui(m) =
x∑

m=0

1−B(m;Qj, θi)

θiQj

(A.71)

That is to show:

x∑
m=0

1−B(m;Q+ 1, θi)

θi(Q+ 1)
≤

x∑
m=0

1−B(m;Q, θi)

θiQ
(A.72)
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(A.72) is equivalent to:
x∑

m=0

P (≥ m+1 successes at Q+1)

Q+ 1
≤

x∑
m=0

P (≥ m+1 successes at Q)

Q
(A.73)

By combinatorial identity, left hand side of (A.73) is equivalent to:
x∑

m=0

P (≥ m+1 successes at Q) + P (m successes at Q, and success at Q+1)

Q+ 1
(A.74)

Therefore (A.73) is tranformed to:
x∑

m=0

P (≥ m+1 successes at Q+1)

Q(Q+ 1)
≥

x∑
m=0

P (m successes at Q, and success at Q+1)

Q+ 1

= θi

x∑
m=0

P (m successes at Q)

Q+ 1

= θi
P (≤ x successes at Q)

Q+ 1
(A.75)

Rearrange terms, to prove (A.75) is equivalent to showing:
x∑

m=0

P (≥ m+1 successes at Q+1) ≥ θiQ(1− P (≥ x+1 successes at Q)) (A.76)

We also notice:

θiP (≥ x+1 successes at Q) ≥ P (≥ x+2 successes at Q+1 ). (A.77)

Iteratively using (A.77), we get the bound

θiP (≥ x+1 successes at Q) ≥ P (≥ x+1+k successes at Q+k) · (θi)−k+1

≥ P (≥ x+1+k successes at Q+ 1) (A.78)

Hence
x∑

m=0

P (≥ m+1 successes at Q+1) + θiQP (≥ x+1 successes at Q)

≥
x∑

m=0

P (≥ m+1 successes at Q+1) +

Q∑
m=x+1

P (≥ m+1 successes at Q+1) (A.79)

=

Q∑
m=0

P (≥ m+1 successes at Q+1)

= E(Total successes at Q+ 1) (A.80)

= θi(Q+ 1)
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In the above derivation, (A.79) applies (A.78) and x ≥ 0; (A.80) count the total
successes by probabilities. After rearanging the terms, (A.76) is proved, and S∗ij(Qj)
is increasing in Qj.

A.31 Proof of Theorem 28

Proof. We first notice In (5.3), the fixed ordering cost
kj
Qj
λj and inventory holding cost∑

i∈S hij

(
Sij− λij(Qj−1)

2
−λijLj

)
are convex in Qj, thus we only need to show backorder

cost is also convex in Qj.

Lemma 8. When aggregate demand X0(t) = n is fixed, the average backorder level at
time t+ Lj is

fij(n) , E
{
max(0, Binomial(n, λij) +Dij

[t,t+Lj ]
− Sij)

}
,

then fij(n) is convex in n.

Proof. WhenX0(t) = n and by independence of demand of different products, the
number of product i follows a binomial distribution. Dij

[t,t+Lj ]
is the demand occurs

during lead time, and it follows a Poisson distribution with λijLj. Thus their sum is
the total demand of product i at time t+ Lj.

fij(n− 1) + fij(n+ 1)− 2fij(n) = E
{
max(0, Binomial(n+ 1, λij) +Dij

[t,t+Lj ]
− Sij)

+max(0, Binomial(n− 1, λij) +Dij
[t,t+Lj ]

− Sij)− 2max(0, Binomial(n, λij) +Dij
[t,t+Lj ]

− Sij)
}

= E
{
max(0, Binomial(n− 1, λij) + 1p + 1p +Dij

[t,t+Lj ]
− Sij)

+max(0, Binomial(n− 1, λij) +Dij
[t,t+Lj ]

− Sij)− 2max(0, Binomial(n− 1, λij) + 1p +Dij
[t,t+Lj ]

− Sij)
}

(A.81)

= E
{
max(0, Z + 1p + 1p) +max(0, Z)− 2max(0, Z + 1p)

}
, (A.82)

where 1p is a bernoulli random variable with successful rate of λij, and Z =
Binomial(n − 1, λij) + Dij

[t,t+Lj ]
− Sij is a random variable takeing value in integer.

In the above derivation, (A.81) is true because binomial random variable is the sum of
independent bernoulli random variables.
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Thus by tower law property,

(A.82) = E
{
E
{
max(0, Z + 1p + 1p) +max(0, Z)− 2max(0, Z + 1p)

∣∣∣Z}}
= E

{
max(0, Z + 1p + 1p) +max(0, Z)− 2max(0, Z + 1p)

∣∣∣Z 6= −1
}
P (Z 6= −1)

+ E
{
max(0, Z + 1p + 1p) +max(0, Z)− 2max(0, Z + 1p)

∣∣∣Z = −1
}
P (Z = −1)

(A.83)

= E
{
max(0, Z) + 1p + 1p +max(0, Z)− 2max(0, Z)− 21p

∣∣∣Z 6= −1
}
P (Z 6= −1)

+ E
{
max(0,−1 + 1p + 1p) + 0− 0

∣∣∣Z = −1
}
P (Z = −1) (A.84)

≥ 0

In (A.83), we calculate the conditional mean in two cases; in (A.84), 1 can be pulled
out of the maximum function when Z 6= 1, and maximum function is easy to calculate
whne Z = 1. Therefore we have shown fij(n) is convex in n.

Next we introduce a technical lemma to help prove Theorem 28:

Lemma 9. If f(i) : N → R is convex in i, where N is the set of integers, then its
running average g(Q) = 1

Q

∑Q−1
i=0 f(i) is convex in Q.

Proof. We denote ∆i = f(i)− f(i− 1) and let ∆0 = 0. By convexity of f(i) we know
∆i is non-decreasing. That is,

0 = ∆0 ≤ ∆1 ≤ · · · ≤ ∆n ≤ · · · . (A.85)

Hence we rewrite g(Q):

g(Q) =
1

Q

Q−1∑
i=0

{f(0) +
i∑

j=0

∆j}

=
1

Q

Q−1∑
i=0

{f(0) + (Q− i)∆i} (A.86)

= f(0) +
1

Q

Q−1∑
i=0

(Q− i)∆i,
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where in (A.86) we exchange the order of summation. Thus the step difference is

∆g(Q) , g(Q+ 1)− g(Q)

= f(0) +
1

Q+ 1

Q∑
i=0

(Q+ 1− i)∆i − f(0)− 1

Q

Q−1∑
i=0

(Q− i)∆i

=
1

Q+ 1
∆Q +

Q−1∑
i=0

(Q+ 1− i
Q+ 1

− Q− i
Q

)
∆i (A.87)

=
1

Q+ 1
∆Q +

1

Q(Q+ 1)

Q−1∑
i=0

i ·∆i (A.88)

Next we show the difference of g(·) is non-decreasing:

∆2g(Q) , ∆g(Q+ 1)−∆g(Q)

=
1

Q+ 2
∆Q+1 +

1

(Q+ 1)(Q+ 2)

Q∑
i=0

i ·∆i −
1

Q+ 1
∆Q −

1

Q(Q+ 1)

Q−1∑
i=0

i ·∆i

≥
( 1

Q+ 2
+

Q

(Q+ 1)(Q+ 2)
− 1

Q+ 1

)
∆Q +

( 1

(Q+ 1)(Q+ 2)
− 1

Q(Q+ 1)

)Q−1∑
i=0

i ·∆i

(A.89)

=
Q− 1

(Q+ 1)(Q+ 2)
∆Q −

2

Q(Q+ 1)(Q+ 2)

Q−1∑
i=0

i ·∆i

=
2

Q(Q+ 1)(Q+ 2)

Q−1∑
i=0

i · (∆Q −∆i) (A.90)

≥ 0 (A.91)

In the above derivation, (A.89) and (A.91) are true because of convexity (A.85); (A.90)

is true by Gaussian summation formula:
∑n

i=1 i = n(n+1)
2

. Therefore we show running
average of f(i) is also covex.

Now we come back to proof of Theorem 28. The average backorder level

∑
v≥Sij

(v − Sij)mi(v) =
1

Q

Q−1∑
q=0

fij(q) (A.92)

By Lemma 8 we know fij(q) is convex in q, and therefore we show the running average
(A.92) is convex in upper limit Q, from the result of technical Lemma 9. In summary,
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Cj(Qj, S1j, · · · , Snj), the total cost of retailer i, is the sum of convex functions, thus
remains convex in Q. Therefore by the convexity of Cj in Q, the optimal aggregate
level Q∗ at given order-up-to levels is

argminQ∈Z{Q : Cj(Q+ 1, S1j, · · · , Snj) ≥ Cj(Q,S1j, · · · , Snj)}.
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