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ABSTRACT OF THE DISSERTATION

Synthesis of Linear Distributed Control and

Coupled Oscillators with Multiple Limit Cycles

by

Kewei Ren

Doctor of Philosophy in Aerospace Engineering

University of California, Los Angeles, 2021

Professor Tetsuya Iwasaki, Chair

This dissertation presents a synthesis scheme of distributed controller for continuous time,

finite dimensional, linear time-invariant systems. We show that under the assumption that

the interconnection of the control units is characterized by a strongly connected directed

graph, any centralized controller admits a distributed synthesis with an arbitrary accuracy.

This idea applies to a wide variety of control problems such as observer design, stabilizing

control, eigenstructure assignment, etc. We further specialize our theories for multi-agent

systems with local observability and propose a lower order distributed controller with internal

model to achieve eigenstructure assignment. Then by replacing the linear internal model by

a nonlinear oscillator network, we show the potential of nonlinear distributed control to

achieve pattern formation with the amplitude stabilized. Next, we consider the design of

nonlinear oscillator network with linear coupling to have a stable limit cycle with prescribed

oscillation profile. We give the sufficient conditions for the orbital stability of the limit cycle.

Moreover, we demonstrate that the embedding of multiple limit cycles into the oscillator

network is possible. Finally, we consider the design of nonlinear oscillator network with
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nonlinear coupling to overcome some limitations of the linearly coupled oscillators. Likewise,

conditions for the orbital stability of multiple limit cycles are provided.
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CHAPTER 1

Introduction

Our research originates from the study of the control of biological locomotion based on cen-

tral pattern generators (CPGs). In a nutshell, a CPG is a neuronal network capable of

producing periodic signals, which serve as the references for animal locomotion. A CPG

interacts with the animal body as well as the environment, adjusting its output accord-

ingly. It is observed that multiple locomotion gaits can be encoded into a CPG. Moreover,

the distributed structure of CPGs results in a distributed control strategy. In engineering

applications, CPGs are often modeled as coupled oscillators. Our objective is to provide

analytical control methods that have all the advantages CPGs possess. To that end, we

need to resolve the problem of distributed control for general plants. Also, we would like to

have a CPG model convenient for engineering applications. For these reasons, we review the

state of the art of several relevant research fields in the coming sections.

1.1 Distributed Control

Over the past few decades we have witnessed a significant growth in complex systems that

feature special spatial structures. These systems may comprise spatially distributed units

that interact with their neighbors through a communication network. Other scenarios in-

clude distributed placement of sensors and/or actuators. Typical examples are autonomous

underwater vehicles (AUVs), unmanned aerial vehicles (UAVs), mobile robot swarm, forma-

tion flight, constellation satellites, smart grid, automated highway systems, to name a few.

For these systems, we seek effective and efficient methods to achieve some desired dynamical
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behavior by exploiting their special structure, including, for example, rendering the system

stable or embedding periodic motions into the system. Increasing demand in systems with

aforementioned features gives rise to the interest in novel control theories that utilize well

the distributed nature. We review some of the recent results here.

In [BPD02], the control problems for systems that are described by PDEs are considered.

A key property of the systems dealt with in the paper is spatial invariance, which allows

designing quadratically optimal controllers for infinite dimensional systems by solving finite

dimensional problems for a family of parametrized systems over frequency. The resulting

controller admits a localized structure and hence can be implemented in a distributed man-

ner. [DD03] tackles control problems for spatially discrete, interconnected systems that are

composed of identical building blocks. Specifically, two types of interconnection are consid-

ered: periodic interconnection and infinite interconnection. The controller in the paper is

assumed to have the same distributed architecture as the system. Then the well-posedness,

stability, performance are analyzed for the closed-loop system. The resulting conditions are

given in terms of linear matrix inequalities (LMIs). Following similar ideas and approaches,

[LCD04] proposes a convex characterization of controller synthesis for systems of heteroge-

neous units interconnected over an arbitrary graph. Inspired by dissipativity theory, the

results are expressed as a set of coupled LMIs. Again, the controller is assumed to have

the same topology as the interconnected subsystems. The notion of “quadratic invariance”

introduced in [RL05] indicates that, integrated with Youla parametrization, the constraints

on the controller structure can be preserved under feedback and the controller synthesis can

be solved via convex programming. This gives a very general framework of decentralized

controller synthesis. However, for strongly connected systems, it fails to provide a convex

characterization of localized controllers [ADL19]. The System Level Synthesis (SLS) ap-

proach [ADL19] formulates a novel parameterization of internally stabilizing controllers by

looking at the closed-loop responses of the system rather than the input/output map of the

controller itself. Moreover, SLS is able to constrain the closed-loop response to be in arbitrary
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sets. And if the constraints admit a convex representation, the resulting system responses

will also admit a convex representation. Any constraints on the system response impose a

corresponding constraint on the structure of the controller. Specifically, the structural con-

straints on the system response carries over to the internal realization of the controller. The

distributed structure of the resulting controller is achieved by imposing locality constraints

on the system response. This method, however, requires selection of basis transfer functions,

which may not be trivial. The design of distributed Luenberger observer is considered in

[KSC16], where local observers process local measurements and communicate via a undi-

rected, connected graph. They altogether estimate the plant state under the assumption

of joint observability. The conditions on the controller gains are derived by an appropri-

ate Lyapunov function. [HTW18] borrows some of the ideas of [KSC16] and considers a

strongly connected directed graph instead. The resulting algorithmic procedure to compute

a distributed observer is based on solving LMIs. In addition to stabilizing control, there are

also works focusing on distributed output regulation of linear multi-agent systems, such as

[SH11, SRA16].

As we can see, there are plenty of results for distributed control of multi-agent systems.

Also, the control of spatially distributed plants with spatial invariance can be approached

in a distributed manner. For general plants not categorized wht special structure, [ADL19]

provides a flexible design framework with full parametrization, but the search space is infinite

dimensional. A finite dimensional approach for general plants is in demand.

1.2 Central Pattern Generators

An application that inevitably relates itself to distributed control is the control of coordi-

nated periodic motions. Periodic motions are prevalent in nature, e.g., heart beat, respira-

tion, circadian rhythm, animal locomotion, pendulum, waves, etc. Such motions are often

coordinated to have a common frequency with specific relative phase pattern for various
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spatial parts. Control theories to achieve coordinated oscillations are of great significance

and have many potential applications. For example, development of assistive devices would

require such control methods to help human with rhythmic activities such as walking, masti-

cation, respiration, etc. Moreover, it may suggest new medical treatments for certain diseases

which are pathologically related to some known or unclear coordinated behaviors of neural

oscillations, e.g., Parkinson’s disease. Many industrial robots operate in coordinated peri-

odic motions, for which control mechanisms to make the production efficient and reliable

are desired. Cooperative tasks for multi-agent systems, such as autonomous underwater ve-

hicles (AUVs), unmanned aerial vehicles (UAVs), mobile robot swarm, formation flight, and

constellation of satellites, also involve feedback control to achieve coordination.

A representative example of rhythmic behaviors, animal locomotion, has been exten-

sively studied [FK99, BTS00, DFF00, Gri06, HFK06]. Periodic body movements during

locomotion are controlled by the Central Pattern Generators (CPGs). CPGs are neuronal

networks that can autonomously generate rhythmic coordinated patterns without receiv-

ing rhythmic inputs from sensory feedback or higher control center [Ijs08], and function to

produce adaptive rhythmic behaviors with sensory feedback [ICF14]. Neural CPG circuits

are found in both invertebrates and vertebrates, including lamprey [CW80], salamander

[DBD99], leech [JCF05, ZFI07]. CPGs have several features useful for engineering applica-

tions. They are capable of producing coordinated oscillation patterns for many variables,

and the pattern can be changed by simply tuning several parameters, which greatly reduces

complexity/dimensionality of the problem. In fact, it is possible to embed multiple limit cy-

cle oscillations into a single CPG, which is an instrumental property for some behaviors such

as gait transition in animal locomotion. Moreover, the rhythmic patterns a CPG generates

are stable and robust due to the orbital stability property of the limit cycles. Since a CPG

is essentially a network of neurons interconnected with each other, it provides a framework

for feedback control with a distributed sensing and actuation. These features make the CPG

an excellent platform for control designs to achieve periodic, coordinated movements.
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Some CPG models in biology [HGL92, TBL93] are based on the detailed dynamics of

neuronal cell membranes using the celebrated Hodgkin-Huxley electrical circuit [HH52]. To

simplify the Hodgkin-Huxley model and reduce computational burden, two-variable neu-

ron models have been proposed such as the FitzHugh-Nagumo, the Morris-Lecar, and the

Hindmarsh-Rose models [KS98]. Further simplifications are possible when the neuronal in-

teractions are not mediated by action potentials [ZFI07], or the model variable represents the

frequency of neural spikes [Mat85]. Based on such simple models, some CPGs with particular

connectivity structure are modeled and their oscillation patterns are analyzed by simulations

[Mat85, Mat87]. In [Iwa08], CPGs with a general interconnection architecture are analyzed

by the multivariable harmonic balance (MHB), analytical insights are provided on how the

oscillation profile (frequency, amplitudes, phases) is specified by the eigenstructure of the

connectivity matrix.

Another perspective on CPG modeling is somewhat more abstract, based on the frame-

work of coupled nonlinear oscillators. The focus of this type of modeling is on how the cou-

pling topology determines the coordination pattern for populations of neurons [GS03]. Exten-

sively studied models include the phase coupled oscillators [BI04a, CHR82, KEW91, SJK90],

which provide a powerful tool for analyses, but have not been found useful for designs. On

the other hand, networks of Andronov-Hopf oscillators (AHOs) [PS07] and their variations

[LI17] have been found useful for engineering design applications. For instance, an adaptive

frequency AHO is proposed [BI04b, RBI06] to learn the frequency of a periodic input signal,

and is used to design a programmable CPG for bipedal locomotion [RI06]. The AHO has also

been used as a basic control unit with sensory feedback to achieve synchronization [SCS10]

and natural oscillations [ZI17].

Despite the progress made in the past decades, there are still many shortcomings among

the existing CPG models. The theory on the relationship between the oscillation pattern

and neuronal connectivity is incomplete for the simple oscillators in [Mat85, Mat87] due to

the lack of generality in the network architecture. The MHB analysis in [IZ06] provides a
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practically effective method for designing CPGs, but stability of the oscillation cannot be

guaranteed due to the approximate nature of the analysis. In [PS07], global convergence to

synchronized oscillations is proved for AHOs with diffusive coupling based on the contraction

theory, which is an interesting result. However, when one desires to embed multiple limit

cycles in a CPG for a variety of behaviors, convergence has to be local. Most of the CPG

models in the literature have a fixed temporal waveform, e.g., a sinusoid as in AHOs. A gen-

eral method for achieving an arbitrary temporal shape is developed in [RI06] by superposing

outputs of multiple AHOs to form a Fourier series. While the idea is interesting and the

method is effective, this CPG model lacks a rigorous stability proof, and its complexity grows

with the number of Fourier terms. Thus, there is no single CPG model that encompasses

the issues of multiple limit cycles, temporal waveform, and rigorous stability proof.

1.3 Coupled Oscillators

To achieve periodic motions for a physical system, one could design a feedback regulator to

track an oscillatory command. The oscillatory command can be generated by an oscillator

since oscillators naturally embed periodic patterns. Also, it is desirable to be able to switch

to a different pattern when the environment or task changes. For example, a locomotive

robot switches between different gaits. Moreover, a distributed structure is preferred since in

some cases spatial constraints are present. Thus, a multi-pattern oscillator with distributed

structure is of great interest.

In the mathematical language, the problem is to design a dynamical system, ẋ(t) =

f(x(t), t), x ∈ Rn, f : Rn × R 7→ Rn, that has a periodic solution of desired properties.

For analyzing the periodic solutions of generic oscillatory systems, general methods include

Floquet theory, Poincaré maps, etc., can be exploited, and the existence as well as the

stability can be proved either numerically or analytically if possible. When f(x(t), t) exhibits

weak nonlinearity, the method of harmonic balance is helpful by approximating the system
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to be a linear system [Iwa08]. This approach establishes the correspondence between the

structure of the coupled oscillator network and the resulting oscillation profile. However, the

stability is not guaranteed and the oscillation profile cannot be achieved accurately due to

the nature of harmonic approximation. These theories are mainly for ensuring the stability

of limit cycles. In order to implement a distributed architecture, we need additional ideas

such as a network structure, and the associated theories to cope with them.

The network of coupled subsystems is a good framework for distributed architecture. The

advances in the consensus/synchronization problems of multi-agent systems offer some great

instructions on the distributed structure using graph theory. In this framework, each agent

has its own dynamics, while receiving signals from neighboring agents. The communication

between agents is defined by a graph. Based on the dynamics of individual agents and the

connectivity across agents, various theories are developed for specific models. For example,

the agents can be homogeneous with identical dynamics [OM04, Ren08, SS09]; also they can

be heterogeneous with dynamics differing from agent to agent [WSA11, KSS10]. The agents

can be oscillators [BRI06], which are able to produce periodic signals without the inputs from

other agents. Also, agents can be non-oscillatory, but may start to show rhythmic motion if

coupled properly with others [ZCM15]. The coupling between agents may be linear [SAJ13]

or nonlinear [PPS18], and the coupling strength may be strong or weak. Moreover, the

topology may be structured or unstructured. Some of these properties can be exploited, as

will be explained in the paragraphs that follow.

When the agents are homogeneous, the method of master stability equation can be em-

ployed to ensure local stability [PC98, HTI14]. Master stability equation is developed as

a general method for the synchronization of homogeneous dynamical systems for which a

common function is used to form the coupling term with neighboring systems. It linearizes

the coupled system around the synchronization manifold, and shows the linearized dynam-

ics can be decoupled into separated linear systems of smaller dimension, each of which has

one parameter determined by the connectivity matrix. Therefore the stability of the syn-
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chronization manifold boils down to the stability of these low dimensional linear systems.

This method is powerful for synchronization and also for coordination with a coordinate

transformation if the system exhibits flow invariance. The limitation, nonetheless, is that

the coupling between the variables of different oscillators is assumed to be uniform. This

limitation reduces the design freedom which is important when one explores the possibilities

for multiple limit cycles.

If the coupling is weak, the coupled oscillators can be reduced to phase-coupled os-

cillators. Approaches developed for phase-coupled oscillators can be utilized for synchro-

nization/coordination [Kur75, EK84, IK06, DB14]. While the framework of phase-coupled

oscillators is powerful for analysis of various models in many engineering and science fields,

there lacks a good paradigm for design given desired oscillation profiles. Another drawback

of this architecture is that the frequencies of the oscillators converge to a common value.

Thus it is not possible to have multiple limit cycles with various frequencies.

When the coupling is strong, the theory of contraction/semi-passivity can be adopted to

obtain conditions for global stability [PN01, PSN02, LS98, WS05, PS07]. This theory extends

Lyapunov theory to the case of convergence to a flow-invariant subspace. Unfortunately the

global stability to a limit cycle ensured by this approach eliminates the existence of extra

limit cycles.

Having capability of generating multiple patterns and transition between them is desired

in many applications such as the gait transition in robotics. There are several ways to

achieve multiple gaits. Most of the methods in the literature define the gait in terms of duty

ratio of the swing/stance phases of limbs and phase differences between limbs [SM11]. The

duration of swing and stance phases is controlled by the period of the oscillation of the same

oscillator network with different configuration or different oscillator networks. To define a

new gait, simply the duty ratio of stance/swing phases is modified and the timing of the onset

to the swing/stance phases for different limbs during a cycle is changed as well. However,

this approach involves a lot of heuristics and manual parameter tuning hence no stability
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is guaranteed. Another strategy is to have multiple limit cycles embedded in one oscillator

network, using additional structure to impose the convergence to a specific limit cycle. For a

linear system with multiple oscillatory modes, a potential function can be designed to control

which mode it exhibits based on the ‘energy’ of that mode [IYA03]. But the design of the

potential function is case-by-case and heuristic. The stability is not proved either. Having

multiple limit cycles embedded in a single system may be advantageous for achieving adaptive

gait transition based on the environmental change in an autonomous manner. Switching the

parameter values for gait transition may create some stability problem and convergence may

not be guaranteed. But having multiple stable limit cycles would avoid this instability issue.

The review on existing methods indicates that we have to carefully pick the coupling

strength between oscillators to accommodate our needs. The coupling cannot be too strong

because the theory of contraction suggests it would result in global stability which disables

multiple limit cycles. The coupling cannot be too weak either since the study on phase

coupled oscillators suggests that the frequency of the oscillators will synchronize.

The problem of distributed structure for multiple patterns has not been addressed, al-

though the solution to distributed structure problem has been well established for a single

limit cycle case using graph Laplacian. But the idea does not apply to multiple limit cycle

case. The only eigenvalue at the origin along with the corresponding eigenvector essentially

specifies the synchronization condition. When there is an additional pattern to be achieved,

an extra eigenvalue at the origin with a different eigenvector is imposed. Then this will

violate the spanning tree structure which is the key to the stability of the synchronization.

1.4 Notations

We use the following notations. In is defined as the integer set modulo n, In := {1, 2, . . . , n}.

The imaginary unit is denoted by j :=
√
−1. <[·],=[·] denote the real and imaginary parts

of a complex number, respectively. Vectors are denoted by boldface, lowercase letters, while
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uppercase letters are used for matrices. For a vector v ∈ Cn, vi denotes the ith entry. The

transpose and complex conjugate of x are denoted by vT and v̄, respectively, and define

v∗ := v̄T. col(·) means a vertical concatenation of the entries. The diagonal matrix with

entries vi is denoted by diag(v1, . . . , vn) or diag(v). For a scalar x and vector y, the notation

z = x + y means that zi = x + yi. For vectors x and y, the notation z = x · y means

elementwise multiplication, i.e., zi = xiyi. 1 is the vector with all entries being 1. The

Kronecker product is denoted by ⊗. Functions sin, cos, exp, and absolute value | · | act on

the argument elementwise, e.g. |z| is a vector with entries |zi|. L = [ℓij] represents the matrix

L with ℓij being the (i, j)th entry. The Moore-Penrose inverse of a matrix X is denoted by

X†. eig(X) is the set of eigenvalues of X. For a transfer function P (s), ‖P‖H2
, ‖P‖H∞

,

‖P‖L∞
are its H2 norm, H∞ norm, L∞ norm, respectively. For a matrix X, X ≺ 0, X � 0,

X � 0, X � 0 indicate that X is negative definite, negative semidefinite, positive definite,

positive semidefinite, respectively. We also use the set Rn
++ to imply an n×n matrix in this

set is positive definite whenever convenient.
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CHAPTER 2

Distributed Synthesis of Linear Control for Stability

and Performance

2.1 Problem Formulation

2.1.1 Problem Statement

In this chapter, we discuss the problem of synthesizing a linear stabilizing control in a

distributed fashion. Given a generalized LTI plant,z
y

 = G(s)

w
u

 , (2.1)

where z is the performance output, y the measured output, w the exogenous input containing

disturbance, reference, etc, u the control input, and G(s) the transfer function. Oftentimes

the measured output of the plant is partitioned into several channels and so is the control

input,

y = col(y1, . . . ,yq), u = col(u1, . . .uq), (2.2)

where the local actuation ui and the local measurements yi are vectors or scalars and q is

the number of channels. If the partition of input and output is ignored, a stabilizing output

feedback controller can be synthesized using various existing control methods,

u = K(s)y. (2.3)
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Let the closed-loop system be denoted by z = H(s)w and assume that H(s) is stable.

Now we must take into consideration the constraints on the input and output structure and

thereby seek a distributed synthesis of the controller in the following formui

vi

 = Ki(s)

yi

hi

 , hi = η
∑
j∈Ni

ℓijvj, (2.4)

where Ni is the set of indices specifying the “neighbors” of the ith control unit. Each control

unit only picks up local information from the plant, and generates local control input. The

communication between neighboring control units is reflected in the signals vi. The ith

control unit receives from neighbors a weighted sum of vj. Also we make explicit the coupling

strength η, which is a common parameter, for convenience. Let the closed-loop system of

this controller and the generalized plant G(s) be denoted by z = Hη(s)w. Figure 2.1 shows

the schematics for closed-loop systems. We would naturally wonder if we are able to find

such a distributed controller that performs similarly to the controller (2.3) which is yielded

without any consideration of distributed structure. The formal statement of the problem is

given as follows.

Problem 1. Let G(s) in (2.1) and K(s) in (2.3) be given such that the closed-loop system

z = H(s)w is stable. Let the control input u and measured output y be partitioned as in

(2.2), and consider the sets Ni with i ∈ Iq. For a given scalar ε > 0, find a distributed

controller of the form (2.4) such that the resulting closed-loop system z = Hη(s)w is stable

and satisfies ‖H −Hη‖∞ < ε. □

We assume that the sets of neighbors Ni are given such that the corresponding network

graph, as we will define in a later section, is strongly connected. Under this assumption, the

problem turns out to be feasible for an arbitrary ε > 0 as we show later.

12



(a)

(b)

Figure 2.1: Schematics for the closed-loop systems: (a) centralized control; (b) distributed control.
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2.1.2 Controller Architecture

As a special class of the distributed controller in (2.4), we consider the following state space

model,

˙̂xi = Aix̂i + qFiyi +Gizi, i ∈ Iq,

zi = η
∑
j∈Ni

ℓij(x̂j − x̂i),

ui = Kix̂i.

(2.5)

Let us define a matrix L by specifying its (i, j)th entry as ℓij. The above model is independent

of the diagonal entries ℓii but we choose them so that L1 = 0 for technical convenience. The

matrix L then represents a directed graph, which is defined in the subsequent section, that

specifies the distributed structure of the control units. The ith control unit has state x̂i,

takes in the input yi, communicates with neighboring subsystems through a network whose

topology is characterized by L and coupling strength by η, and outputs ui.

Taking the Laplace transform for a control unit (2.5),

x̂i = qMi(s)Fiyi +Mi(s)Gizi, Mi(s) := (sI − Ai)
−1.

Here with a slight abuse of notation we denote by the same letter both the signal in time

and s-domain. The structure of a control unit in s-domain can be illustrated by the block

diagram in Figure 2.2.

In the matrix form,

x̂ = qM(s)Fy +M(s)Gz,

z = ηLx̂,

u = Kx̂,

(2.6)

where M(s), F, G, and K are block diagonal matrices with Mi(s), Fi, Gi, and Ki on the

diagonal, and

L := L⊗ I.

14



local control unit

yiqFi

Gi

Mi(s)

Kiui

network

x̂i zi

Figure 2.2: Block diagram of the local control unit.

Subsequently, we obtain the mapping from y to u,

u = qK (I − ηM(s)GL)
−1
M(s)Fy. (2.7)

2.2 Approach

2.2.1 Review of Graph Theory

A natural and convenient tool to describe the interconnection between distributed con-

trol units is a graph. A graph G of q interconnected vertices is defined as an ordered

pair of two sets, G = (V , E), where V = { vi | i ∈ Iq } is the set of vertices and E ⊆

{ eij = (vi, vj) | (vi, vj) ∈ V × V , vi 6= vj } is the set of edges. An edge eij belongs to E only

when vi and vj are connected. To further examine the connection between edges, we define

a directed graph. A directed graph is defined as a graph in which edges have directions. An

edge eij belongs to E of a directed graph only when there is an edge pointing from vj to vi
1.

1This may not align with the conventional definition, but serves out purposes in the sequel.
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A path from a vertex v0 ∈ V to another vertex vk ∈ V is a sequence of vertices (v0, . . . , vk)

such that the edge (vi, vi+1) ∈ E for all 0 ≤ i ≤ k − 1. The graph G is said to be strongly

connected if for any two distinct vertices vi, vj ∈ V , there is a path from vi to vj and a path

from vj to vi. We further associate each edge eij with a weight aij. And in this dissertation,

we restrict aij to be positive. Define the Laplacian matrix L = [ℓij] ∈ Rq×q of the graph G

as follows,

ℓij =


−aij i 6= j,∑q

j=1 aij i = j.

We immediately see that L1 = 0.

Lemma 1 ([OM04, RBM05, YCC09]). Consider a network with a directed graph specified by

Laplacian matrix L ∈ Rq×q. Suppose the network is strongly connected with positive weights

(i.e., ℓij < 0 for connected edges). Then there exists a vector r ∈ Rq such that rTL = 0 and

ri > 0 for all i ∈ Iq. Moreover, we have

Q := RL+ (RL)T � 0, Q1 = 0, R := diag(r),

with the dimension of the null space of Q being one. □

Remark 1. As noted in [HTW18], RL is the Laplacian matrix of the balanced directed graph

obtained by adjusting the weights of the original graph. While the matrix Q is the Laplacian

matrix of the undirected graph obtained by uniting the edges of a vertex pair in this balanced

directed graph. This undirected graph is called the mirror of the balanced graph [OM04]. □

Define

J := col(I, . . . , I), (2.8)

and N is such that the columns form an orthonormal basis for the null space of JT. We have

1
q
JT

NT

[J N
]
= I. (2.9)
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J and N will be used frequently in this dissertation for a coordinate transformation, so that

the average dynamics of the connected systems can be isolated.

Lemma 2. Suppose L is the Laplacian matrix of a strongly connected directed graph with

positive weights and L := L⊗I, where I is an n×n identity matrix. Let r be a positive vector

such that rTL = 0, and ri be the ith entry of r. Given a positive definite matrix X ∈ Rn
++.

Define Gi = riX for i ∈ Iq, and G to be the block diagonal matrix with Gi on the diagonal.

Let J and N be defined as in (2.8) and (2.9). Then H := −NTGLN is Hurwitz. □

Proof. Since Gi := riX and L := L⊗ I, we have

GL = (R⊗X)(L⊗ I) = (RL)⊗X,

where R := diag(r). This indicates that the eigenvalues of GL are λiµj, where λi, i ∈ Iq

are the eigenvalues of RL and µj, j ∈ In are the eigenvalues of X. Therefore −GL has the

eigenvalue decomposition

(−GL)
[
J N

]
=
[
J N

]0
H

 , H := −NTGLN.

The fact L1 = 0 implies that H is Hurwitz. ■

2.2.2 Basic Idea for Distributed Synthesis

We are interested in the mapping from y to u of the distributed controller as in (2.7) where

each control unit in general is a dynamical system, i.e., Mi(s) are transfer functions. It is,

however, a good practice to start off investigating the case where the mapping is static. As

such, we assume Mi(s) = Mi are constant matrices for all i ∈ Iq. The static mapping from

y to u then is characterized asui

xi

 =

qKiMiFi KiMiGi

qMiFi MiGi

yi

zi

 , zi = η
∑

ℓij(xj − xi). (2.10)
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In matrix form

u = Kx̂, x̂ = qMFy +MGz, z = ηLx̂,

where M, F, G, and K are block diagonal matrices with Mi, Fi, Gi, and Ki on the diagonal,

and L := L⊗ I. Therefore the mapping from y to u is

u = qK (I − ηMGL)
−1
MFy. (2.11)

We would like to examine the limiting case when η → ∞. The following lemma provides a

useful result that comes handy later.

Lemma 3. Let a square matrix M be given and suppose it has a possibly repeated semisimple

eigenvalue at the origin. Let J and W be matrices whose columns and rows form bases for

the right and left null spaces of M , respectively (MJ = 0 and WM = 0), normalized such

that WJ = I. Then

lim
η→∞

(I − ηM)−1 = JW.

□

Proof. From a standard linear algebra result, there exists a similarity transformation that

block diagonalizes M asW
V

M
[
J N

]
=

0 0

0 Λ

 ,

W
V

[J N
]
= I,

with appropriate matrices J , N , W , and V , where Λ ∈ R(n−m)×(n−m) is nonsingular. Then

(I − ηM)−1 =

I − η
[
J N

]W
V

M
[
J N

]W
V

−1

=
[
J N

]I 0

0 I − ηΛ

−1 W
V

 ,

= JW +N(I − ηΛ)−1V → JW.

■
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We show the convergence of the static mapping from y to u specified by (2.10) in the

following lemma.

Lemma 4 (static mapping). Let Φ := KΨF be given where Ψ is nonsingular. Let L be

the Laplacian matrix of a strongly connected directed graph with positive weights. Let r be a

vector with positive entries such that rTL = 0, and ri be the ith entry of r. Partition K and

F such that

K = col(K1, . . . , Kq), F = row(F1, . . . , Fq).

Define Gi = riX with an arbitrary nonsingular X, and choose nonsingular matrices Mi such

that

Ψ =

(
1

q

q∑
i=1

M−1
i

)−1

.

Then the static mapping u = Hηy specified by (2.10) is a distributed synthesis of Ψ in the

sense that

lim
η→∞

Hη = KΨF.

□

Proof. The static mapping u = Hηy is equivalent to (2.11). Note that

LJ = 0, JTGL = 0, J := col(I, . . . , I).

Thus

(MGL) J
(
JTM

−1J
)−1

= 0, JTM
−1 (MGL) = 0.

Applying Lemma 3,

lim
η→∞

(I − ηMGL)
−1

= J
(
JTM

−1J
)−1

JTM
−1.
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Further,

lim
η→∞

u = lim
η→∞

qK (I − ηMGL)
−1
MFy = qKJ

(
JTM

−1J
)−1

JTFy.

Finally

lim
η→∞

u = KΨFy

by noticing that

KJ = K, (JTM
−1J)−1 =

1

q
Ψ, JTF = F.

■

Remark 2. Lemma 4 is the basis for the developments in the sequel. It shows how a commu-

nication network with a strong coupling strength approaches a central mapping. Conversely,

it gives guidelines as for how a given centralized mapping can be synthesized as a distributed

network mapping. As the theoretical convergence happens with sufficiently large coupling

strength, strong connectivity is crucial for the distributed synthesis. □

2.3 Distributed Control Synthesis

2.3.1 Controller Approximation

This section shows that an arbitrary centralized controller K(s) admits a distributed syn-

thesis Kη(s) with an arbitrary accuracy, i.e. ‖K −Kη‖L∞
can be arbitrarily small.

As the previous section suggests, the distributed synthesis of a static mapping comprises

of three parts. The first (K) and third components (F ) correspond to the input and output

coefficient matrices of the individual control units, respectively. While the middle component

(Ψ) is determined in terms of the “average” of M−1
i . This motivates us to study the average

dynamics of the control units. We present a coordinate transformation result in the following

lemma which gives insights to the distributed synthesis of an arbitrary centralized controller.
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Lemma 5 (coordinate transformation). Consider the distributed controller parametrized

by (2.5). Let J and N be defined as in (2.8) and (2.9). Define Ā := 1
q

∑q
i=1 Ai, K :=

col(K1, . . . , Kq), F := row(F1, . . . , Fq). Let A, G, F, and K be block diagonal matrices with

Ai, Gi, Fi, and Ki on the diagonal, and L := L ⊗ I, H := −NTGLN . Then the controller

has a state space realization
ẋ1

ẋ2

u

 =


Ā 1

q
JTAN F

NTAJ NTAN + ηH NTF

K KN 0



x1

x2

y

 . (2.12)

□

Proof. The distributed controller (2.5) can be written in the matrix form

˙̂x = (A+ ηGL)x̂+ qFy,

u = Kx,

Consider the coordinate transformation

x =

x1

x2

 =

1
q
JT

NT

 x̂.

Note that x1 =
1
q
JTx̂ = 1

q

∑q
i=1 x̂i is the average state of the distributed control units. Thenẋ1

ẋ2

 =

1
q
JT (A+ ηGL) J 1

q
JT (A+ ηGL)N

NT (A+ ηGL) J NT (A+ ηGL)N

x1

x2

+

JT

NT

 Fy.

Using the fact that

LJ = 0, JTGL = 0, J := col(I, . . . , I),

and

1

q
JTAJ = Ā, JTF = F,
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we haveẋ1

ẋ2

 =

 Ā 1
q
JTAN

NTAJ NTAN + ηNTGLN

x1

x2

+

 F

NTF

y. (2.13)

The control input can be expressed as

u = Kx̂ = K
[
J N

]
x =

[
K KN

]
x. (2.14)

Putting (2.13) and (2.14) together yields (2.12). ■

The next lemma demonstrates how the input-output relationship evolves for a system

parametrized by a coupling strength like (2.12).

Lemma 6. Consider an LTI system parametrized by η ∈ R:
ξ̇

ζ̇

z

 =


A N B

M ℧+ ηH J

C H D



ξ

ζ

w

 . (2.15)

Denote the transfer function from w to z by Rη(s) and define P (s) := C(sI − A)−1B +D.

The following statements are true.

• If neither A nor H has eigenvalues on the imaginary axis, then lim
η→∞

‖Rη − P‖L∞
= 0,

where ‖·‖L∞
is the L∞ norm.

• If A and H are Hurwitz, then lim
η→∞

‖Rη − P‖H∞
= 0, where ‖·‖H∞

is the H∞ norm.

□

Proof. Taking the Laplace transform of (2.15),

ζ = Γη(s)(Mξ + Jw), Γη(s) := (sI − ℧− ηH)−1,

ξ = Φ(s)(Nζ +Bw), Φ(s) := (sI − A)−1.

22



Rearranging, I −Γη(s)M

−Φ(s)N I

ζ
ξ

 =

Γη(s)J

Φ(s)B

w.

Then

Rη(s) =
[
H C

] I −Γη(s)M

−Φ(s)N I

−1 Γη(s)J

Φ(s)B

+D.

Using the matrix inversion formula,A B

C D

−1

=

 E −EBD−1

−D−1CE D−1 +D−1CEBD−1

 , E := (A− BD−1C)−1,

the transfer function can be written as

Rη(s) = CΦ(s)B +D +∆η(s) = P (s) + ∆η(s),

where ∆η(s) is defined as

∆η(s) := (H + CΦ(s)N)E(s)Γη(s) (J +MΦ(s)B) , E(s) := (I − Γη(s)MΦ(s)N)
−1
.

Define ϖ = 1
η
ω. Then the L∞ norm of ηΓη is

‖ηΓη‖L∞
= sup

ϖ

∥∥∥∥∥
(
jϖI − 1

η
℧−H

)−1
∥∥∥∥∥
2

.

We now prove the first statement given that H has no eigenvalues on the imaginary axis.

There exists η0 such that 1
η
℧ +H has no eigenvalues on the imaginary axis for η > η0 due

to continuity. Thus for each η > η0, ‖ηΓη‖L∞
is well defined and finite. As η approaches

infinity, ‖ηΓη‖L∞
is bounded and approaches the L∞ norm of (sI −H)

−1, i.e.,

lim
η→∞

‖ηΓη‖L∞
=
∥∥(sI −H)

−1∥∥
L∞

,
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which is finite. Therefore, lim
η→∞

‖Γη‖L∞
= lim

η→∞
1
η
‖ηΓη‖L∞

= 0. When ‖Γη‖L∞
gets sufficiently

small as η → ∞, det (I − Γη(s)MΦ(s)N) 6= 0 due to the small gain theorem. Hence E(s) =

(I − Γη(s)MΦ(s)N)
−1 is well defined and ‖E‖L∞

is finite. We finally have

lim
η→∞

‖Rη − P‖L∞
= lim

η→∞
‖∆η‖L∞

≤ lim
η→∞

‖H + CΦN‖L∞
‖E‖∞ ‖Γη‖L∞

‖J +MΦB‖L∞

= 0.

The proof for the second statement can be done in a similar manner. Note that ‖∆η‖H∞

becomes finite with large η. ‖Rη‖H∞
is thereby finite for sufficiently large η. The rest of

the proof is done with the fact that there exists η0 such that 1
η
℧ +H becomes Hurwitz for

η > η0 given that H is Hurwitz. ■

We build upon Lemmas 5 and 6 to show that a distributed control can approximate a

centralized control arbitrarily closely and state the result in the following theorem.

Theorem 1 (controller approximation). Consider the mapping from y to u specified by

(2.5) and denote it as Rη(s). Suppose L is the Laplacian matrix of a strongly connected

directed graph with positive weights. Let r be a positive vector such that rTL = 0, and ri be

the ith entry of r. Define Ā := 1
q

q∑
i=1

Ai, K := col(K1, . . . , Kq), F := row(F1, . . . , Fq), and

P (s) := K(sI − Ā)−1F . Then

lim
η→∞

‖Rη − P‖L∞
= 0

where ‖·‖L∞
is the L∞ norm, if Gi = riX where X = XT � 0, and Ā has no eigenvalues on

the imaginary axis. Further, if Ā is Hurwitz, then

lim
η→∞

‖Rη − P‖H∞
= 0

where ‖·‖H∞
is the H∞ norm. □
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Proof. The distributed controller (2.5) has a state space realization (2.12) due to Lemma 5,

where H := −NTGLN is Hurwitz by Lemma 2. Then the proof is completed by applying

Lemma 6. ■

Theorem 1 shows that under certain conditions a distributed control can be made arbi-

trarily close to a centralized control by increasing the coupling strength. Moreover, it also

shows how one can synthesize a distributed controller given a centralized one.

Example 1. Let a centralized controller P (s) = K(sI − A)−1F be given with

A =



1 0 0 0 0 0

−1 1 1 0 0 0

1 −2 −1 −1 1 1

0 0 0 −1 0 0

−8 1 −1 −1 −2 0

4 −1 1 0 0 −4


, K =



1 0 0 2 0 0

2 0 0 1 0 0

2 0 1 0 0 1

0 0 0 2 0 0

1 0 2 0 0 0

2 0 4 0 0 0


=


K1

K2

K3

K4

 .

F is given by F = row(F1, F2, F3, F4) with

Fi = KT
i , i = 1, 2, 3, 4.

We construct a distributed controller composed of 4 control units as in (2.5) with Ai = A

and the connectivity of the control units is described by a graph with Laplacian

L =


2 −1 0 −1

0 1 −1 0

−1 −1 2 0

−1 0 0 1

 .

The left eigenvector of L associated with 0 is rT =
[
1 2 1 1

]
and Gi are then chosen to

be Gi = riI. Denote by Rη(s) the transfer function of the distributed controller. Figure 2.4

shows the spectral norm of P (s) and Rη(s) with various η. The difference between P (s) and

Rη(s) gets diminished as η becomes larger. □
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Figure 2.3: Spectral norm of P (s) and Rη(s) with various η.

2.3.2 Closed-Loop Performance

This section shows that the closed-loop performance of the central controller can be recovered

by the distributed synthesis with an arbitrary accuracy. Since the controller transfer function

can be exactly recovered in the limit η → ∞, the closed-loop transfer function can also be

recovered exactly. However, for practical purposes, the limiting property is not enough since

the limit may be approached by a sequence of the unstable closed-loop systems. We will

show that for sufficiently large η > 0, the closed-loop system is internally stable, justifying

the approximate distributed synthesis with a finite value of η.

Consider the generalized plant

ẋ = Ax+B1w +B2u,

z = C1x+D11w +D12u,

y = C2x+D21w.

(2.16)

Let a centralized controller be given by

˙̂x = Āx̂+ Fy,

u = Kx̂.
(2.17)
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Theorem 2 (closed-loop approximation). Consider the generalized plant (2.16). Denote by

P (s) the transfer function from w to z of the closed-loop system formed by the plant and

the centralized controller (2.17). Likewise, denote by Rη(s) the transfer function from w to

z of the closed-loop system formed by the plant and the distributed controller (2.5). Suppose

Gi are determined according to Theorem 1 and the centralized controller (2.17) stabilizes the

generalized plant (2.16). Then

lim
η→∞

‖Rη − P‖H∞
= 0

where ‖·‖H∞
is the H∞ norm. □

Proof. The closed-loop system formed by the generalized plant (2.16) and the centralized

controller (2.17) can be written as
ẋ

˙̂x

z

 =


A B2K B1

FC2 Ā FD21

C1 D12K D11



x

x̂

w

 . (2.18)

Since the distributed controller (2.5) is equivalent to (2.12) through a coordinate transfor-

mation, the closed-loop system formed by the plant and the distributed controller can be

written as
ẋ

ẋ1

ẋ2

z

 =


A B2K B2KN B1

FC2 Ā 1
q
JTAN FD21

NTFC2 NTAJC2 NTAN + ηH NTFD21

C1 D12K D12KN D11




x

x1

x2

w

 , (2.19)

where H := −NTGLN is Hurwitz by Lemma 2. The proof is completed by applying

Lemma 6. ■

Theorem 2 indicates that an optimal control with respect to an arbitrary optimality crite-

rion on the closed-loop transfer function can be approximately implemented in a distributed

manner with an arbitrarily close performance. We apply this result to LQG controllers as

an example in the subsequent section.
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2.4 Application to H2 Optimal Control

2.4.1 Distributed Observer

In the framework of a generalized plant, the plant with a state observer can be formulated

as

ẋ = Ax+Bw,

z = x− x̂,

y = Cx+Dw,

⇐⇒


ẋ

z

y

 =


A B 0

I 0 −I

C D 0



x

w

x̂

 ,

and the state observer is given by

˙̂x = Ax̂+ F (y − Cx̂)

with A − FC being Hurwitz. Motivated by Theorem 1, we consider a distributed observer

of the form

˙̂xi = Ax̂i + qFi(yi − Cix̂i) + ηGi

∑
j∈Ni

ℓij(x̂j − x̂i), i ∈ Iq. (2.20)

Lemma 7. Consider the matrix

A =

A N

M ℧+ ηH

 .

Suppose A and H are Hurwitz. Then A becomes Hurwitz with sufficiently large η. □

Proof. Since A and H are Hurwitz, there exist P1 = PT
1 � 0 and P2 = PT

2 � 0 such that

P1A+ ATP1 ≺ 0, P2H +HTP2 ≺ 0.

And there exists a factorization

−(P2H +HTP2) = EET
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where E has the same dimension as H and is full rank. Define P := diag(P1, P2) and

Φ := PA+ATP

=

 P1A+ ATP1 P1N +MTP2

P2M +NTP1 P2℧+ ℧TP2 + η(P2H +HTP2)


=

 P1A+ ATP1 P1N +MTP2

P2M +NTP1 P2℧+ ℧TP2

− η

 0
E

[0 ET

]
.

Note that one option for the orthogonal complement of

 0
E

 is
[
I 0

]
. It follows from

Finsler’s lemma that there exists η > 0 such that Φ ≺ 0 if and only if

[
I 0

] P1A+ ATP1 P1N +MTP2

P2M +NTP1 P2℧+ ℧TP2

I
0

 = P1A+ ATP1 ≺ 0,

which is true by assumption. Finally, Φ ≺ 0 indicates A is Hurwitz. ■

Theorem 3. Consider the plant

ẋ = Ax, x ∈ Rn,

y = Cx, y ∈ Rm,
(2.21)

where (C,A) is observable. Let the output y(t) ∈ Rm be partitioned into vectors yi(t) ∈ Rmi

so that y = col(y1, . . .yq), and partition C = col(C1, . . . , Cq) accordingly. Let a distributed

observer be of the form (2.20) where the index set Ni specifies the neighbors of the node i,

and the parameters are chosen as follows.

(a) Let L be the Laplacian matrix of a strongly connected directed graph with positive

weights, and ℓij be the (i, j)th entry of L. Let r be a positive vector such that rTL = 0.

(b) Let P = PT � 0 and F be such that A− FC is Hurwitz, and define Fi and Gi by

Gi = riP, F =: row(F1, . . . , Fq).
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Then the state estimation ||x(t)− x̂i(t)|| → 0 as t → ∞ is achieved for all initial condition

x(0) and x̂(0) if η > 0 is sufficiently large. □

Proof. Define the local estimation error of the ith observer as

ei := x̂i − x,

and let e := col(e1, . . . , eq). Then the error dynamics is given by

ė = (A− qFC+ ηGL)e,

where F, C, and G are block diagonal matrices with Fi, Ci, and Gi on the diagonal, and

A := I ⊗ A, L := L⊗ I.

A similarity transformation yields1
q
JT

NT

 (A− qFC+ ηGL)
[
J N

]
=

 A− FC 1
q
JT(A− qFC)N

NT(A− qFC)J NT(A− qFC)N + ηNTGLN

 .

Since A − FC and NTGLN are Hurwitz by Lemma 2, it follows from Lemma 7 that A −

qFC+ ηGL becomes Hurwitz with sufficiently large η. ■

Remark 3. When F is chosen to be the Kalman gain to make A− FC Hurwitz, Theorem 3

gives a distributed synthesis of the Kalman filter with an arbitrary accuracy. □

2.4.2 LQG Control

We apply the general result Theorem 2 to the LQG control.

Corollary 1. Consider the generalized plant (2.16) with the partition

y = col(y1, . . .yq), C = col(C2,1, . . . , C2,q).
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Denote by P (s) the transfer function from w to z of the closed-loop system formed by the

plant and the centralized LQG controller

˙̂x = (A+B2K − FC2)x̂+ Fy,

u = Kx̂.
(2.22)

Likewise, denote by Rη(s) the transfer function from w to z of the closed-loop system formed

by the plant and the distributed controller

˙̂xi = (A+B2K − qFiC2,i)x̂i + Fiyi +Gizi, i ∈ Iq,

zi = η
∑
j∈Ni

ℓij(x̂j − x̂i),

ui = Kix̂i,

(2.23)

where

K =: col(K1, . . . , Kq), F =: row(F1, . . . , Fq).

Suppose Gi are determined according to Theorem 1. Then given an arbitrarily small ε > 0,

there exists η > 0 such that

‖Rη‖H2
< γopt + ε,

where γopt is the optimal H2 norm of P (s). □

Proof. The result is obtained directly by applying Theorem 2 when the given centralized

controller is a LQG controller. ■

Example 2. We apply the theorem to a plant described by

ẋ = Ax+Bu,

y = Cx,
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with

A =



1 0 0 0 0 0

−1 1 1 0 0 0

1 −2 −1 −1 1 1

0 0 0 −1 0 0

−8 1 −1 −1 −2 0

4 −0.5 0.5 0 0 −4


, C =



1 0 0 2 0 0

2 0 0 1 0 0

2 0 1 0 0 1

0 0 0 2 0 0

1 0 2 0 0 0

2 0 4 0 0 0


=


C1

C2

C3

C4

 .

Bi are given by

Bi = CT
i , i = 1, 2, 3, 4.

The connectivity of the control units is described by a graph with Laplacian

L =


2 −1 0 −1

0 1 −1 0

−1 −1 2 0

−1 0 0 1

 .

The left eigenvector of L associated with 0 is rT =
[
1 2 1 1

]
and Gi are then chosen

to be Gi = riI. We first obtain the LQG controller with proper weighting matrices and

synthesize the distributed controller accordingly. Figure 2.4 shows the spectral norm of P (s)

and Rη(s) with various η. The difference between P (s) and Rη(s) gets diminished as η

becomes larger. Figure 2.5 shows the closed-loop eigenvalues on the complex plane with a

centralized LQG controller, as well as with a distributed controller with various η. As can

be seen, the closed-loop eigenvalues with the distributed controller approach those with the

centralized controller as η gets larger. □

2.4.3 Reduction of Communication over Network

Without specifying the structure of Gi in (2.5), the neighboring control units may have to

exchange information via all the state variables since Gi in general is full rank. In this
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Figure 2.4: Spectral norm of P (s) and Rη(s) with various η.

subsection, we consider the problem of reducing the rank of Gi to diminish the coupling

between control units. First we have Gi = riX,X ∈ Rn
++ by Theorem 1. Then it is

equivalent to minimize the rank of X. To see how the rank reduction of X leads to reduction

of communication, we assume the rank of X is reduced to r < n. Then X can be factored

as

X = ST, S ∈ Rn×r, T ∈ Rr×n.

By (2.5), we have

˙̂xi = Aix̂i + qFiyi + riSζi, i ∈ Iq,

where

ζi := Tzi = η
∑
j∈Ni

ℓij(ξj − ξi), ξi := T x̂i.

The communication between control units is taken care of by ζi and ξi, which have dimension

r < n.

We show the rank minimization of X can be achieve through an example of H2 optimal

control where X is treated as decision variables. Consider the closed-loop system with a
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Figure 2.5: The closed-loop eigenvalues.
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centralized controller (2.18), and the closed-loop system with a distributed controller (2.19).

Assume D11 = 0 and that the optimal H2 norm of (2.18) is γ∗. It is equivalent to say that,

for an arbitrary γ > γ∗, there exists P0 = PT
0 � 0 such that

P0A0 + AT
0P0 + CT

0C0 ≺ 0, tr(B0P0B0) < γ2, (2.24)

where

A0 :=

 A B2K

FC2 Ā

 , B0 :=

 B1

FD21

 , C0 :=
[
C1 D12K

]
.

Given γ larger than γ∗, we will provide a convex characterization of X that yields a dis-

tributed controller such that the closed-loop system (2.19) has the H2 norm less than γ. Let

Φ :=

 B2KN

1
q
JTAN

 , Ψ :=
[
NTFC2 NTAJC2

]
, E := NTAN,

B :=

B0

BH

 , BH := NTFD21,

C :=
[
C0 CH

]
, CH := D12KN,

(2.25)

and H(X) = ηH be a matrix-valued function of matrix X,

H(X) := −ηNTGLN, G := blkdiag(Gi), Gi := riX. (2.26)

We formulate an LMI (also known as SDP) problem to express the H2 norm constraint. To

this end, a proper LMI is derived in the following theorem.

Theorem 4. Consider the closed-loop system (2.18) with a centralized LQG controller and

its optimal H2 cost γ∗. Let γ > γ∗ be given. Assume (2.24) holds. Let Φ, Ψ, B, C, H(X) be

defined as in (2.25) and (2.26). Define

Pε :=

P0 0

0 εI

 , P :=

P0 0

0 I

 , Aε :=

A0 Φ

εΨ Hε(Xε) + εE

 ,
Xε := εX,

Hε(Xε) := εH(X).
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Then there exist Xε and ε > 0 such that the following LMIs which are linear in Xε and ε

hold,

PAε + AT
εP + CTC ≺ 0, tr

(
BTPεB

)
< γ2, Xε � 0. (2.27)

With this X, the distributed controller in (2.5) yields the closed-loop system with H2 norm

less than γ. □

Proof. A direct calculation gives

PAε+AT
εP + CTC

=

P0 0

0 I

A0 Φ

εΨ Hε(Xε) + εE

+

AT
0 εΨT

ΦT Hε(Xε)
T + εET

P0 0

0 I

+

CT
0

CT
H

[C0 CH

]

=

P0A0 + AT
0P + CT

0C0 P0Φ + εΨT + CT
0CH

ΦTP0 + εΨ+ CT
HC0

(
Hε(Xε) +Hε(Xε)

T
)
+ ε

(
E + ET

)
+ CT

HCH

 .

We notice that P0A0 + AT
0P + CT

0C0 ≺ 0 by assumption. And

GL = (R⊗X)(L⊗ I) = (RL)⊗X, R := diag(r1, . . . , rq).

Further, defining Ñ such that N = Ñ ⊗ I,

Hε(Xε) +Hε(Xε)
T = ε

(
H(X) +H(X)T

)
= −ηεNT

(
GL+ (GL)T

)
N

= −ηεNT
((
RL+ (RL)T

)
⊗X

)
N

= −η
(
ÑT
(
RL+ (RL)T

)
Ñ
)
⊗Xε.

This indicates that the eigenvalues of Hε(Xε)+Hε(Xε)
T are −ηλiµj, where λi, i ∈ Iq are the

eigenvalues of ÑT
(
RL+ (RL)T

)
Ñ and µj, j ∈ In are the eigenvalues of Xε. It follows from

Lemmas 1 and 2 that ÑT
(
RL+ (RL)T

)
Ñ � 0. Therefore Hε(Xε)+Hε(Xε)

T ≺ 0. Applying

Lemma 7, we have PAε + AT
εP + CTC ≺ 0 for sufficiently large η. Also

BTPεB =
[
BT

0 BT
H

]P0 0

0 εI

B0

BH

 = BT
0P0B0 + εBT

HBH ,

=⇒ tr
(
BTPεB

)
= tr

(
BT

0P0B0

)
+ ε tr

(
BT

HBH

)
.
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Thus tr
(
BTPB

)
< γ2 if ε is sufficiently small. ■

We adopt a log-det heuristic for positive semidefinite matrices [FHB01] to iteratively

reduce the rank,

Xk+1 = argmin
X∈C

tr(WkX),

Wk = (Xk + δI)−1,

where δ > 0 is a small constant for regularization and C is the feasible set determined by the

LMI constraints (2.27) along with other applicable constraints. In each iteration a convex

problem is formulated and hence can be efficiently solved. Xk is expected to converge to a

rank deficient positive semidefinite matrix.

Example 3. Consider the generalized plant (2.16). We first generate random matrices

A ∈ R5×5, B2 ∈ R5×2, C2 ∈ R2×5. Then we generate weighting matrices Q ∈ R5×5
++ and

R ∈ R2×2
++ randomly, and set

B1 =
[
B2 0

]
, C1 =

Q 1
2

0

 , D11 = 0, D12 =

 0

R
1
2

 , D21 =
[
0 I

]
.

An LQG controller is obtained of the form (2.17). The corresponding closed-loop system

has H2 norm ‖Pcentralized‖H2
= 22.0881. We then synthesize a distributed controller having

two control units given the partition B2 = row(B2,1, B2,2) and C2 = col(C2,1, C2,2). Let the

associated graph Laplacian be

L =

 1 −1

−1 1

 .

For all the control units we choose Ai = Ā. Through the above log-det heuristic we get the
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singular values of X

σ(X) = 103 ×



2.70717

0.02681

0

0

0


and the corresponding H2 norm ‖Pdistributed‖H2

= 22.3467. The difference is computed as

‖Pdistributed‖H2
− ‖Pcentralized‖H2

= 0.2586. It is seen that the rank of X is reduced while the

controller performance is preserved. □
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CHAPTER 3

Distributed Synthesis of Linear Control for

Eigenstructure Assignment

The previous chapter shows how a linear stabilizing controller can be recovered through a

distributed synthesis. This chapter focuses on a special class of control problem in which a

subset of eigenvectors and eigenvalues are assigned to the closed-loop system.

3.1 General Synthesis

3.1.1 Problem Formulation

We start by defining a convenient notation for linear systems. P̊ is a state space system and

P is the associated matrix:

y = P̊u, P̊ =

 A B

C D

 ⇐⇒

ẋ
y

 = P

x
y

 , P :=

A B

C D

 ,

where (x,u,y) are the state, input, and output of P̊ , respectively.

The model of plant we consider for eigenstructure assignment problems is described by

ẋ = Ax+B1w +B2u,

z = C1x+D11w +D12u,

y = C2x+D21w,

p = Cpx+Dpu,

(3.1)
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where x(t) ∈ Rn is the state, u(t) ∈ Rnu the control input, w(t) ∈ Rnw the exogenous

input containing disturbance, reference, etc, y(t) ∈ Rny the measured output, z(t) ∈ Rnz

the performance output, p(t) ∈ Rnp the pattern output for examining the steady state.

The objective of eigenstructure assignment is to embed prescribed eigenvalues and eigen-

vectors to the closed-loop system, while placing the unassigned eigenvalues in the open left

half plane. We now formally define the set of controllers that achieve the design objective

as follows.

Definition 1. Consider the plant (3.1), target eigenstructure (Π,Λ) ∈ Rnz×r × Rr×r, and

controller u = K̊y. Let the closed-loop system with w(t) ≡ 0 be described by ẋ = Acℓx and

p = Hcℓx with x = col(x,xc) where xc is the controller state. The controller is said to be

admissible if the following conditions hold.

Π = HcℓX, AcℓX = XΛ, eig(Acℓ) \ eig(Λ) ∈ C− (3.2)

for some full column rank X. The set of admissible controllers is denoted by A. □

The first two equalities in (3.2) basically mean that the output p(t) of the plant (3.1)

converges to ΠeΛtp0 for some vector p0, starting with an arbitrary initial state x(0) when

w(t) ≡ 0. Since (Π,Λ) specifies the steady state behavior of p(t), any eigenvalues of Λ in the

open left half plane would not have any influence, and for this reason, we make the following

assumption.

Assumption 1. All the eigenvalues of Λ have nonnegative real parts. □

Depending on the choice of (Π,Λ), the steady state behavior can be any combination

of sinusoidal oscillations and constants. For example, the sinusoidal oscillation sinωt can

be specified by ΠeΛtp0 with Π =
[
1 0

]
, Λ =

 0 ω

−ω 0

, p0 =

0
1

. The eigenstructure

assignment formalism captures control design problems for autonomous pattern formation

and output regulation to reject disturbances and/or track command signals.
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In addition to the admissibility, we search for controllers of distributed architecture like

in the previous chapter. The formal problem statement is given below.

Problem 2. Consider the plant (3.1) and let the control input u and measured output y

be partitioned as

y = col(y1, . . . ,yq), u = col(u1, . . .uq),

where ui and yi are vectors or scalars and q is the number of channels. Given the target

eigenstructure (Π,Λ) ∈ Rnz×r × Rr×r and assume Assumption 1 holds. Find a distributed

controller of the form (2.4) that is admissible as defined in Definition 1. □

3.1.2 Distributed Control Synthesis

The results in last chapter indicate that a distributed linear stabilizing controller can be

synthesized from a centralized linear stabilizing controller. Therefore we first review the

general theoretical result that solves the eigenstructure assignment problem without the

requirement on the controller architecture.

Lemma 8 ([WI17, Theorem 3]). Consider the plant (3.1) and target dynamics (Π,Λ), where

Assumption 1 holds and (C2, A) is detectable. The set of admissible controllers A in Defini-

tion 1 is nonempty if and only if there exists (X,U) such that the following regulator equation

is satisfied

AX +B2U = XΛ, Π = CpX +DpU, (3.3)

and (A, B̂2) is stabilizable, where B̂2 :=
[
B2 −X

]
. Such a controller is parametrized byu

ξ̇

 =

U
Λ

 ξ + Θ̊(y − C2Xξ) (3.4)

for some Θ̊ that stabilizes the augmented plant (A, B̂2, C2) and for some (X,U) satisfying

(3.3). For this controller, the unforced (w = 0) closed-loop trajectory satisfies

x(t) → XeΛtρ0, u(t) → UeΛtρ0, z(t) → ZeΛtρ0, p(t) → ΠeΛtρ0,
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for some ρ0 ∈ Rr depending on the initial state, where

Z := C1X +D12U.

□

We then derive a distributed controller by direct application of the results in Section 2.3

to the controller synthesis in Lemma 8. Suppose Θ̊ in (3.4) is parametrized by

Θ̊ :=


Aq Bq

Cq1 Dq1

Cq2 Dq2

. (3.5)

The controller (3.4) is equivalent to

ξ̇ = Λξ + Cq2z+Dq2(y − C2Xξ),

ż = Aqz+Bq(y − C2Xξ),

u = Uξ + Cq1z+Dq1(y − C2Xξ),

⇐⇒


ξ̇

ż

u

 =


Λ−Dq2C2X Cq2 Dq2

−BqC2X Aq Bq

U −Dq1C2X Cq1 Dq1



ξ

z

y

 . (3.6)

Assume the output is partitioned as

y = col(y1, . . .yq), C2 = col(C2,1, . . . , C2,q).

We subsequently construct a distributed controller composed of q control units. We reuse the

notations ξ, z and u to denote the state and output of the distributed controller. Consider

the following partitions

Bq =
[
Bq,1 . . . Bq,q

]
, Cq1 = col(Cq1,1, . . . , Cq1,q),

Dq2 =
[
Dq2,1 . . . Dq2,q

]
, U = col(U1, . . . , Uq),

and assume Dq1 = 0. The connectivity of the control units is described by a strongly

connected directed graph with Laplacian matrix L. Let r be a positive vector such that

rTL = 0, and ri be the ith entry of r. We construct the control units as follows.

ẋi = Fxi + Gi(yi − Cixi)− ηriP
∑
j∈Ni

ℓij(xj − xi), xi := col(ξi, zi),

ui = Kixi,

(3.7)
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where

F :=

Λ Cq2

0 Aq

 , Gi := q

Dq2,i

Bq,i

 , Ci :=
[
C2,iX 0

]
, Ki :=

[
Ui Cq1,i

]
,

and P = PT � 0.

Moreover, we show that the distributed control with a finite coupling strength η satisfies

the eigenstructure condition in addition to the stability requirement. The following theorem

formally proves our claim.

Theorem 5. Consider the plant (3.1). Suppose the regulator equation (3.3) is satisfied, and

Θ̊ defined in (3.5) stabilizes the augmented plant (A, B̂2, C2) with B̂2 :=
[
B2 −X

]
. Then

the distributed controller (3.7) is admissible as defined in Definition 1 for sufficiently large

η. □

Proof. Let the closed-loop system be denoted by

ẋ = Ax, z = Hx. (3.8)

A can be expressed as

A =

 A B2K

GC2 F−GC2 − ηPL

 ,

where G, C2, K, P are block diagonal matrices with Gi, Ci, Ki, riP on the diagonal, respec-

tively, and F := I ⊗ F, L := L ⊗ I. Let J and N be defined as in (2.8) and (2.9). It then

follows from direct calculation that

AV = VΛ, HV = R, V :=

X
J1

 ,

where J1 is formed by the first r columns of J , rendering V full column rank. Apply a
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similarity transformation on A,

Ã =


I 0

1
q
JT

NT
0

A
 I

0 J N

0

 =


A B2U B2Cq1 ∗

Dq2C2 Λ−Dq2C2X Cq2 ∗

BqC2 −BqC2X Aq ∗

∗ ∗ ∗ M + ηH

 ,

where ∗ denotes some matrix and H := −NTPLN . Define

Ω :=

A+ B̂2DqC2 B̂2Cq

BqC2 Aq

 ,

B̂2 :=
[
B2 −X

]
,

Cq := col(Cq1, Cq2),

Dq := col(Dq1, Dq2).

Then,

Ã


X I 0 0

I 0 0 0

0 0 I 0

0 0 0 I

 =


X I 0 0

I 0 0 0

0 0 I 0

0 0 0 I




Λ ∗ ∗ ∗

∗

∗

∗ ∗ M + ηH

0
Ω

.

Since

Θ̊ =


Aq Bq

Cq1 Dq1

Cq2 Dq2

 =

 Aq Bq

Cq Dq



stabilizes the augmented plant (A, B̂2, C2) with B̂2 :=
[
B2 −X

]
, Ω is Hurwitz. Also, H

is Hurwitz due to Lemma 2. Finally, with the fact that eig(A) = eig(Ã), it follows from

Lemma 7 that eig(A) \ eig(Λ) ⊂ C− if η is sufficiently large. ■

Example 4. We apply Theorem 5 to a flipper locomotor [Iwa12] whose equations of motion

are given by

J θ̈ +Dθ̇ + vΛθ = Bu,

mv̇ + d(θ)v + θ̇TΛθ = 0,
(3.9)
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where θ(t) ∈ R5 are the tail joint angles, v(t) ∈ R is the velocity of the center of mass. J ,

D, Λ, B are constant matrices of appropriate size, and m is the total mass of the flipper.

d(θ) is a linear function of θ. Define the relative joint angles

ϕ := BTθ.

Assuming constant velocity v(t) ≡ v0, we obtain a LTI system in terms of ϕ,

J0ϕ̈+D0ϕ̇+ v0Λ0ϕ = u, J0 := EJET, D0 := EDET, Λ0 := EΛET, E := B−1.

Then the state space realization yields

ẋ = Ax+ Bu, y = Cx,

x :=

ϕ
ϕ̇

 , A :=

 0 I

−J−1
0 (v0Λ0) −J−1

0 D0

 , B :=

 0

J−1

0

 , C :=
[
I 0

]
.

Let the permutation matrix be defined by

P :=
[
e1 e3 e5 e7 e9 e2 e4 e6 e8 e10

]
where ek ∈ R10 is the ith column of the 10× 10 identity matrix. Define the new state vector

x := Px = col(x1, x6, x2, x7, x3, x8, x4, x9, x5, x10) = col(ζ1, . . . , ζ5), ζk := col(ϕk, ϕ̇k).

In the new coordinates,

ẋ = Ax+Bu, y = Cx,

A := PAPT, B := PB, C := CPT.
(3.10)

The target optimal gait is given by ϕ(t) = =[ϕ̂ejωt] where ϕ̂ ∈ C5 is a given phasor

defining the relative phases/amplitudes of the state ϕ in steady state, and ω is the frequency

of the oscillations in steady state. The values are given to be

ϕ̂ =



4.9 + j10.2

11.7− j21.0

−26.8− j16.0

−25.1 + j28.9

24.7 + j35.4


, ω = 21.4 rad/s.
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In real form

ϕ(t) =



11.3 sin(21.4t)

24.1 sin(21.4t− 125.1◦)

31.2 sin(21.4t− 146.5◦)

38.3 sin(21.4t+ 66.7◦)

43.1 sin(21.4t+ 9.2◦)


.

Consequently, the phasor of the target gait in terms of the state vector is

x̂ = P x̂, x̂ =

 ϕ̂

jωϕ̂

 .

The state trajectory corresponding to this gait can be expressed in the real form as

x(t) = XeΩtη X :=
[
<[x̂] =[x̂]

]
, Ω :=

 0 ω

−ω 0

 , η :=

0
1

 . (3.11)

We then solve the regulator equation (3.3) for U and synthesize a controller in the form of

(3.4) by applying Lemma 8. Given the centralized controller, we are about to construct a

distributed controller composed of 5 control units. Assume B and C are partitioned as

B =: row(B1,B2,B3,B4,B5), Bi ∈ R10×1 ∀i ∈ I5,

C =: col(C1,C2,C3,C4,C5), Ci ∈ R1×10 ∀i ∈ I5.

The control units are connected through a nearest neighbor coupling with the graph Lapla-

cian

L =



1 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

0 0 0 −1 1


.
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The distributed controller is constructed by application of Theorem 5. We simulate the

closed-loop system with the linearized plant (3.10) and generate randomly the initial condi-

tions. ϕi(t), i ∈ I5 are illustrated in Figure 3.1. The frequency and relative phases/amplitudes

are exactly the same as specified by the target optimal gait.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time [s]

-100

-50

0

50

100

Figure 3.1: Pattern formation via a distributed controller.

The centralized controller we start with has the dimension of 10, which is of the same

order as the linearized plant (3.10). By construction, each control unit specified by (3.7)

has the dimension of the sum of the centralized plant and Ω. Hence the total order of

the distributed controller sums up to 60. The high order of the controller may introduce

complexity in implementation. We will show that the order reduction is possible when the

plant has special structures such as multi-agent systems.

Though we have achieved the desired frequency and relative phase/amplitude of the

target optimal gait, it is impossible to stabilize the absolute amplitude within the linear

control framework. This is shown by another simulation with different initial conditions as

in Figure 3.2. We will show in Section 3.2.2 that the stabilization of amplitude is made

possible with a nonlinear controller. □
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Figure 3.2: Pattern formation via a distributed controller with different initial conditions.

3.2 Synthesis for Multi-Agent Systems

3.2.1 Autonomous Pattern Formation

In this section, we consider the eigenstructure assignment problem when the plant (3.1) is a

multi-agent system,

ẋi = Aixi +B2,iui, i ∈ Iq,

yi = C2,ix,

where we assume w ≡ 0. This is equivalent to say A, B2, C2 are block diagonal,

A =


A1

. . .

Aq

 , B2 =


B2,1

. . .

B2,q

 , C2 =


C2,1

. . .

C2,q

 . (3.12)

Theorem 5 gives a solution to the distributed control problem for multi-agent systems.

However, each control unit has the state dimension equal to the dimension of Λ plus Θ̊.

Since Θ̊ is supposed to stabilize the augmented plant which has a dimension of the sum

of the dimensions of all agents, the dimension of Θ̊ is often about the same as the entire

plant. This may exhibit difficulty in implementation due to the controller’s large complex-

ity. Nonetheless, the complexity may be reduced by exploiting the fact that the plant is a

collection of multiple agents without direct interactions. We will show that the complexity
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reduction is possible under the assumption that each agent is detectable utilizing observers.

To this end, we first give an observer-based centralized control solution to the eigenstructure

problem, which is a special case of Lemma 8.

Lemma 9. Consider the plant (3.1) and target dynamics (Π,Λ). Assume Assumption 1 holds

and (C2, A) is detectable. The set of admissible controllers A in Definition 1 is nonempty

if and only if there exists (X,U) such that the regulator equation (3.3) holds and (A, B̂2) is

stabilizable, where B̂2 :=
[
B2 −X

]
. Then an observer-based controller K̊ ∈ A is given by

˙̂x = Ax̂+B2u+ F(C2x̂− y),

ξ̇ = Λξ + E(C2x̂− y),

u = (U − KX)ξ + Kx̂,

(3.13)

for some E, F, and K such that A+B2K and A+ FC2 are Hurwitz. □

Proof. Define e := x− x̂, ê := x̂−Xξ. We have

ė = ẋ− ˙̂x

= Ax+B2u− (Ax̂+B2u+ F(C2x̂− y))

= (A+ FC2)e, (y = C2x)

ξ̇ = Λξ + E(C2x̂− y) = Λξ − EC2e,

˙̂e = ˙̂x−X ξ̇

= Ax̂+B2u+ F(C2x̂− y)−X (Λξ + E(C2x̂− y))

= A (ê+Xξ) + B2(Uξ + Kê)−XΛξ + (XE − F)C2e

(u = (U − KX)ξ + Kx̂ = Uξ + Kê)

= (A+B2K)ê+ (XE − F)C2e. (AX +B2U = XΛ)

Thus the closed-loop system is given by

ẋ = Acℓx
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where x = col(ξ, ê, e) and

Acℓ =


Λ 0 −EC2

0 A+B2K (XE − F)C2

0 0 A+ FC2

 .

Clearly

Acℓ


I

0

0

 =


I

0

0

Λ

and eig(Acℓ) \ eig(Λ) ∈ C− since A+B2K and A+ FC2 are Hurwitz, rendering the observer-

based controller (3.13) admissible. ■

Consider applying Lemma 9 and Theorem 5 to a multi-agent system with the state space

matrices (3.12). Each control unit would have an observer of the entire plant. However,

if (C2,i, Ai) is observable, then the observer dynamics of the entire controller in (3.13) do

not need to be repeated in each control unit, and this leads to the order reduction of the

controller.

For multi-agent systems, K, F in Lemma 9 can be made block diagonal,

K =


K1

. . .

Kq

 , F =


F1

. . .

Fq

 ,

such that Ai +B2,iKi and Ai + FiC2,i are Hurwitz for all i ∈ Iq. We also make the partition

E = row(E1, . . . , Eq), U = col(U1, . . . , Uq), X = col(X1, . . . , Xq). The distributed controller
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is proposed to be

˙̂xi = Aix̂i +B2,iui + Fi(C2,ix̂i − yi), i ∈ Iq,

ξ̇i = Λξi + Ei(C2,ix̂i − yi) +Gizi,

zi = η
∑
j∈Ni

ℓij(ξj − ξi),

ui = (Ui −KiXi)ξi +Kix̂i,

(3.14)

where L := [ℓij] is the Laplacian matrix associated with the graph that depicts the intercon-

nection of the control units, Gi are design parameters to be defined later, Ni is the set of the

neighbors of ith control unit, and η > 0 is the coupling strength. Each control unit has an

observer over the local agent only, and the interaction across control units is done through

ξi, i ∈ Iq. We prove that the proposed distributed controller (3.14) is indeed admissible in

the theorem that follows.

Theorem 6. Suppose L is the Laplacian matrix of a strongly connected directed graph with

positive weights. Let r be a positive vector such that rTL = 0, and ri be the ith entry of

r. The distributed controller (3.14) is admissible with sufficiently large η if the centralized

controller (3.13) is admissible and Gi = riP where P = PT � 0. □

Proof. The distributed controller (3.14) in matrix form is expressed as


˙̂x

ξ̇

u

 =


A+B2K+ FC2 B2(U− KX) −F

EC2 Λ −E

K U− KX 0



x̂

ξ

y

 ,

x := col(x1, . . . ,xq),

ξ := col(ξ1, . . . , ξq),

u := col(u1, . . . ,uq),

y := col(y1, . . . ,yq),

(3.15)

where

E :=


E1

. . .

Eq

 , U :=


U1

. . .

Uq

 , X :=


X1

. . .

Xq

 .
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Let J and N be defined as in (2.8) and (2.9) and define the coordinate transformationφ
ϕ

 :=

1
q
JT

NT

 ξ ⇐⇒ ξ =
[
J N

]φ
ϕ

 .

Then the controller in the new coordinate is expressed as,
˙̂x

φ̇

ϕ̇

u

 =


A+B2K+ FC2 B2(U − KX) B2(U− KX) −F

EC2 Λ 1
q
JTΛN −E

NTEC2 NTΛJ NTΛN + ηNTGLN −NTE

K U − KX (U− KX)N 0




x̂

φ

ϕ

y

 , (3.16)

where

G :=


G1

. . .

Gm

 , L := L⊗ I, Λ := I ⊗ Λ.

The closed-loop system composed of the multi-agent system and the centralized controller

(3.13) is
ẋ

˙̂x

ξ̇

 =


A B2K B2(U − KX)

−FC2 A+B2K+ FC2 B2(U − KX)

−EC2 EC2 Λ



x

x̂

ξ

 . (3.17)

While the closed-loop system composed of the multi-agent system and the distributed con-

troller in the new coordinate (3.16) is
ẋ

˙̂x

φ̇

ϕ̇

 =


A B2K B2(U − KX) B2(U− KX)N

−FC2 A+B2K+ FC2 B2(U − KX) B2(U− KX)

−EC2 EC2 Λ 1
q
JTΛN

−NTEC2 NTEC2 NTΛJ NTΛN + ηNTGLN




x

x̂

φ

ϕ

 . (3.18)
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We first show that the eigenstructure is satisfied,
A B2K B2(U − KX) B2(U− KX)N

−FC2 A+B2K+ FC2 B2(U − KX) B2(U− KX)

−EC2 EC2 Λ 1
q
JTΛN

−NTEC2 NTEC2 NTΛJ NTΛN + ηNTGLN




X

X

I

0

 =


X

X

I

0

Λ. (3.19)

Then we examine the eigenvalues. Define e := x− x̂, we have
˙̂x

φ̇

ϕ̇

ė

 =


A+B2K B2(U − KX) B2(U− KX)N −FC2

0 Λ 1
q
JTΛN −EC2

0 0 NTΛN + ηNTGLN −NTEC2

0 0 0 A+ FC2




x̂

φ

ϕ

e

 . (3.20)

Therefore the stability of the closed-loop system is determined by A+B2K, A+ FC2, which

are Hurwitz by assumption, and NTΛN + ηNTGLN , which is Hurwitz for sufficiently large

η by Lemma 2. This completes the proof. ■

Remark 4. Theorem 6 implies that by exploiting the structure of a multi-agent system

and the local observability, a pattern formation can be achieved by a distributed controller

based on local observers. Subsequently each control unit for a local agent has a dimension

of a local observer plus that of the pattern generator whose dynamics is captured by Λ.

This greatly reduces the controller complexity compared to the general distributed control

synthesis presented in Theorem 5. □

3.2.2 Potential for Extension to Nonlinear Control

The controller that achieves eigenstructure assignment given in (3.4) can be illustrated by

the block diagram in Figure 3.3, where

Q1(s) :=

 Aq Bq

Cq1 Dq1

, Q2(s) :=

 Aq Bq

Cq2 Dq2

, Θ̊ :=


Aq Bq

Cq1 Dq1

Cq2 Dq2

,
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and the pattern generator is a linear internal model with the transfer function

P (s) = (sI − Λ)−1.

pattern
generator Q2(s) Q1(s) (A,B)

CCX

U

x

y

ξ

u

Figure 3.3: Block diagram of the control system for eigenstructure assignment problems.

When the plant is a multi-agent system, we apply Theorem 6 to synthesize a distributed

controller of the form (3.14). Hence the pattern generator in the block diagram becomes

a distributed network of control units. Unfortunately, within the linear framework the

oscillation is not structurally stable and lacks convergence of the oscillation amplitude to

prescribed values. A stable limit cycle may be achieved by replacing the linear internal

model (Λ dynamics) by a nonlinear oscillator. We demonstrate the potential extension to

nonlinear control by the following example.

Example 5. We consider the flipper locomotor (3.9) in Example 4. In the solution we

present in Example 4, each control unit has a copy of Λ dynamics as a pattern generator.

Now we seek to replace it by a nonlinear oscillator. Note that the target optimal gait is given

by ϕ(t) = =[ϕ̂ejωt] where ϕ̂ ∈ C5 is a given phasor and ω is the frequency. To correctly

generate the reference signals for the state variable, we need 5 oscillators that have the

target oscillation ϕ(t) as the limit cycle. To this end, we first introduce the Andronov-Hopf

oscillator (AHO) parametrized by

ξ̇ =

σ(ξ) ω

−ω σ(ξ)

 ξ, σ(ξ) := µ(1− ‖ξ‖22), (3.21)
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where ξ ∈ R2 is the oscillator state, ω is the frequency of the periodic signal ξ converges to,

µ > 0 is a design parameter. It is known that

ξ(t) →

sinωt
cosωt


with orbital stability1. We continue to consider a network of coupled AHOs described by

ξ̇i =

σ(ξi) ω

−ω σ(ξi)

 ξi +
n∑

j=1

δij(ξi − ℧ijξj), i ∈ I5, (3.22)

to achieve the target oscillation

hi(t) =

sin(ωt+ βi)

cos(ωt+ βi)

 , βi := ∠ϕ̂i,

where ℧ij is chosen by

℧ij := ℧i℧T
j , ℧i :=

 cos βi sin βi

− sin βi cos βi

 .

The coupling ∆ := [δij] should be chosen such that ∆1 = 0 for the target to be a solution,

and −∆ ∈ Ho for orbital stability2 [PN01, PSN02, PS07, LI17]. These conditions, together

with the nearest neighbor coupling requirement, can be met by choosing

∆ =



δ1 −δ1 0 0 0

−δ2 2δ2 −δ2 0 0

0 −δ3 2δ3 −δ3 0

0 0 −δ4 2δ4 −δ4

0 0 0 −δ5 δ5


, δi > 0.

We choose δi = 1 for all i.

Figure 3.4 shows one simulation example of the AHO network. The top figure illustrates

the first entry of ξi for i ∈ I5, while the state of the 5th oscillator is shown in the bottom

figure. We see that in addition to the pattern, the amplitude is stabilized as well.

1The definition of orbital stability is introduced in Definition 2 in a later chapter.
2The definition of Ho is presented in Definition 3 in a later chapter.
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Figure 3.4: Coupled Andronov-Hopf oscillators.

56



Consider a decentralized output regulator of the form

u = Uξ +Q(y − CXξ), ξ̇ = φ(ξ),

to achieve convergence to the optimal gait defined in (3.11), where ξ̇ = φ(ξ) is the network

oscillator constructed by (3.22), Q is a constant matrix. The controller structure is decen-

tralized in the sense that ui depends only on yi and ξi. This requires U, X, Q to be block

diagonal. (3.11) defines X, and we solve the regulator equation (3.3) for U . Then X and U

are partitioned as

X =: col(X1, . . . , X5), U =: col(U1, . . . , U5).

Note that

h(t) = HeΩtη, H = col(H1, . . . , H5), Hi :=

 cos βi sin βi

− sin βi cos βi

 = ℧i, η :=

0
1

 .

The matrix pair (X,U) can be chosen as

X = diag(X1, . . . ,X5), U = diag(U1, . . . ,U5), Xi := XiH
−1
i , Ui = UiH

−1
i .

The gain Q needs to stabilize the plant (A,B,C). With Q = −kI with stiffness k, the

closed-loop for this pair is

J0ϕ̈+D0ϕ̇+ (v0Λ0 + kI)ϕ = 0,

which is stable for sufficiently large k > 0. We choose k = 5× 10−4.

We simulate the closed-loop system with the nonlinear oscillator network as the pattern

generator and treat the velocity of the center of mass as a variable instead of assuming a

constant rate. The top figure in Figure 3.5 shows that with a nonlinear controller, the plant

state ϕi(t), ∀i ∈ I5 converges to the target pattern of a prescribed amplitude. The bottom

indicates the velocity achieves the desired value which is set to be −0.15 m/s with a tolerable

undulation.

□

57



0 0.5 1 1.5 2

time [s]

-50

0

50

0 0.5 1 1.5 2

time [s]

-0.15

-0.1

-0.05

0

v
0

Figure 3.5: Nonlinear pattern formation for the flipper locomotor. Top: relative joint angles. Bot-

tom: velocity of the center of mass.
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Example 5 shows that by replacing the linear internal model in the controller with a

nonlinear oscillator network, not only is the desired eigenstructure assigned, but also the

amplitude of the target oscillation is stabilized. This motivates us to investigate the design

of coupled nonlinear oscillators that has the target oscillation as its stable limit cycle. In

addition, we may want to have a pattern formation controller for the flipper locomotor

that is able to switch gaits for different situations. Therefore, though coupled AHO design

is already possible by the existing results, it would be beneficial to be able to design a

distributed network oscillator with multiple limit cycles. The following chapters are focused

on the design of such network oscillators.
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CHAPTER 4

Network of Linearly Coupled Oscillators

4.1 Problem Formulation

In Section 3.2.2, we have shown the potential of pattern formation control with AHO network

as the reference generator. We would like to investigate a more general oscillator model that

preserves all the merits the AHO network exhibits and in addition admits multiple limit

cycles with stability.

4.1.1 Problem Statement

We consider the design of a nonlinear oscillator such that multiple periodic solutions are

embedded in the state space as locally stable limit cycles, where the desired period, ampli-

tudes, phases, and temporal shapes are prescribed for each solution. In particular, consider

a nonlinear dynamical system

ẋ = f(x), y = h(x), x(t) ∈ Rn, y(t) ∈ Rn, (4.1)

assume that a target oscillation η(t) ∈ Rn has frequency ω ∈ R, phase φ ∈ Rn, and temporal

shape as well as amplitude characterized by a 2π-periodic function si : R 7→ R, i ∈ Im. Then

the target oscillation can be described by

ηi(t) = si(ωt+ φi), i ∈ Im. (4.2)

For example, si(θi) := αi sin θi for i ∈ In makes ηi(t) sinusoidal with amplitude αi. The

phase variable φi can be absorbed into the shape function si, but we keep this redundant
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description for design flexibility.

The problem is to find functions f and h so that system (4.1) has a periodic solution

x = ξ that yields y = η, and convergence to the periodic orbit is locally guaranteed. The

convergence property follows the notion of orbital stability defined in [HC94] and is precisely

characterized as follows.

Definition 2 (orbital stabilty). Let x(t) = ξ(t) ∈ Rn be a periodic solution to the au-

tonomous system (4.1). The orbit of ξ(t) in state space is represented by a closed curve

O := { ξ(t) ∈ Rn : t ≥ 0 } .

Define the distance between the state x and the orbit O to be

dist(x,O) := inf
o∈O

||x− o||.

Then ξ is said to be orbitally stable if for any ε > 0, there exists a δ > 0 such that if

dist(x(0),O) < δ, dist(x(t),O) < ε for all t ≥ 0. ξ is said to be asymptotically orbitally

stable if ξ is orbitally stable and there exists a δ > 0 such that if dist(x(0),O) < δ,

lim
t→∞

dist(x(t),O) = 0.

ξ is said to be exponentially orbitally stable if ξ is asymptotically orbitally stable and

there exist δ > 0, c > 0, σ > 0 such that if dist(x(0),O) < δ,

dist(x(t),O) ≤ ce−σt, ∀t ≥ 0.

□

Throughout this dissertation, we will use the term orbital stability to implicitly refer

to the notion of exponential orbital stability for conciseness.

With the definition of orbital stability, we now formally state the problem.
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Problem 3 (multiple limit cycle design). Consider a nonlinear dynamical system given by

(4.1). Let m periodic functions ηk(t) ∈ Rn, k ∈ Im be prescribed as in (4.2). Find functions

f(·) and h(·) such that the system has m periodic solutions x(t) = ξk(t) as its orbitally stable

limit cycles that yield y(t) = ηk(t) for all k ∈ Im. □

The single limit cycle design problem is a special case when of Problem 3 when there is

only one such periodic solution of interest. Or conversely, Problem 3 is an extension of single

limit cycle design problem. Without loss of generality, we describe our methods in terms of

the single limit cycle design problem in the subsection that follows.

4.1.2 Approach

Our approach can be outlined as follows. First, note that any piecewise continuous temporal

profile si in (4.2) can be approximated by a finite Fourier series

si(θi) ≈
ℓ∑

l=0

<[cliejlθi ], cli ∈ C, i ∈ In (4.3)

with arbitrary accuracy by taking a sufficiently large number of terms ℓ. This motivates us

to consider a nonlinear oscillator with complex state variables of dimension n, same as that

of the target oscillation η,

ż = f(z), z(t) ∈ Cn, (4.4)

having an orbitally stable limit cycle z = ζ with

ζi(t) = ej(ωt+φi), i ∈ Im. (4.5)

The desired oscillation ηi(t) in (4.2) can then be approximately generated as the real part

(or equivalently, the imaginary part) of a polynomial of ζi(t) with coefficients cli. We now

relate system (4.4) to (4.1) by defining z =: x+ jy with x,y ∈ Rn. Then we have n := 2n,
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and

f(x) :=

<[f(x+ jy)]

=[f(x+ jy)]

 , x :=

x
y

 ,

h = col(h1, . . . , hn), hi(x) :=
ℓ∑

l=1

<[cli(xi + jyi)
l].

The complex system (4.4) having an orbitally stable limit cycle z = ζ is equivalent to the

above real system having an orbitally stable limit cycle x = ξ ∈ R2n with

ξ(t) =

cos(ωt+φ)

sin(ωt+φ)

 , φ ∈ Rn,

which yields y(t) = η(t) approximately, with the error being the higher order terms in the

Fourier series beyond frequency ℓω. Therefore, the original problem is reduced to embedding

an orbitally stable limit cycle z(t) = ζ(t) defined in (4.5) into the complex oscillator (4.4).

We are going to exploit the technique of Floquet theory to address Problem 3. The idea

is presented in the following lemma [HC94].

Lemma 10. Consider the dynamical system ż = f(z), z(t) ∈ Cn with a periodic solution

z(t) = ζ(t) ∈ Cn. ζ is orbitally stable if and only if the Floquet multipliers of the linearized

system

q̇ = A(t)q, A(t) :=
∂f

∂z
(ζ(t))

lie strictly inside the unit circle on the complex plane except for one at 1. □

As such, the orbital stability is determined the values of the Floquet multipliers of the

linearized system around the target limit cycle.
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4.2 Single Oscillator

4.2.1 Complex Oscillator with Orbital Stability

Let us start with the simplest case where z(t) in (4.4) and (4.5) is a scalar variable, i.e.,

n = 1. In this case, the phase φi in (4.5) is irrelevant and can be set to zero without loss

of generality since the orbits of ej(ωt+φi) and ejωt are the same for any φi. We thus consider

the design of ż = f(z) with z(t) ∈ C such that z = ejωt is an orbitally stable limit cycle.

The idea is simple. Note that the linear oscillator ż = jωz has solutions z = γejωt

parametrized by arbitrary amplitude γ ∈ R. To stabilize the amplitude at γ = 1, we may

add a nonlinear mechanism as follows:

ż = (1− |z|2)z + jωz, (4.6)

where z is attracted toward the origin when |z| > 1 and repelled away when |z| < 1, thus

achieving |z(t)| → 1. This is in fact the complex form of the Andronov-Hopf oscillator

(AHO)ẋ1

ẋ2

 =

1− x2
1 − x2

2 −ω

ω 1− x2
1 − x2

2

x1

x2

 ,

where x1 and x2 are real variables and (4.6) is obtained by defining z := x1 + jx2. It can

readily be shown [Kha96] that every nontrivial solution of (4.6) globally converges to the

orbit of z = ejωt.

We extend this idea to achieve multiple limit cycles with local stability. Consider the

general nonlinear oscillator of the form

ż = ϕ(|z|)z, z(t) ∈ C, ϕ : R+ 7→ C, (4.7)

where the real and imaginary parts of ϕ are continuously differentiable. The AHO is a special

case with

ϕ(r) := µ(γ2 − r2) + jω, (4.8)
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where ω, γ ∈ R+ are prescribed frequency and amplitude, and µ ∈ R+ is a parameter to

adjust the convergence rate. The following result gives a condition for the general system to

have z = γejωt as an orbitally stable limit cycle.

Theorem 7. Consider the complex nonlinear system (4.7). Let ω, γ ∈ R+ be given and

suppose

ϕ(γ) = jω, <[ϕ′(γ)] < 0. (4.9)

Then z(t) = γejωt is an orbitally stable limit cycle. □

Proof. With the coordinate transformation z = rejθ, the system can be described by

ṙ = <[ϕ(r)]r, θ̇ = =[ϕ(r)].

It can readily be verified that r(t) = γ and θ(t) = ωt is a solution since ϕ(γ) = jω.

Linearizing the system around the solution, we haveρ̇
ϑ̇

 =

γ<[ϕ′(γ)] 0

=[ϕ′(γ)] 0

ρ
ϑ

 ρ := r − γ,

ϑ := θ − ωt.

By the supposition, the eigenvalues of the coefficient matrix are negative and zero. Hence

one of the Floquet multipliers is at 1 and the other is inside the unit circle, and we conclude

the orbital stability of z = γejωt. ■

The orbital stability in Theorem 7 is local, and convergence to the orbit is guaranteed

only when the initial state is sufficiently close to the orbit. If desired, convergence can be

made global as in the AHO with the additional property:

(r − γ)<[ϕ(r)] < 0, ∀ r 6= γ. (4.10)

In particular, consider the Lyapunov function

V (r) = 1
2
(r − γ)2 > 0,

V̇ (r) = (r − γ)<[ϕ(r)]r < 0,

where the inequalities hold for all r > 0 not equal to γ. Hence, r(t) converges to γ with

arbitrary r(0) > 0, and every nontrivial trajectory converges to the orbit of z = γejωt.
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4.2.2 Examples

Example 6. Consider the system in (4.7) with

ϕ(r) = jωr/γ + γ − r,

Clearly, the function satisfies condition (4.9) with <[ϕ′(γ)] = −1 and hence z = γejωt is an

orbitally stable limit cycle. In fact, condition (4.10) is also satisfied and thus convergence

to the orbit is global except for z(0) = 0. The presence of the factor r/γ in the imaginary

part of ϕ(r) is unimportant for these stability properties, but is added here just for illus-

trative purposes. This factor makes the oscillation frequency low/high when the amplitude

is small/large. Any periodic signal of an arbitrary temporal shape can be generated as an

output y that depends polynomially on z using the shape function in (4.3). For example,

y(t) = sin(ωt) + 5 cos(2ωt)− 3 sin(3ωt), ω = 5,

is given by

y = <[−jz + 5z2 + 3jz3], z = γejωt, γ = 1.

The system is simulated with the initial condition z(0) = γ/10, and the result is shown

in Figure 4.1. The real and imaginary parts of z(t) converge to sinusoids, and output y

converges to the nonsinusoidal signal of the specified shape.

□

With local stability, it is possible to embed multiple limit cycles ζk(t) = γke
jωkt with

k ∈ Im, into oscillator (4.7) by choosing ϕ such that

ϕ(γk) = jωk, <[ϕ′(γk)] < 0, ∀ k ∈ Im,

where m is the number of limit cycles to be embedded. In this case, the function <[ϕ(r)]

passes through zero multiple times at r = γk with negative slopes. By continuity, the function
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Figure 4.1: Complex oscillator with arbitrary temporal shape.

has to pass through zero with positive slopes at some values r = ϱk ∈ (γk, γk+1), assuming

that γk are ordered as 0 < γ1 < . . . < γm. Then the system (4.7) has periodic solutions

z = ϱke
jϖkt with ϖk := =[ϕ(ϱk)]. Each solution z = ϱke

jϖkt is an unstable limit cycle and

forms the boundary between the domains of attraction for stable limit cycles z = γke
jωkt

and z = γk+1e
jωk+1t.

Example 7. Consider the system in (4.7) with

ϕ(r) = ϕr(r) + jϕi(r),

ϕr(r) = a(r − γ1)(r − ϱ1)(r − γ2),

ϕi(r) = (r − γ1)(ω2 − ω1)/(γ2 − γ1) + ω1,

where a < 0 and 0 < γ1 < ϱ1 < γ2. Choosing

γ1 = 1, γ2 = 3, ϱ1 = 2,

ω1 = 2π, ω2 = π, a = −5,
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the function ϕ(r) is plotted in Figure 4.2 (top). Since ϕr(r) intersects the horizontal axis

three times, the system embeds three limit cycles z = roe
ϕi(ro)t with ro being the intercepts

γ1, γ2, or ϱ1. Each solution is orbitally stable when the slope at the intersection ϕ′
r(ro) is

negative. Hence, the system has two stable limit cycles z = γie
jωit, i = 1, 2 and one unstable

limit cycle z = ϱ1e
jϖ1t with ϖ1 := ϕi(ϱ1) = 3π/2. The system is simulated with two initial

conditions z(0) = 2 ± 10−6, and the result is shown in Figure 4.2 (middle, bottom). If z(0)

is slightly inside/outside the unstable limit cycle orbit z = ϱ1e
jϖ1t, then the trajectories

(blue/red) stay near the orbit for a while but eventually diverge away and converge to the

stable limit cycle orbits of smaller/larger radius. The unstable orbit forms the boundary

between the domains of attraction for the two stable orbits.
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Figure 4.2: Complex oscillator with 3 limit cycles.

□
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4.3 Oscillator Network

4.3.1 Single Limit Cycle

We now consider the problem of designing a nonlinear system (4.4) so that the periodic

solution z = ζ in (4.5) is an orbitally stable limit cycle of the system. The problem is

slightly modified by allowing for specification of the amplitude γ ∈ R to set the target

oscillation as ζi(t) := γej(ωt+φi). We will achieve the design by an interconnected network

formed by n complex oscillators from the previous section. In this network, each oscillator

is an agent. Without any communication between the agents, an individual oscillator would

converge to an oscillation of the prescribed common frequency and magnitude, but the phase

relationship is undetermined. We aim to achieve a coordination between agents by properly

designing the structure of the network. Moreover, we study the case where the coupling

between agents is linear. Thus, the connectivity of the network and the nonlinearity of the

dynamics of an oscillator are of interest. Specifically, the problem is formulated as follows.

Problem 4. Suppose a network of n coupled nonlinear oscillators (4.7) is given by

ż = Φ(|z|)z+Mz, z ∈ Cn, M ∈ Cn×n,

Φ(|z|) := diag(ϕ(|z1|), . . . , ϕ(|zn|)), ϕ : R+ 7→ C,
(4.11)

with z :=
[
z1 . . . zn

]T
. We look for the conditions on M , which is a matrix specifying

the coupling of individual subsystems żi = ϕ(|zi|)zi with i ∈ In, and ϕ so that the state

trajectories of system (4.11) locally converge to the periodic solution

ζ(t) := γej(ωt+φ) ∈ Cn,

γ ∈ R+, ω ∈ R+, φ ∈ Rn
(4.12)

with orbital stability. □

The following result reduces the design problem to an eigenvalue problem through lin-

earization.
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Lemma 11. Consider the nonlinear system (4.11) and a target oscillation described in (4.12).

Without coupling (M = 0), each subsystem żi = ϕ(|zi|)zi has a solution zi = ζi if and only if

ϕ satisfies ϕ(γ) = jω. Under this condition, system (4.11) has a solution z = ζ if and only

if M satisfies Mejφ = 0. In this case, the solution is orbitally stable if and only if the real

matrix

M =

κI +Mr −Mi

τI +Mi Mr

 κ+ jτ := γϕ′(γ),

Mr + jMi := Ψ∗MΨ,
(4.13)

has eigenvalues in the open left half plane except for one at the origin, where Ψ := diag(ejφ).

□

Proof. It can be verified through direct substitutions that z = ζ is a solution of the dif-

ferential equations if and only if the stated conditions are satisfied. To prove the orbital

stability condition, we linearize the system (4.11) around its target limit cycle ζ(t). Define

the perturbation variable p := z− ζ and note the approximations

|zi| =
√

(pi + ζi)∗(pi + ζi)

∼=
√

γ2 + 2<[ζ∗i pi] ∼= γ + <[ζ∗i pi]/γ,

ϕ(|zi|)zi ∼=
(
ϕ(γ) + ϕ′(γ)<[ζ∗i pi]/γ

)
(ζi + pi)

∼= jω(ζi + pi) + ϕ′(γ)ζi<[ζ∗i pi]/γ.

Then the linearized system is given by

ṗ = (jωI +M)p+ (ϕ′(γ)/γ) ζ · <[ζ̄ · p]. (4.14)

Therefore, ζ is an orbitally stable limit cycle if and only if the linearized system (4.14) has

one Floquet multiplier at 1 with the rest having magnitude less than 1. Further consider the

coordinate transformation p ↔ q defined by p = ζ ·q. Then the system can be expressed as

q̇ = (Ψ∗MΨ)q+ γϕ′(γ)<[q].
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Defining the real state variables ρ,ϑ ∈ Rn by q = ρ+ jϑ, the system is described byρ̇
ϑ̇

 =

κI +Mr −Mi

τI +Mi Mr

ρ
ϑ

 . (4.15)

Since the linear periodic system (4.14) and the linear time-invariant system (4.15) are related

by a Lyapunov transformation, they share the same set of Floquet multipliers, which are

given by eλiT for i ∈ In, where T := 2π/ω and λi are the eigenvalues of M. ■

Remark 5. Condition Meφ = 0 in Lemma 11 means that the coupling is diffusive and vanishes

on the target orbit. In particular, for the special case of synchronization, we have φ = 0 and

M1 = 0. Since the row sum is zero for M , each oscillator dynamics can be written as

żi = ϕ(|zi|)zi +
n∑

j=1

mij(zj − zi), i ∈ Im,

where mij is the (i, j)th entry of M . Clearly, the coupling term is zero when synchronized

(zj = zi). □

Based on Lemma 11, the stability analysis boils down to the eigenvalue assignment of

M.

Lemma 12. Let real matrices Mr,Mi ∈ Rn×n and real scalars κ, τ ∈ R be given and consider

M :=

κI +Mr −Mi

τI +Mi Mr

 , M0 := Mr + jMi.

Let the eigenvalues of M0 be denoted by λi with i ∈ In and suppose λn = 0 and M01 = 0.

Then, with |κ+jτ | sufficiently small, the eigenvalues of M are at 0, κ, and in the neighborhood

of λi and λ̄i for i ∈ In−1. □

Proof. Let H ∈ Rn×(n−1) be such that 1TH = 0 and HTH = I, and define an invertible

matrix

T =

κ1 −τ1 H 0

τ1 κ1 0 H

 ∈ R2n×2n.
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Then, noting that the bottom row blocks of T−1 are given by diag(HT, HT), it can be shown

that

MT = TΛ, (4.16)

holds where

Λ :=


κ −τ U

0 0 V

0 0 W + E

 , E :=

κI 0

τI 0

 ,

W :=

Wr −Wi

Wi Wr

 ,
Wr := HTMrH,

Wi := HTMiH.

Since Λ is block triangular, we see that the eigenvalues of M are κ, 0, and those of W + E.

Since the eigenvalues of W + E depend continuously on (κ, τ ), and E vanishes when κ =

τ = 0, the result follows if we show that the eigenvalues of W coincide with λi and λ̄i for

i ∈ In−1. Denote the matrix M with κ = τ = 0 by M0. Letting κ = τ = 0 in (4.16) shows

that M0 has two eigenvalues at 0 and shares the other 2(n − 1) eigenvalues with W . By

Lemma 19 in the appendix, the eigenvalues of M0 are λi and λ̄i for i ∈ In. This completes

the proof. ■

Combining the previous two lemmas, we immediately have the following result.

Theorem 8. Consider system (4.11) with target oscillation (4.12). Suppose the following

holds.

(i) Mejφ = 0, and the eigenvalues of M are in the open left half plane except for one at

the origin.

(ii) ϕ(γ) = jω, <[ϕ′(γ)] < 0, and |ϕ′(γ)| is sufficiently small.

Then z = ζ is an orbitally stable limit cycle of system (4.11). □
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Proof. The result follows from Lemma 11 and Lemma 12 once we notice that M0 and M are

related by a similarity transformation and hence share the set of eigenvalues, and Mejφ = 0

is equivalent to M01 = 0. ■

Remark 6. The orbital stability property is guaranteed when the slope |ϕ′(γ)| is sufficiently

small. In this case, convergence of the amplitude may be slow. In view of the proof of

Lemma 12, however, the limit cycle is orbitally stable even for a large |ϕ′(γ)| as long as the

eigenvalues of W + E have negative real parts. □

4.3.2 Multiple Limit Cycles

This section will extend the result of the previous section to embed multiple limit cycles

within the state space of the coupled complex oscillators (4.11). In particular, we aim to

obtain the conditions on ϕ and M ∈ Cn×n such that

ζk(t) = γke
j(ωkt+φk) ∈ Cn, k ∈ Im, (4.17)

are m orbitally stable limit cycles for (4.11), where γk, ωk ∈ R and φk ∈ Rn are prescribed

amplitude, frequency, and phase of the kth limit cycle.

The extension is not straightforward. The diffusive coupling condition Mejφk = 0 for

k ∈ Im implies that M has at least m eigenvalues at the origin. Hence, condition (i) in

Theorem 8 will not hold. Therefore, we need new conditions for the case with multiple limit

cycles.

Let us first extend Lemma 11 and reduce the multi-oscillation problem to an eigenvalue

problem.

Lemma 13. Consider the nonlinear system (4.11) and target oscillations (4.17). Without

coupling (M = 0), each subsystem żi = ϕ(|zi|)zi has a solution zi = ζk,i if and only if ϕ

satisfies ϕ(γk) = jωk. Under this condition, system (4.11) has a solution z = ζk if and only

if M satisfies Mejφk = 0. In this case, the solution is orbitally stable if and only if the real

74



matrix

Mk =

MR −MI

MI MR

+

Ck −Sk

Sk Ck

κkI

τkI

[Ck Sk

]
(4.18)

has eigenvalues in the open left half plane except for one at the origin, where

MR + jMI := M, Ck := diag(cosφk),

κk + jτk := γkϕ
′(γk) Sk := diag(sinφk).

□

Proof. The result follows directly from Lemma 11 by noting that

M = ωT
kMkωk, ωk :=

Ck −Sk

Sk Ck


when (κ, τ,φ) in (4.13) coincides with (κk, τk,φk). ■

For the single orbit case (m = 1), Lemma 13 reduces to Lemma 11 as a special case where

the matrix Mk and M are related by a similarity transformation. The complication due to

multiple orbits is that we require Mejφk = 0 for k ∈ Im and hence M has m eigenvalues at

the origin, which in turn implies that Mk has 2m eigenvalues at the origin. For the single

orbit case (m = 1), one of the two eigenvalues at the origin can be moved to the left by

a sufficiently small |κk + jτk| with κk < 0 due to Lemma 11. For the multiple orbit case

(m > 1), we need to move 2m− 1 out of the 2m eigenvalues at the origin.

The following result is useful for obtaining a condition under which the eigenvalues of

Mk have negative real parts except for one at the origin.

Lemma 14. Let matrices A,B ∈ Rn×n be given. Suppose A has a semisimple eigenvalue at

the origin with multiplicity r and the other n− r eigenvalues are nonzero. Let X,Y T ∈ Rn×r

be full column rank matrices such that

AX = 0, Y TA = 0, Y TX = I.
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Suppose further that B satisfies BXe = 0 for some nonzero vector e ∈ Rr. Then, for

sufficiently small ε > 0, one of the eigenvalues of A+ εB stays at the origin, n− r of them

are in the neighborhood of the nonzero eigenvalues of A, and the other r−1 eigenvalues have

negative real parts if the eigenvalues of Y TBX, except for one at the origin, have negative

real parts. □

Proof. Let the eigenvalues of A + εB for ε ≥ 0 be denoted by λi(ε) ∈ C for i ∈ In, which

depend continuously on ε. Suppose the eigenvalues are ordered so that λi(0) = 0 for i ∈ Ir.

Note that A+εB has an eigenvalue at the origin with eigenvector Xv for any ε, and designate

this as λr(ε) = 0. Then, from [OW88, Lemma 3.1], the one-sided derivatives of λi(ε) for

i ∈ Ir at ε = 0 are given by the eigenvalues of Y TBX. The derivative of λr(ε) is zero,

corresponding to the zero eigenvalue of Y TBX. If the other eigenvalues of Y TBX have

negative real parts, then <[λi(ε)] < 0, i ∈ Ir−1, for sufficiently small ε > 0. ■

The following is the main result of this section.

Theorem 9. Let m target oscillations be given by (4.17). Assume that, for each k ∈ Im,

vectors 1, chk, and shk with h ∈ Im \ {k}, are linearly independent, where

chk = cos(φh −φk), shk = sin(φh −φk).

Consider system (4.11) and suppose the following holds.

(i) The coupling matrix is given by M = NΛN †, where Λ ∈ C(n−m)×(n−m) is an arbitrary

Hurwitz matrix, and N ∈ Cn×(n−m) is a full-rank matrix such that

X∗N = 0, X :=
[
ejφ1 . . . ejφm

]
∈ Cn×m.

(ii) For each k ∈ Im, function ϕ satisfies ϕ(γk) = jωk, and ϕ′(γk) is real negative with

sufficiently small magnitude.

Then z = ζk for k ∈ Im are orbitally stable limit cycles of system (4.11). □
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Proof. Fix k ∈ Im. Since MX = 0 and ϕ(γk) = jωk, we see from Lemma 13 that z = ζk is

a solution of (4.11). The solution is orbitally stable if the eigenvalues of Mk in (4.18) have

negative real parts except for one at the origin, where τk := =[γkϕ′(γk)] is zero due to the

supposition. By definition, MX = 0 and MN = NΛ hold. From Lemma 19 in the appendix,

these conditions are equivalent to

M
[
X N

]
=
[
X N

]0 0

0 L

 (4.19)

where M, X, N, and L are real matrices defined from the real and imaginary parts of M , X,

N , and Λ, respectively, as in (A.1). Now, Mk in (4.18) can be written as

Mk = M+ κkE
T
kEk, Ek :=

[
Ck Sk

]
.

Note that the linear independence assumption for 1, chk and shk is equivalent to rank(EkX) =

2m− 1 since

EkX =
[
c1k . . . cmk s1k . . . smk

]
.

The assumption implies that X has full column rank because otherwise rank(X) ≤ m − 1

and, from Lemma 19, rank(EkX) is at most 2m − 2. It can then readily be verified using

Lemma 19 that rank(X) = 2m, rank(N) = 2(n −m), XTN = 0, and L is Hurwitz because

rank(X) = m, rank(N) = n −m, X∗N = 0, and Λ is Hurwitz, respectively. Hence, (4.19)

gives a spectral decomposition of M, showing that M has a semisimple eigenvalue at the

origin with multiplicity 2m, and the other 2(n − m) eigenvalues have negative real parts.

Noting that the inverse of [X N] is given by col(X†,N†), Lemma 14 assures that all the

eigenvalues of Mk, except for one at the origin, have negative real parts for κk < 0 of

sufficiently small magnitude if the eigenvalues of ∆k := X†ET
kEkX, except for one at the

origin, have positive real parts. Note that ∆k and XTET
kEkX are related by similarity and

congruence transformations:

T−1∆kT = TXTET
kEkXT, T := (XTX)−1/2.
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Since rank(EkX) = 2m − 1, matrix XTET
kEkX has 2m − 1 positive real and one zero eigen-

values, and this property is shared by ∆k. This completes the proof. ■

Remark 7. The linear independence assumption on φk ensures that the phases of the target

oscillations are not redundant. For example, if ejφm can be expressed as a linear combination

of ejφk with k ∈ Im−1, then the assumption would be violated. Hence, this assumption does

not introduce difficulty for practical purposes. □

Example 8. Consider system (4.11) with ϕ(r) given by (4.8). We will embed in the state

space multiple stable limit cycles z = ζk of the form (4.17). With the choice of ϕ(r) from

the AHO, <[ϕ(r)] = 0 has only one solution in the domain r > 0, and hence the frequency

and amplitude of the targeted limit cycles cannot be specified by different values. However,

design of the network connectivity M allows to specify different phase values. We consider

the case where there are five oscillators, and two limit cycles ζk(t) = γej(ωt+φk), k = 1, 2, are

to be embedded. The parameters are chosen as

ω = 2π, φ1 = col(0, 0, 0, 0, 0),

γ = 1, φ2 = col(0, 1, 3, 6, 10)(π/10),

where ζ1 is synchronized oscillations, while ζ2 is traveling-wave oscillations. The system

is designed to achieve these oscillations using Theorem 9. The assumption requires linear

independence of 1, cosφ2, and sinφ2, which is satisfied. The orbital stability is guaranteed

when <[ϕ′(γ)] = −2µγ is negative with sufficiently small magnitude. It turns out that µ = 1

is small enough to give the stability. The coupling matrix M is designed as described in

statement (i) of Theorem 9 using N whose columns form an orthonormal basis for the null

space of X∗, and

Λ = diag(0, 0,−1 + 2j,−3 + 4j,−5 + 6j).

The system is simulated with two initial conditions

z(0) = γ0e
jφ0 , γ0 = γ/10, φ0 = aφ1 + (1− a)φ2,
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with a = 0.6 and 0.4; the former is considered closer to the ζ1 orbit and the latter would be

closer to the ζ2 orbit. The result is shown in Figure 4.3. As expected, each initial condition

leads to convergence to the nearby limit cycle.
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Figure 4.3: Coupled oscillators with 2 limit cycles.

□

4.3.3 Limitations

The conditions in Theorem 9 do not tie the amplitude and frequency with the phase in the

sense the conditions are given in terms of the amplitude/frequency or the phase individu-

ally. Specifically, condition (i) determines the coupling matrix solely by the phase, while in

condition (ii) the relationship between the amplitude and frequency is decided by the func-

tion ϕ(·), which does not involve the phase. This introduces additional stable limit cycles

which are a combination of amplitude/frequency pair and phase. We show this issue via the

example below.
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Example 9. Consider an oscillator network of 3 oscillators and 2 limit cycles to be embed-

ded. The frequencies, amplitudes, and phases of the limit cycles are specified by

ω1 = 2π, γ1 = 1, φ1 = col(0, 0, 0),

ω2 = π, γ2 = 2, φ2 = col(1, 2, 3)(π/3).

ϕ(r) is designed to be ϕ(r) = ϕr(r) + jϕi(r), where ϕr(r) := −µ(r− γ1)(r− γ0)(r− γ2) with

γ0 := (γ1 + γ2)/2, µ > 0, and ϕi(r) is constructed as follows:

ϕi(r) = a

(
1

3
r3 − γ0r

2 + γ1γ2r

)
+ b,

a :=
ω1 − ω2

c1 − c2
, b := ω1 − c1a,

c1 :=
1

3
γ3
1 − γ0γ

2
1 + γ2

1γ2, c2 :=
1

3
γ3
2 − γ0γ

2
2 + γ1γ

2
2 .

By tuning the initial conditions, we observed the convergence to the 2 desired limit cycles

specified above as in Figure 4.4. We also observed the convergence to an additional undesired

limit cycle with frequency ω1, amplitude γ1, and phase φ2, as shown in Figure 4.5.

80



0 1 2 3 4 5 6

time [s]

-1

-0.5

0

0.5

1

0 1 2 3 4 5 6

time [s]

-2

-1

0

1

2

Figure 4.4: The 2 desired limit cycles.

0 1 2 3 4 5 6

time [s]

-1

-0.5

0

0.5

1

Figure 4.5: The additional undesired limit cycle.

□
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This unpleasant introduction of extra limit cycle(s) is due to the linear coupling be-

tween oscillators. Thus we proceed with investigating nonlinear coupling in the subsequent

chapter.
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CHAPTER 5

Network of Nonlinearly Coupled Oscillators

5.1 Problem Formulation

Due to the limitations of linearly coupled oscillators discussed in Section 4.3.3, we consider

a specific model of oscillator network similar to the one developed in the previous chapter

but with nonlinear coupling in this chapter. Again, we start with the generalized nonlinear

oscillator with complex state variable (4.7). With a slight modification, the dynamics of the

oscillator is given by

ż = jωϕ(|z|)z, z(t) ∈ C, ϕ : R+ 7→ C, (5.1)

with

ϕ(γ) = 1, ϕ′(γ) = jε, ε > 0. (5.2)

It is proved that the oscillator has an orbitally stable limit cycle ζ := γejωt. Without the

nonlinear term ϕ(|z|), the oscillator becomes linear, having γ̃ejωt as its solution with arbitrary

magnitude γ̃. The purpose of the nonlinearity is to fix the magnitude of the oscillation. This

is achieved by the condition (5.2) imposed on the oscillator.

Inspired by the stability condition (5.2) for the limit-cycle oscillator (5.1), here we make

the following assumption for the oscillator network.

Assumption 2. Consider a network of coupled nonlinear oscillators described in (5.3).

Assume

ϕ(γ) = 1, ϕ′(γ) = jε, ε ∈ R.
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□

Moving forward, we consider a coordination problem of a network of such oscillators

described in (5.1). In this network, each oscillator is an agent. Without any communication

between the agents, an individual oscillator would converge to an oscillation of the prescribed

common frequency and magnitude, but the phase relationship is undetermined. We aim to

achieve a coordination between agents by properly designing the structure of the network.

Moreover, we study the case where the coupling between agents is nonlinear. Thus, the

connectivity of the network and the nonlinearity of the dynamics of an oscillator are of

interest. Specifically, the problem is formulated as follows.

Problem 5. Suppose a network of n coupled nonlinear oscillators (5.1) is given by

ż = MΦ(|z|)z, z ∈ Cn, M ∈ Cn×n,

Φ(|z|) := diag(ϕ(|z1|), . . . , ϕ(|zn|)), ϕ : R+ 7→ C,
(5.3)

with z :=
[
z1 . . . zn

]T
. We look for the conditions on M and ϕ so that the state trajectories

of system (5.3) locally converge to the periodic solution

ζ(t) := γej(ωt+φ) ∈ Cn,

γ ∈ R+, ω ∈ R+, φ ∈ Rn
(5.4)

with orbital stability. □

5.2 Single Limit Cycle Design

5.2.1 An Equivalent Synchronization Problem

We proceed to address Problem 5 with only one limit cycle to stabilize. Before we linearize

the system and apply Floquet theory, we observe that a coordinate transformation helps

further simplifying the problem. Since our goal is for every state in z,

zk(t) → ζk := γej(ωt+φk),
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where ζk, φk are the kth entry of ζ, φ, respectively, this motivates us to consider the following

coordinate transformation

pk(t) := e−j(ωt+φk)zk(t).

It then can be easily seen that zk converges to ζk if and only if pk converges to γ. Therefore

in the new coordinate, the objective is to synchronize all the states. To that end, we derive

the dynamics of p := (p1, p2, . . . , pn)
T and the result is stated in the following lemma.

Lemma 15. Consider system (5.3) with target periodic solution (5.4) and Assumption 2.

Define

δL+ jωI := Ψ∗MΨ, Ψ := diag(ejφ) ∈ Cn×n, (5.5)

where δ is a real positive scalar, and consider the a system with dynamics given by

ṗ = jω(Φ(|p|)− I)p+ δLΦ(|p|)p, p ∈ Cn. (5.6)

Then (5.4) is an orbitally stable limit cycle to the original system (5.3) if and only if p in

(5.6) converges to c1, where c ∈ C and |c| = γ. □

Proof. Consider a coordinate transformation on the original state variable z,

pk(t) := e−j(ωt+φk)zk(t), k ∈ In.

In the matrix form

p = e−jωtΨ∗z,

where Ψ is defined in (5.6). We notice that pk and zk have identical magnitude, i.e.,

|pk| = |zk| =⇒ |z| = |p|.
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Then,

ṗ = e−jωtΨ∗ż− jωe−jωtΨ∗z

= e−jωtΨ∗MΦ(|z|)z− jωe−jωtΨ∗z

= (Ψ∗MΦ(|z|))
(
Ψe−jωtΨ∗) z− jωe−jωtΨ∗z (since Ψ∗Ψ = I)

= Ψ∗MΨΦ(|p|)p− jωp. (p = e−ωtΨ∗z; Φ,Ψ commute)

Substituting the expression in (5.5) for Ψ∗MΨ, we arrive at (5.6). The orbital stability

suggests that zk → γej(ωt+φk+φc) for some constant phase shift φc. This happens if and only

if pk → c with c = γejφc . ■

Remark 8. With Lemma 15, the previous coordination problem, where the states have

non-uniform phase on the target oscillation, has been converted to a synchronization prob-

lem, where the objective is the reach at a synchronized state (consensus) among oscillators

(agents). □

Remark 9. As shown in (5.6), the dynamical equation is partitioned into two parts. To

justify this partition, let us take a look at the dynamics of an agent,

ṗk = jω(ϕ(|pk|)− 1)pk + δ
n∑

i=1

lkiϕ(|pi|)pi,

where lki is the (k, i)th entry of L. The first component would admit a harmonic solution

with magnitude γ and frequency ω, but arbitrary phase, whereas the second part can be

treated as the coupling between agents, imposing a phase relationship across agents. In

addition, we put a δ in front to represent the coupling strength. □

5.2.2 Linearization

Lemma 15 gives an equivalent condition for the convergence to the target limit cycle of the

original system (5.3). Now we only need to consider the convergence of system (5.6) to the

synchronization subspace c1, where c ∈ C and |c| = γ. Further, the convergence is examined
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by a solution in that subspace, say γ1. Since we need to embed γ1 as a solution to the

system (5.6), the coupling matrix must satisfy

L1 = 0. (5.7)

The stability of the new target limit cycle γ1 then can be determined by the linearization

around it. Define q as a slight perturbation to the system (5.6) around the target solution,

i.e.,

q := p− γ1. (5.8)

Then the dynamics of q will give us the linearization around the target solution. Before we

present the result, we propose a new notion in terms of stability for linear time-invariant

(LTI) systems.

Definition 3 (o-stability). Consider an LTI system

ẋ = Ax, x ∈ Rn.

The system is said to be o-stable if A ∈ Ho, where Ho is the set of matrices with all the

eigenvalues in the open left half plane except for one at the origin. □

With the definition of o-stability, we now state the result in the lemma below.

Lemma 16. Consider the system (5.6) with L and δ defined in (5.5). Let LR, LI be the real

and imaginary part of L, respectively, i.e., LR + jLI := L. An LTI system is constructed

upon LR, LI , δ, and ε, where ε is introduced in Assumption 2,ẋ
ẏ

 = A

x
y

 , x, y ∈ Rn, (5.9)

A := δ

LR −LI

LI LR

− εγ

ωI + δLI 0

−δLR 0

 . (5.10)

Then p orbitally converges to γ1 if and only if the LTI system (5.9) is o-stable. □
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Proof. First, several approximations are useful for linearizing the system (5.6). Denote pk

and qk, k ∈ In as the kth element of p and q, respectively. We have

|pk| = |qk + γ| =
√

qkqk + γ2 + 2γ<[qk]

≈ γ

√
1 +

2

γ
<[qk] (qkqk is a higher order term)

≈ γ(1 +
1

γ
<[qk]) (first order approximation of

√
1 + x)

= γ + <[qk].

Then

ϕ(|pk|) ≈ ϕ(γ + <[qk])

≈ ϕ(γ) + ϕ′(γ)<[qk] (first order approximation)

= 1 + jε<[qk]. (by Assumption 2)

Furthermore, using (5.7),

q̇ = ṗ = jω(Φ(|p|)− I)p+ δLΦ(|p|)p

≈ jω(jε diag(<[q]))(q+ γ1)

+ δL(I + jεdiag(<[q]))(q+ γ1)

≈ δLq+ (jεγδL− εγωI)<[q].

(5.11)

Let x+ jy := q. Finally the dynamics of q can further be written in terms of real variables

x and y, which is given in (5.9) with A defined in (5.10). Thus we conclude that p orbitally

converges to γ1 if and only if the LTI system (5.9) is o-stable.

■

5.2.3 Sufficient Conditions

Notice that for the LTI system (5.9), the matrix A in (5.10) is jointly determined by γ,

ω, ε, δ, and the matrix L, among which γ and ω and prescribed by the target oscillation.
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Therefore, the stability conditions for (5.9) are supposed to be in terms of ε, δ, and L.

The conditions further infer the stability of the original network of coupled oscillators (5.3).

Combining the previous results, we present several sufficient conditions as follows.

Theorem 10. Consider the network of coupled oscillators (5.3) with Assumption 2, and

define L and δ as in (5.5). The system admits a periodic solution ζ described in (5.4) if and

only if L1 = 0. Under this condition, ζ is exponentially orbitally stable

(i) (Weak nonlinearity) if and only if L ∈ Ho, given that ε > 0 is sufficiently small; or

(ii) (Weak coupling) if and only if <[L] ∈ Ho, given that δ > 0 is sufficiently small; or

(iii) (Decoupling) if and only if L ∈ Ho, given that L is real and ε > 0;

where the set Ho is defined in Definition 3. □

Proof. We first derive the stability conditions for the LTI system (5.9). Let Q ∈ Rn×(n−1)

be such that 1TQ = 0 and QTQ = I. It can be shown, with constraint (5.7), that

AW = WΛ,

where A is defined in (5.10) and

W :=

1 0 Q 0

0 1 0 Q

 , Λ :=


−εωγ 0 ∗

0 0 ∗

0 0 T

 ,

T := QTAQ, Q :=

Q 0

0 Q

 .

Then two eigenvalues of A are −εωγ and 0, and hence o-stability holds if and only if T is

Hurwitz and ε > 0. We proceed to explore the structure of T . Define

D := QTLQ, DR + jDI := D.
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Substituting (5.10) for A in T = QTAQ, we obtain that T is Hurwitz if and only if

D = δD− εγ

ωI + δDI 0

−δDR 0


is Hurwitz, where

D :=

DR −DI

DI DR

 .

In the following argument, we show three conditions under which D is guaranteed to be

Hurwitz.

• If D is Hurwitz and ε is sufficiently small, then D is Hurwitz due to continuity. This

implies (i) due to Lemma 19.

• Rewrite D as

D = DA + δDB,

where

DA =

−γεωI 0

0 0

 , DB = D− γε

 DI 0

−DR 0

 .

Define

Y ∗
1 =

[
0n In

]
, X1 =

0n
In

 .

Note that Y ∗
1 DAX1 = 0 and Y ∗

1 DBX1 = DR. Applying Lemma 20, D is Hurwitz if DR

is Hurwitz and δ > 0 is sufficiently small, which is guaranteed if (ii) holds.

• L being real means LI = 0, L = LR. Further we have DI = 0 and D = DR. D then

becomes

D =

δD − εγωI 0

εγδD δD

 .

Thus, D is Hurwitz if and only if D is Hurwitz and ε < 0, which is equivalent to (iii).
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Having the conditions for the LTI system (5.9) to be o-stable, the rest of the proof readily

follows Lemma 15 and Lemma 16. ■

Remark 10. Since ε is associated with the derivative of ϕ at the target amplitude by definition

in Assumption 2, the magnitude of ε represents how ‘strong’ the nonlinear effect can be. An

extreme case is ε = 0, which means ϕ can be treated as a constant, more specifically, ϕ = 1,

around the target oscillation, rendering the system (5.3) linear. □

Remark 11. With the definition for the matrix L, (5.5), the network of coupled oscillators

(5.3) can be written as

żi = jωϕ(|zi|)zi + δ
n∑

k=1

ℓike
j(φi−φk)ϕ(|zk|)zk, i, k ∈ In, (5.12)

where ℓik is the (i, k)th entry of L. It can be seen that δ governs the coupling strength

between oscillators. □

Remark 12. Under condition (iii), the LTI system (5.9) can be decoupled through a coordi-

nate transformation. To see this, let P be a permutation matrix such that

ξ = P

x
y

 , ξ :=
[
x1 y1 . . . xn yn

]T
.

With L being real, the dynamical equation of ξ is given by

ξ̇ = Aξ, A := I ⊗ E + δ(L⊗ I)(I ⊗ F ),

E :=

−εωγ 0

0 0

 , F :=

 1 0

εγ 1

 .
(5.13)

The assembled dynamical system (5.13) can be decoupled into subsystems using master

stability analysis [PC98],

ξ̇k = (E + λkδF ) ξk, ξk ∈ R2, k ∈ In,

where λk is the kth eigenvalue of L. It can be shown that with condition (iii), all the

subsystems are stabilized except for one converging to a constant, which corresponds to the

rigid body mode. □
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Figure 5.1: Stability with respect to the magnitude of ε. (a) ε = 0.1,A is o-stable; (b) ε = 1,A

is unstable.

5.2.4 A Numerical Example

Example 10. Consider a network of three oscillators with target orbit ζ = ej(ωt+φ), where

ω = 2π and φ =
[
0 π/3 2π/3

]T
. We examine the relationship between the magnitude of

δ, ε and the stability of A defined in equation (5.10), also the stability of the network. First

we set

L = LR + jLI ,

LR =


−1 0 1

1 −2 1

0 1 −1

 , LI =


−2 0 2

−1 −3 4

1 7 −8

 .

Then L ∈ Ho. The coupling matrix M is calculated through equation (5.5). In the first case,

δ is fixed to be 1. When ε = 0.1, A is o-stable. A becomes unstable if we increase ε to 1.

Simulations with two different values of ε is shown in Figure 5.1.
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Figure 5.2: Stability with respect to the magnitude of δ. (a) δ = 0.1,A is o-stable; (b) δ = 1,A

is unstable.

Then we set

L = LR + jLI ,

LR =


−1 0 1

1 −2 1

0 1 −1

 , LI =


−2 0 2

−2 5 −3

6 4 −10

 .

Note that <[L] ∈ Ho while =[L] /∈ Ho. In this case, ε is fixed to be 1. When δ = 0.1, A is

o-stable. A becomes unstable if we increase δ to 1. Simulations with two different values of

δ is shown in Figure 5.2. □

5.3 Multiple Limit Cycle Design

5.3.1 Limitation of the Single Limit Cycle Result

Suppose we want to embed multiple limit cycles into the coupled oscillator network (5.3).

For each oscillation profile of a limit cycle, the associated L matrix is defined by (5.5) which

we denote as Lk here. In addition, Lk must satisfy the eigenstructure condition (5.7). This
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implies that, for the frequency and phase pair (ωk,φk) of the kth limit cycle, it holds that

Mejφk = jωke
jφk .

Moreover, the eigenvalues of Lk associated with that limit cycle must lie in the open left

half plane except for a zero eigenvalue. This is equivalent to that M has all the eigenvalues

in the open left half plane except for one at jωk, which corresponds to the eigenvector ejφk .

This is not possible since every limit cycle would impose such condition. M would have as

many eigenvalues on the imaginary axis as the number of limit cycles. This contradicts the

conditions in Theorem 10.

5.3.2 Linearization Around Multiple Orbits

Knowing that converting to a synchronization problem would not help to solve the multiple

limit cycle problem, we backstep to the original coordinate, and attempt to solve a coordi-

nation problem instead. To that end, let us first assume there are m limit cycles given by

ζk = γej(ωkt+φk) ∈ Cn,

γ ∈ R+, ωk ∈ R+, φk ∈ Rn, k ∈ Im.
(5.14)

Then for the kth limit cycle we define a new state variable

w := Ψkq, Ψk := diag(ejφk), (5.15)

where q is the perturbation variable defined in (5.8). This implies w = e−jωkt(z − ζk). For

each limit cycle, w no longer seeks to synchronize. Unlike the dynamics of q given by (5.11),

the dynamics of w would depend on the oscillation profile of a specific limit cycle. The

following lemma states the dynamics in the w coordinate.

Lemma 17. Consider the network of coupled oscillators (5.3) with Assumption 2, and
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periodic functions ζk, ∀k ∈ Im in (5.14). Define

MR + jMI := M, M :=

MR −MI

MI MR

 ,

and

Kk := M− ωkI, I :=

0 −I

I 0

 ,

ek :=

cosφk

sinφk

 .

Then z = ζk is a solution to (5.3) if and only if

Kkek = 0. (5.16)

In this case, the linearization around z = ζk can be described as

ẇ = (Kk + εγIMGk)w, (5.17)

w :=

<[w]

=[w]

 , w := e−jωkt(z− ζk),

where

Gk :=

Ck

Sk

[Ck Sk

]
,
Ck := diag(cosφk),

Sk := diag(sinφk).
(5.18)

□

Proof. First, (5.16) is a direct implication from the zero eigenvalue constraint (5.7) and

Lemma 19. Then with the relationship between w and q, (5.15), and noting that Ψk =

Ck + jSk, we obtain

<[q] = Ck<[w] + Sk=[w].
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Thus using the dynamical equations of q, (5.11), and plugging in the relationship between

L and M , (5.5), we have

ẇ = Ψkq̇

= (M − jωkI)w + jεγM(Ck + jSk)(Ck<[w] + Sk=[w]).

Using Lemma 19, we arrive at<[ẇ]

=[ẇ]

 = (M− ωkI)

<[w]

=[w]


+ εγIM

Ck −Sk

Sk Ck

Ck<[w] + Sk=[w]

0


= (M− ωkI)

<[w]

=[w]

+ εγIM

Ck

Sk

[Ck Sk

]<[w]

=[w]


⇐⇒ ẇ = (Kk + εγIMGk)w.

■

Remark 13. Define Kk := M − jωkI. Using Lemma 19, we see that

Kk =

KR −KI

KI KR

 , KR + jKI := Kk.

Solving this equation for M in terms of Kk, the original system (5.3) is now described as

ż = jωkΦ(|z|)z+KkΦ(|z|)z.

With Kk = 0, this system is a set of uncoupled oscillators having a periodic solution zi =

γejωkt for all i ∈ In, which is orbitally stable if =[ϕ′(γ)] > 0. Hence, Kk can be thought of

as the coupling matrix. □

5.3.3 Condition for Multi-Stability

The orbital stability of a specific limit cycle is guaranteed if the linearization around that

limit cycle leads to an o-stable system. In this section, we show that, with constraints
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on the eigenstructure of the coupling matrix M of the system (5.3) imposed jointly by

the oscillation profiles of the limit cycles, along with constraints on the nonlinearity of the

nonlinear oscillators, the system (5.3) is capable of exhibiting multiple limit cycles with

orbital stability ensured. We state the results first and provide the proof thereafter.

Theorem 11. Consider system (5.3) with Assumption 2. Let m target oscillations be given

by

ζk(t) = γej(ωkt+φk) ∈ Cn, k ∈ Im,

where γ, ωk ∈ R+ and φk ∈ Rn are prescribed constants. Suppose the following holds.

(i) MV = V Λ, where

V :=
[
ejφ1 ejφ2 . . . ejφm

]
,

Λ := j


ω1

ω2

. . .

ωm

 ;

(ii) eig(M) \ {jωk} ∈ OLHP;

(iii) ε is positive and sufficiently small.

Then z = ζk, ∀k ∈ Im are orbitally stable limit cycles of system (5.3). □

Proof. Starting from Lemma 17, the linearized dynamics around each limit cycle are given

by (5.17) under condition (5.16), which is satisfied due to condition (i). Thus equivalently

we need to prove that the LTI system (5.17) is o-stable for all k ∈ Im. Without loss of

generality, we prove the case of one of the limit cycles, and thereby drop the sub/superscript

k for simplicity. The dynamics of (5.17) can be divided into two parts, K and εγIMG.

The latter matrix can be regarded as a perturbation on K. We will first prove that all the

97



eigenvalues of K are either on the imaginary axis, or in the OLHP, and then argue that all

the eigenvalues on the imaginary axis, except for one at the origin, will be perturbed and

moved towards left by the effect of εγIMG.

First notice that Mvi = jωivi,vi := ejφi for all i ∈ Im. Denote by ui the left eigenvalue

of M associated with jωi, that is,

u∗
iM = jωiu

∗
i , u∗

ivi = 1.

Also, we have

Kvi = j(ωi − ω)vi, u∗
iK = j(ωi − ω)ui,

where K := M − jωI, and ω is the frequency of the limit cycle of linearization. Immediately

it comes to our notice that M and M, also K and K can be related through Lemma 19.

Then

MVi = ωiViJ, UiM = ωiJUi,

KVi = (ωi − ω)ViJ, UiK = (ωi − ω)JUi,

for all i ∈ Im, where

Vi :=

 vi vi

−jvi jvi

 ∈ C2n×2,

Ui :=

u∗
i ju∗

i

uT
i −juT

i

 ∈ C2×2n, J :=

j
−j

 ∈ C2×2.

As can be seen, K has 2m eigenvalues on the imaginary axis which show up as conjugate pairs,

including two at the origin, and the corresponding left/right eigenvectors are well defined.

We shall then see how εγIMG is going to affect those eigenvalues of K on the imaginary

axis. First we consider the non-zero eigenvalues. Without loss of generality, we analyze one

eigenvalue of a conjugate pair, j(ωi−ω), with the associated right and left eigenvalue

 vi

−jvi
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and
[
u∗
i ju∗

i

]
, respectively. In light of Lemma 20, the right and left eigenvectors, along

with the perturbation term, will altogether determine the direction the associated eigenvalue

moves towards given the perturbation is small. Thus, using the definition of G in (5.18), the

matrix

Ni =
[
u∗
i ju∗

i

]
εγIMG

 vi

−jvi


= εγ

[
u∗
i ju∗

i

]
MI

C
S

[C S
] vi

−jvi


= jεωγ

[
u∗
i ju∗

i

]0 −I

I 0

C
S

[C S
] vi

−jvi


= −εωiγu

∗
i (C + jS)(C − jS)vi

= −εωiγu
∗
ivi

= −εωiγ

decides how the eigenvalue j(ωi − ω) is perturbed if ε is sufficiently small. Ni has to be

negative if we are to move the eigenvalue to the left of the imaginary axis. By definition, ωi

and γ are positive numbers. Therefore, the condition boils down to simply ε > 0. The same

conclusion is valid for its complex conjugate j(ω − ωi).

We then consider the two zero eigenvalues. Since the zero eigenvalue is repeated, all the

associated eigenvector should be incorporated in the analysis. Denote by vo and uo the right

and left eigenvectors of M corresponding to jω, respectively. I.e.,

Mvo = jωvo, vo := ejφ.

u∗
oM = jωu∗

o, u∗
ovo = 1.

Therefore, by Lemma 19, we arrive at

MVo = ωIVo, UoM = ωUoI,

KVo = 0, UoK = 0,
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where

Vo :=

c −s

s c

 ∈ R2n×2,
c := cosφ,

s := sinφ,

Uo :=

 <[uo]
T =[uo]

T

−=[uo]
T <[uo]

T

 ∈ R2×2n.

Then the matrix

No = UoεγIMGVo = εγUoMIGVo = −εωγUoGVo

= −εωγUo

C
S

[C S
]c −s

s c


=

−εωγ 0

0 0


(5.19)

needs to have all the eigenvalues on the OLHP except for a zero. This is accomplished by

ε > 0.

A similar deduction would yield where the eigenvalues of K, other than those on the

imaginary axis, are located. Consider an eigenvalue of M , λ, in the OLHP. Then λ − jω

would be an eigenvalue of K. Further, K will have λ − jω and λ + jω as its eigenvalues,

which are also in the OLHP. They will remain in the OLHP under small perturbation due

to continuity.

As such, we have proved that K is o-stable, and this holds for all limit cycles. Then this

theorem is concluded due to Lemma 17. ■

Remark 14. The results of Theorem 11 actually resemble those of a linear system. Let us

consider the case where the nonlinearity is removed. Then the corresponding linear system

is described by

ż = Mz, z ∈ Cn, M ∈ Cn×n.

This linear system exhibits exactly m oscillatory modes ζk(t) = γ̃ej(ωkt+φk) if and only if

condition (i) and (ii) in Theorem 11 hold for all k ∈ Im, where γ̃ is dependent on the
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initial conditions. Two issues would emerge without the nonlinearity term. One is that the

amplitude of the oscillation is undetermined, while the other issue being all modes are not

orbitally stable. That means the state of the linear system converges to a superposition of

several oscillatory modes, with amplitude depending on the initial conditions. With the aid

of the nonlinear dynamics, we manage to fix the amplitude and stabilize the orbit. □

5.3.4 A Numerical Example

Example 11. Let us take a look at a simple design example as shown in Figure 5.3. A

network is consist of 3 oscillators and admits 2 limit cycles. The amplitude of the oscillations

is set uniformly to be γ = 1. The two phase profiles are

φ1 =
[
0 0 0

]T
, φ2 =

[
0 π/3 2π/3

]T
.

And the frequencies are chosen to be

ω1 = 2π, ω2 = π.

First V is given by V =
[
ejφ1 ejφ2

]
, and Λ = jdiag(ω1, ω2). Let U be the orthogonal

complement of V and define T :=
[
V U

]
. Let Ω = jdiag(Λ, λ) where λ ∈ C can be

any complex number with negative real part. Here we choose λ = −2 + j1. Finally, M is

constructed by M = TΩT−1, which yields

M =


0.69 + j3.97 0.97 + j0.92 −1.66 + j1.39

1.32 + j2.25 −1.20 + j2.49 −0.12 + j1.55

1.26 + j0.70 0.23 + j1.62 −1.49 + j3.97

 .

The weights of the coupling between two oscillators are decided by the matrix M . Figure 5.4

illustrates the two orbitally stable limit cycles this network admits.

□
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Figure 5.3: An example of a network with 3 oscillators.

0 2 4 6

time (s)

-1

0

1

(a)

0 2 4 6

time (s)

-1

0

1

(b)

Figure 5.4: Two limit cycles of the network depicted in Figure 5.3 depending on the initial condition.
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5.4 Distributed Network

The design procedures for the oscillator networks in the previous sections do not impose any

constraints on the connectivity of the oscillators. Hence the network is unstructured. How-

ever it is not always possible to specify the communication between the oscillators arbitrarily.

Or, sometimes it is preferable to have the connectivity in a certain form than another. We

thereby discuss the design of a distributed network in this section. In the formulation (5.3),

the connectivity of the network is determined by the coupling matrix M . Thus the design

problem with connectivity constraints boils down to designing a network with structured M .

5.4.1 Single Limit Cycle

It is straightforward to find the conditions for distributed network with one limit cycle based

on Theorem 10. Since the network can be written in the form of (5.12), it is immediately

noticed that L determines the topology of the network. A critical design constraint on L is

the diffusive coupling (5.7). This coincides with the property of a Laplacian matrix in graph

theory. Suppose the topology of the network is represented by a connected directed graph

G(V , E), with vertices V , edges E ⊆ V × V , weights aij, and associated Laplacian matrix

L. L is known to have a zero eigenvalue and corresponding eigenvector 1, i.e., L1 = 0.

Moreover, L belongs to the set Ho, which is a necessary condition in statement (i) and (iii)

of Theorem 10, if and only if the directed graph contains a spanning tree with nonnegative

weights [RB05, Lemma 3.3]. The definition of a spanning tree and the proof of the statement

is referred to [LI17, Lemma 4].

Example 12. An example is illustrated in Figure 5.5(a). There are four vertices in the

network. The red edges along with the vertices connected form a spanning tree with vertex
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Figure 5.5: Spanning tree structure.

1 being the root. The Laplacian is given by

L =


−1 0 1 0

1 −1 0 0

1 0 −1 0

0 0 1 −1

 .

We consider a target limit cycle with phase φ =
[
0 π/3 2π/3 π

]T
, frequency ω = 2π and

amplitude γ = 1. The coupling matrix M is obtained through equation (5.5) where we set

δ = 1. Figure 5.5(b) shows the simulation result.

□
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5.4.2 Network Design via Eigenstructure Assignment

We rely on a result in [WI17] for the multiple limit cycle design. In [WI17], a strategy to

design a distributed feedback controller to achieve pattern formation of a group of linear

systems via eigenstructure assignment is proposed.

Consider n LTI plants

ẋk = Akxk +Bkuk, k ∈ In.

Suppose Λ is a known square matrix with eigenvalues in the closed right half plane. For each

k ∈ In, we are given a matrix Xk, and the matrix Uk which satisfies

AkXk +BkUk = XkΛ.

Then Kk and Jk are chosen such that the matrix

Ωk := Ak +BkKk −XkJk

is Hurwitz. Further, a matrix Nk is calculated such that

ΛNk −NkΩk = Jk.

Finally, the matrix Γk is formed to be

Γk :=
[
NkBk I −NkXk

]
.

Let L be the set of real Laplacian matrices for digraphs containing a spanning tree with

positive weights. That is, L ∈ L if and only if L has the following properties: 1) the row

sum is equal to zero, 2) all the off-diagonal entries are nonpositive, and 3) at least one of

the cofactors is nonzero. Let LΛ be the set of L ∈ L such that the smallest real-part of the

nonzero eigenvalues of L is greater than the largest real part of the eigenvalues of Λ.
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Consider the distributed control

v = −Lη, L := L⊗ Im, L ∈ LΛ,
ηk

uk

ξ̇k

 =


I

Uk

Λ

 ξk +


Nk

Kk

Jk

 (xk −Xkξk) +


0 0

I 0

0 I

Γ†
kvk.

The closed-loop system is given byẋ
ξ̇

 = M

x
ξ

 ,

M :=

A+BK − BGLN B(U−KX)− BGL(I −NX)

J −HLN Λ− JX−HL(I −NX)


where A, B, K, J , N , U, X, Λ, G and H are block diagonal matrices with Ak, Bk, Kk,

Jk, Nk, Uk, Xk, λ, Gk and Hk on the diagonal, respectively, and Gk and Hk are defined by

Γ†
k = col(Gk, Hk).

Define X := col(X1, . . . , Xn), J := col(Im, . . . , Im), and V := col(X, J). Suppose that

(X,Λ) is observable, and Γk has a full row rank. Then the system satisfies

MV = VΛ, eig(M) \ eig(Λ) ⊂ C−.

where M is the coefficient matrix of the above closed-loop system, and we note that

LJ = 0, ΛJ = JΛ, UJ = U, XJ = X.

As can be seen, we managed to assign the desired eigenstructure onto the coefficient

matrix M under a topological constraint described by L. We apply this design strategy to

our network of coupled oscillators by extending the result to the case where the matrices are

relaxed to be complex-valued. The result for eigenstructure assignment is stated below.

Lemma 18. Consider

M :=

K − XLN XΛ−KX− XL(I −NX)

J − LN Λ− JX− L(I −NX)

 ,

L := L⊗ Im, L ∈ LΛ,
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where K, J,N , and X are block diagonal complex matrices with Kk, Jk, Nk, and Xk, for

k ∈ In, on the diagonal, respectively, Λ is the block diagonal complex matrix with Λ repeated

n times on the diagonal, and L is an n×n real matrix. Suppose Λ ∈ Cm×m is a matrix with

eigenvalues in the closed right half plane, Ωk := Kk −XkJk has all eigenvalues in the open

left half plane, and ΛNk − NkΩk = Jk. Define X := col(X1, . . . , Xn), J := col(Im, . . . , Im),

and V := col(X, J). Then we have

MV = VΛ, eig(M) \ eig(Λ) ⊂ C−.

□

Proof. First, MV = VΛ can be verified through direct calculations by noting that LJ =

0,XJ = X, and ΛJ = JΛ. Next consider the similarity transformation I −X

N I −NX

M

I − XN X

−N I

 =

K − XJ 0

∗ Λ− L

 , (5.20)

where ∗ indicates the immaterial entry. From the proof of Lemma 6 in [WI17], the eigenvalues

of Λ − L are give by λi − µj where λi, i ∈ Im and µj, j ∈ In are eigenvalues of Λ ∈ Cm×m

and L ∈ Rn×n, respectively. Since L ∈ LΛ, it has an eigenvalue at the origin (µn = 0), and

the other eigenvalues satisfy <(µj) > <(λi) for all j ∈ In−1 and i ∈ Im. ■

Remark 15. The result essentially follows from Corollary 1 of [WI17] as a special case where

Ak = 0, Bk = I,

Uk = XkΛ, Gk = Xk, Hk = I, k ∈ Im.

However, the above choice of col(Gk, Hk) is not exactly aligned with Γ†
k in Corollary 1 of

[WI17] since it is a pseudo-inverse but not necessarily the Moore-Penrose inverse. Also,

the matrices in Lemma 18 are complex while those in Corollary 1 of [WI17] are real. The

above proof justifies the statement in Lemma 18, and Corollary 1 of [WI17] provided the

construction of M . □
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5.4.3 Multiple Limit Cycles

For the network of coupled oscillators design with m limit cycles, we choose Λ = jΩ with

Ω being the diagonal matrix with frequencies ωk, k ∈ Im, on the diagonal. For simplicity,

xk may be chosen to be a scalar variable, and (part of) the stability condition is a scalar

inequality Kk < XkJk, where Xk is an m dimensional row vector specifying the phase of the

kth segmental oscillator for each of the m limit cycles: Xkq = ejφkq , q ∈ Im.

Theorem 12. Given m target oscillations

ζi(t) = γej(ωit+φi) ∈ Cn, i ∈ Im,

where γ, ωi ∈ R+ and φi ∈ Rn are prescribed constants. Consider a network of n segmental

oscillators whose dynamics is characterized by

ẋk = PkΦ(|xk|)xk, xk ∈ Cm+1,

Pk ∈ C(m+1)×(m+1), k ∈ In,

where Φ(·) is defined in (5.3) with condition (5.2). Suppose the connectivity between the

segmental oscillators is given by the Laplacian L ∈ Rn×n. Then the dynamics of the network

can be captured by

ẋk = PkΦ(|xk|)xk −
n∑

l=1

ℓklQklΦ(|xl|)xl, k, l ∈ In, (5.21)

where ℓkl is the (k, l)th entry of L, and Qkl ∈ C(m+1)×(m+1) is the additional interactive matrix

between the segmental oscillators. Define E to be the m ×m matrix whose (i, k)th entry is

given by

Eik = ej2π(ik/m), i, k ∈ Im.

Then it can be verified that E∗E = mI. Let xk be partitioned into

xk =:
[
xk ξTk

]T
, xk ∈ C, ξk ∈ Cm,
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and define

z :=
[
x1, . . . , xn

]T
.

Then the network has m limit cycles, on which z converges to ζi, i ∈ Im, if Pk and Qkl are

constructed as

Pk = E

Kk XkΛ−KkXk

Jk Λ− JkXk

E
−1,

Qkl = E

Xk

I

[Nl I −NlXl

]
E

−1,

(5.22)

respectively, where

E := diag(I, E), Λ := jdiag(ω1, . . . , ωm) ∈ Cm×m;

Xk ∈ C1×m is the kth row of

X :=
[
ejφ1 . . . ejφm

]
;

Kk ∈ C, Jk ∈ Cm are such that

Ωk := Kk −XkJk

is Hurwitz; Nl ∈ Cm is determined by the Sylvester equation

ΛNl −NlΩl = Jl.

□

Proof. With the above partition of xk and choices of Pk, Qkl, each segmental oscillator can

be written asẋk

ξ̇k

 = E

Kk XkΛ−KkXk

Jk Λ− JkXk

E−1

ϕ(|xk|)xk

Φ(|ξk|)ξk


−
∑n

l=1 ℓklE

Xk

I

[Nl I −NlXl

]
E−1

ϕ(|xl|)xl

Φ(|ξl|)ξl

 ,

k ∈ In.
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Defining x = col(xk) and ξ = col(ξk), we haveẋ
ξ̇

 = A

Φ(|x|)x
Φ(|ξ|)ξ

 , A = FMF−1,

M :=

K − XLN XΛ−KX− XL(I −NX)

J − LN Λ− JX− L(I −NX)

 ,

where L := L ⊗ Im, F := diag(I, E, . . . , E) with E repeated n times on the diagonal,

K, J,N , and X are block diagonal complex matrices with Kk, Jk, Nk, and Xk, for k ∈ In, on

the diagonal, respectively, Λ is the block diagonal complex matrix with Λ repeated n times

on the diagonal. Application of Lemma 18 gives the eigenstructure of M . Since A is related

to M by a similarity transformation, we have

AW = WΛ, W = col(X,E, . . . , E).

Thus all entries of W have magnitude one while the eigenvalues are preserved. At last,

applying Theorem 11, the proof is completed. ■

Remark 16. Note that the network has the distributed structure specified by the directed

graph associated with the Laplacian matrix L. Each decoupled subsystem admits a decom-

position similar to (5.20) — just set L = 0 and add subscript k, indicating that the eigen-

values are from Kk −XkJk and Λ, with the eigenvectors for the latter given by col(Xk, E).

Each segmental oscillator has multiple stable limit cycles specified by xk = ej(ωit+φki) and

ξk = Ei, i ∈ Im, where Ei is the ith column of E. Notice that E−1Ei = ei, where ei is the

ith column of the identity matrix I. That is, under a coordinate transformation E, the ith

auxiliary oscillator of a segmental oscillator is activated, and others are at rest. This holds

true for every segmental oscillator. □

Based on Theorem 12, we provide Algorithm 1 for designing a distributed network with

multiple limit cycles.

Remark 17. In the event that the number of limit cycle m is 1, Λ = jω and Xk = ejφk , k ∈ In

reduce to scalars, where φk is the kth entry of φ. It is then possible to choose Kk = Λ for all
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Algorithm 1: Construct a distributed network with multiple limit cycles
Input : m target oscillations

ζi(t) = γej(ωit+φi) ∈ Cn, i ∈ Im,

and graph Laplacian L.

Output: A network composed of n segmental oscillators, each of which has m+ 1

dimensional state.

1 construct X :=
[
ejφ1 . . . ejφm

]
, let Xk ∈ C1×m, k ∈ In be the kth row of X;

2 construct Λ := jdiag(ω1, . . . , ωm);

3 for k ∈ In do

4 choose Kk and Jk, such that Ωk := Kk −XkJk is Hurwitz;

5 calculate Nk by solving the Sylvester equation ΛNk −NkΩk = Jk;

6 end for

7 for k, l ∈ In do

8 construct Pk and Qkl as in (5.22);

9 end for

10 construct the oscillator network as in (5.21);
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k ∈ In so that XkΛ−KkXk = 0 and Nl such that 1−NlXl = 0, and thereby xk is decoupled

from ξk. In this case the dynamics of xk is given by

ẋk = jωϕ(|xk|)xk +
n∑

l=1

ℓkle
j(φk−φl)ϕ(|xl|)xl, l ∈ In.

This is aligned with the statement (iii) of Theorem 10 since L ∈ Rn×n. □

Remark 18. If the oscillators are to be synchronized, and we choose Jk = 0,Mk = 0 for all

k ∈ In, the network becomesẋ
ξ̇

 =

K X(Λ− L)−KX

0 Λ− L

Φ(|x|)x
Φ(|ξ|)ξ

 .

We can see that the dynamics of ξ is decoupled from x. Furthermore, since K is diagonal,

there is no direct communication between xi and xk, where i, k ∈ In and i 6= k. □

5.5 Example: Human Gaits Generator

In this section we demonstrate a design example following Algorithm 1. We obtained human

motion data from [GEB20], which contains the kinematic data for the hip joint, knee joint,

and ankle joint for both legs during a period of human motion. Here we pick two sets of gait

data, one for running at 2.6 m/s, another walking at 1.6 m/s. The original data is shown in

Figure 5.6.

Let ω be the frequency of a joint angle y(t). The Fourier coefficients cl ∈ C, l = 1, 2, . . .

for y(t) are obtained using Fast Fourier Transform (FFT) such that

y(t) =
ℓ∑

l=1

<[clζ l],

where ζ := ejωt. We define the phase of this signal φ by the phase of its first-order coefficient

c1,

φ := ∠c1.
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Figure 5.6: Two gaits. (a) running at 2.6 m/s; (b) walking at 1.6 m/s.

Then in order to obtain the coefficients for the signal with zero phase, we scale the coefficients

as follows:

c̃l = cl(
|c1|
c1

)l.

Note that the new first-order coefficient c̃1 = |c1| has zero phase.

Since there are 6 signals of interest, we place 6 segmental oscillators. In each segmental

oscillator, the number of auxiliary oscillators is decided by the number of limit cycles (gaits),

which is 2. The topology follows the skeleton of human legs. Figure 5.7 illustrates the

structure of the oscillator network. The Laplacian associated with the graph in Figure 5.7

is given by

L =



1 −1 0 0 0 0

−1 2 −1 0 0 0

0 −1 2 −1 0 0

0 0 −1 2 −1 0

0 0 0 −1 2 −1

0 0 0 0 −1 1


.
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right hip
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Figure 5.7: The network to produce human motion data.

We set the phase of the segmental oscillator corresponding to the left hip joint to be

0. The phase of other segmental oscillators are the difference between the phase of the

corresponding joint and that of the left hip joint. Note that we assume the human leg

motion is symmetric between left and right legs, so that the phase of a joint of the right

leg is out of phase of the corresponding left joint. The connectivity is designed based on

Algorithm 1, where we choose Kk = −10, Jk =
[
1 1

]T
for all k ∈ Im. Figure 5.8 shows

the convergence to different gaits starting from different initial condition. For the gait of

running at 2.6km/s, x :=
[
x1 . . . x6

]T
is illustrated in Figure 5.9.

The transition between two gaits can be achieved by perturbing the state x at some time

point. This is demonstrated in Figure 5.10(a). To better show the transition, we inspect the

auxiliary oscillators in the first segmental oscillator as shown in Figure 5.10(b).
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Figure 5.8: Oscillator networks converge to two gaits. (a) running at 2.6 m/s; (b) walking at 1.6

m/s.
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Figure 5.9: x :=
[
x1 . . . x6

]T
for the gait of running at 2.6 m/s.
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Figure 5.10: The transition between two gaits. (a) the output; (b) the auxiliary oscillators in the

first segmental oscillator.

117



CHAPTER 6

Conclusion

We considered the distributed control synthesis for a class of continuous time, finite dimen-

sional, linear time-invariant systems with local measurements and actuation in Chapter 2.

We proposed a controller architecture in which the individual control unit takes partial

measurements of the plant and exert on part of the plant, and the control units are intercon-

nected by a strongly connected directed graph. We showed the distributed controller can be

parametrized based on a centralized controller and the graph Laplacian so that the input-

output mapping converges to that of the centralized controller in the sense of system norms

with sufficiently large coupling strength between control units. Likewise, the closed-loop per-

formance with the distributed controller is proved to be arbitrarily close to its centralized

counterpart. We then applied our methods to a wide variety of classical control problems

including observer, LQG control. Next, we showed how to reduce the communication be-

tween control units over network by formulating an iterative convex programming with LMI

constraints.

In addition to the application to stabilizing control, we investigated the distributed con-

trol for eigenstructure assignment problems in Chapter 3. It was shown that the eigenstruc-

ture condition as well as the stability requirement can be met with a finite coupling strength.

We proceeded to specialize our result to multi-agent systems with spatially distributed struc-

ture and local observability. By exploring the structure of multi-agent systems, we gave an

observer based distributed controller for which local observers process local measurements

and the information exchange only happens between the internal model of each control unit.
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Then, by replacing the internal model by a nonlinear oscillator network, the potential of

nonlinear control to achieve pattern formation was illustrated by a numerical example in

which the oscillation amplitudes are stabilized.

Inspired by the numerical example with nonlinear oscillator network as the pattern gener-

ator, we modeled a network of linearly coupled oscillators in Chapter 4. We first formulated

the general design problem of a dynamical system which embeds stable limit cycle(s) with

desired attributes, such as frequency, amplitude, and phase. Then we provided an approach

to capture the shape of a limit cycle by applying Fourier series on a sinusoidal signal with a

frequency of the limit cycle. Next we considered specializing our dynamical system to be a

network of coupled oscillators. To that end, we generalized the AHO and propose a nonlinear

oscillator with a scalar complex variable z. A condition was derived for the complex oscilla-

tor to have a harmonic solution z = γejωt to which local convergence is guaranteed. We have

shown how to embed multiple limit cycles into a single complex oscillator with a theoretical

guarantee for local orbital stability. The use of the complex state variables makes it easy to

produce arbitrary, not necessarily sinusoidal, periodic signals by simply defining the outputs

as polynomials with Fourier coefficients. The oscillator contains a static nonlinearity ϕ(|z|),

and its crossing of the imaginary axis determines the frequency ω and amplitude γ. We then

constructed a general network of complex oscillators coupled through a constant intercon-

nection matrix M , and analyzed orbital stability of a targeted limit cycle via linearization

around the orbit. We provided a condition on the coupling matrix M and the nonlinearity

of the oscillator ϕ such that the oscillator network achieves desired coordination. It was

shown that the stability is guaranteed by a property of the eigenvalues of the coupling ma-

trix. Moreover, we showed that multiple stable limit cycles can be embedded in the network

of coupled complex oscillators, under a linear independence condition on the target phases,

which appears to be generically satisfied. Numerical examples illustrated the single complex

oscillator as well as their networks.

In Chapter 5, we considered the network of nonlinearly coupled oscillators with multiple
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limit cycles to overcome the limitations of the model in Chapter 4. We first derived the

conditions on the stability of single limit cycle to be embedded in the oscillator network, and

showed the equivalence between this problem and a synchronization problem. We exploited

Floquet theory for local stability and linearization was performed near the desired limit cycle.

We gave a necessary and sufficient condition for the stability. Further with some assumptions

on the coupling matrix, we also provided some sufficient conditions for these special cases.

The results was illustrated by a numerical simulation. We then extended the development

to multiple limit cycle case. We started by explaining where the difficulty lies for this case

compared to the single limit cycle case, and formulated a coordination problem instead of

a synchronization problem. The same linearization technique was applied with respect to

every limit cycle. Then we derived the conditions under which every linearized system is

stable. Upon this we gave a sufficient condition for the stability of the coupled oscillator

network. An example with multiple limit cycles as an application of this theoretical result

was demonstrated. We also considered structured design in the event that some topological

constraints are imposed on the interconnection of oscillators. We handled this by introducing

augmented network with extra oscillators to form coupled segmental oscillators. That is, the

network is composed of subsystems each consisting of multiple oscillators. We showed that

we were able to achieve the design goal with the augmented network under the presence of

the topological constraints. A comprehensive design example was given in the end where

we are to reproduce the human locomotion data using our oscillator network. The spatial

relationship between the joints of human legs naturally imposes some topological constraints

on the connectivity of the oscillators. We showed how we can achieve two different gaits by

one oscillator network under the connectivity constraints.
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APPENDIX A

Lemmas

Lemma 19. Let complex matrices A, B, and C be given. Define real matrices A, B, and C

by

A :=

AR −AI

AI AR

 , AR + jAI := A, (A.1)

and similarly for B and C. Then

AB = C ⇔ AB = C, (A.2)

holds, provided the matrix dimensions are such that the equations are well defined. Moreover,

2 rank(A) = rank(A), eig(A) ∪ eig(A) = eig(A)

hold, where A is assumed square for the latter equality, and eig(·) denotes the set of eigen-

values. □

Proof. The equivalence (A.2) follows from a direct calculation. Define the function F as the

operation to obtain A from A as in (A.1), i.e. A = F (A). Consider the case where A is

n× n square and note that, for λ ∈ C and v ∈ Cn,

Av = λv ⇔ AV = VΛ,

where V := F (v) and Λ := F (λ) are matrices with two columns. It can readily be verified that

the eigenvalues of Λ are λ and λ̄, and the two columns of matrix V are linearly independent

whenever v 6= 0 since VTV = ‖v‖2I. Hence, λ ∈ C is an eigenvalue of A if and only if λ and
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λ̄ are eigenvalues of A. To show the rank property, consider the case where the dimensions

of A are arbitrary. Noting that ATA = F (AA), we see that the singular values of A are also

those of A, repeated twice. Thus, the rank of A is r if and only if the rank of A is 2r. ■

Lemma 20. Given A and B ∈ Rn×n, let M(ε) = A + εB where ε ∈ R. Assume A has a

semisimple eigenvalue λ0 = jω, ω ∈ R with multiplicity r, i.e., there are nonsingular matrices

X =
[
X1 X2

]
, Y =

[
Y1 Y2

]
∈ Cn×n with X1, Y1 ∈ Cn×r such that

Y ∗AX =

 λ0Ir 0r×(n−r)

0(n−r)×r A22

 ,

Y ∗X = I, λ0 6∈ eig(A22).

Let λ1(ε), . . . , λr(ε) be continuous functions R 7→ C parametrizing r eigenvalues of M(ε)

with λ1(0) = · · · = λr(0) = λ0. Then

<[λi(ε)] < 0 holds when ε > 0 is sufficiently small

for all i ∈ {1, . . . , r} if and only if

∇ = Y ∗
1 BX1

is Hurwitz [OW88]. □
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