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Yuko Yoshinaga3, Jeremy Schmutz2 and Thomas E. Juenger1*

1 Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States, 2 Genome Sequencing
Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States, 3 United States Department of Energy, Joint
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Environmental heterogeneity can drive patterns of functional trait variation and lead to
the formation of locally adapted ecotypes. Plant ecotypes are often differentiated by
suites of correlated root and shoot traits that share common genetic, developmental,
and physiological relationships. For instance, although plant water loss is largely
governed by shoot systems, root systems determine water access and constrain shoot
water status. To evaluate the genetic basis of root and shoot trait divergence, we
developed a recombinant inbred population derived from mesic and xeric ecotypes of
the perennial grass Panicum hallii. Our study sheds light on the genetic architecture
underlying the relationships between root and shoot traits. We identified several
genomic “hotspots” which control suites of correlated root and shoot traits, thus
indicating genetic coordination between plant organ systems in the process of ecotypic
divergence. Genomic regions of colocalized quantitative trait locus (QTL) for the majority
of shoot and root growth related traits were independent of colocalized QTL for shoot
and root resource acquisition traits. The allelic effects of individual QTL underscore
ecological specialization for drought adaptation between ecotypes and reveal possible
hybrid breakdown through epistatic interactions. These results have implications for
understanding the factors constraining or facilitating local adaptation in plants.

Keywords: adaptation, ecotype, genetic architecture, quantitative trait locus, root architecture, pleiotropy,
epistasis, recombinant inbred line

INTRODUCTION

Adaptations to abiotic stress have been implicated as driving factors in ecological speciation
(Stebbins, 1952; Lexer and Fay, 2005), where populations have diverged across a number of traits,
exhibit different niche characteristics, and eventually become reproductively isolated (Clausen,
1951; Lowry, 2012; Yardeni et al., 2016). Local adaptation to soil water availability is an especially
important driver of plant evolution (Stebbins, 1952; Rajakaruna, 2004; Kooyers et al., 2015) and
can impose strong natural selection on populations, leading to the formation of ecotypes that are
differentially adapted to xeric and mesic habitats (Joly et al., 1989; Kumar et al., 2008). Xeric and
mesic ecotypes are often characterized by the divergence of common suites of morphological and
phenological traits (Clausen, 1951; Lowry, 2012) related to maintaining water status and tolerating
drought (Chapin et al., 1993; Markesteijn and Poorter, 2009; Juenger, 2013).
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While leaf and shoot traits are important drivers of adaptation
to drought (Carmo-Silva et al., 2009; Juenger, 2013), the
properties of root systems determine plant water access and can
place constraints on shoot water status (Price et al., 2002; Hund
et al., 2009). Shoot traits may be related to root traits through
genetic correlation (Bouteillé et al., 2012) or be dependent upon
root traits through resource allocation tradeoffs (Hammer et al.,
2009), including changes in carbon allocation between root and
shoot systems (Hummel et al., 2010). Higher root mass ratio
(RMR) increases water foraging capability to maintain plant
water status, which can be accomplished by allocating more
resources toward roots (Knight et al., 2006) or by inhibiting
above ground growth (Hendriks et al., 2015). Specific leaf area
(SLA, the ratio of leaf area to leaf dry mass) and specific root
length (SRL, the ratio of root length to root dry mass) are
both important plant traits linked to resource acquisition (Reich,
2014; Cheng et al., 2016) and SRL is typically thought of as
the below ground analog of SLA (Eissenstat et al., 2000; Reich,
2014). These traits are often positively correlated (Withington
et al., 2006; Reich, 2014; Valverde-Barrantes et al., 2017) and
associated with rapid growth (Pérez-Harguindeguy et al., 2013;
Reich, 2014) – where an acquisitive root strategy (high SRL)
can be aided by an acquisitive leaf strategy (high SLA; Pérez-
Ramos et al., 2013). Despite evidence that root and shoot trait
covariance is an important driver of plant adaptation, few studies
have documented how combinations of specific shoot and root
traits generate locally adapted ecotypes. The genetic basis of such
trait complexes and the implications of recombining adaptive
shoot and root traits in hybrids are poorly understood.

Quantitative genetic analyses and the mapping of quantitative
trait loci (QTL) permit exploration of the genetic basis of
trait correlations and trait divergence (Fishman et al., 2002;
Lovell et al., 2015; Milano et al., 2016). Importantly, by
simultaneously analyzing multiple traits, QTL mapping can
infer the loci and genetic interactions that drive ecological trait
correlations. Functional traits with a high degree of correlation
that underlie divergence can result from pleiotropy through
shared developmental genetics or genetic linkage (Via and
Hawthorne, 2005; Lovell et al., 2013) as a result of correlational
selection (Brodie et al., 1995). For example, colocalized QTL
for root and shoot traits including root biomass, root volume,
shoot biomass and plant height have been identified in a
wheat recombinant inbred line (RIL) population (Iannucci et al.,
2017) likely resulting from pleiotropy or tightly physically
linked genes. Overall, there is growing evidence for substantial
genetic variation in root system architecture and root/shoot
relationships. However, the loci driving these trait correlations
and the degree to which these patterns impact plant productivity
are largely unknown.

Panicum hallii is a small, self-fertilizing, C4 perennial bunch
grass native to North America that occurs across a large
geographical range comprised of diverse habitats and climates.
Average annual precipitation ranges from 127 cm per year on
the eastern border of its distribution to 13 cm per year on the
west. P. hallii occurs as two distinct ecotypes (xeric upland and
mesic lowland) that are classified as separate varieties, P. hallii
var. hallii (hereafter referred to as hallii) and P. hallii var. filipes

(hereafter referred to as filipes). Hallii is typically found in xeric
upland habitats with shallow, dry, calcareous and rocky soils
in the American southwest and northern Mexico; while filipes
occurs in mesic lowland areas on clay and silt soils mostly along
the Gulf Coast Plain of Texas and Mexico (Gould, 1975; Waller,
1976). The xeric upland ecotype, hallii, is smaller in stature and
overall size than the mesic lowland ecotype filipes: with smaller
leaves, fewer tillers, earlier flowering time, fewer flowers per
inflorescence, but larger seed size and seed mass (Waller, 1976;
Lowry et al., 2013). This is consistent with its polyploid relative,
Panicum virgatum (an important biofuel candidate), where
upland ecotypes are typically smaller, flower earlier (Lowry et al.,
2014a) and have less leaf area (McMillan, 1965) than lowland
ecotypes. Previous analyses of shoot traits in a F2 population of
P. hallii (Lowry et al., 2014b) demonstrated that a few large-effect
loci drove multivariate shoot trait divergence between hallii and
filipes, and complete genomes has been assembled and compared
(Lovell et al., 2018). Here, we investigate the genetic architecture
of multidimensional root phenotypic traits and their relationship
with shoots to develop a more complete picture of the adaptive
differences between these ecotypes.

In this study, we cross xeric and mesic ecotypes of P. hallii,
to generate a population of RIL at the F7 generation and
subsequently constructed a new genetic map based on whole
genome re-sequencing. We utilized extensive phenotyping of
root and shoot traits and a quantitative genetic approach to
identify the genetic architecture of trait relationships and their
divergence among ecotypes. We discovered shared QTL clusters
involved in genetic correlations between root and shoot growth
related traits that were independent of QTL clusters for carbon
allocation and phenology related traits. The allelic effects of
individual QTL underscore ecological specialization for drought
adaptation between hallii and filipes and reveal possible hybrid
breakdown through epistatic interactions.

MATERIALS AND METHODS

Morphological Shoot and Root
Phenotyping Under Greenhouse
Conditions
We developed a population of RILs derived from a cross of
hallii and filipes and constructed a genetic map from whole
genome re-sequencing (see Supplementary Appendix 1). Raw
sequence data was deposited in the NCBI short read archive
(see Supplementary Table 5). Seedlings of 174 F7 RILs and
the two parental genotypes were planted to 6 × 30 cm Cone-
Tainers (Stuewe and Sons, Tangent, OR, United States) filled with
Field and Fairway Profile (The Turf Trade, NJ, United States)
media. Plants were grown in a completely randomized block
design within three blocks on a single bench at the University
of Texas greenhouse (see Supplementary Appendix 2). Plants
were harvested within three days of a common developmental
stage defined as when a fully expanded flag leaf with a visible
ligule was observable on any tiller with an emerging panicle.
Harvest dates across the population ranged from 27 to 51 days
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after germination. The tiller height, leaf length and area of the
flag leaf of the main tiller were measured and tiller number was
counted at the time of harvest. Total root number was counted
and then the root system was spread out in a clear acrylic water
filled tray and scanned at a 600 dpi resolution using an EPSON
Scanner (Model 12000XL, Epson America, Inc., San Jose, CA,
United States) calibrated for use with WinRhizo Pro 2015 root
image analysis software (Regent Instruments Inc., Canada). Leaf,
shoot and root tissue was dried and weighed to obtain biomass.
SLA was calculated for each plant as the ratio of leaf area to dry
mass (Supplementary Appendix 2).

Root trait data was obtained from scans using WinRhizo
Pro 2015 software and included total root length (cm),
total root volume (cm3), and average root diameter (mm).
Specific root length (SRL; cm g−1), root tissue density
(RTD, g cm−3), and RMR were calculated for each plant
(Supplementary Appendix 2).

Data and QTL Analysis
Data analyses centered on fitting linear mixed models and
considered RIL genotype as a fixed effect (proc mixed, SAS) for
the measured phenotypic traits. Block was also included as a fixed
effect covariate when it had a significant impact on measured
traits (emergence day, specific root length and root diameter).
The SAS procedure PROC CORR was used to calculate genetic
correlation coefficients of traits based on RIL line means. Broad-
sense trait heritability was calculated using h2boot software using
one-way ANOVA among inbred RILs with 1000 bootstrap runs
(Phillips and Arnold, 1999). Trait divergence between parental
lines was evaluated with a t-test in SAS.

The majority of the measured traits were continuously
distributed with relatively strong multivariate structure based
on pairwise correlational analyses. As such, we also used
genetic principal component analysis (PCA) to obtain a
multidimensional overview of shoot and root trait variation
and integration. PCA was performed on the trait means of
each line for the following phenotypic variables: emergence day,
tiller number, root number, root biomass, shoot biomass, root
diameter, root tissue density, specific root length, specific leaf
area, tiller height, leaf length, root volume and total root length.
PCA was completed using SAS with the proc princomp function.
The first three principal components that together explained 75%
of total variation were retained for QTL analysis.

Quantitative trait locus mapping was completed in R using the
R/qtl package (Broman and Sen, 2009) on the RIL breeding values
as described above (Supplementary Table 1). When quantitative
trait data distributions were not normally distributed, data was
log (emergence day, tiller number) or square root (shoot biomass)
transformed. Two functions were used to determine the position
of QTL and to conduct the calculation of estimates for additive
effects and epistasis (an additive-by-additive interaction between
quantitative trait loci) (script1). The scantwo function with 1000
permutations was used to calculate penalties for main effect and
interactions for each phenotypic trait, and the stepwise QTL
function was used to conduct a forward-backward search and

1https://github.com/AlbinaKh/P.hallii_RIL_RootShoot_QTLmapping

account for epistasis with a maximum of 6 QTL (at least two QTL
peaks in addition to those detected with the scanone function)
that optimized the penalized LOD score criterion. Threshold
values for type 1 error rates were set at alpha = 0.05 for all
traits based on permutation. 1.5 LOD drop intervals of QTL
were calculated using the qtlStats function (Lovell, 2018). In
addition, QTL analysis was performed on the first three principal
components following the above procedure.

Confirming Root and Shoot Biomass
QTL in a Field Study
To further confirm and evaluate major QTL detected in our
greenhouse study, we conducted a follow up field experiment
on a focal QTL during the 2016 growing season. Ten RILs
homozygous at the shared QTL region for root and shoot biomass
were selected for this experiment (5 with filipes alleles and 5 with
hallii alleles). Eight biological replicates of each selected RIL line
and eight replicates of the two parental genotypes were planted on
May 10, 2016 under both restrictive and well-watered irrigation
treatments [(10 RILs + 2 parents) × 8 biological replicates × 2
irrigation levels = 192 plants; see Supplementary Appendix 2].
Plants were harvested toward the end of the summer growing
season in August. Shoots were separated from roots, dried at
55◦C for 4 days before weighing for biomass. Trait values more
extreme than 1.5 × the interquartile range were removed as
outliers prior to analysis. For statistical analysis, we used linear
mixed models with proc mixed in SAS. The main effect for the
model was genotype at the focal QTL (filipes or hallii alleles
at the marker position), treatment and genotype-by-treatment
interaction. RIL line was used as a random effect to control for
background genetic variance.

RESULTS

Heritable Shoot and Root Trait
Differences Between Mesic and Xeric
Ecotypes
The RIL parents representing mesic and xeric ecotypes of
Panicum hallii (HAL2 and FIL2) had significantly different shoot
and root trait mean values (Table 1). The xeric genotype, HAL2,
had 2.3-fold earlier first panicle emergence (t values at 5 dfs and
P values; t = 2.87, P = 0.035), 3.3-fold less shoot biomass (t = 4.39,
P = 0.007) and 2.8-fold less root biomass (t = 3.08, P = 0.028),
1.8-fold shorter plant height (t = 3.43, P = 0.018), 2.2-fold shorter
leaf length (t = 6.3, P = 0.001), 2-fold shorter total root length
(t = 3.29, P = 0.022), 2.5-fold lower total root volume (t = 3.41,
P = 0.02), and 1.3-fold increased specific root length (t = -2.5,
P = 0.05) relative to the mesic genotype FIL2 (Table 1).

We estimated broad-sense trait heritability (H2) as the
proportion of observed phenotypic variance due to genetic
differences among RILs in the population. In the RIL population,
all measured traits were heritable, with H2 ranging from 18
to 66% for shoot traits and from 34 to 60% for root traits
(bootstrap based significance, in all cases P < 0.001). The
most heritable traits were leaf length (66%), plant height (64%),
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TABLE 1 | FIL2 and HAL2 root and shoot trait value means with SE and t-statistics; and RIL root and shoot trait value means, range, and broad-sense heritability (H2)
with SE.

Phenotypic Trait FIL2 HAL2 t P-value RIL mean RIL range H2
± SE

Panicle Emergence (day) 9.25 ± 1.19 4.00 ± 1.38 2.87 0.035 7.01 ± 1.74 1.00–18.33 0.51 ± 0.05

Shoot Biomass (g) 4.74 ± 0.49 1.41 ± 0.57 4.39 0.007 1.65 ± 0.33 0.29–4.74 0.59 ± 0.05

Tiller Number (count) 6.25 ± 0.48 5.00 ± 0.56 1.68 0.150 6.00 ± 0.83 3.00–14.50 0.50 ± 0.05

SLA (cm2g−1) 325.62 ± 18.15 382.77 ± 20.96 −2.06 0.094 381.58 ± 33.17 264.67–499.36 0.18 ± 0.08

Plant Height (cm) 21.18 ± 1.82 11.63 ± 2.11 3.43 0.018 12.57 ± 1.56 4.30–23.65 0.63 ± 0.04

Leaf Length (cm) 30.77 ± 1.72 14.23 ± 1.98 6.30 0.001 15.66 ± 1.46 4.75–24.27 0.66 ± 0.04

Root Biomass (g) 1.38 ± 0.18 0.51 ± 0.21 3.08 0.028 0.54 ± 0.10 0.12–1.60 0.58 ± 0.06

Root Number (count) 14.00 ± 0.97 8.33 ± 1.11 3.84 0.012 8.87 ± 1.39 2.50–15.00 0.38 ± 0.05

SRL (cm g−1) 10.14 ± 0.85 13.37 ± 0.98 −2.50 0.055 12.27 ± 1.11 6.12–17.95 0.43 ± 0.06

RTD (g cm−3) 0.06 ± 0.01 0.05 ± 0.01 1.31 0.247 0.05 ± 0.01 0.03–0.08 0.39 ± 0.07

Root Diameter (mm) 0.46 ± 0.01 0.44 ± 0.02 1.27 0.259 0.45 ± 0.01 0.37–0.55 0.37 ± 0.05

Root Volume (cm3) 2.43 ± 0.28 0.98 ± 0.32 3.41 0.019 1.00 ± 0.17 0.26–2.90 0.56 ± 0.05

Root Length (m) 1.37 ± 0.14 0.67 ± 0.16 3.29 0.022 0.65 ± 0.11 0.12–1.64 0.59 ± 0.04

RMR (ratio) 0.22 ± 0.01 0.27 ± 0.01 −3.44 0.018 0.25 ± 0.02 0.16–0.39 0.34 ± 0.09

t-statistics given at 5 degrees of freedom with statistically significant P-values indicated in bold text.

shoot biomass (60%), root length (60%) and root biomass
(58%; Table 1). Transgressive segregation, where the range of
recombinant phenotypes extends beyond the range of parental
values (Rieseberg et al., 1999), was found among the majority
of traits except shoot biomass, plant height, leaf length, root
biomass and root number, where FIL2 had trait values that were
the highest or close to the highest of population wide values, while
HAL2 values were generally in the middle of the population trait
distribution (Table 1).

Many shoot and root phenotypic traits showed
remarkably strong genetic correlations in the RIL population
(Supplementary Table 2). For example, shoot and root
biomass (r = 0.92, P < 0.0001), tiller and root number (r = 0.67,
P < 0.001), shoot biomass and root volume (r = 0.91, P < 0.0001),
and shoot biomass and total root length (r = 0.90, P < 0.001)
were all positively genetically correlated. We performed PCA to
characterize the multivariate structure of our data. The first three
PCA axes explained 75% of the overall trait variance. Principal
component one (PC1; 45.5% variance explained) was composed
of general plant size traits (shoot biomass, root biomass, number
of tillers, number of roots, tiller height, leaf length, root volume
and root length). Principal component two (PC2; 16.5%) was
mainly composed of root resource acquisition traits (SRL, root
diameter and root tissue density). Principal component three
(PC3; 12.6%) was composed of carbon acquisition and allocation
traits (SLA, RMR and panicle emergence; Supplementary
Table 3 and Supplementary Figure 1).

QTL Underscore Root and Shoot Trait
Divergence Between Hallii and Filipes
Given high H2 values, it is not surprising that QTL were detected
for all measured traits. A total of 32 QTL were identified for 14
phenotypic traits: two QTL for one phenological trait, 14 QTL
for five shoot traits and 16 QTL for eight root traits (Table 2,
Figure 1, and Supplementary Figure 2). QTL for all traits
showed additive effects in the direction of parental divergence,

except for one of three QTL for tiller number, one of four
QTL for root diameter, and one of three QTL for SRL. Filipes
alleles had later panicle emergence and increased trait values for
plant size related traits, including: emergence day, root number,
root tissue density, root biomass, shoot biomass, tiller height,
leaf length and root volume. Hallii alleles increased trait values
associated with water acquisition (SRL) and carbon acquisition
and allocation (RMR, SLA).

The additive effects of each QTL explained from 5.25 to 15.4%
of phenotype variation for shoot traits, and from 5.9 to 18.6%
for root traits (Table 2). Of these 32 QTL, eight QTL occupied
unique positions in the genome: root tissue density on chr1,
leaf length on chr2, tiller number on chr3, root number on
chr3, SLA on chr5 and chr8, tiller height on chr6, and root
diameter on chr8. As expected, three of these single QTL were
also identified by principle component QTL (Supplementary
Table 4 and Figure 1). The confidence intervals of all other QTL
are shared or colocalized with at least one other QTL.

Trait-Specific QTL Cluster Into Genomic
“Hotspots”
We identified three major and five minor clusters of root and
shoot trait QTL occurring over five different chromosomes
(Table 2 and Figure 1). Here we identify QTL clusters
(CL) by chromosome and numerical order from the telomere
for each chromosome. As expected, we found that positions
of QTL for principle components were highly indicative
of the locations of QTL clusters for the traits loading on
particular PC axes (Supplementary Table 4, Figure 1, and
Supplementary Figure 2).

Quantitative trait locus for PC1 localized to three genomic
clusters of QTL for plant size traits. CL9.1 contains shoot biomass
and leaf length QTL. CL5.1 contains root biomass, shoot biomass,
root volume, total root length and panicle emergence QTL. CL5.3
contains root biomass, shoot biomass, root volume, total root
length, tiller number and root number QTL. A separate QTL pair
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TABLE 2 | Main and epistatic effects of QTL for the Panicum hallii RIL population.

Phenotype Chr Peak (cM) 1.5 Lod Interval LOD % var Effect SE Positive allele donor QTL Cluster (CL)

Panicle Emergence 5 52.1 40–59 4.59 9.85 −0.044 0.009 filipes CL5.1

(day) 7 80.0 31–83 4.31 9.2 −0.039 0.008 filipes CL7.2

Shoot Biomass 5 58.6 56–60 7.43 14.8 −0.044 0.007 filipes CL5.1

(g) 5 136.0 128–142 5.08 9.82 −0.031 0.007 filipes CL5.3

9 66.1 60–71 4.78 9.19 −0.027 0.005 filipes CL9.1

Epi5:5 2.86 5.36 0.027 0.007

Tiller Number 3 40.5 38–48 7.23 14.74 −0.054 0.009 filipes

(count) 5 137.0 128–142 3.47 6.73 −0.037 0.009 filipes CL5.3

7 73.6 46–81 4.84 9.56 0.039 0.008 hallii CL7.2

SLA 5 13.3 0–26 3.15 5.25 9.772 2.543 hallii

(cm2 g−1) 7 66.0 60–74 8.56 15.37 16.394 2.494 hallii CL7.2

8 19.8 16–23 8.33 14.90 16.077 2.484 hallii

Tiller Height 5 76.0 74–77 6.16 13.34 −1.765 0.320 filipes CL5.2

(cm) 6 83.9 69–88 3.82 8.05 −1.096 0.256 filipes

Leaf Length 2 89.7 76–96 4.28 8.56 −1.19 0.264 filipes

(cm) 7 43.6 35–64 4.39 8.80 −1.293 0.283 filipes CL7.1

9 63.4 59–75 3.41 6.76 −0.985 0.246 filipes CL9.1

Root Biomass 5 58.6 56–60 8.81 18.61 −0.012 0.002 filipes CL5.1

(g) 5 136.0 135–142 8 16.71 −0.010 0.002 filipes CL5.3

Epi5:5 4.61 9.21 0.008 0.002

Root Number 3 88.0 69–104 6.18 13.9 −1.08 0.199 filipes

(count) 5 125.7 125–130 5.36 11.94 −0.81 0.196 filipes CL5.3

Epi3:5 2.79 5.99 0.73 0.202

SRL (cm g−1) 1 91.5 82–94 5.3 11.02 0.66 0.131 hallii CL1.1

3 18.8 17–36 5.16 10.7 0.78 0.156 hallii CL3.1

7 44.7 34–49 3.16 6.4 −0.55 0.145 filipes CL7.1

RTD (g cm−3) 1 6.3 0–20 3.15 7.9 −0.001 0.0004 filipes

Root Diameter 1 86.0 82–94 4.73 8.68 −0.009 0.002 filipes CL1.1

(mm) 3 34.2 30–36 5.36 9.91 −0.011 0.002 filipes CL3.1

5 71.9 66–75 3.78 6.84 0.010 0.002 hallii CL5.2

8 47.9 43–52 4.65 8.50 −0.009 0.002 filipes

Root Volume 5 58.6 56–63 3.96 8.85 −0.134 0.030 filipes CL5.1

(cm3) 5 117.2 109–142 3.07 6.77 −0.119 0.032 filipes CL5.3

Root Length (cm) 5 58.6 44–138 3.12 7.85 −0.82 21.29 filipes CL5.1,2,3

RMR (ratio) 7 67.0 62–74 6.36 15.34 0.0137 0.002 hallii CL7.2

Chr, chromosome; Peak, cM (centimorgan) position of the QTL peak; LOD, logarithm of odds; % var, percent of variance; SE, one standard error; SLA, specific leaf area;
SRL, specific root length; RTD, root tissue density; RMR, root mass ratio; Epi, epistasis.

for tiller height and root diameter not identified with PC1 lies
between these two large clusters. PC2 QTL localized with one
of two genomic clusters of QTL for root resource acquisition
traits. CL1.1 and 3.1 both contain SRL and root diameter traits.
PC3 QTL localized to a single genomic cluster (CL7.2) related
to carbon allocation traits. CL7.2 contains panicle emergence
day, leaf length, number of tillers, RMR and SLA. Near this PC3
associated QTL is a minor cluster (CL7.1) of leaf length and SRL
(Table 2, Supplementary Table 4, and Figure 1).

Four pairwise epistatic interactions, where the effect of one
QTL depends on the allelic state of an unlinked QTL, were
detected (Table 2, Supplementary Table 4, and Figure 2). Three
QTL from cluster CL5.3 (shoot biomass, root biomass and PC1)
interacted with other QTL for these traits located in CL5.1. In
addition, the root number QTL from CL5.3 interacted with the
root number QTL on chr3. Individuals that possess the hallii

allele for these QTL at CL5.3 mask the positive effects of their
interactive QTL.

A Major Pleotropic Effect QTL Is
Confirmed in the Field
To confirm the effects of QTL observed in a controlled
greenhouse study, we phenotyped two sets of RILs homozygous
for different parental alleles at the loci for shoot and root biomass
(CL5.2) in a field experiment. While the magnitude of increased
biomass for lines with filipes alleles at the selected QTL observed
in the field is 24% less for the root biomass and 11% less
for the shoot biomass relative to the greenhouse, the effects
are significant and in the same direction as those observed in
the greenhouse. Field grown lines with filipes parental alleles
produced 1.9-fold more root biomass (P = 0.0024) and 2.7-fold
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FIGURE 1 | Genetic map of the Panicum hallii RIL population with location of trait QTL. Colored bars indicate 1.5-LOD drop confidence intervals. Location of dots
within the bars is the location of QTL peaks. Arrow represents the direction of additive effect, with up or down arrows indicating that the hallii allele increases or
decreases the trait value.

more shoot biomass (P = 0.0002) relative to field grown lines
with hallii parental alleles (Figure 3). In addition, the HAL2
parental line showed a 1.8-fold increase trend in RMR (P = 0.09)
over the FIL2 parental line under field conditions compared to
the 1.2-fold difference observed in the greenhouse (P = 0.018).
There were no significant differences between the irrigation
treatments or the interaction of treatment by genotype for RILs
or the parental genotypes. However, root biomass showed a 1.2-
fold increase trend under the dry treatment relative to the wet
treatment (P = 0.08).

DISCUSSION

Ecotypes are often differentiated by suites of correlated root and
shoot traits that may share common genetic and developmental
architectures as a result of adaptive differentiation. One of our
major findings was several genomic “hotspots” of colocalized

QTL for multiple shoot and root traits. This is consistent with
a previous study of a P. hallii F2 population covering a suite of
ecotype differentiating shoot trait QTL which clustered on chr5
(Lowry et al., 2014b). In addition to confirming this important
locus, we discovered additional root traits linked to this region
along with additional regions of clustered loci for root and shoot
traits. Colocalized QTL controlling traits such as root biomass,
shoot biomass, among others, has also been shown in RIL
populations of wheat and sorghum (Mace et al., 2012; Iannucci
et al., 2017). These findings indicate that specific loci can shape
both shoot and root morphological traits, through tight linkage of
several genes controlling individual traits or a single pleiotropic
gene that controls several traits.

PC1 QTL localized to three genomic regions controlling
several size related root and shoot traits (shoot biomass, root
biomass, root volume, and other). We found that the hallii allele
had additive effects in the direction of ecotype divergence and
contributed to smaller root and shoot phenotypes in every case
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FIGURE 2 | Pairwise epistatic QTL in the P. hallii RIL population. Plotted
points indicate two-locus genotype means ± 1SE for the two loci containing
root biomass between CL.5.1 and CL.5.3 (A), shoot biomass between CL.5.1
and CL.5.3 (B), root number between QTL 3.88 and CL.5.3 (C) and PC1
between CL.5.1 and CL5.3 (D).

compared to the filipes allele. This finding is consistent with
the global pattern observed in angiosperm plants whose shoot
and root biomass are positively correlated (Enquist and Niklas,
2002) and with other studies on perennial grasses where total
biomass is decreased under water limited conditions (Baruch,
1994; Weißhuhn et al., 2011; Tozer et al., 2017). Importantly, we
show that one of the main growth QTL effects is robust to the
environment and persists under natural field conditions.

In addition to differences in absolute size, there are expected
differences in carbon acquisition and allocation between xeric
and mesic ecotypes. PC3 resulted from cluster of carbon
allocation and phenology related traits (SLA, RMR, tiller number,
and panicle emergence). Plants with hallii alleles had greater
SLA, RMR, tiller number, and faster panicle emergence. Thinner
leaves (high SLA) have lower carbon cost and are associated with
increased photosynthetic capacity (Reich et al., 1997; Cornelissen
et al., 2003). Increased RMR helps to maintain plant water
status and productivity under drought (Comas et al., 2013).
Faster flowering time along with greater tiller number allows for
rapid production of seeds when resources are available for short
time periods. These factors combined may indicate that hallii
employs a fast acquisitive strategy for drought escape; acquiring
nutrients rapidly and flowering quickly to enter a dormant
state before periods of summer drought. Acquisitive shoot and
root strategies have been associated with fast growth strategies
and summer dormancy in other perennial grasses (Balachowski
et al., 2016). This contrasts with the lower SLA, and RMR of
the mesic filipes, which may employ a slow strategy of thicker
longer lasting leaves, larger more persistent roots, and abundant
above ground foliage. This common genetic control of ecotype
differentiating traits involving shoot and root organs suggests
that these factors evolved in tandem. Alternatively, we found a
relatively weak genetic correlation between SLA and SRL, which
are important plant traits linked to resource acquisition (Reich,
2014; Cheng et al., 2016) and associated with fast growth (Pérez-
Harguindeguy et al., 2013; Reich, 2014). Each of these traits had
three independent QTL. Thus, divergence of these traits is likely
due to independent loci which become structured across ecotypes
as a result of strong directional or correlational selection. In this
case, our crossing scheme was able to largely decouple these traits
through recombination.

Observed pairwise epistatic interactions for root biomass,
shoot biomass and root number showed that hallii alleles mask
the effects of filipes alleles in all cases. When lines are homozygous
for hallii parental alleles at CL5.3, it contributes to smaller

FIGURE 3 | Mean ± 1SE of shoot biomass (A) and root biomass (B) for field grown P. hallii RILs homozygous for either filipes or hallii parental alleles at shoot and
root biomass QTL located in cluster CL5.1. Picture of field grown RILs homozygous at CL5.1 for filipes allele (top row) and hallii allele (bottom row) (C).
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phenotypes for these traits, regardless of the genotype at their
respective interactive QTL. This suggests that the CL5.3 loci
could include a pleiotropic gene with major effect that controls
the development of multiple shoot and root size related traits.
Natural populations of P. hallii ecotypes are largely homozygous,
thus these linked QTL likely work together in a positive
direction and contribute to the phenotypic trait correlations that
underlie ecotype divergence. The observed epistasis in the RIL
population could be involved in ecological speciation (Burke and
Arnold, 2001), and these interactions in hybrid plants could be
deleterious and impact survivorship by undermining synergistic
trait relationships. For example, the combination of reduced root
and shoot size effected by hallii alleles may be desirable in xeric
environments, but deleterious in natural hybrids or under the
higher competition mesic environments that filipes inhabits.

Greenhouse Detected Genetic
Correlations Confirmed Under Field
Conditions
There is persistent concern that effects observed in greenhouse
studies are not representative of plant performance in natural
or agronomic environments. Although greenhouse and
growth chambers may be able to replicate a wide range of
temperature and light conditions, other differences between
these artificial and natural environments can be significant.
Furthermore, greenhouse studies are often conducted on
very young plants and in smaller than optimal pots, which
can significantly alter root architectures compared to natural
environments. Several recent studies have highlighted how
differences in conditions between glasshouse and natural
settings can affect the mapping of genetic architectures
for various plant traits (Poorter et al., 2012; reviewed in
Lovell et al., 2016).

We sought to overcome this concern by confirming the
glasshouse detected genetic architecture of two of our chief
traits of interest (root biomass and shoot biomass) in selected
RILs and parental genotypes in a field setting at full plant
maturity. In the RILs, we found that our glasshouse observed
QTL were confirmed. For the parental lines, we found that
RMR differences between the xeric and mesic ecotypes nearly
doubled under field conditions as compared to the glasshouse
study. This suggests that adaptive allocation of biomass to roots
increases with plant age and can also be constrained by pot
limitations in the glasshouse. More importantly, these results
provide credence to the assumption that our glasshouse study
is predictive of plant performance in a natural setting. Future
studies with P. hallii should explore the genetic architecture of
shoot:root traits over multiple perennial seasons in additional
field studies. These data will help to clarify the lifetime fitness
consequences of allocation strategies and potential ecological
tradeoffs that arise in natural habitats.

CONCLUSION

In the process of ecotype formation, populations can
diverge across many functional traits and exhibit different

niche characteristics, which requires coordination between
plant organ systems. Root traits are involved in adaptive
differentiation to abiotic stresses by their direct effects
on water acquisition, and through correlation, tradeoffs
or constraints with shoot traits (Hammer et al., 2009;
Mace et al., 2012). Our study sheds light on the genetic
architecture underlying the relationships between root and
shoot traits involved in ecotype divergence of P. hallii
and demonstrates that some correlated traits are under
common genetic control as a result of QTL colocalization and
interaction, while other traits are controlled by independent
loci. We found several genomic hotspots relating to
multiple root and shoot traits and a striking pattern of
epistatic interaction impacting overall plant growth. Further
insight into the molecular basis of these loci will be an
important step in understanding the genetic coordination and
ecological importance of root and shoot systems involved in
ecotype divergence.
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