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The Impact of Presentation Order on the Attraction Effect in Decision-making 
 
 

Jennifer S. Trueblood (jennifer.s.trueblood@vanderbilt.edu) 
Aneesha Dasari (aneesha.dasari@vanderbilt.edu) 

Department of Psychology, Vanderbilt University, 111 21st Ave S 
Nashville, TN 37240 USA 

 
Abstract 

The attraction effect in decision-making is a famous example 
of how preferences are influenced by the availability of other 
options. One emerging hypothesis for the effect is that biases 
in attention influence preferences. In the past, these ideas 
have been explored indirectly through computational 
modeling and eye tracking. In the present paper, we directly 
manipulate attention through presentation order, presenting 
choice options sequentially. Our results show that 
presentation order has a large impact on the effect – some 
presentation orders enhance the effect and other orders 
reverse the effect. To understand these results, we fit a 
dynamic model, called the Multiattribute Linear Ballistic 
Accumulator model, to the choice and response time data. 
Modeling results reveal that presentation order influences the 
allocation of attention on the positive and negative differences 
between options. In sum, our results show that attention has a 
direct impact on the attraction effect.    

Keywords: preferential choice; context effects; order effects; 
response time modeling; Bayesian parameter estimation 

Introduction 
Everyday we make hundreds of choices. Some are 
seemingly trivial -- what cereal should I eat for breakfast? 
Others have long lasting implications -- what stock should I 
invest in? Despite their obvious differences, these two 
decisions have one important thing in common; both can be 
sensitive to context. That is, our preferences for existing 
alternatives can be altered by the introduction of new 
alternatives. 
    Context effects -- preference changes depending on the 
availability of other options -- have attracted a great deal of 
attention among consumer researchers studying high-level 
decision tasks. In recent work, context effects have also 
been shown in low-level domains such as perception 
(Trueblood, Brown, Heathcote, & Busemeyer, 2013).  This 
suggests that context effects are a general feature of human 
choice behavior and calls for a common theoretical 
explanation that applies across paradigms. One emerging 
hypothesis is that context effects occur because of biases in 
attention. When comparing options, one might pay attention 
to some features more than others and this in turn influences 
preferences. This idea has been explored using dynamic 
models that implement attention-weighting mechanisms 
such as Multi-alternative Decision Field Theory (MDFT, 
Roe, Busemeyer, & Townsend, 2001), the Leaky 
Competing Accumulator model (LCA, Usher & 
McClelland, 2004), and the Multiattribute Linear Ballistic 
Accumulator model (MLBA; Trueblood, Brown, and 

Heathcote, 2014). In addition, Noguchi and Stewart (2014) 
used eye tracking to examine the role of visual attention in 
context effects. Their results suggest that alternatives are 
compared in pairs and specific patterns of gaze transitions 
are correlated with context effects. Further, recent work in 
economics has proposed that context effects might arise due 
to “rational inattention” (Woodford, 2012). The basic idea is 
that attention is a scarce resource and places constraints on 
the amount of information individuals can process during a 
decision. Taken together, this set of results strongly suggests 
attention is crucial to context effects. No previous work has 
directly manipulated attention in the attraction effect.  
    In the present paper, we directly manipulate attention by 
presenting choice options sequentially. Studies of context 
effects typically involve choices among three alternatives 
where one option is identified as the “target”, one option is 
the “competitor”, and the third option is the “decoy”. For 
example, suppose there are two options (X and Y) in a 
choice, which are almost equally attractive. If an alternative 
D is introduced that is similar to alternative X, but inferior, 
it makes X more attractive. This is known as the attraction 
effect (Huber, Payne, & Puto, 1982). In this example, X is 
the target, Y is the competitor, and D is the decoy. In all 
past studies of the attraction effect, the alternatives X, Y, 
and D were presented simultaneously and were visible to 
participants until they made a choice. In the current 
experiment, we presented the options X, Y, and D one at a 
time, thus manipulating what participants saw first, second, 
and last. Our goal is to understand if changes in attention (as 
manipulated by presentation order) influence final choices. 
    Our experiment uses a perceptual version of the attraction 
effect where participants judge which of three rectangles has 
the largest area, with height and width as the attributes. The 
experiment uses the same rectangle stimuli as Trueblood et 
al. (2013). Using a perceptual version of the attraction effect 
has a number of advantages including the ability to collect 
sufficient choice and response time data for computational 
modeling. In addition, the rectangle attraction task is well 
established in the literature and the results have been 
replicated in adults (Farmer, Warren, El-Deredy & Howes, 
2016), children (Zhen & Yu, 2016), and non-human 
primates (Parrish, Evans, & Beran, 2015).    

Experiment 

Participants 
Fifty undergraduate students from Vanderbilt University 
voluntarily participated in this computer-based experiment 
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in the laboratory at the time of their choosing and received 
course credit for their participation.  

Methods 
Participants were told that they would be shown three 
rectangles presented one at a time, and that they would have 
to choose the rectangle that they believed to have the largest 
area by pressing one of the three indicated keys. There was 
no value tied to the choice of rectangle (i.e., representation 
of an earned dollar amount), and participants did not receive 
feedback for their decisions. 
    Each rectangle stimulus had various dimensions of height 
and width, which both acted as attribute dimensions. The 
dimensions of the rectangles were set by numbers of pixels. 
The target, competitor, and decoy rectangles were 
determined by the following procedure. First a set of 
horizontally oriented rectangles, denoted H, were chosen 
out of a bivariate normal distribution with a mean of 50 
pixels for height and a mean of 80 pixels for width with a 
variance of 2 pixels. This noise allowed for variation in the 
rectangles across trials. A second set of rectangles, denoted 
V, were defined in terms of H, but were oriented vertically. 
Specifically, the height of the V rectangles was defined as 
the width of the H rectangles plus a random number selected 
from the interval [-2,2]. The width of the V rectangles was 
then calculated so that the V and H rectangles had equal 
area. In half of the trials, the target rectangle TH was defined 
using the H rectangles and in the other half of the trials the 
target TV was defined using the V rectangles. Thus, the 
orientation of the target (i.e., horizontal or vertical 
orientation) was counterbalanced so that half of the trials 
consisted of the horizontally longer target, TH, and half of 
the experimental trials consisted of the vertically longer 
target, TV. The competitor rectangles, C, were defined in the 
opposite manner of the target rectangles so that they were 
given the same area but were oriented opposite to the target 
(i.e. vertically if the target was horizontal and horizontally if 
the target was vertical). The decoys used in this experiment 
were “range” decoys, options that are a little weaker than 
the target on the target's weakest attribute. Let DH denote a 
horizontally oriented decoy similar to TH and DV denote a 
vertically oriented decoy similar to TV. A range decoy DH 
has the same width as TH but a shorter height since height is 
the shortest (weakest) dimension of a horizontally oriented 
target. Likewise, the DV decoy has the same height as TV but 
a shorter width since width is the shortest (weakest) 
dimension of a vertically oriented target (see Figure 1 for a 
schematic of the choice options). The shortest dimension of 
each decoy was defined as the shortest dimension of the 
corresponding target minus a random number selected from 
the interval [7,9].  
    Each experimental trial began with a fixation cross 
appearing at the center of a white screen for 0.250 ms. This 
was followed by the appearance of the numbers “1”, “2”, 
and “3” from left to right on the screen to indicate that one 
rectangle will appear above each number. Participants made 
their choice by pressing the corresponding “1”, “2”, or “3” 

key at the top of the keyboard. Black rectangles were shown 
one at a time. Each rectangle was shown above one of the 
numbers for 1.0 second before disappearing. The location of 
each rectangle was randomized across trials. The order of 
appearance for the rectangles was randomized in a 
controlled manner, such that experimental trials of each 
order appeared an equal number of times.  
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Figure 1: Schematic of the choice options in the rectangle 
attraction effect task. The options H (horizontally oriented 
rectangles), V (vertically oriented rectangles), and decoys 
DH and DV are plotted in a two-dimensional attribute space 
defined by the logarithm of height and width. The dotted 

line indicates options that should objectively be indifferent 
because they have the same area. In the attraction effect, 

preference for H and V can be affected by the presence of 
either DH or DV. 

     
    Each participant completed 720 randomized trials that 
were divided into eight blocks of 90 trials each. Within the 
90 trials of each block, there were 30 filler trials and 10 
trials for each of the possible six orders the rectangles could 
be presented. These six orders are as follows: TCD, CTD, 
TDC, CDT, DTC, and DCT. Within these orders, there were 
two variations, one where TH served as the target and one 
where TV served as the target to minimize effect based on 
orientation of the target rectangle. The 30 filler trials were 
meant to serve as an estimate of accuracy for participants. 
Each filler trial had a clearly larger rectangle that would 
allow participants to make a correct choice. 

Results 
One participant’s data were removed due to computer error. 
Overall, the mean accuracy of participants’ performance on 
filler trials was 66.62% correct with two participants falling 
two standard deviations below average. However, these 
participants’ data were not removed. This data is analyzed 
using the relative choice share for the target, or RST, which 
is defined as the number of target options selected divided 
by the total number of target plus competitor options 
selected (i.e., T/(C+T), Berkowitsch, Scheibehenne, 
Rieskamp, 2014). For the results described below we 
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collapsed across the two different orientations of the target. 
The attraction effect was still observed with an average of 
51.10% target chosen, significantly different from 50% 
target chosen, the theoretical RST if the decoy had no 
influence (t(48) = 2.77, p = 0.008). 
    Although the attraction effect was not observed for each 
presentation order, each presented order of rectangles were 
also significantly different from the 50% theoretical RST, 
refer to Table 1. Figure 2 shows a bar graph of the RST 
values for each of these orders. A one-way ANOVA showed 
a significant main effect of order (F(5,288) = 18.27, p < 
0.001). In particular, the orders CTD, CDT, and DTC 
showed the attraction effect, with RSTs significantly higher 
than 50%, and the orders TCD, TDC, and DCT had RSTs 
significantly lower than 50% (a reverse attraction effect).   
 
Table 1. The RST value as a percentage, the t-value, and the 
p-value for each order. 
 

Order RST (%) t(48) p-value 

TCD 41.99 -4.75853 < 0.001 

CTD 57.62 4.7803 < 0.001 

TDC 42.71 -3.0831 0.003 

CDT 60.25 4.8931 < 0.001 

DTC 57.81 3.7921 < 0.001 

DCT 45.93 -2.1742 0.035 
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Figure 2: Results show the RST for each presentation order 
of the rectangles as well as collapsed across all orders 

(combined). The dotted line at 0.5 indicates equal 
preference for the target and competitor. Bars above the 

dotted line show the standard attraction effect. Bars below 
the dotted line show a reversed attraction. Error bars show 

the standard error of the mean. 

Modeling 
In order to better understand how presentation order 
influences choices in the attraction effect, we fit the MLBA 
model (Trueblood et al., 2014) to the choice and response 
time (RT) data. MLBA is a dynamic model that explains 
why context effects occur in multi-alternative choice. This 
model explains how preferences are constructed through a 
dynamic process of comparing the different features of 
available options. Context effects occur because of 
differences in the amount of attention given to specific 
comparisons (for example, if two options are difficult to 
discriminate on a particular feature, an individual pays more 
attention to that feature). 

Model Details 
    MLBA is an extension of the Linear Ballistic 
Accumulator (LBA) model developed by Brown and 
Heathcote (2008). The LBA accounts for choice and RTs 
using independent accumulators that race toward a 
threshold. The accumulators are linear and accumulate 
information deterministically. At the beginning of each trial, 
each accumulator starts at a randomly determined amount of 
evidence drawn from a uniform distribution on the interval 
[0, A]. The accumulators increase at speeds defined by a set 
of drift rates, until one of the accumulators reaches the 
threshold b. The option associated with the accumulator that 
reaches the threshold first is selected. On each trial, the drift 
rates are drawn from normal distributions with different 
means and the same standard deviation, s = 1. The model 
also has a non-decision time parameter T0 that accounts for 
encoding and motor response times. The MLBA model adds 
to the LBA model by specifying how drift rates arise from 
the evaluation of choice options. 
    Consider three alternatives (indexed as i, j, k) that have 
two attributes, P and Q, where Pi and Qi denote the value of 
option i on the two attributes. The mean drift rate di for 
option i is defined as: di = γVij + γVik + I0. The term Vij 
represents a comparison between options i and j. Likewise, 
Vik represents a comparison between options i and k. The 
term I0 is a positive constant to ensure that at least one of the 
three mean drift rates is positive, avoiding non-termination 
in the LBA model. For our purposes, we can fix I0 = 1. The 
parameter γ is a scaling parameter that ensures that drift 
rates are in the appropriate range for the LBA model.  
    In the valuation function Vij, option i is the focal option 
and option j is evaluated relative to it. Let (uPi, uQi) and (uPj, 
uQj) be the subjective values for options i and j. In our 
experiment, the attribute dimensions, P and Q, are the 
height and width of the rectangles in pixels. A pair of 
options were experimentally defined as indifferent in they 
have equal area, for example, Pi ×Qi = Pj ×Qj. We define the 
subjective values simply as the logarithm of the number of 
pixels for each dimension (e.g., uPi = log(Pi)). Please see 
Trueblood et al. (2014) for other possible mappings from 
objective to subjective values. The valuation function Vij is 
defined by the difference in the subjective values of the 
options: 
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Vij = wPij (uPi - uPj)+wQij (uQi - uQj) 

 
where the weights wPij and wQij reflect the amount of 
attention given to a particular comparison. 
    Based on research showing that visual attention (e.g., 
fixation duration) increases with decreasing discriminability 
of items (Gould, 1967, 1973), we hypothesize that attention 
weights are larger when attribute values are more similar 
and smaller when they are more distinct. Using Shepard’s 
(1987) law of generalization, we define the attention 
weights as 
 

wPij = exp(-λ+ | uPi - uPj |) if uPi ≥ uPj 
wPij = exp(-λ- | uPi - uPj |) if uPi < uPj 

 
wQij = exp(-β λ+ | uQi – uQj |) if uQi ≥ uQj 
wQij = exp(-β λ- | uQi – uQj |) if uQi < uQj 

 
where λ+ and λ- are free parameters that allow for attention 
to be asymmetric. That is, the attention weights are different 
when comparing positive differences in attribute values (i.e., 
the parameter λ+) and negative differences in attribute 
values (i.e., the parameter λ-). This follows from work 
showing that similarity judgments often violate symmetry 
(Tversky, 1977) as well as modifications to Shepard’s law 
that allow for such violations (Nosofsky, 1991). The 
parameter β is a bias parameter that allows for attributes to 
be weighted differently. For example, in consumer choice, 
the attribute of price might receive more weight than the 
attribute quality. With rectangles, Holmberg and Holmberg 
(1969) suggested an “elongation effect” where height plays 
a more important role in area judgment than width. 
    In summary, the MLBA has the following free 
parameters: accumulator start-point A, threshold b, non-
decision time T0, drift rate scaling γ, positive attention 
parameter λ+, negative attention parameter λ-, and bias β. 

Hierarchical Bayesian Parameter Estimation 
    We fit the MLBA model with hierarchical Bayesian 
parameter estimation methods using DE-MCMC (Turner, 
Sederberg, Brown, & Steyvers, 2013). We note that, as far 
as we are aware, this is the first time the MLBA (or any 
dynamic model of context effects) has been fit to both 
choice data and the full distribution of RT data. In the past, 
dynamic models of context effects have only been evaluated 
by qualitative measures or when quantitative fitting was 
performed, only choice data was used. Thus, we see the 
present work as a significant methodological step forward in 
the evaluation of dynamic models of context effects. 
    In our experiment, there are six order conditions: TCD, 
CTD, TDC, CDT, DTC, and DCT. We hypothesized that 
order would influence attention and thus we had separate 
attention parameters λ+ and λ- for each condition. We also fit 
six γ scaling parameters, one for each condition. We 
allowed for different scaling parameters across conditions to 
accommodate the different attention weights, which directly 

impact the magnitude of the drift rates. The remaining 
parameters were assumed to be the same across conditions.  
    In our model, we had both group-level (or hyper 
parameters) and individual-level parameters. The 
individual-level parameters were drawn from normal 
distributions defined by the hyper parameters. Let µx and σx 
represent the hyper mean and standard deviation of the 
group-level normal distribution for parameter x. The priors 
for the hyper means were the following: µb ~ N(1, 0.5), µA ~ 
N(1, 0.5), µT0 ~ N(0.25, 0.25), γ ~ N(5, 1.5), λ+ ~ N(0.5, 1.5), 
λ- ~ N(0.5, 1.5), β ~ N(1, 1.5). The priors for all of the hyper 
standard deviations σx were defined as Gamma(1,1) 
distributions expect for the standard deviation for non-
decision time, which was Gamma(1, 0.5). We ran 24 
MCMC chains for 2500 iterations with a burn-in of 500 
iterations. All chains converged.  

Results 
    To assess the fit of the model, we calculated the 
correlation between choice and mean RT data with model 
predictions. The model predictions were calculated by using 
the mean of the posterior distributions of the individual 
parameters. The correlation between the choice data and 
model predictions was 0.886 (p < 0.001). The correlation 
between the mean RT data and the model predictions was 
0.588 (p < 0.001). Thus, the model does a good job at 
capturing general trends in the data. 
   We also examined how well the model accounted for the 
average choice data for each condition. Figure 3 shows the 
mean choice proportions for each option in the 12 different 
choice sets used in the experiment. The 12 choice sets arise 
from the two possible placements of the decoy (DH or DV) in 
each of the six order conditions. The model predictions were 
calculated using the mean of the posterior distributions of 
the individual parameters. 
    To understand how presentation order influences choices 
in the attraction effect, we examined the values of the 
attention weights for the six conditions (see Table 2). 
Specifically, we examined the posterior means of the group-
level attention weight parameters (λ+ and λ-) for each 
condition. We did not see any obvious trends in the 
attention weights when we examined them individually. 
However, the ratio of the positive weight to the negative 
weight revealed an interesting pattern. In the conditions that 
exhibited the standard attraction effect (i.e., CTD, CDT, and 
DTC), the ratio was smaller than the conditions that 
exhibited an inverse attraction effect (i.e., TCD , TDC, 
DCT). This suggests that presentation order influences the 
amount of attention given to positive and negative 
differences in attribute values. When the attraction effect is 
observed, more attention is placed on negative differences 
as compared to when the reverse attraction effect occurs. 

Discussion 
Our goal in the present paper was to explore the role of 
attention in the attraction effect through direct manipulation. 
We manipulated attention through presentation order,  
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Figure 3. Observed choice proportions and model predictions for 12 choice sets in the rectangle attraction effect task. Each 

choice set consists of three options (the target, competitor, and decoy). There are two choice sets for each order condition due 
to the two possible placements of the decoy (either near the horizontally oriented rectangle or the vertically oriented 

rectangle). The model predictions are shown in light gray and observed choice proportions in dark gray. 
 

 
presenting the options sequentially rather than 
simultaneously. The sequential presentation of the options 
had a large impact on choices – some presentation orders 
enhanced the attraction effect whereas other presentation 
orders reversed the attraction effect. To better understand 
why presentation order impacted choices, we used 
computational modeling. We fit the MLBA model to choice 
and response time data. Model fits revealed differences in 
the attention weights for different presentation orders. For 
the presentation orders that showed a standard attraction 
effect, there was increased attention on negative differences 
as compared to the presentation orders that showed a reverse 
attraction effect. 
    Recently, researchers have discovered large individual 
differences in context effects (Liew, Howe, & Little, 2016; 
Trueblood, Brown, & Heathcote, 2015). Some individuals 
show the standard effects, but others do not. For some 
individuals, the effects are even reversed. This has lead to 
the conclusion that context effects are fragile (Trueblood et 
al., 2015). This raises two important questions: (1) Why are 

the effects fragile? and (2) What underlies individual 
differences in the effects? The present work provides one 
possible explanation. The effects are fragile because they 
result from biases in attention. Small shifts in attention can 
have dramatic influences on choice. It is possible that 
individual differences in the effects arise because of 
individual differences in attention. 

 
Table 2: Posterior means of the group-level attention 

weight parameters for the six order conditions.  
 

Condition λ+ λ- λ+/ λ- 
TCD 1.50 4.25 2.83 
CTD 2.05 4.51 2.20 
TDC 0.92 2.06 2.24 
CDT 1.39 2.52 1.81 
DTC 1.86 3.43 1.84 
DCT 1.11 2.48 2.23 
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    The results of our experiment also pose a challenge to a 
recent rational model of context effects that claims the 
effects are a consequence of expected value maximization 
given noisy observations (Howes, Warren, Farmer, El-
Deredy, & Lewis, 2016). In our experiments, simply 
changing the presentation order of the same set of options 
has a dramatic influence on choices. It is unclear how a 
rational model could account for the influence of 
presentation order on the effects. 
    In sum, we have demonstrated that presentation order, 
which influences attention, can both strengthen and weaken 
the attraction effect. The MLBA model suggests that 
presentation order changes the allocation of attention 
between positive and negative differences between options. 
These findings provide an explanation for individual 
differences in context effects and also pose a challenge to 
recent rational models of the effects.  
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