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Abstract 
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The primary focus of research into temporal databases has been on logical data 
modeling. Yet, the feasibility of implementing such databases depends as much on the 
development of retrieval and storage structures that are suited to the unique nature of 
temporal data. In this paper, we discuss the major parameters that impact the physical 
design and distinguish temporal databases from conventional ones. This is followed by a 
proposal of structures to support the efficient processing of common single-relation tem
poral queries. 

This research was supported by the Applied Mathematics Sciences Research Program of the 
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1. Introduction 

In the past few years, an increasing amount of attention has been focused on the area of 

temporal databases (see surveys by [Bolour et al 82; Snodgrass 86; McKenzie 86]). Yet with few 

exceptions, the focus has been on the design of logical models and query languages. The added 

dimension of time, and the fact that time itself is not restricted to a single measure [Snodgrass & 

Ahn 85] impli-es the need to explore efficient methods of physical storage and retrieval. As [Ahn & 

Snodgrass 86] observed, building temporal facilities on top of a conventional database degrades its 

performance significantly. 

The majority of literature on logical modeling concentrates on extending the relational 

model to include and manipulate time. For example, [Snodgrass 87] represented time attributes as 

{start, end} pairs appended to each tuple (tuple versioning) and attempted to capture the 

semantics of time in an extended relational calculus based on Quel. Similarly, [Navathe & 

Ahmed 87; Ariav 86] introduced an extended SQL under tuple-versioning. On the other hand, 

[Clifford & Tansel 85] proposed attribute-versioning, whereby each temporal attribute is individu

ally indexed by time. A completely different perspective, based on the concept of the 

Time ·Sequence Collection (TSC), has been adopted by [Shoshani & Kawagoe 86; Segev & 

Shoshani 87]. 

In the area of physical modeling, [Lum et al 84] proposed a scheme based on reverse chain

ing of historical data: index-trees are maintained on non-time attributes, and one or two addi

tional levels of indirection are needed in order to retrieve specific time values. [Stonebraker 86] 

proposed forward chaining of historical data without maintaining any form of indexing on time 

itself. The first tuple of a given relation is stored as an anchor record in its entirety, while each 

subsequent tuple merely captures changes and is chained to its immediate predecessor. These 

techniques are effective only where queries can be decomposed into those that retrieve complete 

(or most of the) histories of single entities. 

On the other hand, [Rubenstein 85] discussed indexing methods for time-ordered data. These 

are limited to information that is inherently time-order sensitive, such as musical notes or 



production scheduling, and are not applicable to the broader notion of temporal databases. In 

[Rotem & Segev 87], partitioning techniques to store temporal data along the time and surrogatct 

dimensions were explored. 

In this paper, we first discuss (Section 2) the major parameters that impact the physical 

design; these include the way data and time are represented (which requires basic interpolation 

capabilities), the life-span of the data, and the type of queries. We then propose, m Section 3, 

indexing structures to support the efficient processing of common single-relation quenes. These 

structures are evaluated in terms .of storage and retrieval costs, and are compared with previous 

studies. Section 4 discusses the ways that hybrids of the cases in Section 3 can be handled. Sec-

tion 5 concludes the paper with a summary and directions for future research. 

2. Processing Requirements for Temporal Data 

There are several factors that have to be explicitly considered in the physical design of tern-

poral databases. In the following we shall present them and evaluate their impact on design. 

Triplet Representation of Temporal Data 

Temporal data can be represented as a triplet of (S ,- T, A) [Segev & Shoshani 87], where 

S = surrogate, T = time and A = temporal attribute. Figure 1 illustrates a simple example of 

such a Time Sequence Collection (TSC), where S = employee ID, T = month, and A = 

salary in thousands. For each surrogate, there exists one or more {time, value} pairs. \Ve might 

have represented the TSC in various other ways, e.g. as a list of the form: 

{(100, (Jan, 20), (Mar, 25) (Dec, 30)), (101, (Jan, 30), (Mar, 40), (Dec, 50))} 

We can generalize this conceptual representation to account for the presence of multiple sur-

rogates, time lines, and attributes. Multiple surrogates is the equivalent of composite keys, thus 

for indexing purposes we can treat it as a single entity. In the case of temporal-attributes, the 

usefulness of the preceding definition of temporal data is that the set of attributes always form a 

f For our purposes, we use the term surrogate to describe time-invariant keys, i.e. the primary key of the 
snapshot version of a temporal relation. In general, only a subset of candidate keys in a relation would qualify 
as surrogates. 



100 
101 

Jan Mar Dec 

20 25 30 
30 40 50 

Table 1. Example of a Salary TSC 
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synchronous set as defined by [Navathe & Ahmed 87]. We concentrate here on the case of a sin-

gle attribute and a single time line, although the analysis can be easily extended to handle the 

presence of multiple attributes. We will also assume a relational representation of the data. 

Representation of the Time Attribute 

As we are interested in retaining the basic relational representation of data, attribute-

versioning models will be ignored, since they require the maintenance of non-first normal form 

{-1NF) relations. There are two types of tuple-versioning that we shall consider: interval and 

event {time) stamping. Using the example given in Figure 1, Figure 2 shows a relational represen-

tation with interval-stamping, while Figure 3 shows the event-stamped version. 

JD SAL T..s.. TE 
100 20 Jan Feb 

100 25 Mar Nov 

100 30 Dec Dec 

101 30 Jan Feb 

101 40 Mar Nov 

101 50 Dec Dec 

Table 2. Interval-Stamped Temporal Relation 

JD SAL T 
100 20 Jan 
100 25 Mar 

100 30 Dec 

101 30 Jan 

101 40 Mar 

101 50 Dec 

Table 3. Event-Stamped Temporal Relation 

The disadvantage of interval-stamping 1s that extra storage 1s needed for the additional 



4 

time-stamp. On the other hand it has two advantages: first, an interpolation can be made without 

reference to an adjacent tuple (either a predecessor or successor); .and second, discontinuities 

within the life-span of a temporal attribute need not be explicitly represented. Interpolation is a 

unique and critical aspect of temporal data processing, since there is unlikely to be a one-tcrone 

correspondence between valid time points and recorded data points (see [Segev & Shoshani 87] for 

details). Discontinuities in life-spans, on the other hand! impacts the correctness of interpolation. 

The Life-span and Operations on the Relation 

The life-span of a temporal relation predetermines the types of storage and retrieval stra

tegies that can be developed. A static life-span corresponds to a set of data that is completely 

historical, i.e. no appends will be made to it. This is relevant in such areas as scientific, decision 

support and economic/econometric data analysis. In such cases, we need only concern ourselves 

with rapid retrieval of data, and ignore the possibility of future reorganization of the database. 

This enables for example, the pinning of records. 

A dynamic life-span requires ·on the other han? the continuing expansion of the database. 

Such a database may be append-only (e.g.Postgres [Stonebraker & Rowe 85]), or one that also 

allows deletion and replacement. The direction in temporal database research is towards append

only databases, especially in the light of recent advances in optical disk technology. Dynamic 

temporal databases provide many challenges, including that of manageability of the indexes [Lum 

et al 84], memory hierarchy management [Stonebraker 87b] and conceptual problems in inferenc

ing [Navathe & Ahmed 87b]. In this paper, we focus on static life-spans. 

Nature of Queries 

For the purposes of physical requirements, queries can be divided into those that require a 

single relation and those that need joins - both thetha joins and those based ·on time. We will 

illustrate the queries wi~h examples. 

Surrogate and/or Attribute: these can be expressed as S = s , A = a , and conjunc

tive forms involving them. Disjunctive forms, the use of non-equality signs and range specification 
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over S or A can essentially be converted to equivalent forms using the above. These queries 

assume a default time specification of T = ALL . With reference to the previous Tables 1 to 3, 

examples are: 

Ql. "What is the salary history of employee with ID = 100" 

Q2. "Find the employees that earn more than 20K" 

Time: there are several ways in which time can be specified by itself. It may be T = t , 
• 

i.e. a specific point, T = [ ti, tj ], i.e. over an interval, and also over a set of intervals (periods). 

These do not specify surrogate or attribute values. Further, time related predicates may also 

require interpolation. 

Q3. "Which employees joined the company in February" 

Q4. "Which employees worked for the company for at least two years" 

Surrogate/ Attribute Qualified on Time: These involve conjunctive forms of the above 

two. Disjunctive forms can be decomposed into independent queries and executed separately. 

Q5. "Find the salary of employee lD = 100 between January and June" ... 
.?:r 

Temporal Ordering: These are similar to the above except tha-t ordering is required for 

one or more time points. Ordering may be anchored on the beginning, end or a specified time 

point along the life-span of the relation. 

Q6. "What were the last two salaries of employee lD = 100" 

Q7. "What was the second salary of employee ID = 101 between the months of February _and 

September" 

Aggregates: unlike conventional relations, the semantics for temporal aggregates is much .. 
more complex and yet richer. Aggregates can be derived along the time or surrogate dimensions, 

and they can also be derived by accumulation along time [Segev & Shoshani 87]. 

Q8. "What was the monthly wage bill for the first two years" 

For an example of accumulation, consider the event-stamped relation of Table 4. 
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TYPE SALES T 
Business 20 Jan 

Business 25 Feb 

Business 30 1\lar 

cs 30 Jan 

cs 40 Feb 

cs 50 Apr 

Table 4. Event-Stamped Relation For Book-Sales 

Q9. "Find the cumulative sales of Business books for the past year" 

Joins: Joins may require the evaluation of binary temporal predicates that have as operands 

time values, ranges, periods or ordering from each of the participating relation. Unlike conven-

tiona! joins, the time-attribute may or may not be used as the joining attribute. 

3. Structures for Static Single Relation Processing 

With the foregoing discussion in mind, we start by studying the most fundamental design 

issues. In the context of the given framework, our emphasis in on (1) a single time-line, (2) both 

event and interval stamped tuple-versioning, (3) static databases, and (4) single relation process-

mg. 

Access requirements on single relations can be dichotomized along the primary qualification 

of the queries, namely (1) surrogate, (2) attribute, and (3) time. Our approach is to initially look 

into each case separately, attempting to optimize the access and storage structures to satisfy the 

primary query qualification. \Ve then examine the support for hybrid qualifications. 

In order to be able to put any performance analysis into perspective, comparisons will be 

made to those suggested in [Lum et al 84] and [Rowe & Stonebraker 87; Stonebraker 86], which 

we will refer to as Lum and Postgrest respectively. An important assumption of this paper is that· 

we are dealing with very large databases, and as such are not concerned with trivial length his-

tories. This influences our approach to t,he design of the structures, which will not be efficient 

t We compare our structures to Postgres for the sake of completeness. However, it should be noted that 
Postgres has not been designed to provide generalized temporal support, and its temporal structures are pri
marily for the replacement of the traditional backup & recovery methods. 

• 
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both in retrieval and sto~age overheads when compared to the other two approaches if small data

bases are included. A second assumption is that we are dealing primarily with temporal sequences 

that are step-wise constant, that is, the attribute value at a time point remains constant until the 

next explicit value. Sequences of discrete type can be treated as a special case of step-wise con

stant sequences. A discussion of sequence types can be found in [Segev & Shoshani 8i]. We will 

also continually emphasize the importance of making correct and efficient interpolations, and how 

this influences the design . 

3.1. Surrogate Indexing 

Motivation 

In a snapshot or time-sliced version of a temporal relation, the surrogate acts as the primary 

key. It is natural to expect a great ~umber of queries to be qualified primarily on this domain. 

The unique identifier of the complete relation though is a composite of the surrogate and one time 

stamp (either the start or end time in the case of interval-stamped relations}. Dense indexing via 

the composite key may be too expensive for large relations, since the size of the index will be of 

the order of 0 (N ), where N is the cardinality of the relation. Not only will storage cost be high, 

but so will the cost of retrieving a data tuple, due to the height of the resulting tree. If instead, a 

sparse index on the composite key were constructed, then retrievals based on specific surrogate 

values cannot be efficiently made. Hashing on the surrogate is impractical here because of the 

long histories. In addition hashing on either the surrogate or the surrogate/time identifier will 

cause total loss of the temporal ordering. 

Description 

We resolve the above dilemma by developing a method that employs a two-level index as 

shown in Figure 1. A first level dense index is provided on the surrogate values {the surrogate 

index), and a second level sparse index is constructed over the life-span of each surrogate value 

{the time-index). We employ a B +-tree for surrogate indexing, and an indexed sequential access 

method {ISAM) organization for the time-index. The choice of ISAM for the time-index is due to 
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the need to minimize the index size, and also the observation that no overlaps exists among the 

time-stamps of the tuples associated with each surrogate, thus yielding a chronological ordering of 

data. 

In the leaves of the B +-tree, each index-key value has associated with it not the appropriate 

tuple identifier as in conventional databases, but a pointer to the root of the associated time

index. The only modification that we have made to the B +-tree is the addition of a second 

pointer field for each leaf-entry. This pointer leads directly to the first data page that stores the 

data tuples of the surrogate. When a query requests the complete history of a surrogate, the 

second pointer enables the time-index to be bypassed. If instead, the information were stored in 

the root of the time-index, this would force another index page to be retrieved before the first 

data page address is obtained. 

The ISAM organization of the time-index requires physical sorting of data tuples along the __ 

time range for each surrogate, but this does not cause any problems for static lifespans. At the 

leaf-level of the index, the pointer associated with an index-key value points to the disk page that 

contains tuples with time-stamps that are less or equal to it, but greater than the preceding 

index-key value. For interval-stamped relations, either the start or ending stamp may be used to 

determine key values, but we shall assume in our discussions that the starting time-stamp is 

selected. 

An important Issue m constructing the index is its ability to aid interpolations along the 

time-line. The sparsity of the index does not result in redundant retrieval of data pages when 

compared to dense indexing, due to the chronological ordering of data. The issue that primarily 

influences the performance of interpolation is the treatment of discontinuities in a surrogate's 

life-span. There are two ways in which discontinuities can be represented within the index. The 

first omits any reference to it within the index, which means that only when the r~levant data 

page or pages are read, will the discontinuity be discovered. The second technique in contrast 

explicitly represents null values within the life-span by inserting a special marker into the 

appropriate leaf of the index. This is illustrated in Figure 2, where such an index is constructed 
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for a surrogate lifespan that is disjoint. 

We have selected a null representation that does not require a record of different length or 

type from th9se utilized for the key values. The only difference is that the associated pointer is 

set to null." The necessary intelligence can be built into the search algorithm to interpret this fact. 

Explicit consideration of discontinuities in the index ensures that data is not accessed redun

dantly, but at the expense of placing a constraint on the way data tuples are partitioned by the 

index. This restriction arises from the fact that the null indicator takes the place of a key value 

that would have represented a page of data. The effect on the index size of a null indicator is thus 

equivalent to adding B4 tuples to the relation, where B4 is the blocking factor for data tuples. 

Which method of treating breaks in the life-span is preferable depends on their frequency in the 

relation in question. 

Performance Analysis 

The cost of storing the surrogate-index is 0 ( I S I ), where I S I is the cardinality of the 

surrogate domai~ on the relation·. The storage cost of a .time-index is 0 ( I S ~ 
84 

) , where 

N I I S I is the average length of the history chain pertaining to a surrogate. Since each surro

gate maintains its own time-index, the total cost of the time-indexes for a relation will be approxi-

mately 0 ( N I B4 ) • This two-level access structure may mean considerable savings in storage 

space relative to dense indexing or Lum's approach, both of which require space that is propor

tional to the size of the relation. 

If the maximum number of children a node can have in the surrogate and time trees are k 1 

and k 2 respectively, then the cost of retrieving any surrogate value is O(logk
1 

IS I } which is 

independent of the length of the history chain. The cost of retrieving a specific time value for a 

surrogate is 0 ( logk 2 I S ~ 
84 
l and is unlikely to exceed 3 disk accesses. As an example, if 

the average length of history is 100,000 tuples, and B4 is 20, then there are 5,000 keys to be 

stored in the time-index pages. If we assume that each disk page can hold 100 key-pointer 
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records (say a 1,024 byte page with 10 byte records made up of a 4 byte pointer and 6 byte time

stamp fields), then we need just 50 leaf-level pages for the index, thereby producing ,a two level 

tree. In fact a three-level index will be capable of storing information pertaining to some 20 mil

lion tuples, if we maintain the above assumptions. 

Queries that request whole histories of a surrogate require a B+-tree access plus sequential 

retrieval of the data blocks (recall that the history of each surrogate is contiguous and physically 

ordered by time). If a specific time qualification is given, the cost is equal to the height of the 

B +-tree plus the height of the time-index for the surrogate value plus one page retrieval to obtain 

the tuple itself. If time is specified over a range, the cost is of the same order as a single time

value qualification, since data is sorted along the time dimension. On the other hand, queries that 

request a range of surrogates increase the cost of time-index and data page retrievals by a factor 

equal to the number of qualifying surrogates, while the surrogate index itself needs to be scanned 

just once. 

Lum's method would fare worse for queries not involving whole histories, since he proposed 

the use of pointer-chains or a linear list to store the {time-stamp, data-pointer} pairs associated 

with a surrogate, the surrogates themselves being indexed by a B+-tree. This implies that the cost 

of retrieving a given time-value is o( I :I J, i.e. proportional to the size of the history itself. 

Postgres' scheme can only provide equivalent performance to our proposal for the retrieval of 

complete histories, since no index is kept on time, and the tuples with a given surrogate value are 

chained into a linear-list. Thus the cost of queries qualified on time will be of the order 0 (N ). 

3.2. Attribute Indexing 

Motivation 

Relational attributes other than the surrogate are inherently multi-valued. In the case of 

temporal relations, there is a many-to-many relationship between a temporal attribute and the 

surrogate and time domains. Furthermore, the time-intervals ranging over a given attribute value 
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do not naturally fall into a disjoint set. In other words, there are likely to be many overlaps 

among the time-intervals found in tuples with the specific attribute value. 

This problem was ignored by Lum, who considered only the multiplicity of surrogates for a 

given attribute value, apparently assuming that associated time intervals can be ordered in the 

same manner as for the case of surrogate-indexing. Postgres on the other hand is not designed to 

answer arbitrary queries involving historical values of an attribute, since no indexed access is 

available to non-current values. 

Description 

We develop an access method that has three levels of indirection (see Figure 3): the first of 

which indexes the attribute values (attribute-index), the second indexes the time values for each 

attribute (time-index), and the last level made up of one or more disk pages containing pointers to 

data for pairs of {attribute, time} values (pointer-records). The additional level of indirection oYer 

the surrogate indexing previously introduced is needed due to multiplicity of values and the desire 

to keep the time-index manageable in size. 

The attribute-index is a B+-tree ranging over the values found 'in the relation. \Vithin the 

leaf-level pages, each record maintains two pointers per key value. The first pointer leads directly 

to the pointer-records, in order to answer queries not further qualified on time. The second pointer 

leads to the the time-index for that attribute value. The time-index is structured also as a B +

tree, and each index entry represents an interval boundary. Due to the fact that we do not 

assume any sort order of physical data along the temporal attribute, sparse indexing along the 

lines of an ISAM organization is not feasible, which is why we have selected the B+-tree. Yet we 

avoid having to index the data according to actual time intervals. This will be further elaborated 

in the next section. On the last level, each pointer-record is of variable length, in that it may 

take more than one disk page if need be. These pointer records are sorted or at least clustered 

according to the relevant attribute and time intervals, so that sequential retrieval can be accom-

plished. 
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Partitioning the Time Intervals 

Let a; be a specific occurrence of the temporal attribute A , with cardinality of Na . Associ-
' 

ated with a; is a set of data tuples with time intervals, I It I 2, ••• , I,. , where t, (Ii) and t. (Ii) 

represent the starting and ending points of the interval Ii . In general, it_ is unlikely that the inter-

vals are disjoint, nor will they have uniform spans. If we let kIt k 2, ••• , km denote the leaf entries 

of the time-index, it is likely that there exists an Ii that covers or overlaps with an index interval 

bounded by [kt, kt +Il· 

Thus if the k1 s are not judiciously selected, the end result may have a high degree of imbal-

ance in terms of the number of pointers associated with each time interval of the index. The 

balancing of the pointer assignments amounts to trying to minimize the worst-case retrieval cost. 

Note that data pointers can be duplicated in more than one pointer record accessed from the 

leaves of the time index. The approach we develop first determines the k1 values, assuming that 

no duplication occurs. Then after the assignment of Ii s has been completed, we attempt to 

reduce the overflows resulting from duplication by adjusting the boundaries of the leaf index 

entries. Once the partitioning algorithm has terminated, we can construct the time-index tree 

bottom-up. 

Algorithm Partition 

[Step 1] Call Initial-Assign 

[Step 2] Call Balance 

Algorithm Initial-Assign 

[Step 1] Let Nk be the number of leaf nodes in the index tree and BP the number of pointers that 

a pointer record can hold. 

[Step 2] Let L be the minimum binding interval for a; , I.e. L = tN - t 0, where 
k 
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Set the index key entries 

k . * L r . "T 
"j = J N1: , tOr J = 1, ... , n~;_ 1 

[Step 3] Let N1: be the number of pointers assigned to the pointer record indexed by kj. Assign
; 

ment of Ii to such a record depends on the intersection between it and the index intervals. 

N • . 
N~:1 = :EXt 

1=1 

{
1 if~~ n (kj-1· kj J =r 0 

where Xt = 0 0 otherwise 

Algorithm Balance 

[Step 1] 

Else let N1: = max{N~; }. 
rm.x i J_ 

[Step 2] If N1: = N1: n N1: = N~c then call Algorithm Balance with index key set 
ma.x mu -1 rm.x: mu +1 

Else 

(I) if only N1: < N~c , find an interval /, such that min {kmax- t, (/1 )} holds true. 
rm.x mor+l ' 1 

In case of a tie, select the interval such that t, (Ii ) > k max· Otherwise pick one. 

(2) if only Nk < N1: , same procedure as (1), but applied to the left boundary. 
ma.x mu-1 

(3) when both boundaries apply, consider (1) and (2) in conjunction. But for the tie-breaking 

rules, when all or none of the candidate Ii s for removal are already indexed by one of the 

neighboring intervals, then find min{N~c , N1: }, and select the boundary associated 
ma:r-1 mu+l 

with the minimum. Otherwise pick one. 

[Step 3] Move the appropriate boundary of k max inwards such that Ii can be discarded from the 

pointer record associated with k max· 

Decrement N~c and increment that of the neighbor if necessary. 
max 
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Go to Step 2. 

Performance Analysis 

The partitioning algorithm presented is a heuristic one, and can be further improved in the 

following way. After the termination of the algorithm, If the maximum number of pointer blocks 

corresponding to some time-index interval is unacceptable, the number of leaf entries ( m ) can be 

increased and the balancing procedure repeated. There are several improvements that are possi-

ble. Alternatively, if P is the number of pages per record, we can then call the partitioning algo-

rithm again with the parameter BP modified to BP * ~ 

The storage cost of the indexing structures for the temporal attribute is made up of the cost 

of the attribute index, time index and the pointer records. The size of the attribute index is of the 

order 0 ( I A I ), i.e. proportional to the cardinality of the attribute doma;in of the relation. The 

exact size of the history chain for a given instance of the attribute is data dependent, but we can 

"overestimate" the mean value to be -:--N......,..,""" 
lA 'I 

Since the time index proposed above is non-dense, 

the storage required for the domain of the attribute is of the order 0 ( ~ ). Although a large 

number of pointers may be duplicated in the pointer records, the blocking factor Bp would also 

mean that the resulting tree will be relatively short. The pointer records themselves have a 

storage cost of 0 (N ), but it should be kept in mind that only pointers are maintained there, 

which normally take up four bytes of memory each. 

The main difference in cost between the access structures for the temporal attribute and 

the surrogate is the additional disk page that must always be retrieved before data pointers are 

obtained. The orders of magnitude of the time needed to search the multi-level index in order to 

respond to queries on a given attribute value, range of values, conjunctive time qualification over 

both single points and intervals are similar to those derived for the surrogate structures. The 

time needed to retrieve the tuples from physical storage will be linear to the number of pointers 

in the pointer record retrieved. Since we do not maintain time stamps alongside the data pointers, 
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information may not be adequate in answering some queries. Likewise, certain types of interpola

tion cannot be made without searching through the whole pointer record. Yet we do not include 

the time-stamps with the data pointers because we would have to include both the starting and 

ending times (even for event stamped relations) and this will likely result in high overheads. 

As pointed out before, Lum's proposed structures cannot effectively answer which queries 

due to the treatment of the time intervals. The Postgres approach is also not applicable since it 

was not planned to retrieve past histories of secondary keys. 

3.3. Time Indexing 

Motivation 

An important type of query neglected by the previous structures is that which is qualified 

solely on time, for example, "what were the salary values in December?" More than in the design 

of the previous two structures, efficient indexing of the time dimension is greatly dependent on 

the physical organization of data. We see the solution as twofold, one that requires primary data 

sorting on time values which will require changes to the surrogate access structures previously 

explained, or one that is based on the time index for attributes. 

Description 

The first method t of time indexing is based on physical organization of the data along the 

time dimension. Since queries qualified solely on time are mostly range queries or otherwise 

require interpolation, having tuples sorted according to the time attribute and constructing a 

sparse index above it will provide for efficient query processing. The construction of such an index 

for static databases is straightforward. We partition the lifespan into n segments, and construct a 

B-tree bottom-up. The leaf index entries will have to store only the page address or the first such 

page if more than one qualifies. If a segment corresponds to a single disk block, then we might 

have a tall tree to access. On the other hand, if a variable number of blocks are chained together 

t We skip a detailed description of the structures since they are simple variations of the preceding ones. 



·"' 

19 

m order to reduce the height of he tree, then the speed with which tuples are retrieved will be 

slower, 1.e. the index is sufficiently discriminating. Note that we need maintain sortedness only 

amongst disk pages. 

The alternative indexing method does not require a specific organization of the data. What 

we do is adapt the second and third levels of the attribute structures of the previous subsection 

to act as a dense index on time. The tree itself can again be controlled in terms of its height, but 

we will need to make random disk reads given a set of data pointers pointed to by an inde-x entry. 

The performance of two indexes are siq1ilar to their counterparts for the previous two indexes. 

4. Integration of Hybrid Qualifications 

In the last section we looked at access and storage methods that are focused primarily on 

queries primarily qualified on the surrogate, temporal attribute or time. Here we will briefly look 

into how we can integrate the different structures in order to respond to a broader range of 

queries. The methods presented in Section 3 are not designed to handle the the following cases: 

(1) they cannot respond to queries qualified on attribute and surrogate values and (2) do not ade

quately handle range queries on either the surrogate or attributes. 

One possibility is to use the structures that we developed earlier and make appropriate 

modifications where appropriate. For example we found that we could maintain a smaller time 

index in terms of storage and search space if we can sort the data along this dimension. Surrogate 

indexing required temporal sorting of physical data for each surrogate. We can resolve this by 

looking at the trade-offs between the additional cost of surrogate qualifications in the case of pri

mary time sorting and the additional cost of time qualifications in the case of primary surrogate 

sorting. Queries that are qualified on both surrogate and temporal attribute can be resolved by 

decomposing them into two independent single qualification subqueries, retrieve the data pointers 

from the separate access structures, and finally find the intersection between the two sets. 

Another approach is to employ multidimensional partitioning of the data file. In [Rotem & 

Segev 87] symmetric and asymmetric algorithms for the case of static data were presented. Such 
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techniques may provide a good solution to queries with conjunctive qualification on the temporal 

attribute and surrogate, because we can now find a physical ordering of the tuples along the sur

rogate and temporal attribute. Furthermore, range qualifications can be more efficiently satisfied 

since data is partitioned into intervals along each dimension. The access structures can be con

structed sparsely over the data for each indexing key. Thus the index sizes could be kept rela

tively small. One research issue related to this approach is how overall performance degenerates 

with respect to the number of partitioning attributes and the distribution functions of these attri

butes. 

5. Summary and Future Research 

In this paper, we have discussed the major parameters that effect the physical design of tem

poral databases. These parameters include the way data and time are represented, the nature of 

the life-span, and the type of queries. We have then· proposed indexing structures for the case of 

relational representation of the data, single-relation retrievals, and static life-spans. 

The main properties which are unique to temporal databases are: 

I) Temporal ordering - unlike the relational model, it is necessary to maintain temporal order

ing of the data for a given surrogate. In fact, there are applications (such as scientific exper

iments) where the 'current' version is meaningless. 

2) Interpolation - in many applications, viewing the temporal data as a collection of time 

sequences enables interpolation. This is very important in environments with very large data 

historical collections (Giga and Tera bytes). Incorporating interpolation can be viewed as a 

form of data compression. The simplest (and probably the most prevalent) case is the 

stepwise-constant sequence that describes state variables. In this case, the value of a vari

able (e.g., salary) remains the same until the next recorded change. 

3) Discontinuities in histories - there are time sequences which are discontinuous; for example, 

if an employee leaves a company and later rehired, the salary history will be discontinuous. 

The above properties are interrelated. For example, interpolation requires temporal ordering, 
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and should handle discontinuities. The contribution of this paper is the presentation of structures 

to support the above properties, and a comparison with other proposals. The problem of time 

indexing is not a simple one; one has to decide on the number of sub-intervals and their specific 

time boundaries. We have proposed an algorithm to do that with the objective of balancing the 

number of pointers across the sub-intervals. By doing so, we are trying to minimize the worst-case 

retrieval time. It should be noted, however, that this problem can be approached with other 

objectives and algorithms (which are ~urrently being studied). 

This work represents one of the initial explorations of physical design of temporal databases. 

Current and future work deals with extending the investigation into cases of multiple time lines, 

dynamic append-only databases, and multiple-relation processing. \Ve are also looking at possible 

non-relational physical representations. 
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