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Abstract

The discovery of somatostatin (SST) in the hypothalamus implicated the peptide in the inhibition 

of growth hormone release. However, as observed for numerous neuropeptides, SST was neither 

restricted to this one brain site nor to this one function. Subsequent studies established a 

widespread but specific expression of SST in the central nervous system of rodents and humans 

along with the expression patterns of five receptors (sst1–5). Among biological actions, the 

activation of central SST signaling induced a robust stimulation of food and water intake, which is 

mediated by the sst2 as assessed using selective sst agonists. The past years witnessed the 

identification of brain SST circuitries involved using chemogenetic and optogenetic approaches 

and further established a physiological orexigenic role of brain SST signaling. The present review 

will discuss these recent findings.

Graphical abstract:

The current review will present the latest development on the food intake−modulating effects of 

central somatostatin signaling and brain circuitries involved.
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Introduction

Somatostatin (SST)-14 is a 14-amino-acid peptide first detected in the hypothalamus and 

shown to induce a robust inhibition of pituitary growth hormone (GH) secretion.1 

Subsequently, SST-28 was identified in the intestine,2 as the N-terminally extended SST-14 

form derived from the same prohormone, pro-SST.3 Both, SST-14 and SST-28 bind to all 

five SST receptors (sst1–5) with similar affinity.4, 5 SST receptors are members of the G 

protein–coupled seven transmembrane domain receptor family.6 In addition, few sst 

isoforms have been identified including the full-length sst2a and the truncated form, sst2b in 

rodents7 along with several truncated sst5 variants in rodents and humans.8, 9 These isoforms 

can modulate sst2 signaling10 and were shown to play a role in different types of cancer.11–13

Besides its inhibitory action on GH secretion, numerous brain-initiated extrapituitary effects 

of SST receptors and/or agonists have been described, such as an increase in blood pressure,
14 blood glucose, body temperature, gastric acid secretion,15 and gastrointestinal propulsive 

motor function16, 17 pointing towards a pleiotropic role of the peptide in line with its 

widespread brain distribution.18 Moreover, SST influences behavior increasing grooming,19 

locomotor activity,20 and anxiety.21 Brain SST was also early on reported to alter feeding 

behavior in rodents.22 Subsequent studies identified the receptor(s) involved using selective 

peptide sst agonists and antagonists23 and distinguished between pharmacological and 

physiological effects.24 The current review will present the latest development on the food 

intake–modulating effects of central SST signaling and brain circuitries involved.

Central expression of SST and its receptors

SST displays a wide distribution in the rodent brain with strong immunoreactive signals 

detected using antibodies recognizing both, Sst-14 and Sst-28.25 Brain areas encompass 

those that have been implicated in feeding regulation namely the hypothalamic arcuate 

(Arc), ventromedial, periventricular, lateral, and paraventricular (PVN) nuclei, the tuberal 

nucleus (TN), and the nucleus of the solitary tract (NTS).18, 25–29 SST neurons are also 

localized in the basal forebrain and mapping of SST projections showed input to other brain 

areas influencing food intake, such as the lateral hypothalamic area (LHA).30 Recent studies 

using a droplet-based single-cell RNA sequencing strategy allowed the identification of four 

distinct SST neuronal populations in the LHA, which are transcriptionally distinct.29

Along with the ligand, are widely expressed in the rodent brain.6 In food intake–regulatory 

nuclei, sst expression was localized in the Arc (sst1 = sst2a = sst3 > sst4), ventromedial 

hypothalamic nucleus (sst1 > sst3 > sst2), dorsomedial hypothalamic nucleus (sst1 = sst3), 

PVN (sst2a = sst3), NTS (sst1 = sst2 > sst3), and the dorsal motor nucleus of the vagus 

(sst2a/b = sst4 > sst5).31–35 Expression of both ligand and receptor—predominantly sst2 and 

sst3—in major food intake–regulatory nuclei, such as the Arc, LHA, PVN, and NTS, 

provides support for an autocrine/paracrine mode of action.

Orexigenic effect of central SST signaling

Over three decades ago, reports indicated that SST-14 or the sst2,3,5 agonist, octreotide 

injected intracerebroventricularly (i.c.v.), into the dorsal hippocampus or anterior piriform 
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cortex stimulates food intake in rats.36–40 More recently, the pan-SST agonist, ODT8-SST 

injected i.c.v. at a low (0.3 nmol) dose led to a pronounced stimulation of food intake not 

only in the light phase but also in the dark phase—where food intake is already stimulated 

by other transmitters/hormones—under ad libitum conditions in rats and mice.41–43 While 

the stimulation of food intake was observed rapidly after i.c.v. injection of octreotide (within 

10 min),36 it was delayed in onset (within 60 min) and longer lasting following i.c.v. ODT8-

SST.41 The i.c.v. ODT8-SST–induced orexigenic effect was associated with a sustained 

increase in the respiratory quotient and energy expenditure likely contributing to the 

observed body weight loss 24 h post injection.41 It is to note that in contrast to the 

orexigenic effect observed following injection of low doses, higher SST doses in the nmol 

range injected i.c.v. resulted in an inhibition of food intake in rats and mice38,44–46 likely 

related to the induction of other behaviors, such as barrel rotations,47 but also a leakage/

transport into the peripheral circulation48 where SST predominantly has an anorexigenic 

effect.49

Further studies investigated the SST receptor(s) involved in this orexigenic action. As 

described above, the sst2,3,5 agonist octreotide injected i.c.v. induced a robust increase of 

light phase food intake in rats36, 37 and mice.50 Similarly, the selective sst2 agonist, S-346–

011 injected i.c.v. also stimulated food consumption in rodents, whereas the sst1 agonist, 

S-406–062 and sst4 agonist, S-315–297 did not.50, 51 Conversely, the orexigenic effect of 

ODT8-SST was abolished by the selective sst2 antagonist, S-406–02841 clearly pointing 

towards an sst2-mediated signaling.50, 51

Analysis of the underlying food intake microstructure using an automated food intake 

monitoring system for solid food in undisturbed rodents showed that i.c.v. injection of the 

sst2 agonist, S-346–011 increased the number of meals and reduced intermeal intervals 

during a 4-h period, whereas not altering meal size compared to controls.50 This is indicative 

of the suppression of satiety, a mechanism causing a delayed onset of the next meal after 

completing a meal as reflected by longer intermeal intervals, whereas satiation, a mechanism 

causing the termination of a meal, was unaltered.52

The stimulation of food intake by central activation of SST signaling is likely to be of 

physiological significance since the sst2 antagonist, S-406–028 reduced dark phase food 

intake—when rodents show their highest food intake53—by ~30% in rats.51 In contrast, 

when injected during the light phase under ad libitum feeding conditions, the sst2 antagonist 

had no effect on food intake51 implying the recruitment of Sst–sst signaling to stimulate 

food intake during the dark photoperiod. This is also supported by a higher hypothalamic 

Arc54 and reduced PVN55 Sst mRNA expression in rats housed under conditions of a 

sustained dark photoperiod along with increased hypothalamic Sst release at the beginning 

of the dark phase.56–58

A recent study provided convergent evidence that SST in the TN plays a physiological role 

to regulate food intake.28 First, either fasting or intraperitoneal (i.p.) injection of ghrelin, a 

hormone released during the hunger state,59 induced a robust expression of the immediate 

early gene c-Fos in TN SST neurons.28 Second, chemogenetic studies further established 

that activation of SST neurons in the TN promoted a robust food consumption for the 

Stengel and Taché Page 3

Ann N Y Acad Sci. Author manuscript; available in PMC 2020 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



subsequent 3 h by enhancing eating time and frequency.28 Conversely, optogenetic inhibition 

of SST neurons in the TN reduced cumulative eating time and frequency.28 Lastly, selective 

ablation of these SST neurons resulted in a mild reduction of daily and dark cycle food 

intake and respiratory exchange ratio.28

New developments also unraveled the implication of a population of lateral septum SST-

neuronal pathways in facilitating food-seeking behavior.60 Optogenetic gamma-frequency 

stimulation of SST-positive lateral septum cells projecting to the LHA induced a specific 

food-seeking behavior in mice as indicated by a shortened latency to reach the food zone, 

while not stimulating food intake per se.60 Interestingly, when the LHA was directly 

stimulated using optogenetics food intake was increased.60 These, at first sight, conflicting 

results have been explained by the differential pattern of activation. Optogenetic stimulation 

of the lateral septum to LHA projections stimulated the firing of food zone mismatch (cells 

preferentially active at a distance from the food zone) and less so of food zone match (LH 

neurons in the free-access feeding model matching the location of the food zone) cells. 

Conversely, direct activation of the LHA induced the opposite pattern (predominant firing of 

food zone match neurons).60 Further chemogenetic approaches in Sst-Cre mice established 

that selective activation of SST neurons in LHA increases eating behavior.29

Other optogenetic and adeno-associated viral tracing studies in mice discovered the 

involvement of basal forebrain Sst in mediating palatable food consumption.30 The authors 

demonstrated that the activation of basal forebrain SST neurons induces selective 

consumption of high-calorie palatable food (high-fat and high-sucrose) without affecting 

normal food intake, suggesting that SST neurons in the basal forebrain are involved in 

hedonic feeding. By contrast, stimulation of projections from SST neurons in the ventral 

forebrain to the LHA selectively induced fat intake.30 It is to note that the sst2 antagonist had 

no modulating effect on tail pinch–induced food intake,61 a model to reliably and rapidly 

stimulate food consumption of regular chow.62 In view of recent evidence that SST signaling 

in the basal forebrain may be involved in increasing consumption of high-calorie food,30 it 

will be relevant to establish whether sst2 signaling will counteract the stress-related increase 

of comfort food consumption.63, 64

To investigate downstream signaling pathways involved in the orexigenic effect of central 

SST several pharmacological studies have been performed. Peripheral injection of the μ-

opioid receptor antagonist, naloxone65 blocked the orexigenic effect of i.c.v. ODT8-SST in 

rats.41 Similarly, in chicks, β-funaltrexamine, another μ antagonist prevented the i.c.v. SST–

induced orexigenic effect, while δ or κ antagonists did not.66 The interaction between SST 

and opioid signaling might happen at the cellular level as the sst2 was shown to 

heterodimerize with the μ-opioid receptor.67 It is to note that functional consequences of this 

heterodimerization are still to be unraveled.

Moreover, neuropeptide Y (NPY) and orexin signaling are involved in mediating SST’s 

effect on food intake. I.c.v. injection of the NPY1 receptor antagonist, BIBP-322668 or the 

orexin type 1 receptor (OX1) antagonist, SB-33486769 prevented the food intake–

stimulating action of i.c.v. ODT8-SST.41, 43 The finding that the sst2 antagonist, S-406–028 

did not block the food intake stimulated by orexin-A43 points towards an SST →sst2 →OX1 
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route of signaling. In addition, NPY1 signaling in the Arc was shown to be involved in the 

downstream mediation of orexin A’s–induced food intake–stimulatory effects.70 This was 

shown by the blunting of the orexigenic effect of orexin-A by an i.c.v. injected NPY1 

antagonist.71 Moreover, there is neuroanatomical evidence that orexin-expressing neurons in 

the LHA project to NPY positive neurons in the Arc72 to activate these neurons.73, 74 Taken 

together, SST is likely to mediate its orexigenic action via an sst2 → orexin-A-OX1 → 
NPY-Y1 pathway.

Dipsogenic effect of central SST signaling

In line with the observed orexigenic effect, the sst2,3,5 agonist, octreotide was also shown to 

induce water intake. This increase was rapid in onset (within 10 min) and not subsequent to 

the stimulation of food intake since water intake was increased in the absence of food.75, 76 

This observation is consistent with a previous study reporting that the dipsogenic response 

preceded the orexigenic effect.36 The dipsogenic response was also established following 

i.c.v. injection of ODT8-SST, SST-14, and cortistatin,42 another endogenous sst1−5 agonist.
77 While the endogenous ligands, SST-14 and cortistatin exerted short-lasting effects (10 

min), ODT8-SST induced a long-lasting (60 min) dipsogenic response.42

Similar to the orexigenic effect, the stimulation of water intake is likely mediated via the 

sst2. This is based on the observation that the selective sst2 agonist, S-346–011 injected i.c.v. 

increased water intake to a similar extent as i.c.v. ODT8-SST or cortistatin, while the sst1 

agonist, S-406–062 and the sst4 agonist, S-315–297 had no effect.42 Conversely, i.c.v. 

injection of the sst2 antagonist, S-406–028 blocked the dipsogenic effect of the pan-sst 

agonists, cortistatin and ODT8-SST.42 Sst2 signaling has physiological relevance in the 

regulation of drinking behavior as the sst2 antagonist, S-406–028 injected i.c.v. reduced dark 

phase—the photoperiod when rats usually drink even independently of food intake78—water 

intake by ~50%.42 Lastly, SST-14 and cortistatin injected i.c.v. increased water intake to a 

similar extent observed during the first hours of the dark phase.42

The sst2-mediated dipsogenic response is likely to involve downstream angiotensin II–

angiotensin-1 receptor (AT1) signaling as i.c.v. injected losartan, an AT1 antagonist, 

prevented the dipsogenic response to i.c.v. ODT8-SST, while an sst2 antagonist did not alter 

the angiotensin II–induced dipsogenic response.42 In addition, octreotide was shown to 

stimulate the release of angiotensin I in the rat hypothalamus pointing towards a 

physiological cascade.79

Another study showed the blockage of the dipsogenic response to ODT8-SST by i.c.v. 

injection of the OX1 antagonist, SB-334867 in the presence of food,43 possibly linking the 

SST-induced downstream food intake- and water intake–stimulatory effect with orexin 

signaling. A possible dissociation should be further investigated in the absence of food.

Summary

SST is widely expressed in the brain at the level of the ligands as well as the receptors in 

specific brain areas regulating feeding behavior. The stimulation of food intake by SST has 

been described early on, a finding confirmed and expanded by independent groups. The 
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effect is mediated by the sst2 as assessed using selective agonists and antagonists. 

Converging evidence points towards the physiological relevance of central Sst–sst2 signaling 

to contribute to the orexigenic and dipsogenic responses during the dark phase in rodents. 

Chemo- and optogenetic approaches along with adeno-associated viral tracing have 

delineated new SST circuitries in the ventral forebrain, TN and LHA involved in the 

orexigenic effect and high-calorie food consumption (Fig. 1). The recruitment of these novel 

SST signaling circuitries warrants further investigations to assess whether they are 

implicated under stress-related comfort food–seeking conditions.
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Figure 1. 
Mediation of brain SST’s orexigenic and dipsogenic effects. Abbreviations: ↑, increase; ↓, 

decrease; =, no change; μ, μ-opioid receptor; Arc, arcuate nucleus; AT1, angiotensin-II 

receptor 1; i.c.v., intracerebroventricular; Y1, LHA, lateral hypothalamic area; LS, lateral 

septum; NPY1, neuropeptide Y receptor 1; OX1, orexin receptor 1; PVN, paraventricular 

nucleus; SON, supraoptic nucleus; sst2, somatostatin receptor 2; TN, tuberal nucleus.
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