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The development of a technology capable of tracking the levels of
drugs, metabolites, and biomarkers in the body continuously and
in real time would advance our understanding of health and our
ability to detect and treat disease. It would, for example, enable
therapies guided by high-resolution, patient-specific pharmacoki-
netics (including feedback-controlled drug delivery), opening new
dimensions in personalized medicine. In response, we demon-
strate here the ability of electrochemical aptamer-based (E-AB)
sensors to support continuous, real-time, multihour measurements
when emplaced directly in the circulatory systems of living animals.
Specifically, we have used E-AB sensors to perform the multihour,
real-time measurement of four drugs in the bloodstream of even
awake, ambulatory rats, achieving precisemolecular measurements at
clinically relevant detection limits and high (3 s) temporal resolution,
attributes suggesting that the approach could provide an important
window into the study of physiology and pharmacokinetics.

aptamer | square-wave voltammetry | in vivo | E-DNA | precision medicine

The availability of versatile and convenient sensors supporting
the continuous, real-time measurement of specific molecules

directly in the body could prove transformative in research and in
medicine. In the short term, for example, such an advance would
allow the in vivo concentrations of drugs, metabolites, hormones,
and other biomarkers to be measured with high precision in
subjects as they undergo their normal daily routine, improving
our knowledge of physiology, pharmacokinetics, and toxicology.
On longer timescales, such an advance would facilitate “thera-
peutic drug monitoring,” in which dosing is personalized using a
patient’s directly measured (rather than crudely and indirectly
estimated) metabolism. By permitting the continuous monitoring
of biomarkers (e.g., creatinine and hormones), such a technology
would likewise provide a new and highly detailed window into
health status (e.g., kidney or endocrine function). Finally, the
real-time measurement of specific molecules in the body would
advance drug delivery (1). Such a technology, for example, could
easily support feedback-controlled dosing, in which the delivery
of drugs is adjusted in real time based on their concentration in
the body or on the body’s molecular-level response to treatment.
This real-time, feedback-controlled drug delivery would provide
new routes by which drugs with dangerously narrow therapeutic
windows or complex optimal dosing regimens can be adminis-
tered safely and efficiently.
Although technologies already exist for the continuous or

near-continuous measurement of a small number of metabolites
[e.g., glucose (2) and lactate (3)] and neurotransmitters [e.g.,
dopamine (4, 5), serotonin (6), glutamate (7), and acetylcholine
(8)] in vivo, these approaches all rely on the specific chemical
reactivities of their targets (e.g., the redox chemistry of the analyte
or its ability to be oxidized by a specific enzyme). Because of their
dependence on reactivity, these technologies are not generalizable
to the detection of many other physiologically or clinically impor-
tant molecules, and there remains an open, critical need for

strategies that support the continuous detection of specific mole-
cules in the body irrespective of their reactivity. Unfortunately,
however, serious technical hurdles stand in the way of realizing this
goal (9, 10). First, to support continuous measurements, a sensor
cannot rely on batch processing, such as wash or separation steps.
Second, to support in vivo measurements, a sensor cannot use
exogenously added reagents and must remain stable against pro-
longed exposure to blood or interstitial fluids in vivo. To date, the
vast majority of molecular detection strategies have failed to meet
one or both of these critical challenges. Chromatography, mass
spectrometry, and immunochemistry, for example, are complex,
multistep batch processes requiring wash steps, separation steps,
and/or sequential reagent additions, hindering their ability to per-
form continuous measurements. Conversely, whereas biosensors
based on surface plasmon resonance (SPR), quartz crystal micro-
balances (QCM), field-effect transistors (FET), and microcanti-
levers all support continuous, real-time operation, each fails when
challenged in blood (much less in vivo) due to their inability to
discriminate between the specific binding of their target and the
nonspecific adsorption of proteins and cells (11–14). Here, in
contrast, we demonstrate the ability of electrochemical aptamer-
based (E-AB) sensors, a sensing platform adaptable to the de-
tection of any of a wide range of molecular targets irrespective of
their chemical reactivity, to support continuous, real-time mea-
surements directly within the body.

Significance

The ability tomonitor arbitrary molecules directly in living subjects
as they undergo their daily routines remains one of the “holy
grails” of bioanalytical chemistry. Such a technology would, for
example, vastly improve our knowledge of physiology, pharma-
cokinetics, and toxicology by allowing the high-precision mea-
surement of drugs and metabolites under realistic physiological
conditions. Real-timemolecular measurements would also provide
an unparalleled window into health status (e.g., kidney function)
and would facilitate “therapeutic drug monitoring,” in which
dosing is personalized to the specific metabolism of each indi-
vidual patient. Finally, the ability to measure molecules in the
body in real time would provide unprecedented new routes by
which drugs with dangerously narrow therapeutic windows could
be safely and efficiently administered.
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The generality of E-AB sensors stems from the versatile rec-
ognition and signal-transduction properties of aptamers, nucleic
acids selected for their ability to bind specific molecular targets
(15). Created using well-established in vitro selection methods
(16, 17), aptamers can be generated that bind a wide range of
analytes (18) and can be rationally reengineered such that they
undergo a large-scale conformational change upon binding these
analytes (19) over arbitrarily broad (20, 21) or narrow (20, 22)
concentration windows. E-AB sensors use this conformational
change to generate an easily measureable electrochemical signal
without the need for the target to undergo a chemical trans-
formation (23). To achieve this signal transduction, the aptamer’s
binding-induced conformational change is used to alter the effi-
ciency with which a covalently attached redox reporter (here
methylene blue) approaches an underlying electrode, producing a
target-concentration-dependent change in current when the sen-
sor is interrogated using square wave voltammetry (24) (Fig. 1A
and SI Appendix, Fig. S1). As required to support continuous
in vivo measurements, E-AB signaling is not reliant on batch
processes, such as wash steps, or on the addition of exogenous
reagents. Furthermore, because E-AB signaling is generated
by a specific, binding-induced conformational change—and not

adsorption of the target to the sensor surface (which is the case for
SPR, QCM, FETs, and microcantilevers)—the platform is relatively
insensitive to fouling. Previous studies, for example, have shown that
E-AB sensors perform well when challenged for hours in flowing,
undiluted blood serum (25), rendering them one of the most fouling
resistant single-step biosensor platforms reported to date.
Despite their unprecedented ability to perform continuous

monitoring in undiluted blood serum, first-generation E-AB sen-
sors nevertheless foul when challenged in undiluted whole blood,
precluding their use directly in vivo. In response, we previously
developed a microfluidic approach to preventing fouling by blood
cells that supports continuous ex vivo measurements of drug levels
in blood continuously drawn by catheter from anesthetized animals
(26). In that work, we constructed a microfluidic device using two
stacked laminar flows: a bottom flow of blood continuously drawn
via a jugular catheter from the animal and draining into a waste
chamber, and a flow of buffer stacked on top of this first layer and
in permanent contact with the relevant E-AB sensor. The buffer
sheath acts as a continuous-flow diffusion filter, allowing for rapid
diffusion of small-molecule targets to the sensor while preventing
the approach of (much more slowly diffusing) blood cells. Using
this device, we have measured the serum levels of multiple drugs
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Fig. 1. Real-time, continuous measurement of specific drugs directly in the living body. (A) The E-AB sensing platform, in which the binding-induced folding
of an electrode-bound, redox-reporter-modified aptamer leads to a change in electron transfer easily detected using square wave voltammetry. (B) A mi-
croporous (0.2 μm) polysulfone membrane protects the sensor from fouling by blood cells. (C) The resultant device is small enough to emplace in one of the
external jugulars of a rat using an 18-gauge catheter (the cartoon overlay illustrates sensor location). (D) To correct the drift seen in vivo, we record data at
two square wave frequencies (here 30 and 240 Hz; optimal values depend on the aptamer used). At one frequency, the sensor’s voltammetric signal increases
upon target binding, whereas at the other, it is reduced; taking the difference between the two eliminates drift and enhances signal-to-noise (26). (E) Using
drift-corrected E-AB sensors, we have monitored the in vivo concentrations of multiple drugs continuously and in real-time over the course of many hours in
measurements that achieve clinically relevant precision and few-second time resolution. Shown here, for example, is the measurement of the antibiotic
tobramycin in the blood of an anesthetized rat after two serial injections into the opposite external jugular. (F) At 3 s per measurement, the time resolution of
these measurements is sufficient to monitor both the injection itself and the subsequent distribution of the drug within the circulatory system and reflects an
orders of magnitude improvement over the resolution of traditional pharmacokinetic methods (45).
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for up to 4 h. The approach, however, is nevertheless not without
potentially significant limitations. Being ex vivo, for example, the
device suffers from a time lag (the time required for blood to leave
the body and enter the device), requires continuous blood draws
(the buffer-diluted blood must be discarded), and can only be used
to measure molecules in blood because other bodily fluids cannot
easily and continuously be withdrawn. The device is also complex,
requiring a pump and buffer and waste reserves. Finally, due to the
necessity of generating laminar flow, the device is sensitive to
mechanical shock and thus likely not robust enough to be deployed
in awake, freely moving animals. Here, in contrast, we have
adapted E-AB sensors to the important problem of performing
continuous, real-time, multihour measurements of specific mole-
cules directly within the bodies of awake, freely moving animals.

Results and Discussion
We have taken a two-pronged approach to circumventing the
challenging conditions associated with deploying sensors directly
within the bodies of living animals. To reduce fouling, we encase
our sensors in biocompatible (27) polysulfone membranes (Fig.
1B), the 0.2-μm pores of which prevent blood cells from
approaching the sensor surface while simultaneously allowing for
the rapid transport of target molecules. Using these membranes,
we achieve stable E-AB baselines in flowing, undiluted whole
blood in vitro over many hours (SI Appendix, Fig. S1). Even
membrane-protected E-AB sensors, however, exhibit significant
baseline drift when emplaced in the veins of live animals (Fig.
1D). To circumvent this drift, we use a correction scheme termed
“Kinetic Differential Measurements” (KDM). Drift correction
methods have historically used a physically separate reference

that, although unresponsive to the targeted input, nevertheless
yields an identical response to background that can be subtracted
from the sensor output (28). KDM instead employs a single
aptamer in both roles, thus obviating the need to fabricate a
matched sensor-reference pair (26). To achieve this stand-alone
performance, KDM exploits the square wave frequency de-
pendence of E-AB signaling. Specifically, electron transfer is more
rapid from the folded, target-bound aptamer than it is from the
unfolded, target-free aptamer. This kinetic difference results in a
binding-induced increase in current when we perform square-wave
voltammetry at high frequencies and a binding-induced decrease in
signal at low frequencies (SI Appendix, Fig. S2) (19). Conveniently,
these two outputs drift in concert, and thus taking their difference
effectively corrects baseline drift (Fig. 1D).
Drift-corrected, membrane-protected E-AB sensors readily

support the continuous, seconds-resolved real-time measurement
of specific molecules in the blood of living animals (Fig. 1 E and F).
To demonstrate this ability, we first emplaced E-AB sensors for the
detection of the cancer chemotherapeutic doxorubicin (DOX) (29,
30) in the external jugular vein of anesthetized Sprague–Dawley
rats (Fig. 1C). Using this approach, we achieve nanomolar precision
in the measurement of clinically relevant plasma drug levels fol-
lowing five sequential injections over 5 h of continuous monitoring
(Fig. 2A). The resulting plot of concentration versus time presents
consecutive spikes corresponding to each of the injections per-
formed, with maximum DOX concentrations (Cmax) of ∼600 nM
and the effective clearance of 90% of the drug from the circulatory
system within 50 min, values in close accord with prior reports (31).
Because E-AB signaling is independent of the chemical re-

activity of the target, E-AB sensors can be switched to the
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Fig. 2. Continuous molecular measurements in vivo. We have successfully measured multiple drugs using E-AB sensors emplaced in the jugulars of anesthetized
rats. (A) Shown here are five i.v. injections of 2 mg/m2 of the cancer chemotherapeutic DOX, a dose more than 25 times lower than typical human doses (46). (B–D)
To illustrate the generality of the approach, we have also used an aminoglycoside-detecting E-AB sensor to monitor in vivo levels of the antibiotics kanamycin,
gentamicin, and tobramycin at the indicated doses. The kanamycin doses used here span the 10–30 mg/kg therapeutic range used in humans (34). For gentamicin,
we focus here on two sequential i.v. injections of the drug, separated by a 2-h interval. For tobramycin, we present an overlay of data collected after sequential
i.m. (thigh) and i.v. (the external jugular opposite the sensor) injections carried out in a single rat.
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detection of new, chemically unrelated molecules via the simple
expedient of replacing their aptamer recognition element. To
demonstrate this modularity, we fabricated sensors using an
aptamer recognizing the aminoglycoside antibiotics (32, 33). Using
these sensors, we first followed monotonically increasing i.v. doses
of kanamycin spanning the therapeutic ranges used in humans (34)
(10–30 mg/kg) and animals (35) (25–30 mg/kg). The sensor
responded rapidly to each injection, measuring maximum
concentrations between 34 and 400 μM depending on the de-
livered dose (Fig. 2B). The 200 μM maximum concentration ob-
served after a 10 mg/kg dose was in agreement with peak plasma
concentrations determined previously (using cumbersome, poorly
time-resolved ex vivo radioimmunoassays) after similar doses were
injected into multiple animal species (36). The sensor can likewise
monitor in real time the in vivo concentrations of the aminoglyco-
sides gentamycin (Fig. 2C) and tobramycin (Fig. 2D and SI Ap-
pendix, Fig. S3) following either i.m. or i.v. injections, applications in
which it once again achieves excellent precision and time resolution.
The ability to perform the continuous measurement of specific

molecules in the body opens the door to many potentially
transformative applications in the study of physiology and
pharmacokinetics. For example, the few-second time resolution
of E-AB sensors (Fig. 1F), which reflects orders of magnitude
improvement over the time resolution of traditional pharmaco-
kinetic methods, is sufficient to measure the kinetics with which
drugs distribute following i.v. injection (Fig. 3 and SI Appendix,
Fig. S4), a pharmacokinetic phase that has rarely if ever been
previously measured (e.g., refs. 37–39). Indeed, the precision of
E-AB measurements is sufficient not only to robustly identify
animal-to-animal pharmacokinetic variability, but even variabil-
ity within a single animal over the course of a few hours. To
explore this ability, we monitored the pharmacokinetics of
tobramycin following sequential 20 mg/kg i.v. injections con-
ducted 2 h apart in each of three rats. Fitting the resultant data
to a two-compartment model, we easily observe statistically sig-
nificant inter- and even intraanimal variability (Fig. 4). The
distribution phase (α phase) of this drug, for example, is defined
largely by blood and body volume and thus, although the dis-
tribution differs between animals, it differs much less as a
function of time within individual animals. The elimination ki-
netics of tobramycin (β phase), in contrast, not only vary signif-
icantly between animals but also exhibit variations within a single
individual over the course of a few hours that are easily mea-
surable using our approach (Table 1). For example, although the
kinetics of the α phase remain relatively constant for a given
animal, the β phase invariably slows with time. This change
presumably occurs because, whereas drug absorption (captured
by the α phase) is defined by body volume, which remains fixed,
the elimination of tobramycin (captured in the β phase) is pre-
dominantly via excretion from the kidneys (40, 41), the function

of which likely changes due to alterations in the animal’s blood
pressure (42) and/or hydration after several hours under anesthesia.
The ability of E-AB sensors to reject false signals arising

from background interferents is excellent; none of the many
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easily seen, the resolution of in vivo E-AB sensors is
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Fig. 4. The measurement of inter- and intraanimal pharmacokinetic vari-
ability. The precision of E-AB measurements is sufficient to measure not only
interanimal pharmacokinetic variability but also variability within an individual
animal over time. Shown are the pharmacokinetic profiles of the drug
tobramycin following two sequential 20 mg/kg i.v. injections in three different
rats (A, B, and C). These high-precision measurements reveal a decrease in the
rate of drug elimination kinetics (β phase) in the second injection with respect
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jection dataset to a two-compartment pharmacokinetic model.
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endogenous metabolites and hormones in rat blood activates the
sensor, as evidenced by their performance in vivo. The platform’s
ability to distinguish between structurally similar molecules, in
contrast, can be problematic due to the sometimes [although not
always (43, 44)] limited specificity of aptamers because, of
course, the sensor cannot be more specific than the aptamer
from which it is constructed. E-AB specificity is nevertheless
sufficient for many research and clinical applications. For ex-
ample, although the aminoglycoside-binding aptamer recognizes
multiple members of this closely related family of drugs (Fig. 2 B–
D), coadministration of more than one of these highly toxic drugs
is clinically contraindicated, and thus the inability to distinguish
between them is of little medical relevance. The therapeutic action
of DOX is driven by its ability to bind DNA, and thus the ami-
noglycoside sensor also exhibits cross-reactivity to this drug (SI
Appendix, Fig. S5A). Here too, however, the coadministration of the
two is so rare as to limit the clinical impact of this effect. The DOX-
detecting sensor, in contrast, exhibits no significant cross-reactivity
with the aminoglycosides (SI Appendix, Fig. S5B), nor does it exhibit

significant cross-reactivity with other chemotherapeutics that are
commonly coadministered with DOX in clinical applications (26).
In addition to studies, as those above, performed on anesthetized

animals, the simplicity, physical robustness, and small size of E-AB
sensors also renders it possible to perform measurements on awake,
ambulatory animals. To illustrate this ability, we surgically implanted
permanent catheters in the jugular veins of rats and allowed the
animals to recover from this surgery for 2 wk before using the
catheter to insert a flexible E-AB sensor under light anesthesia. The
sensor connects to its supporting electronics via flexible wire leads
that allow the awake animals to move largely unimpeded (Fig. 5A
and Movie S1). Aminoglycoside sensors used under these conditions
support run times of up to half a day as the animal feeds, drinks, and
explores its environment (Fig. 5 B and C), producing pharmacoki-
netic data that avoid potentially confounding factors associated with
measurements based on (repeated) blood draws, which require
anesthetized or otherwise immobilized (and thus stressed) animals.
Here, we demonstrate the ability of E-AB sensors to track

specific small molecules continuously and in real time in awake,

Table 1. Pharmacokinetic parameters corresponding to repeated i.v. injections of tobramycin in three Sprague–
Dawley rats

Rat no. Injection no. A,* μM α, min B, μM β, min Cmax,
† μM AUC, μmol·min·L−1 ClT, mL·min−1

1 1 255 ± 82 2.2 ± 0.4 71 ± 2 51 ± 3 326 ± 82 117 ± 58 129 ± 64
1 2 267 ± 56 1.6 ± 0.3 80 ± 4 57 ± 4 347 ± 56 168 ± 61 90 ± 32
2 1 113 ± 38 1.6 ± 0.4 82 ± 2 32 ± 1 195 ± 38 73 ± 39 208 ± 100
2 2 109 ± 22 2.7 ± 0.6 50 ± 2 71 ± 7 159 ± 22 41 ± 15 370 ± 139
3 1 284 ± 34 1.2 ± 0.1 46 ± 2 38 ± 3 330 ± 34 237 ± 49 63 ± 13
3 2 138 ± 32 1.7 ± 0.1 35 ± 2 67 ± 3 173 ± 32 82 ± 28 186 ± 63

Confidence ranges reflect 95% confidence intervals.
*A, α, B, and β are derived from the fit to a two compartment model: ½target�=Ae−t=α +Be−t=β, where α and β are the half-lives for
distribution and elimination, respectively.
†Cmax, AUC (area under the curve), ClT (drug clearance), and their associated confidence intervals propagated from the kinetic param-
eters A, α, B, and β.
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Fig. 5. Continuous, in vivo molecular measurements on awake, ambulatory animals. (A) The small size and physical robustness of E-AB sensors renders it
possible to use them in animals as they eat, drink, and explore their cage (Movie S1). This robustness, in turn, enables the measurement of specific molecules
in the blood of animals as they undertake their normal daily routine, conditions perhaps more relevant to human health than those traditionally used for the
collection of metabolic and pharmacokinetic data. Shown are blood levels of the drug tobramycin after a 25 mg/kg i.m. injection (thigh) (B) or sequential
40 mg/kg i.v. (jugular vein) injections (C) in awake, freely moving animals.
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ambulatory animals, a capability that could provide an important
tool for understanding physiology and pharmacology. By allowing
arbitrary molecules (limited only by the availability of an aptamer
of appropriate specificity and affinity) to be monitored with high
resolution in animals undergoing their normal daily routine, for
example, the ability to perform such measurements could improve
our knowledge of metabolism, pharmacokinetics, and toxicology.
The few-second time resolution of our approach likewise suggests
that it could improve our understanding of rapidly fluctuating
physiological events, such as uptake and distribution pharmacoki-
netics, hormone and neurotransmitter release, and the movement
of drugs and metabolites across the blood–brain barrier and within
the central nervous system. Finally, the ability to perform the
measurement of specific molecules in the body in real time could
enhance the efficiency and accuracy with which drugs are dosed, in
applications ranging from personalized, patient-specific pharma-
cokinetic measurements as a means of precisely tailoring dosing to
long-term feedback-controlled drug delivery in which the dosage of
a drug is varied in real time in response to minute-to-minute
changes in a patient’s physiological status. In short, the technology

demonstrated here could enhance not only our understanding of
health but also our ability to detect, monitor, and treat disease.

Materials and Methods
All animal procedures were consistent with the guidelines of the NIH Guide for
the Care and Use of Laboratory Animals (47) and approved by the Institutional
Animal Care and Use Committee of the University of California, Santa Barbara.

A detailed description of the materials and methods used in this work can
be found in SI Appendix, which includes a descriptive list of chemicals and
materials used, E-AB sensor fabrication, calibration and surgical emplace-
ment, a description of the electrochemical methods (including KDM) and
data analysis software used, and details on the experimental setups used to
carry out in vitro and in vivo measurements.
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