
UCLA
UCLA Electronic Theses and Dissertations

Title
On Embedded Methods for Crack Propagation, Virtual Surgery, Shattered Objects in
Computer Animation, and Elliptic Partial Differential Equations

Permalink
https://escholarship.org/uc/item/9h34x698

Author
Hellrung, Jeffrey Lee

Publication Date
2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9h34x698
https://escholarship.org
http://www.cdlib.org/

University of California
Los Angeles

On Embedded Methods for Crack Propagation,
Virtual Surgery, Shattered Objects in Computer

Animation, and Elliptic Partial Differential Equations

A dissertation submitted in partial satisfaction
of the requirements for the degree

Doctor of Philosophy in Mathematics

by

Jeffrey Lee Hellrung, Jr.

2012

c© Copyright by
Jeffrey Lee Hellrung, Jr.

2012

Abstract of the Dissertation

On Embedded Methods for Crack Propagation,
Virtual Surgery, Shattered Objects in Computer

Animation, and Elliptic Partial Differential Equations

by

Jeffrey Lee Hellrung, Jr.
Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2012
Professor Joseph M. Teran, Chair

We present a collection of embedded methods to solve a variety of scientific computing prob-

lems in both 2 and 3 dimensions. Embedded methods make use of a structured background

mesh which does not conform to the irregular geometry, such as the domain boundary, of

the problem. Instead, the irregular geometry is embedded within the structured mesh’s

elements, providing a framework to solve many problems involving crack propagation, pro-

gressive fracturing, dynamic interfaces, and shape optimization.

In Part I, we apply the mesh cutting algorithm of Sifakis et al. [SDF07] to investigate the

modeling of cracks, surgical incisions, and shattering. Specifically, we present a geometrically

flexible and straightforward crack propagation method which combines the eXtended Finite

Element Method (XFEM) with [SDF07] and an innovative integration scheme which makes

use of a subordinate quadrature mesh. We also discuss the application of [SDF07] and other

advances in numerical methods to address the challenges of a virtual surgery simulator. We

conclude Part I by describing a system to facilitate the modeling of cracked and shattered

objects in the context of visual effects and computer animation.

In Part II, we present a numerical method utilizing virtual degrees of freedom to efficiently

solve elliptic partial differential equations (specifically: Poisson’s equation with interfacial

jump conditions; and linear elasticity in the nearly incompressible regime) on irregular do-

mains within a regular background Cartesian grid. Our method enforces Dirichlet boundary

conditions and interfacial jump conditions weakly, formulating our system as a constrained

ii

minimization problem. In this context, we describe an algorithm to generate an associated

discrete Lagrange multiplier space that allows one to derive an equivalent symmetric positive

definite linear system. We provide a family of multigrid algorithms to solve this linear system

with near optimal efficiency. Our method is second order accurate in L∞ and possesses a

feature set rarely found among the broad class of embedded methods for elliptic problems.

iii

The dissertation of Jeffrey Lee Hellrung, Jr. is approved.

Demetri Terzopoulos

Stanley J. Osher

Christopher R. Anderson

Joseph M. Teran, Committee Chair

University of California, Los Angeles

2012

iv

Table of Contents

Introduction 1

I Applications of Arbitrary Lagrangian Mesh Cutting 3

1 Crack Propagation in Two Dimensions . 8

1.1 Background and Existing Methods . 8

1.2 Governing Equations . 10

1.3 Extended Finite Elements . 12

1.4 Cutting of Cracked Domains . 13

1.5 Integration . 16

1.5.1 Construction of the Simulation Mesh and Quadrature Mesh 17

1.5.2 Integration Scheme . 19

1.6 Crack Propagation . 20

1.7 Numerical Examples and Experiments . 21

1.7.1 Example 1: Straight Crack with Pure Mode I Displacement 21

1.7.2 Example 2: Straight Crack with Constant Shear Displacement 22

1.7.3 Example 3: Angled Center Crack with Mixed Mode Displacement . . 27

1.7.4 Propagation Examples . 28

1.8 Discussion and Conclusion . 32

2 Virtual Surgery . 35

2.1 Technical Background . 36

2.1.1 Real-Time Simulation . 37

2.1.2 Accuracy and Nonlinear Deformation 37

2.1.3 Robustness Under Large Deformation 38

2.2 Tools and Methods . 39

2.3 Results . 40

2.4 Conclusions . 40

3 Geometric Fracture Modeling in Computer Animation 42

3.1 Introduction . 42

3.2 Crack Geometry Generation . 42

v

3.3 Automatic Fragment Mesh Generation . 43

II Virtual Node Methods for Elliptic Problems 45

4 Poisson with Interfacial Jump Conditions 50

4.1 Background and Existing methods . 50

4.2 Discretization . 53

4.2.1 Domain and Interface Embedding and Integration 53

4.2.2 Embedded Neumann . 59

4.2.3 Embedded Dirichlet . 62

4.2.4 Embedded Interface . 71

4.3 Multigrid . 76

4.3.1 Discretization . 77

4.3.2 Smoothing Operator . 78

4.3.3 Transfer Operators . 79

4.3.4 Details . 80

4.4 Numerical Examples . 81

4.4.1 Embedded Neumann Example 1 . 84

4.4.2 Embedded Neumann Example 2 . 84

4.4.3 Embedded Dirichlet Example . 84

4.4.4 Embedded Interface Examples . 87

4.4.5 Discontinuity Removal . 89

4.4.6 Multigrid . 93

4.5 Discussion, Conclusion, and Future Work . 96

5 Nearly Incompressible Linear Elasticity . 97

5.1 Background and Existing methods . 97

5.2 Mixed Finite Element Formulation . 99

5.2.1 Discretization . 99

5.2.2 Implementation Details . 103

5.2.3 Discrete Geometric Representation and Integration 104

5.3 Dirichlet Boundary Conditions . 107

5.3.1 Discretizing the Dirichlet Problem . 108

5.4 Multigrid . 110

vi

5.4.1 Discretization Hierarchy . 111

5.4.2 Relaxation . 112

5.4.3 Coarsening . 117

5.5 Numerical Examples . 118

5.5.1 Convergence . 121

5.5.2 Multigrid . 125

5.6 Discussion, Conclusion, and Future Work . 127

A Quadrature . 129

B Cell Averages . 130

C Double-Wide Constraint Conditioning . 131

References . 132

vii

List of Figures

I.1 This mesh is cut by two curves, one of which contains a branch (left). The
cutting algorithm first treats each triangle individually, creating duplicates for
each locally disjoint material region (center), and then uses the global mesh
topology to join these duplicates on the proper degrees of freedom (right). . 5

I.2 Simple example of an original mesh triangle (left) duplicated with its disjoint
material regions (blue) being distributed among the duplicates (middle, right).
Likewise, the vertices in each duplicate are either identified with the vertices
of the original triangle (material nodes, sold blue) or duplicate copies (virtual
nodes, hollow blue), depending on whether they fall within a material region. 6

I.3 A more complex example of the initial division of a triangle by a cutting
curve. Since the original mesh triangle is divided into 3 disjoint material
regions (left), the algorithm generates 3 duplicate triangles, each possessing
a different material region (right). (Coloring is consistent with that used in
Figure I.2.) . 6

1.1 An example with a complex branching crack. (top) A crack surface cutting the
simulation mesh; (center) the crack surface cutting the embedded quadrature
mesh; (bottom) the computed stress field with uniform traction applied to the
left and right edges. 11

1.2 A crack is introduced into the mesh on the left, yielding the enriched mesh
on the right, with duplicated triangles and virtual nodes, which we use as our
simulation mesh. 13

1.3 For quadrature purposes, we refine the uncut mesh in Figure 1.2(left) around
the cut (upper left), then cut this refined mesh (bottom). A blow up of the
region near the crack (upper right) shows the virtual nodes relative to the
crack surface. 14

1.4 A truncated basis function in dimension 1. At left, a mesh element with
vertices 1 and 2 is cut by the red dot, resulting in the two duplicate elements on
the right. The original nodal basis “hat” function φ̃2 corresponding to vertex
2 (green) gets truncated into derived basis functions φ2 and φ4 according the
material region within each duplicate element. 14

1.5 Given the uncut mesh and crack at left, XFEM using traditional Heaviside
enrichment yields 8× 2 degrees of freedom (center), while using virtual nodes
as described in §1.4 yields 9× 2 degrees of freedom (right). 15

1.6 The polar angle of a virtual node in the quadrature mesh is measured across
the crack surface to ensure continuity of θ throughout a quadrature triangle. 18

1.7 Two samplings of the asymptotic near-tip enrichment function F1 =
√
r sin θ

2
.

(a) shows a sampling at a low resolution, while (b) shows a sampling at a high
resolution. 19

viii

1.8 The setup for Example 1. 21

1.9 Log-log convergence plots of the errors in KI (left) and KII (right) for Example
1. Each row corresponds to a fixed refinement level of the quadrature mesh: 1
level (top), 3 levels (center), and 5 levels (bottom). All the linear regressions
fit to the plots have slopes close to −1, incidating first order convergence. . . 23

1.10 Log-log convergence plots of the errors in KI (left) and KII (right) for Example
1. Each row corresponds to a fixed refinement level of the quadrature mesh: 1
level (top) and 5 levels (bottom). Each plot compares respecting the material
region within a cut quadrature triangle during integration against treating
the quadrature triangle as completely full. The results indicate first order
convergence regardless of the method. 24

1.11 Plots illustrating the difference betwen respecting the material region within
a cut quadrature triangle during integration against treating the quadrature
triangle as completely full. We show the differences between KI (left) and KII

(right) as we vary the quadrature mesh refinement level on a 64×32 resolution
simulation mesh. 25

1.12 The setup for Example 2. 25

1.13 Log-log convergence plots of the errors in KI (left) and KII (right) for Example
2. Each row corresponds to a fixed refinement level of the quadrature mesh: 1
level (top), 3 levels (center), and 5 levels (bottom). All the linear regressions
fit to the plots have slopes very close to −1, incidating first order convergence. 26

1.14 The setup for Example 3. 27

1.15 Results for Example 3. The top row compares the relative errors in KI (left)
and KII (right) for 0 levels of quadrature mesh refinement (blue squares) and
5 levels of quadrature mesh refinement (orange diamonds). The bottom row
compares 0 levels of refinement to just 1 level of refinement. Note that much
of the accuracy improvement achieved with a very fine quadrature mesh (5
levels of refinement) is already present at only 1 level of refinement of the
quadrature mesh. 29

1.16 Simulation of a rectangular domain with symmetric boundary displacements;
initial configuration (upper left), at 5 time steps (upper right), at 10 time
steps (lower left), and at 15 time steps (lower right). 30

1.17 The setup for a crack propagation example involving a beam with a crack at
various initial perturbation angles θ. 30

1.18 The results of crack propagation in the cantilever beam example. We plot
the position of the crack tip at each time step: blue triangles correspond to
θ = 2.86◦; and yellow triangles correspond to θ = 5.71◦. 31

1.19 Crack propagation in a square domain with holes; initial configuration (top
row) and simulation after 20 time steps (bottom row). 33

ix

1.20 An example application of the mesh cutting algorithm to mesh a domain.
A triangulated rectangle overlays the domain (left), and the mesh cutting
algorithm resolves the domain boundary against the background mesh. This
yields two disconnected meshes, an interior one (right) and an exterior one,
which we discard. 34

1.21 Crack propagation simulation with complex geometry; initial configuration
(top left), at 5 time steps (top right), at 10 time steps (bottom left), and at
25 time steps (bottom right). 34

2.1 Simulation of a malignant melanoma removal and closure of the resulting
defect with a rhomboid flap procedure. The gridded texture demonstrates
the post-procedure topology and geometry of the tissue. 36

2.2 Simulation of a z-plasty procedure for the elongation of a scar contracture. . 38

2.3 Comparison of the simulated results of Z-plasty procedures with incision an-
gles at 45, 60 and 90 degrees respectively from left to write. Simulation con-
firms the conventional wisdom that 60 degrees is the optimal incision angle.
Also, the 90 degree incision reproduces the so-called “dog ear” effect. 40

3.1 Left, middle: Rhino’s ball is riddled with cracks as a metal gate crushes it
down. Right: A roadway is torn up by Bolt’s “superbark”. 42

3.2 Top left: Simulation of the shattered fragments of Rhino’s ball. Top right:
Fracture surfaces defined as the boundaries of Voronoi regions in 3D. Bottom:
The fragments are fully resolved as independent surface meshes, and can be
separately manipulated. 44

II.3 Example domain embeddings in (a) 2 dimensions and (b) 3 dimensions. In a
typical domain embedding, only grid vertices on grid cells which intersect the
domain (in (a), shaded) are considered degrees of freedom. 47

4.1 Example embeddings for domain problems. Subfigure (a) shows an example
in 2 dimensions to clearly depict the various classes of grid cells and vertices:
shaded grid cells comprise the computational domain (Ch), with lighter-shaded
grid cells on the boundary (Ch∂Ω); grid vertices surrounded by gray circles
represent virtual degrees of freedom (N h

v); grid vertices surrounded by black
circles represent material degrees of freedom (N h

m) incident to a boundary
grid cell; and grid vertices surrounded by squares represent material degrees
of freedom (N h

m) incident only to non-boundary grid cells. Subfigure (b) shows
an example in 3 dimensions. 54

4.2 A grid cell ci with an example boundary dividing it. The left half of the
cell in (b) corresponds to ci ∩ Ω, the material region of the cell. (b) shows
the polyhedralization Pci of the material region of the cell, where the shaded
triangles highlight Pci∂Ω ⊂ Pci , the polyhedralization just of the portion of ∂Ω
passing through ci. 55

x

4.3 An example interface embedding in 2 dimensions, showing the separate do-
main embeddings for Ω− and Ω+. Grid cells and grid vertices are labelled as
in Figure 4.1: shaded grid cells comprise the interior (Ω−, (a)) and exterior
(Ω+, (b)) computational domains, with the lighter-shaded grid cells on the
interface; grid vertices surrounded by gray circles represent virtual degrees of
freedom; grid vertices surrounded by black circles represent material degrees
of freedom incident to an interfacial grid cell; and grid vertices surrounded by
squares represent material degrees of freedom incident only to non-interfacial
grid cells. Notice how all interfacial grid cells and circled grid vertices are
effectively duplicated between the grids embedding the interior and exterior
domains. Also note that each grid vertex on an interfacial grid cell is dupli-
cated into precisely one material degree of freedom and one virtual degree of
freedom. 57

4.4 We approximate an embedded domain boundary or embedded interface im-
plicitly defined by a level set function with a polyhedral representation com-
puted by partitioning each boundary or interfacial grid cell into 24 congruent
tetrahedra, as in (a) and (b); and subsequently dividing each tetrahedron ac-
cording to the level set function values at its vertices, e.g., as in (c). The
union of the dividing triangles and quadrilaterals within each divided tetra-
hedron compose the polyhedral representation of the embedded boundary or
embedded interface. In 2 dimensions, the analogous procedure would be to
partition each square grid cell into 4 triangles, as in (d), and divide each trian-
gle according to the level set values at its vertices, as in (e). The union of the
dividing segments within each triangle compose the polygonal representation
of the embedded boundary or interface, as in (f). 58

4.5 Illustration in 2 dimensions of the stiffness matrix (A) stencils for various grid
vertices. The stencil for a degree of freedom indicates where the nonzero (NZ)
entries are of the row (or column) in A corresponding to the degree of freedom.
Squared grid vertices have the standard finite difference Poisson stencil (a
5-point stencil in 2 dimensions; a 7-point stencil in 3 dimensions), which
naturally arises through the use of eck to discretize the energy (4.3). Circled
grid vertices (both black and gray) will generally have a denser stencil (up to
a 9-point stencil in 2 dimensions; up to a 27-point stencil in 3 dimensions),
due to the use of ẽck . 61

4.6 Schematics of two discretizations Λh of the Lagrange multiplier spaceH−1/2(∂Ω)
in 2 dimensions used in (4.9). (a) shows a schematic of functions in Λh

1 , which
are piecewise constant over Ch∂Ω ∩ ∂Ω. (b) shows a schematic of functions in
Λh

2 , which are piecewise constant over C2h
∂Ω ∩ ∂Ω (using the doubly-coarse grid

G2h). Note that the center grid vertex (highlighted) in each doubly-coarse
boundary grid cell is an independent degree of freedom with respect to C2,
the constraints induced by Λh

2 . That is, the center grid vertex in a doubly-
coarse boundary grid cell participates only in the constraint corresponding to
that cell. 63

xi

4.7 Illustrated progression of the constraint aggregation described in §4.2.3.2. . . 67

4.8 A graphical representation (in 2 dimensions) of a plausible state of Algo-
rithm 4.1 after the selection of 6 independent degrees of freedom (highlighted).
Some degrees of freedom have been removed to indicate their ineligibility as
subsequently selected independent degrees of freedom: material degrees of
freedom, by definition of Algorithm 4.1, are never selected as independent
degrees of freedom (this vastly improved the performance of our boundary
smoother in our multigrid algorithm; see §4.3); and those virtual degrees of
freedom adjacent to one of the 6 previously selected independent degrees can
not now be selected as independent degrees of freedom, simply by the defini-
tion of independence. Further, we distinguish between covered boundary grid
cells, which lie within some 4×4 block of cells (shown as the dark gray outlined
squares) around an independent degree of freedom; and the remaining uncov-
ered boundary grid cells (denoted by cross-hatching). Once all boundary grid
cells are covered, Algorithm 4.1 terminates further selection of independent
degrees of freedom. 70

4.9 Example enumeration of the interfacial degrees of freedom (circled) such that
T has the representation (4.27). Only the indices of a few select interfacial
degrees of freedom are shown. Here, we enumerate the s = 112 virtual degrees
of freedom lexicographically, beginning with the interior discretization. The
interior discretization has 60 virtual degrees of freedom (indexed 1 to 60) and
52 interfacial material degrees of freedom (indexed 173 to 224); likewise, the
exterior discretization has 52 virtual degrees of freedom (indexed 61 to 112)
and 60 interfacial material degrees of freedom (indexed 113 to 172). Notice
how the the index to an interfacial material degree of freedom is offset from
the index of its co-located virtual degree of freedom by exactly s = 112.
The remaining non-interfacial degrees of freedom (squared) are enumerated
starting with index 2s+ 1 = 225. 74

4.10 Partitioning the degrees of freedom according to their grid-distance from the
embedded boundary or embedded interface. 81

4.11 Figures for Example 4.4.1: geometry of ∂Ω at N = 32, convergence plot of
the errors, and z-slices of uh at N = 32. The black wireframe box in (c) - (e)
is {(x, y) ∈ [−1,+1]2} × [−1,+1]. 85

4.12 Figures for Example 4.4.2: geometry of ∂Ωn at N = 64, convergence plot of
the errors, and z-slices of uh at N = 64. The black wireframe box in (c) - (f)
is {(x, y) ∈ [−1/2,+1/2]2} × [−1/2,+1/2]. 86

4.13 Figures for Example 4.4.3: geometry of ∂Ωd at N = 64, convergence plot of
the errors, and x-slices of uh at N = 64. The black wireframe box in (c) - (e)
is {(y, z) ∈ [−1,+1]2} × [1, 3]. 88

xii

4.14 Figures for Example 4.4.4: geometry of Γ, z-slices of uh with (α−, α+) = (2, 1)
at N = 64, and convergence plots of the errors at various combinations of α−

and α+. The black wireframe box in (b) - (d) is {(x, y) ∈ [−1,+1]2} × [0, 2]. 90

4.15 Figures for Example 4.4.5: geometry of Γ, convergence plot of the errors, and
z-slices of uh at N = 64. The black wireframe box in (c) - (e) is {(x, y) ∈
[−1,+1]2} × [−4, 4]. 92

4.16 Multigrid v-cycle convergence plots for embedded Neumann Examples 4.4.1
and 4.4.2 with β ≡ 1. The grid resolution is N = 384 and the boundary
smoothing region width is 1. The top plot in each subfigure shows the residual

norm
∥∥∥~f − A~u∥∥∥

∞
after each v-cycle iteration for various numbers of boundary

smoothing sweeps (NBSS). The bottom plots shows the ratio of successive
residual norms. The estimated rate given in each bottom plot is the average
ratio of successive residual norms over the final 10 iterations. 94

4.17 Multigrid v-cycle convergence plots for embedded Dirichlet Example 4.4.3
with β ≡ 1 for a boundary smoothing region width (BSRW) of 2 and 3.
The grid resolution is N = 384. The top plot in each subfigure shows the

residual norm
∥∥∥~f − A~u∥∥∥

∞
after each v-cycle iteration for various numbers of

boundary smoothing sweeps (NBSS). The bottom plots shows the ratio of
successive residual norms. The estimated rate given in each bottom plot is
the average ratio of successive residual norms over the final 10 iterations. . . 94

4.18 Multigrid v-cycle convergence plots for embedded interface Examples 4.4.4
with β− ≡ α−, β+ ≡ α+ for a interface smoothing region width (ISRW) of 2
and 3 and various combinations of α−, α+. The grid resolution is N = 256.

The top plot in each subfigure shows the residual norm
∥∥∥~f − A~u∥∥∥

∞
after each

v-cycle iteration for various numbers of interface smoothing sweeps (NISS).
The bottom plots shows the ratio of successive residual norms. The estimated
rate given in each bottom plot is the average ratio of successive residual norms
over the final 10 iterations. 95

5.1 Staggered grid finite element quadrangulation and embedded domain boundary.100

5.2 (a) A interior pressure cell and the 13 degrees of freedom involved in the cor-
responding element stiffness matrix. (b) A typical boundary pressure cell. (c)
The degrees of freedom involved in the sub-elemental stiffness matrix corre-
sponding to quadrant ω1. 105

5.3 Global stiffness matrix stencils centered at an interior x degree of freedom
(left), y degree of freedom (middle), and p degree of freedom (right). 105

5.4 A zoomed-in view of Figure 5.1(a). We sample a the level set function implic-
itly defining Ω on the doubly refined subgrid depicted in (a), and use this to
generate a segmend curve approximation ∂Ωh to ∂Ω, as in (b). 107

5.5 Boundary band and distributive region. 113

xiii

5.6 Stencils for the restriction operator R. 118

5.7 Keyhole domain. 120

5.8 Flower domain. 120

5.9 Spiral domain. 121

5.10 Log-log plots of the L∞-error of the approximate solution versus the grid
resolution, and the corresponding computed orders of convergence, ρ, for the
keyhole domain. We stipulate an embedded Neumann boundary condition for
the top ((a), (b)) examples and an embedded Dirichlet boundary condition for
the bottom ((c), (d)) examples. The left ((a), (c)) examples have a Poisson’s
ratio of ν = 0.3, while the right ((b), (d)) use a Poisson’s ratio of ν = 0.49,
very close to the incompressible limit. Square (circle) markers in the above
error plots correspond to errors in the x (y) component. 122

5.11 Log-log plots of the L∞-error of the approximate solution versus the grid
resolution, and the corresponding computed orders of convergence, ρ, for the
flower domain. We stipulate an embedded Neumann boundary condition for
the top ((a), (b)) examples and an embedded Dirichlet boundary condition for
the bottom ((c), (d)) examples. The left ((a), (c)) examples have a Poisson’s
ratio of ν = 0.3, while the right ((b), (d)) use a Poisson’s ratio of ν = 0.49,
very close to the incompressible limit. Square (circle) markers in the above
error plots correspond to errors in the x (y) component. 123

5.12 Log-log plots of the L∞-error of the approximate solution versus the grid
resolution, and the corresponding computed orders of convergence, ρ, for the
spiral domain. We stipulate an embedded Neumann boundary condition for
the top ((a), (b)) examples and an embedded Dirichlet boundary condition for
the bottom ((c), (d)) examples. The left ((a), (c)) examples have a Poisson’s
ratio of ν = 0.3, while the right ((b), (d)) use a Poisson’s ratio of ν = 0.49,
very close to the incompressible limit. Square (circle) markers in the above
error plots correspond to errors in the x (y) component. 124

5.13 Multigrid V-(1, 1) cycle convergence for a variety of resolutions between 32×
32 and 1024 × 1024 (ν = 0.49, periodic boundary conditions, finite element
distributive relaxation, and low order prolongation Plo). 126

5.14 Multigrid V-(1, 1) cycle convergence rates at various resolutions from 32× 32
to 1024× 1024 (ν = 0.49). 127

5.15 Residual norm reduction as a function of iteration number for a multigrid
V-(1, 1) cycle at various resolutions from 32× 32 to 1024× 1024 (ν = 0.49). . 128

xiv

List of Tables

1.1 Results for Example 1. Theory gives KI = 1, KII = 0. “Levels” refers to the
refinement level of the quadrature mesh. 22

1.2 Results for Example 2. Theory gives KI = 34.0, KII = 4.55. “Levels” refers to
the refinement level of the quadrature mesh. Note that most of the benefits
of the quadrature mesh are realized after only 2 or 3 levels of refinement;
beyond that the approximation error from the simulation finite element space
dominates the integration error from utilizing the quadrature mesh. 27

4.1 Condition numbers (as estimated by PETSc) and number of (preconditioned)
conjugate gradient ((P)CG) iterations for the linear systems resulting from
discretizing Example 4.4.4 at resolution N = 256 for various combinations
of (α−, α+). For the preconditioning, we used PETSc’s incomplete Cholesky
(ICC) preconditioner. We also include statistics for the standard 7-pt Lapla-
cian matrix for reference. 91

5.1 Asymptotic multigrid cycle convergence rates for different combinations of
boundary conditions, distributive relaxation (“FEM” refers to the finite el-
ement distributive relaxation described in §5.4.2.1; “FD” refers to the dis-
tributive relaxation based on the finite difference defect correction described
in §5.4.2.2), and prolongation (Plo and Phi; see §5.4.3). For these results, we
used the flower domain at resolution 128× 128 with Poisson’s ratioa ν = 0.49. 126

A.1 Triangle Gaussian quadrature rules of order 1 through 5, as given in [Cow73].
[Some repeated barycentric coordinates have been abbreviated with “. . . ” for
formatting purposes.] . 129

C.1 Condition numbers and (preconditioned) conjugate gradient ((P)CG) solve
iterations, both with and without Incomplete Cholesky (ICC) preconditioning,
for the ZtAZ system arising from the discretization of a Dirichlet and from
the discretization of an interface problem at grid resolution 32× 32× 32. The
Dirichlet problem has Ω = {x : |x| ≤ 0.8} and β ≡ 1; the interface problem
has Γ = {x : |x| = 0.8} and (β−, β+) ≡ (1, 2). 131

xv

Acknowledgments

I wish to thank the following for their support over the last several years as I’ve progressed
through my doctoral degree here at UCLA:

• My family, especially my mom. I know it was difficult for her to resist the temptation
to ask me about my degree progress every week, especially in the later years.

• My girlfriend, Sirian; and her mom, Lisa.

• The rest of my entering class who’ve remained in the department as long as I have. Or
longer.

The research in Chapters 1, 4, and 5 was partially supported by UC Lab Fees Re-
search / Department of Energy grant 09-LR-04-116741-BERA; Office of Naval Research
grants N00014-03-1-0071 and N00014-10-1-0730; and National Science Foundation grant
CCF-0830554. Additionally, the research in Chapter 1 was partially supported by National
Science Foundation grant DMS-0914813; and the research in Chapters 4 and 5 by National
Science Foundation grants DMS-0502315 and DMS-0652427.

Chapter 1 is a version (with moderate revisions) of “An XFEM method for modeling
geometrically elaborate crack propagation in brittle materials” by Casey L. Richardson,
Jan Hegemann, Eftychios Sifakis, Jeffrey Hellrung, and Joseph M. Teran (PI) in Interna-
tional Journal for Numerical Methods in Engineering (88(10):1042–1065, 9 December 2011)
(DOI:10.1002/nme.3211).

Chapter 2 is a version (with minor revisions) of “Local Flaps: A Real-Time Finite Element
Based Solution to the Plastic Surgery Defect Puzzle” by Eftychios Sifakis, Jeffrey Hellrung,
Joseph Teran (PI), Aaron Oliker, and Court Cutting, M.D. in Studies in Health Technology
and Informatics (142:313–318, 2009) (PMID:19377176).

Chapter 3 is a version (with minor revisions) of “Geometric fracture modeling in BOLT”
by Jeffrey Hellrung, Andrew Selle, Arthur Shek, Eftychios Sifakis, and Joseph Teran (PI)
in SIGGRAPH 2009: Talks (SIGGRAPH ’09, pp. 7:1–7:1, New York, NY, USA, 2009)
(DOI:10.1145/1597990.1597997). This research was supported by Walt Disney Animation
Studios.

Chapter 4 is a version (with moderate revisions) of “A Second Order Virtual Node Method
for Elliptic Problems with Interfaces and Irregular Domains in Three Dimensions” by Jeffrey
Lee Hellrung, Jr., Luming Wang, Eftychios Sifakis, and Joseph M. Teran (PI) in Journal of
Computational Physics (231(4):2015–2048, February 2012) (DOI:10.1016/j.jcp.2011.11.023).
I wish to thank Jacob Bedrossian and James H. von Brecht for their helpful discussions;
and Russell Howes and Alexey Stomakhin for submitting typographical errors and providing
comments on the later drafts of the publication submission.

Chapter 5 is a version (with moderate revisions) of “A second-order virtual node al-
gorithm for nearly incompressible linear elasticity in irregular domains” by Yongning Zhu,

xvi

Yuting Wang, Jeffrey Hellrung, Alejandro Cantarero, Eftychios Sifakis, and Joseph M. Teran
(PI) (accepted for publication in Journal of Computational Physics, 2012).

xvii

Vita

2003, summer Research Student for Associate Professor Jon T. Jacobsen of Harvey Mudd
College (Claremont, CA)

2004, summer Summer Intern at AuditudeTM, Inc. (Los Angeles, CA)

2004 - 2005 Clinic Project Manager serving Hewlett-Packard Company (Palo Alto, CA)
via Harvey Mudd College Mathematics Clinic

2005, May Received degree of Bachelor of Science in Mathematics (with High Distinc-
tion, Honors in Mathematics) from Harvey Mudd College

2005 - 2012 Teaching Fellow for the Department of Mathematics, University of Cali-
fornia Los Angeles

2005, summer Prof. NE MTS Level 1 at The Aerospace Corporation (El Segundo, CA)

2006, June Received degree of Master of Arts in Mathematics from University of Cal-
ifornia Los Angeles

2006, summer Prof. NE MTS Level 1 at The Aerospace Corporation

2007, summer Prof. NE MTS Level 1 at The Aerospace Corporation

2008, summer Graduate Associate at Walt Disney Animation Studios (Burbank, CA)

2010, summer Teaching Assistant at Park City Mathematics Institute (Park City, UT)

Publications

M. Hecht, D. Buettner, J. Hellrung. “Risk assessment of real time digital control systems.”
Proceedings of the RAMS ’06. Annual Reliability and Maintainability Symposium, 2006, pp.
409–415, 2006. DOI:10.1109/RAMS.2006.1677409

Eftychios Sifakis, Jeffrey Hellrung, Joseph Teran, Aaron Oliker, Court Cutting, M.D.
“Local Flaps: A Real-Time Finite Element Based Solution to the Plastic Surgery Defect
Puzzle.” Studies in Health Technology and Informatics, 142:313–318, 2009. PMID:19377176

Jeffrey Hellrung, Andrew Selle, Arthur Shek, Eftychios Sifakis, Joseph Teran. “Geometric
fracture modeling in BOLT.” SIGGRAPH 2009: Talks, SIGGRAPH ’09, pp. 7:1–7:1, New
York, NY, USA, 2009. DOI:10.1145/1597990.1597997

xviii

Casey L. Richardson, Jan Hegemann, Eftychios Sifakis, Jeffrey Hellrung, Joseph M. Teran.
“An XFEM method for modeling geometrically elaborate crack propagation in brittle ma-
terials.” International Journal for Numerical Methods in Engineering, 88(10):1042–1065,
December 2011. DOI:10.1002/nme.3211

Jeffrey Lee Hellrung, Jr., Luming Wang, Eftychios Sifakis, Joseph M. Teran. “A Second
Order Virtual Node Method for Elliptic Problems with Interfaces and Irregular Domains in
Three Dimensions.” Journal of Computational Physics, 231(4):2015–2048, February 2012.
DOI:10.1016/j.jcp.2011.11.023

Yongning Zhu, Yuting Wang, Jeffrey Hellrung, Alejandro Cantarero, Eftychios Sifakis,
Joseph M. Teran. “A second-order virtual node algorithm for nearly incompressible lin-
ear elasticity in irregular domains.” (accepted for publication in Journal of Computational
Physics, 2012)

Awards

William Lowell Putnam Mathematical Competition - Top-500 Individual Placement (2001,
2004); Top-200 Individual Placement (2002, 2003); 11th Team Placement (2004)

Courtney S. Coleman Prize in Mathematics (awarded by HMC; 2003)

ACM (Association for Computing Machinery) Programming Contest - 20th (of 59) place
(2003); 7th (of 63) place (2004)

MCM (Mathematical Contest in Modeling) - Meritorious Winner (2004)

Microsoft Imagine Cup Algorithm Invitational - 18th place internationally (2004)

Stavros Busenberg Prize in Applied Mathematics (awarded by HMC; 2004)

Robert Borrelli Clinic Prize for Most Outstanding Clinic Team (awarded by HMC; 2005)

Chancellor’s Prize (awarded by UCLA; 2005 - 2006)

VIGRE Fellowship (awarded by UCLA Department of Mathematics; 2005 - 2009)

ICFP (International Conference in Functional Programming) Programming Contest - 80th

(of 215+) place (2010); 95th (of 199) place (2011)

Google Games Santa Monica - 3rd place (2011)

xix

Introduction

1

The simulation of a variety of physical phenomena often requires addressing frequent,
and sometimes quite drastic, topological changes. Fracture simulations and virtual surgery
simulations require the dynamic introduction of one or more co-dimension one crack sur-
faces and user-defined surgical incisions, respectively, which may be completely new or may
extend some crack or incision introduced at a previous time step. Multiphase fluid flow and
phase change problems naturally have dynamic interfaces which divide the original domain
into multiple irregularly shaped subdomains. Further, many shape optimization procedures
continuously change the geometry – and, perhaps, even the topology – of the domain on
which one must repeatedly solve some partial differential equation as a subproblem.

The common thread among all the above examples is the necessity to deal with compli-
cated and irregular geometries, whether it be crack surfaces, interfaces, or domain bound-
aries. A natural approach to this complexity is to use unstructured meshes that conform
to the irregular geometry of relevance [Bab70, BK96, WK99, CZ96, HZ01, LW04, Dry05,
CGL09]. However, meshing complex geometries can prove difficult and, with frequent shape
changes, time-consuming, especially in 3 dimensions. In the case of shape optimization for
elastic materials [SW00, OS01, AJT04, DMJ06, CRW08, WW08], the task is further com-
plicated when using the more elaborate element types seen in mixed finite element method
formulations, which are typically necessary for stability in the nearly incompressible regime.
Furthermore, many numerical methods, such as finite difference methods and geometric
multigrid methods, do not naturally apply to unstructured meshes.

These concerns motivated the development of embedded (or immersed) methods, in which
a structured mesh, such as a regular Cartesian grid, simply encompasses, rather than ge-
ometrically adheres to or conforms to, the irregular geometry. The irregular geometry is
embedded within mesh elements: its location is tracked relative to the surrounding mesh.
This avoids the complexities inherent in unstructured mesh generation while opening the
door to the use of efficient solution techniques such as multigrid methods. Early research
on embedded methods include works of Harlow and Welch [HW65], Peskin [Pes72], Hyman
[Hym52], and Saul’ev [Sau63].

The remainder of this text is divided into two parts. Part I involves the application of
the sophisticated mesh cutting algorithm of Sifakis et al. [SDF07] to crack propagation in 2
dimensions, virtual surgery, and object cracking and shattering for use in visual effects and
computer animation. All of these applications involve the embedding of some open and/or
non-manifold cut or crack surface within a regular background simplex mesh, with conse-
quent topology change and duplication of degrees of freedom. We summarize the machinery
enabling this embedding in the prelude to Part I. Part II discusses the solution of elliptic
partial differential equations in an innovative embedded framework. We will specifically
consider Poisson’s equation with interfacial jump conditions and the equilibrium equations
of linear elasticity. The feature set possessed by the described numerical methods to solve
these partial differential equations has several advantages over, and compares quite favorably
with, existing alternative methods.

2

Part I

Applications of Arbitrary Lagrangian
Mesh Cutting

3

Introduction

Many physical simulations necessitate the modeling of fracture or crack surfaces, and in the
most demanding of these simulations, these surfaces may have a highly complex non-manifold
topology, e.g., with many branches and open “fronts”. In a dynamics scenario, this may be
further complicated by the frequent extension of existing crack fronts and the introduction
of new failure surfaces. Applying a traditional finite element method in this context is
challenging: one must either constantly regenerate the simulation mesh to account for the
fracture geometry, which is computationally expensive and easily introduces ill-conditioned
“sliver” elements; or one must artificially and often severely limit the potential paths and
resolution of the failure surface to lie along element boundaries. Additionally, in either case,
handling a high resolution fracture surface necessitates a correspondingly high resolution
simulation volume, at least locally, which in turn increases the computational cost of solving
the relevant discrete continuum mechanics equations. Ideally, one should be able to decouple
the resolution of the fracture surface (which may be highly detailed for visual effects purposes,
for example; see Chapter 3) from the resolution of the simulation mesh (which may be limited
by available computational resources; see Chapter 2).

Given the above difficulties with traditional finite element methods, Belytschko, Black,
Moës, Dolbow [BB99, MDB99] and others developed the eXtended Finite Element Method
(XFEM), specifically in the context of modeling cracks, which avoids the need to remesh to
capture crack geometry. The basic idea of the XFEM is to enrich the usual finite element
spaces with additional degrees of freedom which incorporate the near tip asymptotic solu-
tions and allow the displacements around the crack surface to be discontinuous. We hold
off a complete introduction to and history of the XFEM until Chapter 1, but do mention
one of the main challenges with utilizing the XFEM: automating the determination of ma-
terial connectivity and subsequent enrichment of the finite element spaces. In the following
chapters, we apply the mesh cutting algorithm of Sifakis et al. [SDF07] to resolve arbitrary
Lagrangian cutting surfaces against the simulation volume mesh, to determine material con-
nectivity, and to automatically duplicate mesh vertices to yield virtual nodes which effect
the requisite enrichment necessary for separation.

We conclude this prelude to Part I with a brief summary of the mesh cutting algorithm
from [SDF07], as the main subject of Part I is the various applications of this algorithm.
Chapter 1 combines the XFEM with the mesh cutting algorithm to simulate propagating
cracks in 2 dimensions; we also introduce a novel quadrature scheme to accurately and
straightforwardly integrate the nonlinear and singular finite element basis functions. In
Chapter 2, we consider the combination of this mesh cutting algorithm with nonlinear con-
tinuum mechanics in 3 dimensions to create a virtual surgery simulator. Lastly, in Chapter 3,
we discuss a framework to systematically create cracked and shattered models for visual ef-
fects and computer animation.

4

Mesh Cutting Algorithm Overview

We now give a brief overview of the mesh cutting algorithm described by Sifakis et al.; see
[SDF07] for more details, specifically in resolving the intra-simplex geometry, the discussion
of which we exclude here. The essence of the algorithm may be described by considering the
resolution of a segmented curve cutting surface against a triangulated area as the volumetric
mesh, although the following overview applies equally well to higher dimensions (as seen
in Chapters 2 and 3, for example). Ultimately, the algorithm produces a volumetric mesh
geometrically coincident with the original (uncut) mesh with mesh elements along the cutting
surface duplicated into topologically and materially disconnected counterparts; see Figure I.1
for an example overview of the entire procedure.

Figure I.1: This mesh is cut by two curves, one of which contains a branch (left). The cutting
algorithm first treats each triangle individually, creating duplicates for each locally disjoint
material region (center), and then uses the global mesh topology to join these duplicates on
the proper degrees of freedom (right).

In the first phase, the algorithm processes each mesh triangle individually, identifying the
disjoint material components the triangle is divided into by the cutting curve and describing
each as a closed polygonal region (depicted blue in Figure I.2). For each such material region,
a duplicate copy of the triangle is created and assigned said material region. For example, in
Figure I.2, the cutting curve divides the triangle into two distinct material regions, inducing
the creation of two duplicates of the original triangle with each duplicate possessing one
of the material regions. In the duplicated triangles, we identify vertices within material
regions (solid blue circles in Figure I.2) with the original triangle vertices. We also furnish
the duplicate triangles with virtual nodes (hollow blue circles in Figure I.2). A less trivial
example is given in Figure I.3.

After processing all triangles in the original mesh T individually, we obtain a duplicate
mesh T ′ composed of duplicated triangles and vertices. The second phase of the algorithm
proceeds to determine global material connectivity within this duplicate mesh (see Fig-
ure I.1). For notational convenience, let C(T) denote the set of triangles duplicated from an

5

Figure I.2: Simple example of an original mesh triangle (left) duplicated with its disjoint
material regions (blue) being distributed among the duplicates (middle, right). Likewise,
the vertices in each duplicate are either identified with the vertices of the original triangle
(material nodes, sold blue) or duplicate copies (virtual nodes, hollow blue), depending on
whether they fall within a material region.

Figure I.3: A more complex example of the initial division of a triangle by a cutting curve.
Since the original mesh triangle is divided into 3 disjoint material regions (left), the algorithm
generates 3 duplicate triangles, each possessing a different material region (right). (Coloring
is consistent with that used in Figure I.2.)

original triangle T ∈ T , and let P (T ′) denote the original “parent” triangle of a duplicate
triangle T ′ ∈ T ′, so that T ′ ∈ C(T) if and only if T = P (T ′). Determining global material
connectivity then proceeds as follows. Given a triangle T ′ ∈ T ′, let T = P (T ′). Then for
each U ′ ∈ C(U) where U is face-adjacent to T , determine if U ′ shares material connectivity
across the T −U face with T ′. If so, the vertices of the corresponding faces of T ′ and U ′ are
identified as equivalent and collapsed, thus joining these duplicate triangles together.

Refer again to Figure I.1 for an example overview of the entire algorithm. The original
mesh, at left, consists of three triangles. This mesh is cut by two segmented curves (red); the
geometry typifies some of the subtleties in the algorithm, as the center triangle contains a
branch, a tip, and is cut into multiple pieces. In the first phase of the algorithm, each triangle
is processed in isolation and duplicated based on the disjoint material regions created by the
cutting curves, as shown in the center of Figure I.1. In the second phase, these duplicate
triangles are joined along faces where they share material connectivity, with the final mesh
on the right of Figure I.1.

6

Notice that, in particular, if mesh vertices are identified with degrees of freedom, the
latter mesh in Figure I.1 possesses the necessary richness in degrees of freedom to allow the
upper crack to partially separate and the lower crack to separate entirely. This automatic
generation of additional degrees of freedom is one of the primary motivations to combine
this mesh cutting algorithm with an XFEM framework, and its fruits are demonstrated in
the remainder of Part I.

7

CHAPTER 1

Crack Propagation in Two Dimensions

1.1 Background and Existing Methods

1 Since our discretization is essentially an eXtended Finite Element Method (XFEM), we
summarize the main idea and historical background of the XFEM; see [BGV09], [KX03],
and [AH08] for more complete surveys. The idea is to enrich the usual finite element spaces
with additional degrees of freedom, which incorporate the near-tip asymptotic solutions and
allow the displacements to be discontinuous across the crack surface. The application of
XFEM to cracks began with Belytschko and Black [BB99], where they applied the partition
of unity methods (see, e.g.,[MB96]) to the problem of using finite elements with discon-
tinuous basis functions. In [MDB99] Moes et al. used XFEM to create a technique for
simulating crack propagation in two dimensions without remeshing the domain. Sukumar
et al. [SMM00] began the extension to three dimensions. They used the two dimensional
enrichment functions for planar cracks, and then further extended in [AB05].

Since its introduction, XFEM enrichment has been employed in a variety of settings
to model fracture. Moes and Belytschko [Mo02] modelled cohesive fracture using special
enrichments, and this was extended in [ZB03] and continues to be developed (see, e.g.,
[MP03, BGW04, APN07]). Work in other settings includes fracture with elastodynamics
[BC04] and crack propagation in composite materials [HB09]. The XFEM has been com-
bined naturally with the level set methods of Osher and Sethian [OS88, OF04] to track the
moving discontinuity sets (for cracks see, e.g., [BMU01, MGB02, GMB02, Duf07, PCG07];
and for holes and inclusions see [SCM01]); Sukumar et al. [SBM08] coupled the XFEM
with fast marching methods. Bordas et al. [BDL07] studied error estimates, and various
techniques have increased the rate of convergence, such as cut off functions and geometric
enrichment [CLR06, CLR08, SL09]. However, the XFEM approach still carries a couple
technical challenges: assembling the stiffness matrix requires integration of singular or dis-
continuous functions; and implementing enrichment requires resolving material connectivity
(often using a level set representation).

Quadrature for integration of the gradients of the XFEM basis functions is an active area
of research because of the singularities and discontinuities present. As noted in [DMD00],
the use of Gaussian quadrature or Monte Carlo integration is unstable: since the crack
geometry within a given triangle is unknown a priori, quadrature points could be very close
to singularities in the integrand. One approach to the problem (see, e.g., [SBC03]) is to
perform a Delaunay triangulation on the cut triangle that respects the crack geometry and

1The content of this chapter is a version of [RHS11] with moderate revisions.

8

then use Gaussian quadrature on each of the resulting triangles. This triangulation does not
produce additional degrees of freedom; it is only used for integration of the basis functions.
Other methods, e.g., [BMM05, LPR05], map the near-tip enrichment functions to domains
amenable to Gaussian quadrature, but also require meshing of the tip triangle. Another
approach is to use higher order Gaussian quadrature [SBC00]. In [VGB09], Ventura et al.
transformed the area integral required for assembly of the stiffness matrix into a more stable
line integral. Park et al. [PPD09] also used a mapping technique to remove the singularity
for tetrahedral elements (in three dimensions), while Areias and Belytschko [AB05] used a
smoothing technique. For integrating the Heaviside functions, Ventura [Ven06] used a map to
equivalent polynomials which were integrated using standard quadrature techniques; Holdych
et al. [HNS08] used a similar technique where they introduced a dependence of the Gaussian
quadrature weights on the position of the quadrature point within the triangle. Benvenuti
et al. [BTV08] regularized the Heaviside function for integration with Gauss quadrature and
proved that the solutions converge as the regularization parameter goes to zero. Mousavi
and Sukumar [MS10] used a quadrature rule that avoids Delaunay triangulation and does
not require splitting cut elements for Heaviside enrichment.

We introduce a simple method of integration (see §1.5) that combines naturally with the
mesh cutting algorithm (see §1.4). Our scheme involves creating a finer mesh for integration
purposes only. This is similar to the approach of Ji et al. [JCD02] and Dolbow [Dol99]; how-
ever, we resolve the crack surface inside the quadrature elements and use an approximation
of the nonlinear basis functions for the purposes of quadrature. Mousavi et al. [MGS11]
also use modified enrichment functions; however, they compute new enrichment functions
by solving a partial differential equation, whereas we simply project the usual enrichment
functions onto a simpler finite element space. Also in [MGS11], the authors solve for and
integrate their enrichment functions on a mesh that is refined near the tip; since we also
use such a mesh, it may be possible to incorporate their idea of computing the enrichment
functions into our approach.

In order to allow cracks to open, XFEM needs to generate additional degrees of freedom,
generally referred to as enrichment. In a region that has been unambiguously separated
into two pieces (i.e., away from the crack tip), the enrichment is provided by a Heaviside
function, defined to be +1 on one side of the crack surface and −1 on the other side. This
is easy in the case of a single straight crack but more challenging as the crack geometry
becomes complicated. Daux et al. [DMD00] handle the case of branched cracks by using
separate enrichments for each crack, and then use another enrichment function to represent
the junction itself. They then generalize this technique to cracks that have multiple branches;
however, their method requires that the cracks have been hierarchically decomposed into a
main crack and its branched components, and it still involves solving the problem of material
connectivity. Budyn et al. [BZM04] and Zi et al. [ZSB04] extend [DMD00] to incorporate
multiple cracks and to address the issue of intersecting cracks. Song and Belytschko [SB09a]
introduced the cracking node method, which is based on XFEM and is designed to more
easily handle complicated crack geometries.

The use of phantom, ghost, or virtual nodes (e.g., [MBF05]) to incorporate discontinuities
has become increasingly popular. The methods of Hansbo and Hansbo [HH04], Song et al.

9

[SAB06], and Duan et al. [DSM09] (which are equivalent; see [AB06]) use a notion of ghost
or phantom degrees of freedom to handle displacement discontinuities. Song and Belytschko
also use a phantom node method in [SB09b], where they additionally use the product of
multiple Heaviside functions to handle branched cracks. Dolbow and Harari [DH09] use
phantom nodes in the context of embedded interface problems. We likewise use virtual
nodes by leveraging the mesh cutting algorithm in [SDF07], making it possible to handle
complex crack geometry (such as branching) systematically. Also, our method can create
different finite element spaces than the methods presented in [HH04] or [SAB06] (see §1.5).

We present a method for simulating quasistatic crack propagation in 2 dimensions which
combines the XFEM with a simple integration procedure and the geometrically flexible mesh
cutting algorithm described in [SDF07]. To summarize, our approach

• is based on virtual nodes created by the mesh cutting algorithm that incorporates
material connectivity;

• can handle complicated crack patterns (including multiple tips in the same element,
branching, and tips within fully cut elements);

• can handle geometrically complex domains;

• does not require remeshing of the domain (which is entirely in the spirit of XFEM);

• employs a quadrature rule that again utilizes the mesh cutting algorithm, and whose
degree of complexity is independent of the crack geometry.

1.2 Governing Equations

We assume quasistatic evolution, such that at each fixed point in time the material is in
elastic equalibrium. Denoting the rest configuration by Ω ⊂ R2 open and bounded, we thus
consider the equations of elastic equilibrium given by

∇ · σ + b = 0 ∈ Ω \ Γ;

u = u0 ∈ ∂Ωd;

σ · n̂ = g ∈ ∂Ωn;

σ · n̂ = 0 ∈ Γ+;

σ · n̂ = 0 ∈ Γ−;

where σ is the Cauchy stress tensor; b is the body force per unit volume; u is the (unknown)
displacement; u0 is the Dirichlet boundary condition (applied to a subset of the boundary
∂Ωd); g is the traction (Neumann) boundary condition (applied to ∂Ωn); n̂ denotes the
unit outward-pointing normal; Γ is the crack surface; and Γ+,Γ− represent the two opposite
orientations of the crack surface. In the present exposition, we consider the case of small

10

Figure 1.1: An example with a complex branching crack. (top) A crack surface cutting the
simulation mesh; (center) the crack surface cutting the embedded quadrature mesh; (bottom)
the computed stress field with uniform traction applied to the left and right edges.

11

strains and displacements, where linear elasticity is an accurate model of material behavior.
Hence we use the Cauchy strain

ε(u) := ∇Su :=
1

2

(
∇u + (∇u)t

)
and stress

σ := C : ε

where C is the Hooke tensor. Equivalently, one may consider minimizing over u the potential
energy

Ψ[u] :=
1

2

∫
Ω

ε(u) : C : ε(u)dx−
∫

Ω

b · udx−
∫
∂Ωn

g · udS(x) (1.1)

subject to u = u0 on ∂Ωd.

1.3 Extended Finite Elements

Conceptually, the starting point of our work is the eXtended Finite Element Method
(XFEM), which was originally motivated and studied in the context of fracture by Belytschko
et al.; see, e.g., [MDB99]. In the original XFEM, a simulation with quasistatics evolution
requires one to solve a discrete approximation to the equations of elastic equilibrium at each
time step. The approximation subspace is formed by taking the usual C0 conforming finite
element space (in our case, on triangles) and enriching with additional degrees of freedom
that allow cracks to open and increase the accuracy of the approximation near the crack tip.
Thus, functions in an XFEM space Uh have the form

uh(x) =
∑
i

uiφi(x) +
∑
j

bjφj(x)H(x) +
∑
k

φk(x)
4∑
`=1

c`kF` (r(x), θ(x)) , (1.2)

where {φi} are the usual nodal basis functions; H(x) is the Heaviside function associated to
the current crack geometry; {bj} are enrichment degrees of freedom associated with crack
separation away from the crack tip; {c`k} are enrichment degrees of freedom associated with
near-tip displacement; and

{F`(r, θ)} :=

{√
r sin

θ

2
,
√
r cos

θ

2
,
√
r sin

θ

2
sin θ,

√
4 cos

θ

2
sin θ

}
are the asymptotic near-tip enrichment functions (r and θ are the polar coordinates with
respect to the crack tip). Notice that (1.2) expresses uh as a linear combination of three
types of basis functions: the usual nodal basis functions (which have support local to mesh
vertices), Heaviside enrichment functions, and near-tip enrichment functions (which have
support local to the crack tip). The sum over i in (1.2) is over all mesh vertices, while the
sums over j and k are over those vertices whose corresponding conforming basis functions
have support that intersects the crack surface (see [MDB99]). We use the term one-ring of
a vertex to refer to the set of elements composing the support of the corresponding nodal
basis function. Strictly speaking, (1.2) only accounts for a single crack tip, but it may be
generalized to accomodate crack geometries with multiple tips.

12

1.4 Cutting of Cracked Domains

To simplify the exposition, we first focus on the discretization away from any crack tips (thus
ignoring tip enrichment) where (1.2) takes the simpler form

uh(x) =
∑
i

uiφi(x) +
∑
j∈J

bjφj(x)H(x),

where J is the set of vertices whose one-ring intersects the crack surface. We begin by
replacing these more traditional Heaviside-enriched degrees of freedom with more geometri-
cally intuitive virtual nodes (see [MBF05]), also known as ghost or phantom nodes (see, e.g.,
[SAB06], [HH04], [DH09]). As discussed in the prelude to Part I, these virtual nodes are au-
tomatically created by the mesh cutting algorithm of Sifakis et al. [SDF07]. Figures 1.2 and
1.3 illustrate an example of the mesh cutting algorithm more closely related to our present
application. In Figure 1.2, we introduce a crack which completely cuts one triangle and
only partially cuts another. In Figure 1.3, we introduce the same crack into a locally refined
mesh. In the present context, the unrefined mesh corresponds to the simulation mesh, while
the refined mesh – after being cut as in the example – corresponds to the quadrature mesh
(see §1.5).

Figure 1.2: A crack is introduced into the mesh on the left, yielding the enriched mesh on
the right, with duplicated triangles and virtual nodes, which we use as our simulation mesh.

Now, consider a mesh that has been cut, with the associated duplication of elements
and introduction of virtual nodes. Corresponding to each virtual node, we create a nodal
basis function that respects the crack geometry, i.e., we take into account that vertices and
triangles may have been duplicated (see Figure 1.4 for a one-dimensional illustration). Let
{φ̃i} be the usual piecewise affine nodal basis “hat” functions on the simulation mesh, and
let xi be the vertex (which may be a virtual node) corresponding to a given φ̃i. Denote by
Ωi the collection of triangles in the one-ring of vertex xi. Given the preceding notation, we
define a new truncated hat function φi via

φi(x) := φ̃i(x)
∑
T∈ωi

χMT (x), (1.3)

where χMT is the characteristic function of the material region of triangle T .

13

Figure 1.3: For quadrature purposes, we refine the uncut mesh in Figure 1.2(left) around
the cut (upper left), then cut this refined mesh (bottom). A blow up of the region near the
crack (upper right) shows the virtual nodes relative to the crack surface.

Figure 1.4: A truncated basis function in dimension 1. At left, a mesh element with vertices 1
and 2 is cut by the red dot, resulting in the two duplicate elements on the right. The original
nodal basis “hat” function φ̃2 corresponding to vertex 2 (green) gets truncated into derived
basis functions φ2 and φ4 according the material region within each duplicate element.

14

In many cases, this virtual node approach is equivalent to the more traditional use of
Heaviside enrichment as well as the methods of Song et al. [SAB06] and Hansbo and Hansbo
[HH04], i.e., they give equivalent finite element spaces. However, certain crack geometries
do, in fact, yield different spaces. As an example, the configuration in Figure 1.5(left) is cut
by a crack given by the red line. The resulting finite element spaces differ between the two
methods. Heaviside enrichment and the methods of Song et al. [SAB06] and Hansbo and
Hansbo [HH04] yield the degrees of freedom depicted in Figure 1.5(center), while the mesh
cutting algorithm from [SDF07] yields the degrees of freedom depicted in Figure 1.5. Since
the material region of the top triangle to the right of the crack surface is not materially
connected to the bottom triangle, the bottom left virtual nodes are allowed to separate (see
top-right of Figure 1.5). Generally speaking, the finite element spaces resulting from the mesh
cutting algorithm are at least as rich as the spaces resulting from Heaviside enrichment, and
in some situations it may in fact be strictly richer (i.e., have strictly larger dimension).

Figure 1.5: Given the uncut mesh and crack at left, XFEM using traditional Heaviside
enrichment yields 8 × 2 degrees of freedom (center), while using virtual nodes as described
in §1.4 yields 9× 2 degrees of freedom (right).

Finally, we note that Sifakis et al. [SDF07], in their presentation of the mesh cutting
algorithm, make the simplifying assumption that the cutting surface never coincides with
a mesh vertex or aligns with an element face. Nevertheless, the virtual node algorithm is
perfectly compatible with such degenerate cases, and this simplifying hypothesis is made
only to ease certain implementation challenges related to the representation of the crack
surface as an explicit simplex mesh. In fact, the mesh cutting algorithm can accommodate
any cut configuration, including these degenerate cases, as long as the following two queries

15

can be algorithmically determined: (a) the number of disjoints fragments a given element
is divided into; and (b) material connectivity of element fragments originating from face-
adjacent elements.

For example, if the crack surface is instead represented implicitly as the zero isocontour of
a level set function sampled at the vertices of the simulation mesh (or a refinement thereof),
both of the above queries admit a straightforward algorithm determination, and hence the
element duplication and joining algorithm described in [SDF07] may be applied, even when
the zero isocontour coincides with a mesh vertex. In the present case, with the crack surface
represented explicitly as a simplex mesh (segmented curve in 2 dimensions or triangulated
surface in 3 dimensions), the robust determination of (a) and (b) is challenging given the
limited precision of typical floating point arithmetic. Rather than complicate the imple-
mentation to address degenerate or near-degenerate scenarios, we found it preferable and
practical to avoid these scenarios entirely by simply perturbing the crack surface negligibly.
Naturally, if we use a level set representation, no such perturbation is necessary.

1.5 Integration

Our integration scheme utilizes a subordinate quadrature mesh in addition to the primary
simulation mesh, the details of which we describe here. For simplicity, we assume a domain-
conforming triangulation, creating a mesh corresponding to Figure 1.2(left). We then con-
struct a pair of derived meshes:

• We apply the mesh cutting algorithm to resolve the crack surface against the original
mesh, yielding the simulation mesh, corresponding to Figure 1.2(right). The simulation
mesh contains the actual simulation degrees of freedom, include both virtual and crack
tip enrichment degrees of freedom.

• We also locally refine the original mesh around the crack and resolve the crack against
this refined mesh, yielding the quadrature mesh, corresponding to Figure 1.3(right).
The quadrature mesh only possesses nodal degrees of freedom (i.e., no crack tip en-
richment degrees of freedom), and these degrees of freedom are subordinate to the
interpolated values from the simulation mesh. We only use the quadrature mesh to aid
in the integrations involving the enrichment functions on the simulation mesh, and it
does not add additional degrees of freedom to the system.

We solve the equilibrium equations of linear elasticity on the relatively coarse simulation
mesh (with fewer degrees of freedom), but perform the requisite integrations on the relatively
fine quadrature mesh by approximating the (generally nonlinear) basis functions over the
simulation mesh with piecewise affine projections over the quadrature mesh. We then use a
composite one-point quadrature rule over the quadrature mesh.

Our integration scheme is similar to another scheme presented in the XFEM literature
(e.g., [SBC03]). The main idea is to compute a Delaunay triangulation respecting the crack
geometry within each simulation triangle and assembling the stiffness matrix by applying

16

Gaussian quadrature over each Delaunay triangle. Hence, like our scheme, this employs
a finer triangulation of the original mesh solely for integration purposes and does not add
degrees of freedom to the simulation. However, our integration scheme uses the mesh cutting
algorithm [SDF07] to resolve the crack geometry within the quadrature mesh (see, e.g.,
Figure 1.1(center)), and so, in contrast to Delaunay triangulation, the quadrature mesh will
only approximately conform to the crack geometry. This has the advantage of decoupling
the resolution of the quadrature mesh from the resolution of the crack surface. Further, this
use of the mesh cutting algorithm naturally extends to higher dimensions, where Delaunay
tessellations become significantly more challenging.

1.5.1 Construction of the Simulation Mesh and Quadrature Mesh

We now describe the construction of our key meshes in more detail, and we will use notation
consistent with [Bra07]. We construct the simulation mesh as described in §1.4. Using the
modified hat functions from (1.3), we define our (simulation) finite element space Vh as
those vector-valued functions uh of the form

uh(x) =
∑
i

uiφi(x) +
∑
k

φk(x)
4∑
`=1

c`kF` (r(x), θ(x)) (1.4)

where {F`} are the asymptotic near-tip enrichment functions given in §1.3. The difference
between (1.4) and (1.2) is that (1.4) already incorporates the Heaviside enrichment (the sum
over j in (1.2)) via the introduction of virtual nodes and the truncated basis functions. We
let F h := {ui, c`k} denote the degrees of freedom of Vh and identify F h with RN , where N
is the number of degrees of freedom in the simulation.

We now discuss the construction of the quadrature mesh. We begin by regularly refining
triangles in the original mesh that intersect the crack surface. This refinement is progressively
graded as the distance from the crack increases via red-green refinement [MBT03]. We
resolve the crack surface against this refined mesh via the mesh cutting algorithm to yield
the quadrature mesh; this ensures the quadrature mesh will respect the crack topology (see
Figure 1.3). We then define a quadrature finite element space Vh

q to be the piecewise affine
finite element space over this quadrature mesh, i.e., uhq ∈ Vh

q takes the form

uhq (x) =
∑
i

uqiφ
q
i (x) (1.5)

where {φqi} are the associated truncated nodal basis functions (as in (1.3)). We let F h
q :=

{uqi} denote the degrees of freedom of Vh
q and identify F h

q with RM , where M is twice the
number of vertices in the quadrature mesh. Since we do not employ the asymptotic near-tip
enrichment functions in the quadrature finite element space (as we do for the simulation
finite element space), all the degrees of freedom F h

q can be identified with a vertex in the
quadrature mesh and a coordinate direction.

We use the quadrature mesh and associated finite element space to approximate the inte-
grals of the gradients of the Vh-basis functions. To this end, we subordinate the quadrature

17

mesh to the simulation mesh via a fixed linear relationship between F h
q and F h (see [SSI07]).

Consider uqi ∈ F h
q and the position of its corresponding mesh node xqi . We express uqi in

terms of the simulation degrees of freedom F h using (1.4):

uqi =
∑
j

ujφj(x
q
i) +

∑
k

φk(x
q
i)

4∑
`=1

c`kF` (r(xqi), θ(x
q
i)) . (1.6)

Note that the sume over j involves at most 3 nonzero terms as xqi can be in the support
of at most three of the φj’s. According to (1.6), the quadrature degrees of freedom uqi are
functionally constrained to the simulation degrees of freedom {ui, c`k} and hence do not
introduce any new degrees of freedom. This effectively defines a linear relationship between
the quadrature and simulation degrees of freedom which we denote by the matrix W (see
below). Binding the quadrature mesh to the simulation mesh in this fashion allows us to
project the basis functions of Vh onto Vh

q and operate on these projections in the piecewise
affine quadrature finite element space, where the integration is simpler.

Special care must be taken when computing the polar coordinates (r(xqi), θ(x
q
i)) of xqi

when it corresponds to a virtual node. As illustrated in Figure 1.6, for virtual nodes, we
must reverse the orientation of the angle θ with respect to the crack, allowing it to take
values outside the typical [−π,+π] bounds. We effectively associate a virtual node with the
opposite side of the crack surface, where the material region associate with the virtual node
resides. This ensures that θ(x) is continuous throughout the triangle.

Figure 1.6: The polar angle of a virtual node in the quadrature mesh is measured across the
crack surface to ensure continuity of θ throughout a quadrature triangle.

18

1.5.2 Integration Scheme

The relation (1.6) binds the quadrature degrees of freedom F h
q to the simulation degrees of

freedom F h. Letting ~u ∈ F h and ~uq ∈ F h
q , we can encode the coefficients of (1.6) in a matrix

W , such that ~uq = W~u. Let A and Aq denote the stiffness matrices associated with the
energy (1.1) discretized over the finite element spaces Vh and Vh

q , respectively; and let α
denote the bilinear form associated with (1.1). Since Vh

q is a piecewise affine finite element
space, there is a natural and standard procedure to assemble its stiffness matrix Aq. Our
integration scheme then approximates the true stiffness matrix A via

~utA~u = α(uh,uh) ≈ α(uhq ,u
h
q) = (~uq)tAq~uq = ~utW tAqW~u, (1.7)

where uh (uhq) is the function in Vh (Vh
q) corresponding to the vector ~u ∈ F h (~uq ∈ F h

q). It
follows that A ≈ W tAqW .

Ultimately, our integration scheme utilizes an approximation (indeed, a projection) of
the non-smooth basis functions (see Figure 1.7), with this approximation improving as one
further refines the quadrature mesh. Note that we may end up sampling a singular basis func-
tion near the singularity. However, unlike integration schemes based on Gaussian quadrature
or Monte Carlo methods, any function evaluations at these sampling points will be weighted
by the area of the smaller quadrature triangle. Thus, no single sample, possibly located near
the tip singularity, contributes disproportionally. Finally, we note that for simplicity and im-
proved stability, we can further approximate the integrations implicit in (1.7) by treating cut
quadrature triangles as if they were full of material, i.e., removing the characteristic function
multiplications in (1.3) and assembling Aq over the usual nodal basis “hat” functions. This
optional modification vanishes under refinement of the quadrature mesh, as the error caused
by the additional basis function support goes to zero. In §1.7, our examples account for
the material region in cut quadrature triangles. We additionally present some comparisons
between treating quadrature triangles as completely full and respecting the actual material
regions.

(a) (b)

Figure 1.7: Two samplings of the asymptotic near-tip enrichment function F1 =
√
r sin θ

2
.

(a) shows a sampling at a low resolution, while (b) shows a sampling at a high resolution.

19

1.6 Crack Propagation

For a fixed state of the system (a given crack and boundary conditions and associated
equilibrium displacement), engineers use several different criteria to determine the angle at
which the crack should propagate. We follow Moës et al. [MDB99] in using the maximum
circumferential stress criterion to compute the propagation direction and then move the
crack by a small fixed increment. We choose this approach so that the results of using our
integration technique can be compared against the test cases in [MDB99]. This method is
fairly standard and the details are found in the references, so we only sketch it here.

The criterion involves computing the stress intensity factors at the crack tip, and then
calculating the angle of maximal stress via

θc := 2 arctan

1

4

KI

KII

±

√(
KI

KII

)2

+ 8

 .

We compute the stress intensity factors using the so-called interaction J-integral, which is
defined for two possible states of the system, which we denote using superscripts 1 and 2:

I(1,2) :=

∫
Γ

(
W (1,2)δ1j −

(
σ

(1)
ij u

(2)
i,1 + σ

(2)
ij u

(1)
i,1

))
njdS (1.8)

where
W (1,2) := σ

(1)
ij ε

(2)
ij .

Choosing the two states to be the current state and a pure Mode I state in the above gives
KI:

KI :=
1

2
E∗I(current,Mode I),

where

E∗ =

E

1− ν2
, plane strain

E, plane stress
,

and E is Young’s modulus and ν is Poisson’s ratio. KII is found using a similar relation
but with a pure Mode II state. As in [MDB99], we compute these interaction integrals by
converting them into area intregrals via multiplication by a suitably smooth test function and
applying integration by parts. We then compute the resulting area integral on the quadrature
mesh described in §1.5. Having used finite elements to compute the displacement, the stresses
and strains for the current state of the system are piecewise affine on the quadrature mesh.
We then interpolate the displacements, strains, and stresses for the pure Mode I and pure
Mode II solutions used to compute (1.8) using functions in the space Vh

q . The required
integrations are then simple to compute, since all the quantities in (1.8) are piecewise affine.

20

1.7 Numerical Examples and Experiments

We tested our approach with some examples from the literature ([BB99] and [MDB99]). We
chose these examples because the exact stress intensity factors (or good approximations) can
be calculated analytically for comparision; we also compare our results to the literature.

As discussed in Section 1.5, we computed our approximate solutions by integrating over
just the material regions of cut quadrature triangles. For Example 1 below, we also compare
this with integrating over the entire area of cut quadrature triangles.

As in [MDB99], all of our examples use a Young’s modulus of E := 105 and Poisson’s
ratio of ν := 0.3. For our propagation examples, we chose a fracture toughness of 1.

1.7.1 Example 1: Straight Crack with Pure Mode I Displacement

Example 1 involves a straight center crack in a rectangular body with a constant traction
applied to part of the boundary of the body; see Figure 1.8 (as in [MDB99], we use L := 16,
W := 7, a := 3.5, ε := 100[kpsi] and ν := 0.3).

Figure 1.8: The setup for Example 1.

In this case, the exact Mode I stress intensity factor is given by

KI = Cσ
√
aπ,

where C is a finite geometry correction factor:

C := 1.12− 0.231
(a
W

)
+ 10.55

(a
W

)2

− 21.72
(a
W

)3

+ 30.39
(a
W

)4

.

We normalize KI through an appropriate choice of σ and compare our results over various
combinations of granularity of the simulation mesh and refinement level of the quadrature

21

mesh. Table 1.1 contains the results of this study. The resolution of the simulation mesh
varies over the columns while the refinement level of the quadrature mesh varies over the
rows. Note that the numerical stress intensity factors improve as the simulation mesh is
refined, as expected, but we also get good results by pairing a coarse simulation mesh with
a relatively refined quadrature mesh (of course, only up to a limit that is determined by
the simulation resolution). Also, increasing the refinement level of the quadrature mesh has
roughly the same effect as increasing the resolution of the simulation mesh, and that accuracy
improvement is acheived at a lower computational cost since refining the quadrature mesh
does not add new degrees of freedom to the system. Figure 1.9 illustrates the results of three
convergence tests for this example (using 1, 3, and 5 levels of quadrature mesh refinement).
These plots clearly show first order convergence respect to the simulation mesh resolution.
Finally, Figures 1.10 and 1.11 compare the use of respecting the actual material regions in
the quadrature against treating the quadrature triangles as completely full. Both of these
approaches give linear convergence, with slightly different constants. Further, the difference
between those two methods goes to zero under refinement of the quadrature mesh (keeping
the resolution of the simulation mesh fixed).

Levels 64× 32 128× 64 256× 128 512× 256

KI

0 7.25207 3.02688 1.68144 1.22950
1 0.87748 0.93603 0.96710 0.98310
2 0.90933 0.95357 0.97632 0.98783
3 0.92324 0.96132 0.98039 0.98991
4 0.93210 0.96621 0.98296 0.99122
5 0.93858 0.96979 0.98482 0.99217

KII

0 17.22220 5.78543 2.01135 0.70673
1 −0.00252 −0.00117 −0.00068 −0.00037
2 0.00003 0.000004 −0.00010 −0.00008
3 −0.00210 −0.00091 −0.00052 −0.00028
4 −0.00245 −0.00107 −0.00059 −0.00031
5 −0.00267 −0.00117 −0.00063 −0.00034

Table 1.1: Results for Example 1. Theory gives KI = 1, KII = 0. “Levels” refers to the
refinement level of the quadrature mesh.

1.7.2 Example 2: Straight Crack with Constant Shear Displacement

Example 2 uses the same geometric configuration as Example 1, but this time we apply a
zero displacement Dirichlet boundary condition to one end of the domain and a constant
shear (with respect to the crack frame) traction boundary condition to the other end; see
Figure 1.12. The stress intensity factors are known (see [MDB99]): KI = 34.0 [psi

√
in] and

KII = 4.55[psi
√

in]. As for Example 1, we vary both the resolution of the simulation mesh
and the refinement level of the quadrature mesh, with the results summarized in Table 1.2
and convergence plots in Figure 1.13.

22

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

 log(N)

 l
o

g
(|

e
rr

|)

y = − 0.95*x + 0.8

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
−3.8

−3.6

−3.4

−3.2

−3

−2.8

−2.6

−2.4

−2.2

 log(N)

 l
o

g
(|

e
rr

|)

y = − 0.98*x − 0.83

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

 log(N)

 l
o

g
(|

e
rr

|)

y = − 0.92*x + 0.51

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

−3.6

−3.4

−3.2

−3

−2.8

−2.6

−2.4

 log(N)

 l
o

g
(|

e
rr

|)

y = − 0.92*x − 1

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

 log(N)

 l
o

g
(|

e
rr

|)

y = − 1.004*x + 0.6009

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

−3.6

−3.4

−3.2

−3

−2.8

−2.6

−2.4

−2.2

 log(N)

 l
o

g
(|

e
rr

|)

y = − 0.96*x − 0.84

Figure 1.9: Log-log convergence plots of the errors in KI (left) and KII (right) for Example
1. Each row corresponds to a fixed refinement level of the quadrature mesh: 1 level (top), 3
levels (center), and 5 levels (bottom). All the linear regressions fit to the plots have slopes
close to −1, incidating first order convergence.

23

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

 log(N)

 l
o
g
(|

e
rr

|)

using true area weights

treating cut quadrature triangles as full

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
−3.8

−3.6

−3.4

−3.2

−3

−2.8

−2.6

−2.4

−2.2

−2

−1.8

 log(N)

 l
o
g
(|

e
rr

|)

using true area weights

treating cut quadrature triangles as full

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

 log(N)

 l
o
g
(|

e
rr

|)

using true area weights

treating cut quadrature triangles as full

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
−3.8

−3.6

−3.4

−3.2

−3

−2.8

−2.6

−2.4

−2.2

 log(N)

 l
o
g
(|

e
rr

|)

using true area weights

treating cut quadrature triangles as full

Figure 1.10: Log-log convergence plots of the errors in KI (left) and KII (right) for Example
1. Each row corresponds to a fixed refinement level of the quadrature mesh: 1 level (top) and
5 levels (bottom). Each plot compares respecting the material region within a cut quadrature
triangle during integration against treating the quadrature triangle as completely full. The
results indicate first order convergence regardless of the method.

24

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.005

0.01

0.015

refinement level

d
if
fe

re
n

c
e

1 1.5 2 2.5 3 3.5 4 4.5 5
0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−3

refinement level

d
if
fe

re
n

c
e

Figure 1.11: Plots illustrating the difference betwen respecting the material region within
a cut quadrature triangle during integration against treating the quadrature triangle as
completely full. We show the differences between KI (left) and KII (right) as we vary the
quadrature mesh refinement level on a 64× 32 resolution simulation mesh.

Figure 1.12: The setup for Example 2.

25

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

 log(N)

 l
o

g
(|

e
rr

|)

y = − 1.01*x + 2.46

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

 log(N)

 l
o

g
(|

e
rr

|)

y = − 0.8*x + 0.71

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 log(N)

 l
o

g
(|

e
rr

|)

y = − 1.08*x + 2.4

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

 log(N)

 l
o

g
(|

e
rr

|)

y = − 0.93*x + 0.96

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

 log(N)

 l
o

g
(|

e
rr

|)

y = − 1.14*x + 2.41

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

 log(N)

 l
o

g
(|

e
rr

|)

y = − 0.96*x + 1

Figure 1.13: Log-log convergence plots of the errors in KI (left) and KII (right) for Example
2. Each row corresponds to a fixed refinement level of the quadrature mesh: 1 level (top), 3
levels (center), and 5 levels (bottom). All the linear regressions fit to the plots have slopes
very close to −1, incidating first order convergence.

26

Levels 64× 32 128× 64 256× 128 512× 256

KI

0 27.53640 30.42170 32.13890 33.06540
1 29.62800 31.79550 32.90860 33.47320
2 30.72490 32.40350 33.22860 33.63730
3 31.21530 32.67390 33.37000 33.70950
4 31.51230 32.83990 33.45720 33.75420
5 31.73140 32.96180 33.52120 33.78710

KII

0 7.81139 5.55605 4.86779 4.64271
1 4.36623 4.46139 4.49335 4.51208
2 4.40807 4.49142 4.51380 4.52418
3 4.34959 4.46972 4.50476 4.52010
4 4.34610 4.46936 4.50504 4.52036
5 4.34312 4.46894 4.50513 4.52048

Table 1.2: Results for Example 2. Theory gives KI = 34.0, KII = 4.55. “Levels” refers to the
refinement level of the quadrature mesh. Note that most of the benefits of the quadrature
mesh are realized after only 2 or 3 levels of refinement; beyond that the approximation error
from the simulation finite element space dominates the integration error from utilizing the
quadrature mesh.

1.7.3 Example 3: Angled Center Crack with Mixed Mode Displacement

We borrow the example in Section 4.3 of [MDB99] for Example 3. The domain is a square
plate with an angled center crack which is subjected to a far field constant traction; see
Figure 1.14. We use the parameters W = 10[in] and a = 0.5[in]. Since the crack size is small
and far removed from the plate boundaries, the stress intensity factors may be approximated
as if the domain were the entire plane, giving

KI = σ
√
πa cos2 β, (1.9a)

KII = σ
√
πa sin β cos β. (1.9b)

Figure 1.14: The setup for Example 3.

27

We compute the stress intensity factors as β ranges from 0 to π/2 in increments of π/20.
Our simulation mesh has resolution 64 × 64 and we use a variety of refinement levels for
the quadrature mesh. Figure 1.15 shows the relative error in the numerically computed
stress intensity factors compared to the approximations (1.9). Our results are comparable
to [MDB99].

1.7.4 Propagation Examples

Figures 1.16, 1.17, 1.19, and 1.21 show the results of applying our method to simulate the
propagation of cracks (see §1.6). Each of these examples uses a Young’s modulus of E := 105,
Poisson’s ratio of ν := 0.30, and fracture toughness of 1. For each example, we compute a
release rate via the stress intensity factors and propagate the crack by a fixed increment of
0.03 if the release rate exceeds the toughness [And05].

In Figure 1.16, we simulate a rectangular domain initialized with a straight crack with
symmetric displacement Dirichlet boundary conditions applied to the left and right sides of
the domain. The result is a crack propagating in a straight line that eventually divides the
domain into disconnected halves. The colors used in Figure 1.16 represent the Frobenius
norm of the stress, with the maximum norm in red and the minimum norm in blue (we use
this color convention in the remaining figures as well).

Figure 1.17 shows the initial setup for the quasistatic propagation of a crack in a beam.
As in [BB99], we use the beam dimensions L := 11.82 and W := 3.94, and we vary the
initial perturbation angle θ among 1.43◦, 2.86◦, and 5.71◦. Figure 1.18 shows the results
of the simulation for each of these three initial angles, where we have plotted the position
of the crack tip at each time step: blue triangles correspond to θ = 1.43◦; orange squares
correspond to θ = 2.86◦; and yellow triangles correspond to θ = 5.71◦. Our simulation mesh
has resolution 64× 20 and our quadrature mesh has 3 refinement levels. Our results are in
good agreement with [BB99].

Figure 1.19 depicts a more complicated scenario. The initial configuration (Figure 1.19
(top left)) is a square (with side lengths 1) with two congruent holes (with radii 1/64).
We initialize the simulation with two cracks, one emerging from each hole and both at 45◦

with respect to the horizontal such that the resulting geometry is rotationally symmetric
(Figure 1.19(top right)). We subject this domain to constant traction boundary conditions
on the left and right sides of the domain. Our simulation mesh has resolution 64 × 64
and our quadrature mesh has 2 levels of refinement. The bottom row of Figure 1.19 shows
the simulation after 20 time steps (for clarity, we removed the disconnected material region
between the two cracks).

For the example in Figure 1.19 and the next example, we use the mesh cutting algorithm
from [SDF07] to construct an embedding mesh for the domain. We start with a triangulation
of a square domain and use the mesh cutting algorithm to excise from it the two circular holes,
each represented as a segmentd curve. We thus effectively treat the embedded boundary of
the domain around the circular holes as crack surface that has fully disconnected the discs
from the square. This illustrates a general technique to mesh a domain which has the

28

Figure 1.15: Results for Example 3. The top row compares the relative errors in KI (left) and
KII (right) for 0 levels of quadrature mesh refinement (blue squares) and 5 levels of quadrature
mesh refinement (orange diamonds). The bottom row compares 0 levels of refinement to just
1 level of refinement. Note that much of the accuracy improvement achieved with a very
fine quadrature mesh (5 levels of refinement) is already present at only 1 level of refinement
of the quadrature mesh.

29

Figure 1.16: Simulation of a rectangular domain with symmetric boundary displacements;
initial configuration (upper left), at 5 time steps (upper right), at 10 time steps (lower left),
and at 15 time steps (lower right).

Figure 1.17: The setup for a crack propagation example involving a beam with a crack at
various initial perturbation angles θ.

30

Figure 1.18: The results of crack propagation in the cantilever beam example. We plot the
position of the crack tip at each time step: blue triangles correspond to θ = 2.86◦; and yellow
triangles correspond to θ = 5.71◦.

31

advantage that one may control the simulation mesh resolution independent of the geometry
of the domain boundary. Further, since the mesh cutting algorithm naturally handles a
crack tip inside a fully cut triangle, we can automatically handle the crack tip reaching the
(embedded) boundary of the domain.

Figure 1.21 shows an example with more complicated domain and crack geometry. As
in the previous example, we mesh the domain by excising a segmented curve from a trian-
gulated rectangle (with L = 2 and W = 1) with resolution 128 × 64 (see Figure 1.20). We
then introduce initial triple-junction cracks into the domain and apply displacement Dirich-
let conditions on the left and right. Specifically, we assign a fixed displacement of 0.001 to
subset of the domain to the left of x = −0.8 or to the right of x = +0.8; these boundary
conditions are visually evident in Figure 1.21, where the domain subsets on which we apply
the fixed displacement have identically zero stress. We additionally apply traction boundary
conditions at five other points along the boundary; these boundary conditions are also visu-
ally evident in Figure 1.21 by the high stress they induce. Our quadrature mesh has 2 levels
of refinement. We simulate the propagation of the cracks over 20 time steps. Note that as the
cracks evolve they may join with other cracks, which we accomplish by procedurally merging
cracks whose paths intersect. However, crack tips cannot branch (creating new junctions)
with the propagation methd described in §1.6.

1.8 Discussion and Conclusion

We presented an XFEM-based method for simulating crack propagation. This method em-
ploys the mesh cutting algorithm of Sifakis et al. [SDF07] to automatically generate the
extra degrees of freedom traditionally associated with XFEM Heaviside enrichment; these
degrees of freedom enable the two sides of the crack surface to separate. We additionally de-
scribed an integration scheme based on a subordinate and independently refined quadrature
mesh to accurately evaluate integrals involving the nonlinear (and sometimes singular) basis
functions. This in turn yields accurately computed stress intensity factors, which we use to
propagate the crack. The generality of the mesh cutting algorithm allows us to accommo-
date complex crack and domain geometry, as shown in the examples. We also illustrated the
accuracy of our method, and it compares favorably with the results from the literature.

32

Figure 1.19: Crack propagation in a square domain with holes; initial configuration (top
row) and simulation after 20 time steps (bottom row).

33

Figure 1.20: An example application of the mesh cutting algorithm to mesh a domain. A
triangulated rectangle overlays the domain (left), and the mesh cutting algorithm resolves
the domain boundary against the background mesh. This yields two disconnected meshes,
an interior one (right) and an exterior one, which we discard.

Figure 1.21: Crack propagation simulation with complex geometry; initial configuration (top
left), at 5 time steps (top right), at 10 time steps (bottom left), and at 25 time steps (bottom
right).

34

CHAPTER 2

Virtual Surgery

1 The core principle of plastic surgery practice is the alteration of the geometry and topology
of the skin. For a patient diagnosed with malignant melanoma, the plastic surgeon in many
cases has to resect the tumor and the surrounding area. The extent of the skin that needs
to be removed depends on the size and shape of the tumor. Furthermore, the removal of
a large amount of tissue may have a dramatic affect on the patient’s recovery and post-
operative quality of life. The excision of tissue and subsequent defect closure constitute a
“puzzle” the surgeon has to solve. In the past it has been typical for a surgeon to require
many years to master the craft of skin flap design. The only documentation on how to
solve this difficult three-dimensional problem would typically be limited to collections of
two-dimensional illustrations. Currently a plastic surgeon can only practice this skill on a
live patient in an operating room. Doing this as a laptop simulation [PLR95] has long been a
dream; yet only recently have computer hardware advances promised sufficient computational
capacity to accommodate the accuracy and real-time performance requirements of a tool
usable in actual clinical practice.

The methodology illustrated in this paper is focused on the computer-aided simulation
of open surgery. In contrast, closed surgery, exemplified by endoscopic procedures (e.g.
laparoscopy) typically shifts the computational burden to the three-dimensional visualiza-
tion and navigation of the endoscopic tools in the internal anatomy, while simulation of de-
formable tissues typically excludes topological manipulation, or where any topological change
is limited and localized (e.g. local excision or cauterizaion). In contrast, open surgery is pre-
dominantly centered around the alteration of both the geometry and topology of the surgical
subject. A simplistic example can be seen in a tracheostomy where an incision is performed
in the neck, cutting through skin, cartilage and muscle down to the wind pipe, and the
resulting flap is stitched to the surface. More sophisticated open surgery, such as a cleft lip
and palate repair, may involve a highly elaborate sequence of incisions, tissue transposition
and suturing. The essence of open surgery is thus the topological change involved.

Despite the elaborate nature of certain open surgery procedures, the large majority of
such repairs can be constructed from a small number of building blocks or fundamental
operations. In our virtual surgical simulation environment we formalize the application of
these operations via three basic tools:

• The Incision Tool is used to specify the surface swept by the virtual scalpel, and define
the topological change intended by the surgeon.

1The content of this chapter is a version of [SHT09] with minor revisions.

35

Figure 2.1: Simulation of a malignant melanoma removal and closure of the resulting defect
with a rhomboid flap procedure. The gridded texture demonstrates the post-procedure
topology and geometry of the tissue.

• The Retraction Tool is used to grasp and manipulate the skin after or in between
performing incisions.

• The Suture Tool is used to stitch parts of the geometry together, once they have been
placed adjacent to one another.

The successive application of these fundamental tools is recorded in a replayable script
file, such that the sequence of actions may be repeated even if the underlying skin geometry
or the discrete simulation mesh are modified. This allows an operation strategy to be effi-
ciently sketched out at interactive simulation rates, and then replayed with a much higher
simulation resolution and more accurate material property models to obtain more accurate
measurements of tissue deformation and stress.

2.1 Technical Background

A usable, practical and beneficial open surgery simulator needs to meet certain important
requirements in order to address the needs of a clinical setting. First, the computational
performance must enable real-time interaction when authoring a certain surgical strategy.
The material models used must be accurate and representative of the (complex, typically
highly nonlinear) constitutive properties of the biological tissues involved. Furthermore, re-
constructive surgery typically entails substantial tissue deformation, requiring the numerical
and algorithmic robustness of any simulation techniques used. Finally, all these requirements

36

need to be reconciled with the need for a high level of visual detail, both in terms of texture
and geometrical detail, to reflect the geometric and visual complexity of the subject tissues
and aid in the reproduction of the process in the operating room by providing discernible
surface landmarks for the various surgical operations.

2.1.1 Real-Time Simulation

A virtual simulation environment will have a vastly reduced potential for being used in
actual practice if it does not offer the ability for a clinician to cut and manipulate the
skin in real-time. In a finite-element discretization of a volumetric object representing a
tissue flap, certain algorithmic and numerical factors may severely compromise the real-time
performance of such a system. First, the resolution of the simulation mesh alone needs
to be limited enough to allow for real-time simulation; although discretizations with several
hundreds of thousands or millions of tetrahedral elements would be desired (and may actually
be feasible in the light of emerging massively parallel computing platforms), commodity
computer hardware dictates stricter limits for simulations tractable with the computational
resources of a mainstream laptop, for example. Instead of compromising the visual detail
contained in our model for the sake of a coarser discretization, we employ an embedded
scheme (as in [SDF07, SSI07]) to allow a coarser simulation mesh to serve as a “framework”
for a higher resolution geometry. The surface resolution may be substantially higher than
that of the embedding grid, and certain aspects of simulation (such as collision processing)
may be handled on the high-resolution embedded geometry if so desired. Additionally, this
eliminates the risk of ill-conditioned simulation elements necessitated to resolve intricate
geometrical features of the tissue surface. More important, this practice circumvents the
need for remeshing of the tissue geometry in order to resolve the topological change incurred
by incisions. At all times, the simulation grid is maintained at a regular, lower degree-
of-freedom lattice (with a topology adhering as closely as possible to the topology of the
continuous tissue volume).

2.1.2 Accuracy and Nonlinear Deformation

Although linear material models and mass-spring networks have been widely used for inter-
active simulation of deformable solids, providing a virtual surgery simulation system with
the ability to make reliable predictions about the behavior of real tissue necessitates the
adoption of much more accurate, nonlinear, anisotropic constitutive material models. This
requirement will be essential in making the virtual surgery framework presented here capable
of reliable predictions of the surgical outcome, establishing a virtual system as a dependable
platform for surgical planning. The constitutive models that accurately convey the material
properties of human flesh have to account for the inhomogeneity of materials (e.g. anatomical
parts consisting of passive fatty tissue, active musculature, tendons, ligaments and connec-
tive tissue). Furthermore, the materials involved are nonlinear and near-incompressible, in
sharp contrast with linear material approximations which may be employed in applications
where deformation is limited to the small strain regime, or where physical accuracy is not

37

Figure 2.2: Simulation of a z-plasty procedure for the elongation of a scar contracture.

essential. Our system supports arbitrary nonlinear, inhomogeneous and anisotropic material
properties, which may be defined on the basis of every distinct simulation element in the
underlying embedding mesh. This also highlights the ability of the system to facilitate a
two-pass simulation process, where a lower resolution embedding mesh (where the nonlin-
earity and inhomogeneity may manifest themselves in a limited capacity) can be used for
crafting the surgical approach interactively, and a subsequent pass where the same sequence
of actions is repeated offline on a highly refined embedding mesh, which is able to resolve
the intricacies of the nonlinear deformation.

2.1.3 Robustness Under Large Deformation

The manipulation of flesh during plastic surgery operations is by no means limited to small
geometric change; in fact, large strain deformation is quite typical of the configurations
involved in the closure of the tissue flaps created. Therefore, especially given the necessity
for nonlinear constitutive models and the relatively under-resolved nature of the simulation
(owing to the embedding approach), the simulation methods employed have to address and
survive extreme geometric configurations, such as element inversion or collapse. We employ
the Invertible Finite Element method of [ITF04] which allows such simulations to continue
and gracefully recover when transitioning through such extreme geometric configurations,
while still supporting the full gamut of nonlinear constitutive models.

38

2.2 Tools and Methods

We have created a “local flaps” simulator that will allow surgeons to practice their closing
designs in a three-dimensional environment with real-time interaction. This environment uses
the PhysBAM physics simulation library to allow the user to make incisions, move tissue
flaps, and create virtual sutures to simulate closing of a skin defect, all in a scientifically
accurate framework. The simulator consists of several simple surgical tools:

• The Incision Tool. This tool creates a triangulated surface which represents the area
swept by the scalpel during an incision. This incision surface is generated by sketching
a curve (either a sequence of straight line cuts, or a spline curve) on the surface of
the tissue, while controlling the angle which the scalpel forms with the tissue being
cut. The result of this operation is a discrete triangulated surface representation of
the incision being made. The algorithm of [SDF07] is subsequently used to determine
the topology resulting from this manipulation of the tissue geometry, generating the
necessary degrees of freedom to enable the opening of the tissue at the location of the
incision.

• The Retraction Tool. Once the topology of the incision has been resolved, the action
of grasping and manipulating the tissue flap is performed using a simulated hook-
and-handle mechanism. By direct selection, a point on the surface of the tissue is
defined as the anchor point of a retraction site (i.e. a hook point). At the same time,
a “handle” point is defined by offsetting the hook location a certain short distance
off the surface of the tissue. This handle can be arbitrarily positioned in 3D space,
giving rise to deformation of the simulated tissue. The target position of the handle is
communicated to the deformable tissue via a spring force that aims to bring the hook
at the specified 3D location.

• The Suture Tool. Once the retraction tool has been used to deform the tissue shape
into its target location, this tool emulates the process of suturing two adjacent surfaces
together. The suture can be either a point-to-point connection, or a curved path
connecting two sides of tissue. The geometry on either side of the suture are brought
together by the simulated action of a zero rest-length spring joining the parts of the
tissue connected by the suture.

The successive application of these fundamental tools is recorded in a replayable script
file, such that the sequence of actions may be repeated even if the underlying skin geometry
or discrete simulation mesh are modified; this allows an operation strategy to be efficiently
sketched out in interactive simulation rates, and then replayed with a much higher resolution
simulation mesh to obtain more accurate measurements of tissue deformation and stress.
Using this simple combination of surgical tools, the surgeon is able to practice existing
procedures for closing the defect. A surgeon may also invent a new pattern altogether and
assess its efficacy based on such physically quantifiable metrics as post procedure tension
in the tissue and suture. The elasticity of the tissue is simulated using the finite element

39

method defined on a volumetric tetrahedral representation of the tissue. An implicit time
stepping scheme is used to obtain a frame rate adequate for interactivity. Tissues involved
typically undergo large deformation and the algorithms of [ITF04] and [TSI05] are used to
guarantee robust performance in this challenging setting. Tissue incisions are represented
using the novel tetrahedral cutting approach of [SDF07] and sutures are modeled with the
highly flexible embedding framework of [SSI07].

Figure 2.3: Comparison of the simulated results of Z-plasty procedures with incision angles
at 45, 60 and 90 degrees respectively from left to write. Simulation confirms the conventional
wisdom that 60 degrees is the optimal incision angle. Also, the 90 degree incision reproduces
the so-called “dog ear” effect.

2.3 Results

Figure 2.1 depicts the results of a local flaps simulation of a rhomboid flap procedure for
removing a malignant melanoma and repairing the skin near the excision region. This is
a very common procedure and the simulated tissue configuration matches the conventional
wisdom very closely. Different stages in a z-plasty procedure (typically used for elongating
scar contractures) shown in Figures 2.2 and 2.3, show the effects of varying the angles of
the z-incision. In practice, the optimal angle of incision is 60 degrees. Our simulated results
also suggest that 60 degrees is the optimal angle as lower angles fail to produce sufficient
elongation and large angles produce non-planar equilibrium configurations (or the so-called
“dog ear” effect).

2.4 Conclusions

The local flaps environment is an effective tool that the plastic surgeon can utilize to leverage
physically accurate simulation in an interactive environment to improve many aspects of his
cognitive surgical practice. The uses of the environment fit into two basic categories. The
first is related to training in existing procedures. These scenarios demand realtime interaction
but not necessarily the highest degree of physical accuracy. The second is related to design
of new procedures. Such applications require a higher degree of physical accuracy. Our finite

40

element based approach allows for this and has the ability for future incorporation of subject
specific constitutive models that can be used to study repair of unique injuries (e.g. those
arising on the battlefield).

41

CHAPTER 3

Geometric Fracture Modeling in Computer Animation

Figure 3.1: Left, middle: Rhino’s ball is riddled with cracks as a metal gate crushes it down.
Right: A roadway is torn up by Bolt’s “superbark”.

3.1 Introduction

1 Modeling the geometry of solid materials cracking and shattering into elaborately shaped
pieces is a painstaking task, which is often impractical to tune by hand when a large number
of fragments are produced. In Walt Disney’s animated feature film Bolt, cracking and shat-
tering objects were prominent visual elements in a number of action sequences. We designed
a system to facilitate the modeling of cracked and shattered objects, enabling the automatic
generation of a large number of fragments while retaining the flexibility to artistically con-
trol the density and complexity of the crack formation, or even manually controlling the
shape of the resulting pieces where necessary. Our method resolves every fragment exactly
into a separate triangulated surface mesh, producing pieces that line up perfectly even upon
close inspection, and allows straightforward transfer of texture and look properties from the
un-fractured model.

3.2 Crack Geometry Generation

The input to our system consists of a closed triangulated surface defining the (uncut) solid
object to be fractured and one or more additional triangulated surfaces defining the geom-
etry of the cracks. The geometry of this “crack surface” is not constrained by the shape
of the material object itself; cracks are free to extend outside the material into the empty
space, and can have non-manifold shapes, topological junctions, or even intersect themselves.
Leveraging this flexibility, we can automatically create a fracture surface which partitions

1The content of this chapter is a version of [HSS09] with minor revisions.

42

the ambient space into any given number of regions by simply introducing the same number
of seed points and computing the 3D Voronoi regions of those seed locations. The fracture
surface is then defined as the union of all boundaries between Voronoi cells (see Figure 3.2,
top right). In practice, we approximate these regions by laying down a background, proce-
durally generated tetrahedral mesh, and computing the Voronoi cells via a flood-fill on the
tetrahedral mesh, starting from the elements containing the seed points.

The shape of the fracture surface can be controlled by specifying the number of seed
points, or even by volumetric painting of seed point densities, to control which regions will
shatter into more, smaller fragments. We also control the smoothness of the boundaries
between Voronoi regions by jittering the background tetrahedral mesh prior to the flood-fill,
and selectively smoothing the boundary surface where smoother cracks are desired. Finally,
in certain situations (e.g. the cracks of the hamster ball in Figure 3.1), more specific artist
control of the fragment geometry is desired. For these cases, we extruded sets of artist-drawn
3D curves in the direction normal to the object surface to create a fracture surface that cuts
through the material and reflects the crack design intended by the artists.

3.3 Automatic Fragment Mesh Generation

We adapt the cutting algorithm of [SDF07] to automatically generate triangulated meshes
for the material fragments defined by the object and fracture geometries of the previous sec-
tion. In particular, their method begins with a tetrahedral volumetric representation of the
material to be fractured, as opposed to the triangulated boundary geometry we assumed as
input to our system. We handle this representation discrepancy by first generating a tetrahe-
dral mesh that fully covers the object to be fractured . The triangulated surface of the uncut
object itself is used as the first cut in an application of the algorithm of [SDF07], effectively
sectioning the background tetrahedral volume into the “material” and “void” regions. The
fracture surface is then applied as the second cut, resulting in the separation of the material
volume into separate fragments. The cutting algorithm computes the triangulated boundary
of every volumetric fragment in a way that every triangle of a fragment is contained inside
a triangle either of the uncut object, or of the fracture surface (Figure 3.2, bottom). As
a result, texture and look properties can be remapped simply by embedding each result-
ing triangle barycentrically into either the material or the fracture surface respectively, and
looking up the properties of the embedding triangle. Finally, although our framework is
currently used for geometric modeling, we aim to employ it in conjunction with simulation
in the future, to model time-dependent crack propagation.

43

Figure 3.2: Top left: Simulation of the shattered fragments of Rhino’s ball. Top right:
Fracture surfaces defined as the boundaries of Voronoi regions in 3D. Bottom: The fragments
are fully resolved as independent surface meshes, and can be separately manipulated.

44

Part II

Virtual Node Methods for Elliptic
Problems

45

Introduction

We now turn toward the solution of elliptic partial differential equations on arbitrary, irreg-
ular domains with a discretization based on a regular Cartesian grid. We will specifically
consider the following problems in Chapters 4 and 5, respectively.

• Poisson’s equation with interfacial jump conditions:

−∇ · (β∇u) = f, ∈ Ω \ Γ; (II.1a)

[u] = a, ∈ Γ; (II.1b)

[β∇u · n̂] = b, ∈ Γ; (II.1c)

u = p, ∈ ∂Ωd; (II.1d)

β∇u · n̂ = q, ∈ ∂Ωn; (II.1e)

where

– the domain Ω ⊂ Rd is open (d = 2 or 3, typically);

– the interface Γ is a co-dimension one closed curve (d = 2) or surface (d = 3)
that divides Ω into an interior domain Ω− and an exterior domain Ω+, such that
Ω = Ω− t Ω+ t Γ;

– u (unknown), β (known), and f (known) are scalar functions which can exhibit
discontinuities across Γ but otherwise are assumed to have smooth restrictions
uσ, βσ, fσ to Ωσ, σ ∈ {+,−};

– n̂ ≡ n̂(x) denotes the outward unit normal, both to Ω− for x ∈ Γ and to Ω for
x ∈ ∂Ω; and

– [v] (x) := v+(x)− v−(x) := limε→0+ v (x + εn̂(x))− limε→0+ v (x− εn̂(x)) denotes
the jump of the quantity v across the interface Γ.

We note that the relevant physics generally determine the jumps in the solution (II.1b)
and in the flux (II.1c), as well as the boundary conditions (II.1d), (II.1e) on ∂Ω.

• The equilibrium equations of linear elasticity:

−∇ · σ(u) = f , ∈ Ω; (II.2a)

u = u0, ∈ ∂Ωd; (II.2b)

σ(u) · n̂ = g, ∈ ∂Ωn; (II.2c)

where

– the domain Ω ⊂ Rd is open (we consider d = 2 primarily);

– u is the (unknown) material displacement map;

– σ is the Cauchy stress tensor;

46

– f is the external force per unit volume;

– u0 is the prescribed Dirichlet boundary displacements over ∂Ωd ⊂ ∂Ω; and

– g is the prescribed external surface traction over ∂Ωn ⊂ ∂Ω.

In linear elasticity, the stress σ(u) is linearly dependent on the Cauchy strain ε(u) via

ε(u) :=
1

2

(
∇u + (∇u)t

)
,

σ(u) := 2µε(u) + λ (tr ε(u)) I

= µ
(
∇u + (∇u)t

)
+ λ (∇ · u) I.

Therefore, (II.2) is equivalently formulated as

−
(
µ∆I + (λ+ µ)∇∇t

)
u = f ∈ Ω (II.3a)

u = u0 ∈ ∂Ωd (II.3b)

µ (u · n̂ +∇ (u · n̂)) + λ (∇ · u) n̂ = g ∈ ∂Ωn. (II.3c)

In all the above, ∂Ω = ∂Ωd t ∂Ωn, and we assume Γ (if applicable) and ∂Ω to be
sufficiently smooth. See Figure II.3 for an example of an embedding of a domain Ω within
a background Cartesian grid in 2 and 3 dimensions.

(a) Embedding in 2 dimensions (b) Embedding in 3 dimensions

Figure II.3: Example domain embeddings in (a) 2 dimensions and (b) 3 dimensions. In a
typical domain embedding, only grid vertices on grid cells which intersect the domain (in
(a), shaded) are considered degrees of freedom.

47

Although the use of embedded methods avoids the complexities inherent to unstructured
mesh generation, as discussed in the overall Introduction, they do introduce difficulties of
their own, though typically of a different and less computationally intensive variety. One
prominent such difficulty is the enforcement of algebraic surface conditions (such as bound-
ary conditions or interfacial jump conditions) on embedded features such as ∂Ω and Γ, since
the degrees of freedom now do not lie on said embedded features. Our methods employ
a Lagrange multiplier space in a relatively straightforward way to weakly enforce Dirichlet
boundary conditions and interfacial jump conditions. We mention some alternative tech-
niques in the background sections in the subsequent chapters, and for a good review, see
Lew et al. [LB08].

A further challenge is the retention of higher order accuracy in L∞. The difficulty typ-
ically lies in determining the numerical stencils near embedded features that retain the ac-
curacy achieved in the regions of the domain sufficiently distanced from embedded features.
Many present methods address these problems at the cost of implementation complexity and
sometimes require significant effort to adapt to general applications. But while achieving
higher order accuracy in the discretization may be nontrivial, to reiterate from the overall In-
troduction, the ability to use a regular Cartesian grid greatly facilitates the implementation
of efficient solution techniques. Specifically for high resolution discretizations, direct meth-
ods to solve the discrete linear systems become too slow and memory intensive. Geometric
multigrid methods and domain decomposition approaches have been shown to provide very
favorable performance in this setting. However, their application to embedded discretizations
is not entirely straightforward. Ultimately, special attention must be paid near embedded
features for both discretization accuracy and efficient numerical linear algebra, as we describe
in the subsequent chapters.

The methods presented in the following chapters build on the work of Bedrossian et al.
[BBZ10], which introduced a second order virtual node method for solving the interfacial
Poisson problem (II.1) in 2 dimensions. The discretization presented in [BBZ10] is easy to
implement and yields a symmetric positive definite sparse linear system for both interface
problems and boundary value problems on irregular domains. In summary, this virtual
node method employs a uniform Cartesian grid with duplicated Cartesian bilinear elements
along the interface. These duplicated elements introduce additional virtual nodes or degrees
of freedom to accurately capture the lack of regularity in the solution. The method is
variational to define stencils symmetrically, and a different discretization is used depending
on proximity to embedded features, allowing for the retention of the standard 5-point finite
difference stencil away from embedded boundaries and interfaces. Langrange multipliers
are used to weakly enforce embedded Dirichlet conditions (II.1d) and embedded interfacial
jump conditions (II.1b), and the choice of Lagrange multiplier space admits a symmetric
positive definite discretization. In the special case when β is smooth, a discontinuity removal
technique allows the use of the standard 5-point Poisson stencil even across the embedded
interface.

In Chapter 4, we improve many aspects of [BBZ10] and provide key modifications neces-
sary to extend the method to 3 dimensions. Within the context of discretizing the Dirichlet
conditions (II.1d) and interfacial jump conditions (II.1b), we present a novel and flexible al-

48

gorithm to define the discrete Lagrange multiplier space. This algorithm gives more control
on the conditioning of the resulting linear system and specifically addresses the conditioning
issues (see Appendix C) we found in the straightforward extension of [BBZ10] to 3 dimen-
sions. We also give an expanded treatment of the discontinuity removal technique, detailing
an algorithm for the construction of a scalar function satisfying the interfacial jump condi-
tions (II.1b, II.1c).

In Chapter 5, we apply some of the same basic ideas from Chapter 4 to numerically
solve the equilibrium equations of linear elasticity in the nearly incompressible regime. We
stabilize the method by introducing pressure as an additional unknown in a mixed variational
formulation. Our discretization of this variational formulation is then based on a MAC-type
staggering of x and y-component displacements with pressure degrees of freedom at cell
centers. Again, we achieve second order accuracy in L∞ while retaining a symmetric positive
definite linear system.

Further, within both chapters, we present a family of geometric multigrid algorithms to
solve the resulting linear systems with near-optimal multigrid efficiency independent of grid
resolution. The variational nature of the methods naturally enables symmetric numerical
stencils along embedded features, and together with our choice of Lagrange multiplier space,
this admits an efficient means for smoothing boundary and interface equations. Indeed,
this shows the suitability of efficient parallel implementations, as indicated, e.g., by the
similarities to the first order method to solve (II.3) in [ZST10].

In summary, our methods for solving elliptic problems such as Poisson’s equation (II.1)
and the equilibrium equations of linear elasticity (II.3) have a distinguishing feature set
rarely found simultaneously in the large class of embedded methods:

• second-order accuracy in L∞;

• addresses both Neumann (II.1e) / (II.3c) and Dirichlet (II.1d) / (II.3b) boundary
conditions as well as the interfacial jump conditions (II.1b, II.1c);

• relatively simple to implement with a nice progression of complexity from the discretiza-
tion of Neumann boundary conditions to Dirichlet boundary conditions to interfacial
jump conditions;

• yields a discrete linear system which is symmetric and positive definite, facilitating the
application of a wide variety of black-box solvers or, as we show, efficient geometric
multigrid methods with nearly optimal convergence rates.

Furthermore, our method for solving (II.3) retains the above properties even in the nearly
incompressible regime.

49

CHAPTER 4

Poisson with Interfacial Jump Conditions

4.1 Background and Existing methods

1 To review, this chapter addresses the solution of Poisson’s equation with interfacial jump
conditions, repeated here for convenience:

−∇ · (β∇u) = f, ∈ Ω \ Γ; (4.1a)

[u] = a, ∈ Γ; (4.1b)

[β∇u · n̂] = b, ∈ Γ; (4.1c)

u = p, ∈ ∂Ωd; (4.1d)

β∇u · n̂ = q, ∈ ∂Ωn; (4.1e)

where we wish to solve for the unknown scalar function u.

The Immersed Interfaced Method (IIM) is perhaps the most popular finite difference
method for approximating (4.1) to second order accuracy. LeVeque and Li first proposed
the IIM for approximating elliptic interface problems in [LL94] and the term now applies to
a widely researched and extensively applied class of finite difference methods [LL97, LL01,
LL03, LKP06, XW06, TLL08, XW08]. See [LI06] and the references therein for a com-
plete exposition of the method and its numerous applications, and [BL06] for justification
of the general IIM approach. Using generalized Taylor expansions, the original IIM adap-
tively modifies the stencil to obtain O(h) truncation error along the interface. For smooth
β, this reduces to the standard 5-point or 7-point finite difference stencil, but otherwise
results in an asymmetric discretization that follows from locally solving constrained opti-
mization problems that enforce a discrete maximum principle [LI01]. The IIM also gener-
ally requires the evaluation of higher order jump conditions and surface derivatives along
the interface. This can lead to difficulty in implementation, especially in 3 dimensions
[DIL03, LI06, XW06, XW08]. Chen and Strain described a new approach to the IIM, called
the Piecewise-polynomial Interface Method (PIM), in [CS08] that does not require the deriva-
tion of additional jump conditions and accurately treats complex interfaces. Various other
attempts have been made [Li98a, WB00, Ber04, AL02, AC04, AC05, LI06] to improve the
efficiency and reduce the complexity of the IIM.

Extrapolation-based finite difference schemes such as [LFK00, GFC02, ZZF06, GF05,
JM05, CS07] introduce fictitious points along coordinate axes and use the known jump
conditions to determine their values. The Ghost Fluid Method (GFM), such as that presented

1The content of this chapter is a version of [HWS12] with moderate revisions.

50

by Liu et al. in [LFK00], exemplifies such methods. For 2− and 3−dimensional interface
problems, the GFM neglects the tangential flux terms [β∇u · τ̂] when determining fictitious
values, yielding a symmetric positive definite system and a resulting method which is first
order accurate [LFK00, LS03]. However, the GFM is capable of achieving up to fourth
order accuracy for irregular domain problems [GFC02, GF05]. The GFM is similar to our
approach in spirit. We also incorporate similar ideas from the Virtual Node Algorithm
(VNA) [MBF05, BHT07, SDF07]. Various other approaches attain higher order accuracy by
accounting for the tangential flux in other ways, often sacrificing simplicity and symmetry
of discretization in the process. For instance, the Coupling Interface Method (CIM) [CS07]
extends the GFM to higher order by using a second order extension at most grid points but
reverting to a first order method at grid points where the second order extension cannot be
applied. The method couples jump conditions in different directions to express the tangential
derivatives, and the use of one-sided differences results in an asymmetric discretization.
Similarly, the Matched Interface and Boundary (MIB) method [ZZF06] uses higher order
extrapolations of the solution matched with higher order one-sided discretizations of the
jump conditions to determine the values at fictitious points. The MIB method accounts for
nonzero [β∇u · τ̂] by differentiating the given jump conditions using one-sided interpolations.
This widens the stencil in several directions that depend on the local geometry, and results in
an asymmetric discretization. The work of [ZW06] extended the MIB method to handle high
curvature geometry, the work of [YW07] provides a 3-dimensional version, and more recent
progress is given in [ZW09]. Kejia Pan et al. in [PTH10] derived symmetric finite difference
formulas (in 1 and 2 dimensions) within the MIB framework. In [HL05, HWW10] Hou et al.
also use techniques seemingly inspired by the analysis of the original GFM approach done
in [LFK00, LS03]. They develop a second order variational GFM by altering finite element
interpolating functions to capture the jump conditions in the solution. Their approach is
remarkably robust to non-smooth interface geometry (especially [HWW10]), but results in
an asymmetric discretization in the general case. The recent works of [NMG09a, PGR10]
treated the cases of Robin and Neumann boundary conditions by altering the 5-point stencil
along the boundary using a finite volume-like approach. This results in a symmetric positive
definite system.

Ideas similar to the extrapolation-based finite difference schemes have also seen extensive
use in the FEM community, for instance in fictitious domain methods [GPP94a, ABC97,
PP09, JM10], the Discontinuous Galerkin (DG) method [LB08, GLJ09], the eXtended Finite
Element Method (XFEM) [MDB99, DMD00, BMU01, MCC03, JD04, FB06, MBT06, GR07,
BG09] [JSC06]2, and other non-conforming finite element methods [YMB90, HH02, LLW03,
HH04, SAB06, MDH07, DF08, KPB08, DH09, HD10, KWC10, WX10]. Fictitious domain
methods handle embedded features by including every element that intersects the feature
into the discretization. This naturally introduces “virtual nodes” or “ghost nodes” into
the resulting discretization. The XFEM enriches the standard finite element basis with
additional discontinuous basis functions, thereby introducing new degrees of freedom. These
basis functions exist only at the nodes of elements that intersect the embedded interface and
usually are the standard basis elements multiplied by a generalized Heaviside function. The

2See [BCL08] for corrections to IIM convergence estimates.

51

methods of [HH02, HH04, SAB06, BHT07, DH09] introduce a related virtual node concept to
provide the additional degrees of freedom required to represent the discontinuities. The most
straightforward implementation of this virtual node concept [HH04, SAB06, DH09] yields a
representation equivalent to the standard Heaviside enrichment of the XFEM. However, this
approach generalizes to the slightly richer representations of [MBF05, SDF07] that attain
more geometric detail, particularly when dealing with coarse grids and non-smooth interfaces.
Moreover, virtual node representations are considered more geometrically intuitive and easier
to incorporate into existing FEM code [SAB06, DH09] than traditional Heaviside enrichment.

The solution spaces of these FEM approaches generally do not satisfy the embedded
boundary or interface conditions. Thus, these methods impose linear constraints with either
penalty methods or Lagrange multipliers to enforce the conditions in some weak sense. For
example, see [GPP94a, MDH07, DH09, PP09, BG09] and the references therein. When us-
ing Lagrange multipliers, the Ladyzhenskaya-Babus̆ka-Brezzi inf-sup conditions place strin-
gent limitations on the types of constraints that will retain optimal convergence rates of
the approximation spaces [Bab73, Pit79, CB93, MBT06, MDH07, LB08]. Such inf-sup re-
strictions generally limit the strength of the Lagrange multiplier space relative to the solu-
tion approximation space. For certain elements, designing the proper approximation spaces
is a non-trivial task [JD04, MBT06]. Moreover, the use of Lagrange multipliers requires
the solution of an indefinite saddle point system that can potentially introduce significant
cost. Applying stabilization through a consistent penalty method, such as Nitsche’s method,
presents an alternative approach [HH04, MDH07, DF08, DH09, HD10, WX10]. However,
these can have adverse effects on conditioning and require the determination of the stabi-
lization parameters. Instead of using Lagrange multipliers or stabilization, the methods of
[LLW03, HL05, FB06, Li98b, KPB08, HWW10, KWC10] alter the basis functions to either
satisfy the constraints directly, or simplify the process of doing so. In this regard, such
methods represent the finite element analogues of the IIM.

The method of [JC98] offers a finite volume approach to embedded domain problems.
Like some fictitious domain methods, XFEM, and our virtual node method, this method uses
partially empty cells along the boundary. However, the one-sided quadratic interpolations
used to compute the fluxes along the boundary yield an asymmetric system. See [SBC06]
and [CCG10] for a more recent 3-dimensional version applied to Poisson’s equation and the
heat equation. In [OK06], Oevermann and Klein proposed a second order finite volume
method for interface problems, and simplified and extended their method to 3-dimensions
in [OSK09]. In an approach similar to ours, any Cartesian cell that intersects the interface
yields a distinct multilinear representation of the solution. The jump conditions are then
built into the difference stencil by locally solving constrained overdetermined systems. An
asymptotic technique resolves the problem of vanishing cell volumes, though it requires
specific treatment for each possible cell geometry. The resulting system is asymmetric for
the general case of [β] 6= 0.

When [β] 6= 0 the majority of these second order methods do not retain a symmetric
positive definite system. While the FEM approaches that use stabilization do retain a
symmetric positive definite system [DH09], generally the finite element methods that use
Lagrange multipliers, such as [DMD00], result in a symmetric indefinite system. Although

52

we use Lagrange multipliers, we present a simple method of reducing the indefinite system
to a symmetric positive definite system using a null space method. On the other hand, when
the coefficient β is smooth across the interface, methods such as the original IIM achieve
second order accuracy by only altering the right-hand side of the system. For this case,
we present a method that uses the virtual node framework that also retains the original
left-hand side.

Several of the above works employ multigrid methods to solve the resulting linear systems.
Black-box multigrid solvers, either of a purely algebraic variety [DIL03, OK06, CS07, OSK09]
or of a more geometric variety [LI01], are often efficient alternatives to, or may be combined
with, Krylov solvers [CS08, MST10]. However, less general multigrid algorithms specially
tuned to the particular discretization method may outperform a black-box multigrid solver;
see, for example, [AC05, MST10]. Some methods lend themselves to using relatively straight-
forward extensions of standard geometric multigrid techniques, including both mortar finite
element methods [WK99, LW04] and embedded methods [ABC97, JC98, SBC06, CCG10],
usually with special attention being paid near irregular features. Many of the works describ-
ing IIM-based discretizations [AL02, AC04, AC05, CS08] utilize a multigrid solver with a
grid hierarchy defined geometrically but incorporate algebraic techniques in the remaining
components (coarse-grid operators and grid transfer operators). In [WL04] Wan and Liu
discuss the transfer operators near embedded features in a geometric multigrid method for
irregular domain discretizations in general. In contrast to the multigrid approaches in many
of the preceding works on embedded discretizations, our multigrid algorithms define the grid
hierarchy, coarse-grid operators, and grid transfer operators geometrically, hence allow for
efficient implementations that have lower memory requirements and increased parallelizabil-
ity.

4.2 Discretization

Our numerical discretizations for domain and interface problems make use of an embedding
of the domain boundary and/or interface within a uniform Cartesian grid. We thus first
outline this embedding procedure and the associated notation. We subsequently describe
our Neumann discretization, and we will then see how an alteration of our treatment of the
boundary conditions in Neumann problems yields our discretization for Dirichlet problems.
Finally, we will show how a natural combination of our Neumann and Dirichlet discretizations
allows us to deal with interfacial discontinuities.

4.2.1 Domain and Interface Embedding and Integration

Let us first consider the treatment of Ω for domain problems. We embed the domain Ω into
a non-conforming, uniform Cartesian grid Gh with grid-spacing (∆x,∆y,∆z). (Note that to
simplify the convergence analysis, our numerical examples assume ∆x = ∆y = ∆z =: h.)
We include all Cartesian grid cells ci that intersect Ω in the discretization, and refer to
this set Ch =

{
ci ∈ Gh : ci ∩ Ω 6= ∅

}
as the computational domain (see Figure 4.1). Also,

53

we define the set of all cells that intersect the boundary as Ch∂Ω =
{
ci ∈ Ch : ci ∩ ∂Ω 6= ∅

}
and refer to these as boundary (grid) cells. Note that a boundary cell may be regarded as
partially empty, since only a portion of the cell lies within Ω. We refer to this region of a
boundary cell ci that lies in the domain Ω, ci ∩Ω, as the material region of the cell, and use
the terms material node and virtual node to describe the Cartesian grid vertices lying inside
and outside Ω, respectively. We refer to the set of grid vertices spanned by the computation
domain as N h, and specifically the material nodes as N h

m and the virtual nodes as N h
v . See

Figure 4.1 for a diagram labeling the grid vertices along a typical boundary. For domain
problems, we identify each grid vertex in the computational domain, material or virtual, as
a degree of freedom.

(a) Embedding in 2 dimensions (b) Embedding in 3 dimensions

Figure 4.1: Example embeddings for domain problems. Subfigure (a) shows an example in
2 dimensions to clearly depict the various classes of grid cells and vertices: shaded grid cells
comprise the computational domain (Ch), with lighter-shaded grid cells on the boundary
(Ch∂Ω); grid vertices surrounded by gray circles represent virtual degrees of freedom (N h

v);
grid vertices surrounded by black circles represent material degrees of freedom (N h

m) incident
to a boundary grid cell; and grid vertices surrounded by squares represent material degrees
of freedom (N h

m) incident only to non-boundary grid cells. Subfigure (b) shows an example
in 3 dimensions.

In the course of the discretization, for each boundary cell ci ∈ Ch∂Ω, we will need to
evaluate integrals over the following domains:

• the material volume within a cell, ci ∩ Ω;

• the boundary of the material volume within a cell, ∂(ci ∩ Ω); and

54

• the boundary of Ω within a cell, ci ∩ ∂Ω (which is contained within ∂(ci ∩ Ω)).

In all cases, the integrand is polynomial (or locally approximated by a polynomial). We
evaluate these integrals using polyhedral representations Pci and Pci∂Ω approximating ∂(ci∩Ω)
and ci ∩ ∂Ω, respectively. We use the term polyhedral representation to convey an analogous
meaning as polygonalizing a curve in 2 dimensions, but we essentially regard Pci and Pci∂Ω

simply as collections of polygons. For implementation purposes, to maximize data structure
reuse, it is convenient for Pci∂Ω ⊂ Pci , i.e., all polygons in Pci∂Ω are also members of Pci . See
Figure 4.2.

(a) Boundary grid cell with a poly-
hedralization of a portion of ∂Ω em-
bedded inside

(b) The two halves of the boundary grid cell after division along ∂Ω

Figure 4.2: A grid cell ci with an example boundary dividing it. The left half of the cell in
(b) corresponds to ci ∩ Ω, the material region of the cell. (b) shows the polyhedralization
Pci of the material region of the cell, where the shaded triangles highlight Pci∂Ω ⊂ Pci , the
polyhedralization just of the portion of ∂Ω passing through ci.

We employ the divergence theorem to transform volume integrals over ci∩Ω into surface
integrals over ∂(ci∩Ω) (cf. [MG07]). Such transformations are non-unique, but constructing
a simple one is straightforward given the polynomial nature of the integrand. For example,∫

ci∩Ω

xpyqzrdx =

∫
ci∩Ω

1

p+ 1
∇ ·
(
xp+1yqzr, 0, 0

)
dx

=

∫
∂(ci∩Ω)

1

p+ 1

(
xp+1yqzr, 0, 0

)
· n̂(x)dS(x).

We decompose surface integrals over ∂(ci ∩ Ω) and ci ∩ ∂Ω into a sum of integrals over
the component polygons of Pci and Pci∂Ω, respectively. For example, given a vector-valued
function h(x), ∫

∂(ci∩Ω)

h(x) · n̂(x)dS(x) =
∑
g∈Pci

∫
g

h(x) · n̂gdS(x).

55

Note that over each polygon g ∈ Pci , the unit normal n̂g is constant, hence h(x) · n̂g re-
stricted to g is a polynomial in x (assuming that the components of h are polynomials to
begin with). To evaluate these polygon-local surface integrals, one could make a change of
variables into a localized coordinate system and again apply the divergence theorem. How-
ever, the polynomial integrand may have degree as high as 5, and this change of variables
requires a computationally intensive expansion of a composition of the integrand with the
coordinate transformation. We found it simpler to triangulate each polygon and use a Gaus-
sian quadrature rule over each component triangle. As the polygons in our implementation
are limited to triangles and convex quadrilaterals (see §4.2.1.1 below), such a triangulation is
trivial. To maximize efficiency while ensuring the quadrature is exact, we use a quadrature
rule of order equal to the degree of the polynomial integrand. For specific quadrature rules
up to order 5, we refer the reader to Appendix A.

For interface problems, we embed the interface Γ into Gh in a completely analogous way
as for ∂Ω in domain problems. We likewise use the notation ChΓ =

{
ci ∈ Gh : ci ∩ Γ 6= ∅

}
and

the term interfacial (grid) cells to refer to the set of cells through which the interface passes.
As we will see in §4.2.4, our interface discretization is based on a domain discretization, as
described above, in each of Ω− and Ω+. This naturally introduces an interior computational
domain Ch,− and exterior computational domain Ch,+, where Ch,σ =

{
ci ∈ Gh : ci ∩ Ωσ 6= ∅

}
.

Note that Ch,− and Ch,+ are disjoint save for ChΓ, where each Cartesian grid cell and the
associated degrees of freedom, material and virtual, are duplicated. See Figure 4.3.

We will often speak generically about both our interface discretization and our domain
(with Neumann and/or Dirichlet boundary conditions) discretizations. Due to the simi-
larities in the embedding of ∂Ω (for domain problems) and of Γ (for interface problems)
into the background grid Gh, and to avoid cluttering the exposition with too many “bound-
ary/interface” terms, we will occasionally simply use the term embedded feature or embedded
geometry to refer both to the embedded boundary ∂Ω in domain problems and to the em-
bedded interface Γ in interface problems.

4.2.1.1 Embedded feature polyhedralization

We define all of the domains Ω and interfaces Γ in the numerical examples in §4.4 analytically
and implicitly as the zero isocontour of a level set function. This Eulerian representation
ensures that we can always resolve embedded features to a resolution comparable to the
background grid Gh. Note that the embedding procedure and integration techniques de-
scribed above require a Lagrangian-like polyhedral representation of the embedding within
each boundary or interfacial grid cell. Thus, one must create some polyhedral approxima-
tion, per such grid cell, of the implicitly defined embedded geometry. Since it is relatively
easy to divide a tetrahedron along a plane approximating the level set surface given the level
set function values at the tetrahedron’s vertices, we symmetrically partition each boundary
or interfacial grid cell into 24 congruent tetrahedra and accordingly divide each tetrahedron.
The union of these dividing surfaces (triangles and quadrilaterals) within each tetrahedron
compose the polyhedral representation of the embedded geometry. In 2 dimensions, the
analogous procedure would be to partition each square grid cell into 4 triangles and divide

56

(a) Embedding for Ω− (b) Embedding for Ω+

Figure 4.3: An example interface embedding in 2 dimensions, showing the separate domain
embeddings for Ω− and Ω+. Grid cells and grid vertices are labelled as in Figure 4.1: shaded
grid cells comprise the interior (Ω−, (a)) and exterior (Ω+, (b)) computational domains,
with the lighter-shaded grid cells on the interface; grid vertices surrounded by gray circles
represent virtual degrees of freedom; grid vertices surrounded by black circles represent
material degrees of freedom incident to an interfacial grid cell; and grid vertices surrounded
by squares represent material degrees of freedom incident only to non-interfacial grid cells.
Notice how all interfacial grid cells and circled grid vertices are effectively duplicated between
the grids embedding the interior and exterior domains. Also note that each grid vertex on
an interfacial grid cell is duplicated into precisely one material degree of freedom and one
virtual degree of freedom.

each triangle by a line according to the level set function values at the triangle’s vertices.
This polyhedralization procedure is similar to that described in [MG07]. See Figure 4.4.

The procedure described above may produce a sliver polyhedron (a polyhedron with large
aspect ratio) when dividing a given tetrahedron; likewise, the polygonal representation of the
embedded surface may contain some sliver polygons. We note that the aspect ratio of such
primitives has no direct bearing on the conditioning of the discretization. The quantities of
actual relevance to conditioning are the measures of the material volume and the embedded
surface within a boundary or interfacial grid cell. Unlike the conditioning issues associated
with sliver elements in a conforming mesh, however, our method allows conditioning issues
caused by vanishing material volume measures within a grid cell to be addressed via Jacobi
preconditioning, as we discuss at the end of §4.2.2. Further, our constraint aggregation
method described in §4.2.3.2 fully alleviates any conditioning issues caused by vanishing

57

(a) Grid cell partitioned into 24 con-
gruent tetrahedrons (wireframe)

(b) Grid cell partitioned into 24 con-
gruent tetrahedrons (separated)

+0.5

+0.5

+0.5 -0.5

+0.5

+0.5

-0.5 -0.5

(c) Typical divisions of a
tetrahedron given the level set
function values at its vertices

+0.50 -0.25

-0.25

-0.75+0.25

(d) Grid cell (dimension 2) parti-
tioned into 4 congruent triangles,
with a typical level set curve (light
gray; ∂Ω or Γ) and level set func-
tion values at the vertices of the tri-
angles.

(e) The division of each triangle ac-
cording to the level set function val-
ues at its vertices.

(f) The polygonal representation
(gray) of the level set curve is
the union of the dividing segments
within each triangle.

Figure 4.4: We approximate an embedded domain boundary or embedded interface implic-
itly defined by a level set function with a polyhedral representation computed by partitioning
each boundary or interfacial grid cell into 24 congruent tetrahedra, as in (a) and (b); and
subsequently dividing each tetrahedron according to the level set function values at its ver-
tices, e.g., as in (c). The union of the dividing triangles and quadrilaterals within each
divided tetrahedron compose the polyhedral representation of the embedded boundary or
embedded interface. In 2 dimensions, the analogous procedure would be to partition each
square grid cell into 4 triangles, as in (d), and divide each triangle according to the level
set values at its vertices, as in (e). The union of the dividing segments within each triangle
compose the polygonal representation of the embedded boundary or interface, as in (f).

58

embedded surface measures within a grid cell (which are only relevant within the context of
discretizing the Dirichlet boundary conditions (4.1d) and the value jump interface conditions
(4.1b)). See also [LB08] for a more detailed discussion on the advantages, with respect to
conditioning, of using embedded domain methods over conforming mesh methods such as
locally boundary-fitting remeshing schemes.

4.2.2 Embedded Neumann

Our discretization of Neumann problems is a generalization of the 2-dimensional method
given by Bedrossian et al. [BBZ10], and is similar to some XFEM approaches, e.g., [DMD00],
as well as the early work of Almgren et al. in [ABC97]. We discretize the Neumann problem,

−∇ · (β(x)∇u(x)) = f(x), x ∈ Ω;

β(x)∇u(x) · n̂ = q(x), x ∈ ∂Ω;
(4.2)

using the energy minimization form of (4.2):

over all u ∈ H1(Ω), minimize

E(u) := e(u)− (f, u)Ω − (q, u)∂Ω :=

∫
Ω

1

2
∇u · β∇udx−

∫
Ω

fudx−
∫
∂Ω

qudS(x). (4.3)

We choose to discretize the energy minimization problem because this straightforwardly
yields a symmetric system; it naturally incorporates the Neumann boundary conditions into
the right-hand side of the system; and it provides the necessary setting to ensure accuracy
of the discretization near the boundary. We define the solution space V h ⊂ H1(Ω) as the
space of continuous functions that are trilinear over the material region of each cell ck ∈ Ch.
For uh ∈ V h, we write uh(x) =

∑n
i=1 uiNi(x) for ~u = (u1, . . . , un)t ∈ Rn. Here Ni(x) is the

standard piecewise trilinear interpolation basis function associated with grid vertex i; and n
denotes the number of degrees of freedom in the discretization, equal to the number of grid
vertices that compose the cells of Ch.

Using the above representation of uh ∈ V h, we define a discrete energy Eh(uh) approxi-
mating E(uh). Although we could discretize the energy directly from the piecewise trilinear
representation of uh, this would result in a 27-point stencil everywhere, even away from the
boundary. To retain the standard second order 7-point stencil away from the boundary we
use different discretizations of the energy over Ch \ Ch∂Ω and over Ch∂Ω,

Eh(uh) :=
∑

ck∈Ch\Ch∂Ω

eck(uh) +
∑

ck∈Ch∂Ω

ẽck(uh)−
∑
ck∈Ch

(f, uh)ckΩ −
∑

ck∈Ch∂Ω

(q, uh)ck∂Ω, (4.4)

where the superscripts denote restriction to cell ck. For cells ck ∈ Ch \ Ch∂Ω that do not
intersect the boundary, we define eck(uh) as

eck(uh) :=
1

2
β∆x∆y∆z

(
(Dxu

h)2 + (Dyu
h)2 + (Dzu

h)2
)
.

59

Here β denotes a cell average of β; and (Dxu
h)2 denotes the average of the squared finite

difference approximations of ∂xu
h over the 4 x-oriented edges in the cell:

(Dxu
h)2 :=

1

4

∑
s,t∈{0,1}

(
ui+1,j+s,k+t − ui,j+s,k+t

∆x

)2

,

where {up,q,r} denote the degrees of freedom at the 8 corners of the cell. (Dyu
h)2 and (Dzu

h)2

likewise denote approximations to (∂yu
h)2 and (∂zu

h)2, respectively. On the other hand, for
cells ck ∈ Ch∂Ω that do intersect the boundary, we use the Cartesian trilinear representation
of uh to define ẽck(uh). If we let N h

ck
denote the indices of the 8 vertices at the corners of the

cell ck, and let
{
Ni : i ∈ N h

ck

}
denote the corresponding trilinear basis functions, then this

yields the discretization

ẽck(uh) :=
1

2

∑
i,j∈Nh

ck

(
β

∫
ck∩Ω

∇Ni · ∇Njdx

)
uiuj. (4.5)

Note that ∇Ni · ∇Nj is a 4th-degree polynomial, hence we can evaluate these integrals as
described in §4.2.1. Like the integrals, the cell average of β, β, is computed only over the
material region of the cell, ck ∩ Ω.

We discretize the remaining forms cell-wise, as:

(f, uh)ckΩ :=
∑
i∈Nh

ck

(
f

∫
ck∩Ω

Nidx

)
ui;

(q, uh)ck∂Ω :=
∑
i∈Nh

ck

(
q

∫
ck∩∂Ω

NidS(x)

)
ui.

Similar to β, f is the average source over ck∩Ω, and q is the average normal flux over ck∩∂Ω.
Again, all integrals above have polynomial integrands, hence we can evaluate these integrals
as described in §4.2.1. See Appendix B for details on how we computed β, f , and q for the
numerical examples in §4.4.

Lastly, we minimize the discrete energy (4.4) by solving the linear system

A~u = ~f,

Aij :=
∂2

∂ui∂uj
Eh(uh),

fi :=
∂

∂ui

(
(f, uh)Ω + (q, uh)∂Ω

) (4.6)

for the vector ~u. We use the standard FEM term stiffness matrix to refer to the matrix A,
and it is clear from the derivation that A is symmetric and positive semi-definite. Indeed,
its null space is spanned by the vector ~u = (1, 1, . . . , 1)t corresponding to uh ≡ 1.

60

ẽc3,8

ẽc3,7ẽc2,7
NZ

NZ

NZ

NZ

NZ

NZ

NZ

NZ

ec13,13 ec14,13

ec14,12ec13,12

0

NZ

0NZ

0NZ

NZNZ

0

ẽc12,5 ẽc13,5

ẽc13,4ec12,4
NZ

NZ

NZ

0 NZ

NZ NZ

NZ

NZ

Figure 4.5: Illustration in 2 dimensions of the stiffness matrix (A) stencils for various grid
vertices. The stencil for a degree of freedom indicates where the nonzero (NZ) entries are
of the row (or column) in A corresponding to the degree of freedom. Squared grid vertices
have the standard finite difference Poisson stencil (a 5-point stencil in 2 dimensions; a 7-point
stencil in 3 dimensions), which naturally arises through the use of eck to discretize the energy
(4.3). Circled grid vertices (both black and gray) will generally have a denser stencil (up to
a 9-point stencil in 2 dimensions; up to a 27-point stencil in 3 dimensions), due to the use
of ẽck .

With this approach, our definition of the energy (4.5) results in a slightly denser stencil
near the boundary, as all 8 degrees of freedom in a cell couple together if ∂Ω passes through
that cell. See Figure 4.5 for a graphical depiction of the stencil definitions and the sparsity
pattern of the stiffness matrix.

The symmetric system (4.6) readily lends itself to black-box solvers such as (precondi-
tioned) conjugate gradient. However, conditioning of the stiffness matrix may deteriorate
when a cell has a very small material volume measure, as we first mentioned in §4.2.1.1.
This arises from the increasing irrelevance of virtual nodes far from the boundary (see, for
example, the (4, 12) grid vertex in Figure 4.5). The respective row and column in A and

the corresponding entry in ~f all approach zero simultaneously. We found that simple Jacobi
preconditioning (and, in extreme cases, outright elimination of degrees of freedom; see §4.4
for explanation) mitigates these conditioning issues as in [BBZ10]. Note however that our
multigrid solver described in §4.3 naturally suffers no such adverse effects from A’s condi-
tioning.

61

4.2.3 Embedded Dirichlet

Following the progression in [BBZ10], we extend our Neumann discretization to solve Dirich-
let problems,

−∇ · (β(x)∇u(x)) = f(x), x ∈ Ω,

u(x) = p(x), x ∈ ∂Ω,
(4.7)

within our virtual node framework. We will show how a further extension will naturally yield
a discretization for interface problems, resulting in a method that encapsulates all types of
boundary conditions in a unified framework.

For Dirichlet boundary conditions, we use the constrained minimization problem:

over all u ∈ H1(Ω), minimize

E(u) := e(u)− (f, u)Ω such that (4.8)

(u, µ)∂Ω = (p, µ)∂Ω ∀µ ∈ H−1/2(∂Ω). (4.9)

where e(·), (·, ·)Ω, and (·, ·)∂Ω are as in (4.3).

We discretize the energy (4.8) exactly as for the Neumann case, so the only difference
comes in discretizing the constraints (4.9). We proceed by selecting a finite-dimensional
subspace (the discrete Lagrange multiplier space) Λh ⊂ H−1/2(∂Ω), and enforce (4.9) for all
µh ∈ Λh. Not all plausible choices of Λh will yield an acceptably accurate approximation,
as, in general, (Λh, V h) must satisfy an inf-sup stability criterion to retain the optimal
convergence rates of the approximation spaces [Pit79]. One possible choice for Λh, which we
shall refer to as Λh

1 and is used in, for instance, [JSC06] and [MDH07], defines µh as piecewise
constant over each Cartesian grid cell ci intersecting the boundary ∂Ω (see Figure 4.6). In
other words, we define µh ∈ Λh

1 as

µh(x) :=
∑
ci∈Ch∂Ω

µiχci∩∂Ω(x),

where the characteristic functions χci∩∂Ω are given by

χci∩∂Ω(x) :=

{
1, x ∈ ci ∩ ∂Ω

0, x /∈ ci ∩ ∂Ω
. (4.10)

With this choice of discrete Langrange multiplier space, satisfying (4.9) for all µh ∈ Λh =
Λh

1 yields a system of sparse linear constraints B~u = ~p on the coefficient vector ~u of the
approximate solution uh. Each row of the matrix B corresponds to a cell ci ∈ Ch∂Ω and
enforces the condition ∫

ci∩∂Ω

uh(x)dS(x) =

∫
ci∩∂Ω

p(x)dS(x). (4.11)

62

(a) Schematic of functions in Λh
1 , with single-wide con-

straints C1

(b) Schematic of functions in Λh
2 , with double-wide

constraints C2

Figure 4.6: Schematics of two discretizations Λh of the Lagrange multiplier space H−1/2(∂Ω)
in 2 dimensions used in (4.9). (a) shows a schematic of functions in Λh

1 , which are piecewise
constant over Ch∂Ω ∩ ∂Ω. (b) shows a schematic of functions in Λh

2 , which are piecewise
constant over C2h

∂Ω ∩ ∂Ω (using the doubly-coarse grid G2h). Note that the center grid vertex
(highlighted) in each doubly-coarse boundary grid cell is an independent degree of freedom
with respect to C2, the constraints induced by Λh

2 . That is, the center grid vertex in a
doubly-coarse boundary grid cell participates only in the constraint corresponding to that
cell.

Therefore, if Ch∂Ω = {c1, . . . , cm} and ~u ∈ Rn, then ~p ∈ Rm, B ∈ Rm×n, and

Bij :=

∫
ci∩∂Ω

Nj(x)dS(x) (4.12)

for each Cartesian trilinear basis function Nj(x). Since only 8 of these basis functions are
supported over a given ci ∩ ∂Ω, each row of B contains precisely 8 nonzero entries. The
corresponding entry in ~p is

pi :=

∫
ci∩∂Ω

p(x)dS(x). (4.13)

As before, we evaluate these integrals as described in §4.2.1 (using a suitable polynomial
approximation for p(x) in each grid cell or a suitable quadrature rule to evaluate (4.13)).
Discretizing (4.8, 4.9) thus gives rise to the quadratic program:

minimize over ~u ∈ Rn

63

Eh(uh) := e(uh)− (f, uh)Ω :=
1

2
~utA~u− ~f t~u (4.14)

subject to B~u = ~p.

The matrix A is exactly as for the embedded Neumann case described in §4.2.2, as is the vec-
tor ~f excepting the contribution of the Neumann constraint q (see (4.6)). This minimization
problem may equivalently be expressed as a saddle point system, introducing a Lagrange
multiplier ~λ: (

A Bt

B 0

)(
~u
~λ

)
=

(
~f
~p

)
. (4.15)

4.2.3.1 Null space method and fundamental basis of constraint system

As is done in [BBZ10], we solve (4.14) / (4.15) using a null space method, which efficiently
transforms our problem into a symmetric positive definite linear system. This affords us
a wide variety of solution techniques, including black-box solvers such as (preconditioned)
conjugate gradient; and a large class of preconditioners, such as incomplete Cholesky (which
we use for many of the numerical examples in §4.4). This derived symmetric positive definite
system also readily lends itself as a basis for a multigrid smoother such as Gauss-Seidel (as
presented in §4.3). For these reasons, our null space approach has significant advantages over
alternative approaches such as Schur’s complement reduction, direct methods applied to the
saddle point system (4.15), stationary methods such as Uzawa’s method, penalty methods,
or Krylov methods applied to (4.15). Those aforementioned approaches which are iterative
typically require solving a linear system at each iteration and/or have slow convergence
properties. Direct methods tend to be too computationally expensive and memory intensive
when applied to large systems. Preconditioning saddle point systems such as (4.15) directly
is much less well-developed are of research than preconditioning symmetric positive definite
systems; hence, applying a Krylov method to (4.15) is less appealing than applying a Krylov
method to an equivalent symmetric positive definite system. For a more complete survey of
the advantages and disadvantages of these and other approaches, see [BGL05].

The null space method requires the construction of a matrix Z whose columns span the
null space of B and a vector ~c ∈ Rn satisfying the discretized constraints (i.e., B~c = ~p).
Our solution ~u to (4.14) or (4.15) may then be expressed as ~u = ~c + Z~v for some ~v, and

substituting this expression for u into (4.15) (and eliminating ~λ via left multiplication by

Zt) yields the system ZtAZ~v = Zt(~f − A~c) for ~v. As noted in §4.2.2, the null space of A
is spanned by the vector (1, 1, . . . , 1)t ∈ Rn, and the entries of B are all non-negative, so
ker(A)∩ker(B) = {~0}. Therefore, ZtAZ is non-singular and, specifically, symmetric positive
definite. We have thus transformed (4.14)/(4.15) into a symmetric positive definite system
for ~v. We obtain ~u by setting ~u = ~c+ Z~v.

We now address the determination of Z. Obtaining Z through a QR factorization or
a SVD is likely to be computationally expensive and, moreover, produce a dense Z. A
fundamental basis presents an alternative to numerical factorization [BGL05]. The matrix

64

B is full rank if and only if an ordering of the degrees of freedom exists so that B may be
expressed as B = (Bm|Bn−m) for some m ×m non-singular matrix Bm. Any such ordering
gives the corresponding fundamental basis

Z =

(
−B−1

m Bn−m
In−m

)
. (4.16)

Clearly, BZ = 0 and the vector ~c =

(
B−1
m ~p
0

)
satisfies B~c = ~p. Therefore, if we can solve

systems of the form
Bm~x = ~d (4.17)

efficiently, we can store the factors Bm, Bn−m, and A sparsely and compute the action of
ZtAZ readily (e.g., for use in conjugate gradient). Note that, regardless of the choice of Bm,
the symmetric positive definite stencil defined by ZtAZ coincides with the standard 7-point
stencil for all degrees of freedom sufficiently distanced from the boundary.

4.2.3.2 Aggregation of single-wide constraints

Unfortunately, as discussed in [BBZ10], the choice of Λh
1 (the space of functions that are

piecewise constant over each boundary grid cell) as the discrete Lagrange multiplier space
approximating H−1/2(∂Ω) makes it difficult (if not impossible) to determine an ordering of
the degrees of freedom that gives a well-conditioned and easily invertible Bm. Bedrossian
et al. [BBZ10] give an ordering of the degrees of freedom and of the constraints that yields
an upper-triangular Bm; however, although the resulting system (4.17) can theoretically
be efficiently solved by back-substitution, in practice such a solution procedure introduces
prohibitively large numerical errors for anything but the smallest grids.

As in [BBZ10], we remedy this by using an alternative approximation to H−1/2(∂Ω) that
induces a different set of linear constraints. To motivate our approach, suppose we define a
set of m linear constraints (other than those induced by Λh

1) such that each constraint con-
tains an independent degree of freedom, a degree of freedom which participates only in that
one constraint. Observe, then, that ordering these m independent degrees of freedom first,
in matching order with their associated constraints, yields a diagonal Bm, which is trivial
to invert. As the constraints induced by Λh

1 generally have an insufficient number of inde-
pendent degrees of freedom, we thus aim to manufacture an alternative discrete Lagrange
multiplier space such that the induced set of constraints admits such a set of independent
degrees of freedom, and hence gives a diagonal Bm. For example, Bedrossian et al. [BBZ10]
uses Λ2h

1 =: Λh
2 (the set of scalar piecewise constant functions over the cells of the doubly-

coarse grid G2h; see Figure 4.6) as an approximation to H−1/2(∂Ω), leading to what may
be described as double-wide constraints. Each double-wide constraint encompasses a 2 × 2
(in 2 dimensions) or 2× 2× 2 (in 3 dimensions) block of cells. The center vertex in such a
block of cells always participates only in the associated constraint, hence these center ver-
tices correspond to independent degrees of freedom. Double-wide constraints are acceptable
for problems in 2 dimensions, as investigated by Bedrossian et al. [BBZ10]; however, the

65

structural rigidity of Λh
2 presents conditioning issues in 3 dimensions (see Appendix C for

a specific example). One of our major contributions is a more general, flexible approach
toward constructing constraints which gives greater control on conditioning, and for which
the double-wide constraints induced by Λh

2 will be a special case.

The key idea is that rather than first defining the set of constraints and then selecting an
independent degree of freedom from each constraint, we will first select the set of independent
degrees of freedom and then subsequently build a single constraint equation around each
independent degree of freedom. To this end, let C1 denote the set of single-wide constraints
(4.11) induced by Λh

1 , as described above; and let G denote the adjacency graph induced by
C1, as depicted in Figure 4.7(a). That is, two degrees of freedom are adjacent in G if they
simultaneously participate in some single-wide constraint; or, in more geometric terms, two
grid vertices are adjacent in G if they share a common incident boundary grid cell. Choose
ma < m degrees of freedom which constitute an independent set I with respect to G. In other
words, no two degrees of freedom in I will simultaneously participate in the same single-wide
constraint. An example of such an independent set is given in 4.7(b). Now associate each
of the m single-wide constraints in C1 to one of these independent degrees of freedom in I,
with the provision that, if a constraint contains an independent degree of freedom, it must be
associated with said independent degree of freedom. (This latter requirement is conflict-free,
as any single-wide constraint in C1 will contain at most one independent degree of freedom,
by construction.) Thus, for those single-wide constraints containing an independent degree
of freedom, this association is precisely determined. However, some single-wide constraints
may contain no independent degree of freedom, so some additional heuristic must be used to
determine this association. See figures 4.7(c) and 4.7(d) for an example association of each
single-wide constraint to an independent degree of freedom.

Let I = {d1, . . . , dma} denote the independent set of degrees of freedom; and let Cdi ⊂ C1

denote the set of single-wide constraints associated with independent degree of freedom di,
such that

⊔
iCdi = C1. We then form the following ma aggregate constraint equations:∑

ck∈Cdi

∫
ck

uh(x)dS(x) =
∑
ck∈Cdi

∫
ck

p(x)dS(x) (4.18)

where ck ∈ Cdi denotes that cell ck corresponds to a single-wide constraint associated with
independent degree of freedom di. Effectively, the single-wide constraint equations in C1

associated to a given independent degree of freedom are summed into a single aggregate
constraint equation. Likewise, the corresponding discrete Lagrange multiplier space Λh

a is
spanned by sums of the basis functions χck∩∂Ω of Λh

1 from (4.10):

µh(x) :=
∑
di∈I

µi
∑
ck∈Cdi

χck∩∂Ω.

Now let B and ~p denote the matrix and right-hand side of the system of aggregate constraints
(4.18):

Bij :=
∑
ck∈Cdi

∫
ck∩∂Ω

Nj(x)dS(x), pi :=
∑
ck∈Cdi

∫
ck∩∂Ω

p(x)dS(x). (4.19)

66

(a) Adjacency graph G induced by the set of
single-wide constraints C1. Boundary grid ver-
tices are adjacent with respect to G if they share
a common incident boundary grid cell.

(b) Example selection of an independent set I of
degrees of freedom. No two independent boundary
grid vertices share a common incident boundary
grid cell; equivalently, no two independent degrees
of freedom simultaneously participate in the same
single-wide constraint.

(c) Associating single-wide constraints to a par-
ticipating independent degree of freedom. Some
constraints (identified by cross-hatching) contain
no independent degree of freedom; one must re-
sort to some additional heuristic to associate these
constraints.

(d) Associating the remaining single-wide con-
straints to a nearby independent degree of free-
dom (using some implementation-defined heuris-
tic) and the final set of aggregate constraints.

Figure 4.7: Illustrated progression of the constraint aggregation described in §4.2.3.2.

67

Clearly, by construction, this set of aggregate constraints admits an ordering of the degrees
of freedom to give a diagonal Bma : just order the independent degrees of freedom first.

In summary, the above procedure aggregates the single-wide constraints C1 to yield an
alternative set of constraints Ca which admits an ordering of the degrees of freedom to give a
diagonal Bma . We have thus far described this constraint aggregation in very general terms,
and there indeed remains a great deal of flexibility, particularly in how one chooses the set
of independent degrees of freedom. For example, selecting all degrees of freedom which exist
in the doubly-coarse grid G2h as independent degrees of freedom leads to the double-wide
constraints C2 mentioned earlier. For simplicity, in the following discussion, we consider only
strategies which select independent degrees of freedom one at a time and greedily, noting
that alternative approaches could very well yield equal or superior results. Such a constraint
aggregation implementation may be described by the following parameters.

• One should decide how the degrees of freedom should be ordered or prioritized for
consideration for inclusion in the independent set.

• We need some condition on which to terminate the further selection of independent
degrees of freedom.

• Once we have selected the set of independent degrees of freedom, we must associate an
independent degree of freedom to each otherwise unassociated single-wide constraint
(a constraint containing no independent degree of freedom).

For purposes of selecting independent degrees of freedom, we found that weighting degrees
of freedom by the sum of the their coefficients across all single-wide constraints (i.e., the
weight of the jth degree of freedom is

∑
iBij) gives good results. Thus, in each iteration, we

select, for inclusion in the independent set, the degree of freedom with the largest weight,
taking care to exclude degrees of freedom adjacent to previously selected independent degrees
of freedom. The motivation for using

∑
iBij as the weight for the jth degree of freedom is an

attempt to maximize the diagonal entries in Bma and ultimately improve the conditioning
of the ZtAZ system. An alternative weighting that seemed to give acceptable results was
maxiBij. We found that additionally limiting the independent degrees of freedom to only
virtual degrees of freedom resulted in a vastly more efficient boundary smoother in our
multigrid algorithm; see §4.3.

Now, given a degree of freedom weighting scheme like above, one may “freeze” the inde-
pendent set once all remaining eligible degrees of freedom (those not adjacent to previously
selected independent degrees of freedom) have a weight below some threshold. Alternatively,
one may freeze the independent set once all the subsequently induced aggregate constraints
(given the current set of independent degrees of freedom and some grid-cell-to-independent-
degree-of-freedom association heuristic) satisfy some geometric bound. For example, one
may terminate the further selection of independent degrees of freedom once the current set
of independent degrees of freedom induces a set of aggregate constraints which each lie within
a 4× 4× 4 block of grid cells centered on the corresponding independent degree of freedom.

68

Finally, to minimize the geometric extent of the aggregate constraints, we associate an
otherwise unassociated single-wide constraint to the geometrically closest independent degree
of freedom, breaking ties by preferring higher-weighted degrees of freedom.

Algorithm 4.1 outlines an example implementation of the constraint aggregation algo-
rithm described above. We followed this specific implementation of the constraint aggrega-
tion algorithm for the numerical examples given in §4.4.3. In this implementation, we select
an independent set of virtual degrees of freedom prioritized by the sum of their associated
coefficients over all single-wide constraints; and we terminate the further selection of inde-
pendent degrees of freedom once all boundary grid cells are within some 4× 4× 4 block of
grid cells centered on an independent degree of freedom (Figure 4.8 explains this termina-
tion condition graphically). Together with the rule associating single-wide constraints to the
geometrically closest independent degree of freedom, this termination condition ensures that
all aggregate constraints fit within a 4× 4× 4 block of grid cells centered on an independent
degree of freedom, thus limiting the geometric extent of an aggregate constraint.

Algorithm 4.1 Constraint aggregration algorithm for embedded Dirichlet discretizations.

1: Reorder the degrees of freedom such that virtual degrees of freedom (VDOFs) are enu-
merated first and w1 > w2 > · · · , where wj =

∑
iBij for VDOF j and Bij is as in

(4.12).
2: let I ← ∅ {I denotes the set of independent degrees of freedom (IDOFs)}
3: {only iterate over VDOFs}
4: for j = 1, 2, . . . do
5: {Use an acceleration structure (e.g., an explicit set or bit set data structure) to make

the following query efficient.}
6: if VDOF j is adjacent to some IDOF in I then
7: continue
8: end if
9: I ← I t {j} {add VDOF j to the set of IDOFs}

10: {Use an acceleration structure (e.g., an associative array data structure) to make the
following query efficient.}

11: if each boundary grid cell is within some 4× 4× 4 block of grid cells centered on an
IDOF in I (see Figure 4.8) then

12: break
13: end if
14: end for
15: Associate each boundary grid cell to the geometrically closest IDOF in I, breaking ties

by preferring IDOFs with higher weights (wj). Let Cj denote the set of boundary grid
cells associated to IDOF j.

16: for all j ∈ I do
17: Sum the single-wide constraint equations associated with the boundary grid cells in

Cj to form a new aggregate constraint equation.
18: end for

69

Figure 4.8: A graphical representation (in 2 dimensions) of a plausible state of Algorithm 4.1
after the selection of 6 independent degrees of freedom (highlighted). Some degrees of free-
dom have been removed to indicate their ineligibility as subsequently selected independent
degrees of freedom: material degrees of freedom, by definition of Algorithm 4.1, are never
selected as independent degrees of freedom (this vastly improved the performance of our
boundary smoother in our multigrid algorithm; see §4.3); and those virtual degrees of free-
dom adjacent to one of the 6 previously selected independent degrees can not now be selected
as independent degrees of freedom, simply by the definition of independence. Further, we
distinguish between covered boundary grid cells, which lie within some 4 × 4 block of cells
(shown as the dark gray outlined squares) around an independent degree of freedom; and the
remaining uncovered boundary grid cells (denoted by cross-hatching). Once all boundary
grid cells are covered, Algorithm 4.1 terminates further selection of independent degrees of
freedom.

We conclude this section with some remarks regarding the discrete Lagrange multiplier
space Λh. Generally speaking, using a richer discrete Lagrange multiplier space (one that
better approximates H−1/2(∂Ω)) results in a smaller error in the approximate solution uh.
Within the context of single-wide constraint aggregation, roughly speaking, one can increase
the richness of Λh

a (the discrete Lagrange multiplier space associated with the aggregate
constraints) by choosing more independent degrees of freedom. In some sense, then, the
discrete Lagrange multiplier space Λh

2 associated with the double-wide constraints represents
the richest possible discrete Lagrange multiplier space one may obtain within this constraint
aggregation framework, as its set of independent degrees of freedom is maximal. However, as
shown in Appendix C, use of double-wide constraints leads to a relatively poorly conditioned
ZtAZ system in 3 dimensions, and this behavior is characteristic of selecting too many
independent degrees of freedom, some of which may be poorly supported and lead to poor

70

conditioning. We feel that our criterion in Algorithm 4.1 to terminate further selection of
independent degrees of freedom strikes a balance between maintaining second order accuracy
and ensuring reasonable conditioning in the ZtAZ system.

In addition to the relationship among the richness of Λh, the error in the approximate
solution uh, and (for Λh

a in particular) the conditioning of the ZtAZ system, it is also
necessary, in order to obtain optimal convergence rates, for Λh and the approximation space
to H1(Ω), V h, to satisfy an inf-sup stability condition uniformly in grid resolution [Pit79].
This ultimately has the effect of limiting the richness of Λh. Fortunately, based primarily
on numerical evidence (see, for example, [JSC06] and [MDH07]), it is generally accepted
that the pairing (V h,Λh

1) satisfies an inf-sup stability condition, where we use the discrete
Lagrange multiplier space Λh

1 associated with the single-wide constraints. More explicitly,
we assume the existence of γ0, h0 > 0 such that, for all h ∈ (0, h0],

inf
µh∈Λh

1

sup
vh∈V h

α(µh, vh) ≥ γ0,

where α : H−1/2(∂Ω)×H1(Ω)→ R is defined as

α(µh, vh) :=
(µh, T vh)∂Ω

‖µh‖−1/2,∂Ω ‖vh‖1,Ω

and T : H1(Ω) → L2(∂Ω) is the trace operator on Ω. Now if Λh
a is the discrete Lagrange

multiplier space associated with any set of aggregate constraints, then Λh
a is a subspace of

Λh
1 , hence

inf
µh∈Λh

a

sup
vh∈V h

α(µh, vh) ≥ inf
µh∈Λh

1

sup
vh∈V h

α(µh, vh) ≥ γ0,

and we see that (V h,Λh
a) satisfies an inf-sup stability condition as well. (The same argument

is used in [BBZ10] to show that, specifically, (V h,Λh
2) is inf-sup stable.) Generally speaking,

if (V h,Λh) satisfies an inf-sup stability condition, then pairing V h with any coarsening (i.e.,
subspace) of Λh will be inf-sup stable as well.

4.2.4 Embedded Interface

To handle the full interface problem (II.1, 4.1b, 4.1c), we combine our treatments of Neumann
and Dirichlet boundary conditions in a straightforward way. We consider the equivalent
minimization form of the problem (II.1, 4.1b, 4.1c):

over all u ∈ V := {u : u± ∈ H1(Ω±)}, minimize

E(u) := e(u)− (f, u)Ω − (b, u)Γ :=

∫
Ω+tΩ−

1

2
∇u · β∇udx−

∫
Ω

fudx−
∫

Γ

budS(x) (4.20)

such that ([u] , µ)Γ = (a, µ)Γ ∀µ ∈ H−1/2(Γ). (4.21)

71

Here u(x)|Γ = (u+ + u−)/2. As before, we define discretizations of V and H−1/2(Γ) and
then construct the resulting discrete saddle point problem. To define V h ⊂ V , we sepa-
rately discretize H1(Ω+) and H1(Ω−) using the same virtual node representation used to
discretize domain problems, employing the duplicated grid described in §4.2.1 and depicted
in Figure 4.3. This discretization yields the block diagonal stiffness matrix for the interface
problem,

A =

(
A+ 0
0 A−

)
, (4.22)

where A+ is the stiffness matrix associated with the pure Neumann problem on Ω+ and A−

is the stiffness matrix associated with the pure Neumann problem on Ω−, as described in
§4.2.2.

As for the Dirichlet problem, we first discretize the continuous constraint equations (4.21)
via Λh

1 into single-wide constraint equations,∫
ck∩Γ

[
uh
]
dS(x) =

∫
ck∩Γ

adS(x), (4.23)

and then aggregate these single-wide constraints (4.23), as described in §4.2.3.2:∑
ck∈Cdi

∫
ck∩Γ

[
uh
]
dS(x) =

∑
ck∈Cdi

∫
ck∩Γ

adS(x). (4.24)

Note that we described the constraint aggregation procedure in §4.2.3.2 within specifically
in the context of Dirichlet constraints, but aggregating single-wide interface constraints is
entirely analogous and straightforward. Regarding the specific implementation in Algo-
rithm 4.1, one would use the weights wj = |

∑
iBij| (note the addition of the absolute value)

to account for negative single-wide constraint coefficients on interior degrees of freedom.

Using the aggregate constraints in (4.24) results in the block interface constraint matrix
B = (B+|−B−), where B+, B− are, respectively, the constraint matrices associated with the
embedded Dirichlet problems on the exterior and interior of the interface. In other words,

Bij = σj
∑
ck∈Cdi

∫
ck∩Γ

NjdS(x), (4.25)

where σj := +1 if the jth degree of freedom is associated with uh,+ and σj := −1 if the jth

degree of freedom is associated with uh,−. These discretization choices give the saddle point
problem A+ 0 (B+)t

0 A− (−B−)t

B+ −B− 0

~u+

~u−

~λ

 =

~f+

~f−

~a

 , (4.26)

where ~u+ contains the degrees of freedom associated with the exterior discretization and
~u− contains the degrees of freedom associated with the interior discretization. We once
again solve this saddle point system using the null space method described in §4.2.3.1 by

72

ordering the independent degrees of freedom first to obtain a diagonal Bma . Observe that
we may restrict independent degrees of freedom to only virtual degrees of freedom, as every
material degree of freedom has a geometrically co-located virtual degree of freedom that
is indistiguishable as far as adjacency and weight (up to a sign change) is concerned. We
have found that such a restriction results in a better-conditioned system. Contrast this
observation with the Dirichlet case, where each material degree of freedom does not have an
equivalent (as far as the constraint system is concerned) virtual degree of freedom, and hence
the decision to allow or disallow the selection of material degrees of freedom as independent
degrees of freedom has a much bigger impact on the final set of aggregate constraints.

4.2.4.1 Discontinuity removal

In general, our proposed method requires the solution of the symmetric positive definite
system ZtAZ. However, if the coefficient β is smooth, the IIM and similar methods achieve
uniform second order accuracy without altering the standard Poisson finite difference stencil
(the 5-point stencil in 2 dimensions or the 7-point stencil in 3 dimensions). In this section,
we demonstrate how the virtual node framework similarly allows the use of the standard
Poisson stencil when β is smooth.

Suppose d(x) ∈ V is constructed to satisfy the jump conditions (4.1b, 4.1c) and u(x)
is the exact solution. Then since [β] = 0, the difference w(x) := u(x) − d(x) satisfies
β [∇w · n̂] = [β∇w · n̂] = 0 and [w] = 0. Since w satisfies homogeneous jump conditions
[∇w · n̂] = 0 and [w] = 0, we do not require virtual degrees of freedom to capture any
discontinuities across Γ. In this manner, solving for w presents an appealing alternative
as the presence of virtual nodes no longer adversely affects the subsequent linear algebra
problem. Therefore, when [β] = 0 we recover an approximation to (4.1b, 4.1c) by separately
discretizing w and d and then setting u = w + d.

We discretize w over the unduplicated grid Gh using H1(Ω) Cartesian piecewise trilinear
elements. Consequently, if the grid Gh contains r material degrees of freedom, then ~w ∈ Rr
contains the coefficients in terms of the trilinear basis. We discretize u and d using the full
virtual node basis V h as they possess lower regularity across Γ. With these choices, we can
represent the coefficient vector ~u ∈ Rn (n > r) of the approximate solution uh in the basis of

V h as ~u = ~d+T ~w, where the matrix T ∈ Rn×r is an embedding of the trilinear basis into the
virtual node basis. We define this transformation by a simple identification of virtual and
material nodes, as a function vh ∈ V h satisfies homogeneous jump conditions if and only if
the value of the function vh at a virtual node equals its value at the geometrically co-located
material node. Thus, T maps the value at a given vertex in the unduplicated grid to each
of its copies, material or virtual, in the duplicated grid. To be a little more explicit, assume
that we order the degrees of freedom such that

~u = (u1, u2, . . . , us, us+1, us+2, . . . , u2s, u2s+1, . . . , un)t.

Here, {uk}sk=1 represent the s := n−r coefficients of the virtual degrees of freedom; {us+k}sk=1

represent the coefficients of the material degrees of freedom respectively co-located with
{uk}sk=1; and the remaining coefficients {uk}nk=2s+1 correspond to degrees of freedom lying

73

outside any interfacial grid cells. See Figure 4.9 for an illustration of this ordering. Then T
would take the form

T =

Is 0
Is 0
0 In−2s

 . (4.27)

1
2
3
4

5
6

7
8
9 52

53

54
55

59
60

57
58

56

10
11

12
13
14

50

51

173

174

175

176

177

178

179

218

219

220

221

223

224

222

(a) Interior discretization

61
62

63
64
65
66
67

110

111

112108

109

106

107

113

114

115

116 119

120

121

117

118

166

167

164

165

169

170

171

172

168

122

123

124

125

126

162

163

(b) Exterior discretization

Figure 4.9: Example enumeration of the interfacial degrees of freedom (circled) such that T
has the representation (4.27). Only the indices of a few select interfacial degrees of freedom
are shown. Here, we enumerate the s = 112 virtual degrees of freedom lexicographically,
beginning with the interior discretization. The interior discretization has 60 virtual degrees
of freedom (indexed 1 to 60) and 52 interfacial material degrees of freedom (indexed 173 to
224); likewise, the exterior discretization has 52 virtual degrees of freedom (indexed 61 to
112) and 60 interfacial material degrees of freedom (indexed 113 to 172). Notice how the the
index to an interfacial material degree of freedom is offset from the index of its co-located
virtual degree of freedom by exactly s = 112. The remaining non-interfacial degrees of
freedom (squared) are enumerated starting with index 2s+ 1 = 225.

Regardless of the ordering of the degrees of freedom, each column of T corresponds to a
material node in the grid and each row of T corresponds to either a material node or a virtual
node. The column of T corresponding to material node j has a 1 in the row corresponding
to material node j; a 1 in the row corresponding to j’s geometrically co-located virtual node,
if it exists (as in one of the first s columns in (4.27) above); and zeros everywhere else.

Determining ~w now proceeds in a manner analogous to the null space method used to
solve (4.14): we wish to minimize the energy over all vectors of the form ~u = ~d + T ~w. For
the sake of discussion, suppose we discretize the energy (4.20) using the Cartesian trilinear

74

representation everywhere in the domain. Then substituting the expression ~u = ~d+T ~w into
the energy (4.20) gives

Eh(~u) :=
1

2
~utA~u− ~f t~u =

1

2
~wtT tAT ~w − ~f tT ~w + ~wtT tA~d+

1

2
~dtA~d− ~f t~d,

which, in turn, implicitly defines an energy over only the material degrees of freedom ~w ∈ Rr.
Differentiation with respect to wi thus leads to the linear system

T tAT ~w = T t(~f − A~d), ~u = ~d+ T ~w.

It is not hard to show that the matrix T tAT is a straightforward, trilinear discretization over
the material degrees of freedom, i.e., a 27-point second order approximation to the (variable
coefficient) Laplacian. Thus, we may replace the T tAT operator with the standard 7-point
Poisson stencil ∆h

β, only introducing a second order deviation in ~w:

∆h
β ~w = T t(~f − A~d), ~u = ~d+ T ~w. (4.28)

This approach allows the application of efficient black-box solvers for ∆h
β, and the disconti-

nuity along the interface only enters into the right-hand side of (4.28).

We now discuss the approximation of d, the particular solution satisfying the jump con-
ditions (4.1b, 4.1c). Observe that, without loss of generality, we may assume that d is
supported only near the interface, as the jump constraints are localized to the interface.
Further, we may assume that d vanishes entirely on, say, the exterior region Ω+, as the
jump constraints only involve differences between exterior and interior values. This latter
assumption allows us to express the jump constraints on d as direct constraints on d−:

−d− = [d] = a, −β∇d− · n̂ = β [∇d · n̂] = b.

The corresponding discretized single-wide constraints on dh, the V h-approximation to d, are
thus ∫

ci∩Γ

dh,−dS(x) = −
∫
ci∩Γ

adS(x),

∫
ci∩Γ

β∇dh,− · n̂dS(x) = −
∫
ci∩Γ

bdS(x)

for each grid cell ci ∈ ChΓ intersecting the interface Γ; and dh,+ ≡ 0. This gives a sparse linear

system for the coefficient vector ~d of dh where only interior interfacial degrees of freedom
participate: ∑

j∈Nh,−
ci

(∫
ci∩Γ

NjdS(x)

)
dj = −

∫
ci∩Γ

adS(x); (4.29)

∑
j∈Nh,−

ci

(∫
ci∩Γ

β∇Nj · n̂dS(x)

)
dj = −

∫
ci∩Γ

bdS(x); (4.30)

where N h,−
ci

denotes the indices of the 8 interior degrees of freedom geometrically located at
the corners of cell ci. This system has 2m rows, where m =

∣∣ChΓ∣∣ is the number of interfacial

75

grid cells; and it has one column for each interior interfacial degree of freedom. Thus,
unfortunately, this system will not only be asymmetric, but will generally be overdetermined
as well. Hence, one should take some care when computing an approximate solution.

Algorithm 4.2 gives one approach to constructing ~d which we found works well. The algo-
rithm locally constructs a trilinear function v which approximately satisfies the constraints
(4.29, 4.30) within a 3× 3× 3-cell neighborhood centered on an interfacial grid cell ci ∈ ChΓ.
We then evaluate v at the grid vertices of ci to obtain values for the corresponding entries in
~d. This procedure may give an interfacial degree of freedom multiple values, from multiple
neighboring local construction; we average these values together, as explained below.

We alert the reader to two subtle but important details of Algorithm 4.2. First, most,
if not all, of these local constructions amount to a least-squares solution to a small overde-
termined system of linear equations. In order to achieve second order convergence in u, we
found it necessary to scale the constraints (4.30) on ∇dh,− by h1+γ (for some γ between 0
and 1), which places more emphasis on satisfying the constraints on dh,− than on satisfy-
ing the constraints on ∇dh,− in the least-squares solves. We found γ = 1/3 gave the best
convergence rate for Example 4.4.5 over the range of tested resolutions. We suggest further
research is necessary to determine the optimal scaling of the ∇dh,−-constraints in general,
both theoretically and empirically.

Second, as mentioned above, multiple neighboring local construction may yield a value
for ~d at a given interfacial degree of freedom; indeed, the number of such local constructions
around a degree of freedom equals the number of incident interfacial grid cells. We compute
a final value for ~d at this degree of freedom by taking a weighted average of the values yielded
by the various local constructions, with weights equal to the surface area of Γ within the
interface grid cell around which the local construction is based. Other weightings of the
various local construction contributions could very well give equal or better results.

Note that the computational cost of computing ~d in the above fashion is proportional to
the number of interfacial degrees of freedom, hence contributes negligibly to the overall cost
of computing ~u.

4.3 Multigrid

One of our primary contributions is a collection of geometric multigrid algorithms to solve
the linear systems arising from the discretizations of domain and interface Poisson problems
described in §4.2. Multigrid methods are well-known to be more efficient than standard
iterative Krylov solvers (such as conjugate gradient), as a multigrid solver can often oper-
ate in O(# of degrees of freedom) time (or nearly so). Additionally, our multigrid solvers
are geometric in nature, hence allow implementations with low memory requirements and
scalable parallelizability.

We will begin the exposition with a discussion of the grid hierarchy, followed by details
regarding the smoothing and transfer operators. Since our multigrid algorithms for the
Neumann, Dirichlet, and interface discretizations share the same general principles, we will

76

Algorithm 4.2 Construct an approximate d satisfying (4.1b, 4.1c).

1: {I and J below denote multi-indices, i.e., triples of linear indices, over the unduplicated
grid Gh.}

2: ~c← ~0
3: wJ ← 0 for each interior grid vertex J incident to an interfacial grid cell {the weight

sum for degree of freedom J}
4: for all cI ∈ ChΓ do
5: let S :=

{
cJ ∈ ChΓ : ‖I − J‖∞ ≤ 1

}
6: assert(|S| ≤ 27 and cI ∈ S)
7: Construct a trilinear function v (i.e., solve for 8 coefficients) satisfying the constraints

(4.29, 4.30) on dh,− and ∇dh,− defined over the cells in S (2 constraints per cell). If
2 |S| < 8, choose v to have minimum 2-norm (for some appropriate 2-norm on the
trilinear coefficients); if 2 |S| > 8, choose v to minimize the 2-norm of the residual of
the constraint equations after scaling the ∇dh,−-constraint equations by h1+γ.

8: let w :=
∫
cI∩Γ

dS(x) {the local weight for the degrees of freedom at the corners of cI}
9: for i = 1, . . . , 8 do

10: let J denote the index of the ith grid vertex incident to cI (say, lexicographically)
11: d−J ← d−J + w · v(xJ) {xJ denotes the spacial coordinates of grid vertex J}
12: wJ ← wJ + w
13: end for
14: end for
15: for all interfacial grid vertex indices J do
16: d−J ← d−J /wJ {average the multiple contributions to the value of d−J }
17: end for

discuss our multigrid algorithms within the context of all three discretizations simultaneously,
noting important differences as they arise. We emphasize that the constraint aggregation
described in §4.2.3.2 plays an integral role in our multigrid algorithms for Dirichlet and in-
terface problems, as we base our boundary/interface-local smoother on the ZtAZ symmetric
positive definite system.

We note that we follow standard geometric multigrid principles away from embedded
features, and thus our primary focus is the nontrivial treatment of the multigrid compo-
nents around the embedded features of the discretization. In order to minimize peripheral
complexity, we assume that β (for domain problems) or β+, β− (interface problems) are
constant.

4.3.1 Discretization

As is characteristic of geometric multigrid methods, we discretize our problem (as desribed
in §4.2) within each of a hierarchy of Cartesian grids Gh,G2h, . . . , with the cell resolutions
between successive grids in the hierarchy differing by a factor of 2. Thus, with each level in
the hierarchy, we associate

77

• Cartesian grids Gh,G2h, . . . , with the domain embedded as described in §4.2.1;

• Poisson operators Ah, A2h, . . . (4.6)/(4.22); and

• solution and right-hand side vectors ~uh, ~u2h, . . . and ~fh, ~f 2h,

For Dirichlet and interface problems, we also associate the aggregated constraint matrices
Bh, B2h, . . . (4.19)/(4.25). To simplify the discretization, we assume the constraint aggre-
gation on a given level is independent of the aggregation on other levels. That is, we make
no attempt to ensure coherency or geometric consistency between the sets of constraints on
successive levels. However, as a result, the constructions of the multigrid components near
embedded features require special consideration, as will be explained below. Note that the
presence of the aggregate constraints on each level allows one to easily form the ZtAZ sys-
tem as described in §4.2.3, and, as we will see, it is this system that we base our smoothing
operator on.

We emphasize that, in spirit, for Dirichlet and interface problems, we are applying multi-
grid to the saddle point system (4.15) or (4.26). In theory, then, we should additionally

associate a Lagrange multiplier vector ~λh, ~λ2h, . . . at each level of the hierarchy. However,
we have designed our multigrid algorithms in such a way that, in practice, it is unneces-
sary (and, indeed, impractical) to explicitly operate on and store these Lagrange multiplier
vectors. Instead, we ensure the (aggregate) constraint equations at each level are always

satisfied, hence there is no need to restrict ~λ-residuals or prolongate ~λ-corrections; and, to
repeat, our smoothing operator is based on the ZtAZ system, which means we can smooth
the error in ~u without making any explicit reference to ~λ.

4.3.2 Smoothing Operator

In describing our smoothing operator, it will be useful to distinguish between non-boundary/
non-interfacial and boundary/intefacial degrees of freedom. The former are squared and the
latter are circled in Figures 4.1 and 4.3. Non-boundary/Non-interfacial degrees of freedom
possess the standard 7-point stencil, as depicted in Figure 4.5, even within the ZtAZ sys-
tems arising from Dirichlet and interface problems. Thus, on these degrees of freedom, one
may apply standard smoothers appropriate for symmetric positive definite systems, such as
weighted Jacobi, Gauss-Seidel, Red-Black Gauss-Seidel, etc.

Although the boundary discretization for Neumann problems produces a denser stencil
than the standard 7-point stencil, it is still locally semidefinite, hence one may still apply
standard smoothers to these degrees of freedom as well. However, the discretization for
Dirichlet problems near the domain boundary and for interface problems near the interface
is indefinite (recall that we are, in spirit, operating on the saddle point system (4.15) or
(4.26)), so the standard smoothers mentioned above are not options. Alternative smoothers
might work, such as Kaczmarz or box smoothers, but they will generally be slower, and they
require the use of the Lagrange multiplier ~λ, which we would like to avoid. We choose instead
to apply a standard smoother, such as Gauss-Seidel, on the symmetric positive definite ZtAZ

78

system (which coincides with the Poisson operator away from embedded features). Note that
the ZtAZ system operates on all the degrees of freedom except the independent degrees of
freedom. In effect, we have eliminated the independent degrees of freedom from the system,
such that each update of a boundary/interfacial non-independent degree of freedom in the
ZtAZ system during, say, a Gauss-Seidel step induces an update of one or more (eliminated)
independent degrees of freedom to ensure the solution remains in the null space of the
constraint system. Thus, if our initial guess at the finest level satisfies the constraints (e.g.,

~c =
(
(B−1

ma
~p)t 0

)t
), then future corrections via smoothing will keep the approximation in

the solution space of the constraint system associated with that level of the hierarchy.

As we will see, to avoid complexity, we do not use specialized transfer operators near
embedded features, as is done in [AL02, AC04, AC05, CS08, WL04]. However, the in-
coherency between the feature embeddings and constraint aggregations within successive
discretization levels, as well as the absence of the ~λ vectors, precludes the successful use of
standard transfer operators near these embedded features. We address this by devoting extra
smoothing effort around embedded features to drive the corresponding residuals close to zero
and propagate non-boundary/non-interfacial corrections toward embedded features. Thus,
a full smoothing sweep will generally consist of a few boundary/interface-local Gauss-Seidel
sweeps, followed by a single Gauss-Seidel sweep over all degrees of freedom, and ending with
a few more boundary/interface-local Gauss-Seidel sweeps. One can use numerical experimen-
tation to determine exactly how many boundary/interface-local sweeps are necessary, and
our experiments indicate that Neumann and Dirichlet problems need only a half dozen or
fewer additional boundary/interface-local smoothing sweeps on either side of the smoothing
sweep over all degrees of freedom; interface problems seem to need somewhat more addi-
tional boundary/interface-local smoothing sweeps. Fortunately, for large resolutions, the
single smoothing sweep over all degrees of freedom will dominate the work expended on
these boundary/interface-local smoothing sweeps. For complete results, we refer the reader
to §4.4.6.

4.3.3 Transfer Operators

Our multigrid algorithms use standard prolongation and restriction operators away from
embedded features. We prolongate a coarse-grid correction ~u2h to the fine-grid solution ~uh

via trilinear interpolation: ~uh ← ~uh + P~u2h. We restrict a fine-grid residual in ~uh to the
coarse-grid right-hand side via the scaled adjoint operator R := 8P t.

Often, in the presence of embedded features, one considers introducing specialized trans-
fer operators near these features [AL02, AC04, AC05, CS08, WL04]. As stated above, we
have opted to avoid this complexity and the attendant necessary additional storage. How-
ever, we cannot rely on the standard transfer operators by themselves to correctly restrict
fine-grid residuals and prolongate coarse-grid corrections near embedded features. Thus, we
expend extra smoothing effort to ensure the fine-grid residuals near embedded features are
close to zero prior to restriction. Indeed, for Dirichlet and interface problems, we restrict
identically zero residuals from all fine-grid equations corresponding to boundary/interfacial
degrees of freedom, which correspond to precisely those rows in the saddle point system in-

79

volving ~λ. We additionally only restrict to a strict subset of the coarse-grid equations (e.g.,
only those corresponding to material degrees of freedom, or only those corresponding to
non-boundary/non-interfacial degrees of freedom). Further, we prolongate zero values from
virtual degrees of freedom in the coarse-grid correction, and again expend extra smoothing
effort to propagate toward embedded features the more reliable coarse-grid corrections away
from the embedded features.

For Dirichlet and interface problems, recall again that, in spirit, we are applying our
multigrid algorithms on the saddle point systems, hence obstensibly we should be restricting
residuals from the constraint equations as well. However, by smoothing via the ZtAZ system
and (implicitly) propagating all updates to the independent degrees of freedom, we ensure
the constraint equations are always satisfied exactly, i.e., have zero residual.

4.3.4 Details

The preceding sections gave an overview of the general strategy for our multigrid algorithms,
and here we only provide some additional details of our implementation of these ideas. Our
primary goal is not necessarily to develop the most efficient implementation, but rather to
provide a simple reference implementation which can provide a baseline for future research.

We use lexicographically ordered Gauss-Seidel iterations in all phases of our smoothers.
The empirical convergence rates we obtain in our numerical examples in §4.4.6 indicate that
the Gauss-Seidel method is a sufficiently good smoother away from embedded features. Tech-
nically, the pre-restriction and post-prolongation smoothing sweeps serve difference purposes,
so one could tailor the details of each to perform optimally for their respective purpose.
For simplicity, however, we use identical pre-restriction and post-prolongation smoothing
sweeps. Furthermore, we always buttress the Gauss-Seidel sweep over all degrees of freedom
with equal numbers of boundary/interface-local Gauss-Seidel sweeps on either side. We re-
fer to this number at the finest level as the number of boundary smoothing sweeps (NBSS;
Neumann, Dirichlet) and number of interface smoothing sweeps (NISS; interface). At each
successively coarser level, we increase the number of boundary or interface smoothing sweeps
by a factor of 2 (see Algorithms 4.3 and 4.4). Since the number of degrees of freedom in a
neighborhood of an embedded feature scales as N2 for a grid resolution of, say, N ×N ×N ,
this increase in the number of boundary or interface smoothing sweeps at coarser levels does
not change the overall complexity of our algorithms. Furthermore, we found it significantly
improved our v-cycle convergence rates with negligible additional cost per v-cycle.

For the boundary/interface-local Gauss-Seidel sweeps, we iterate over all degrees of free-
dom within a fixed L∞-grid-distance of a boundary/interfacial degree of freedom. See
Figure 4.10 for an example assignment to all degrees of freedom of the (discrete) signed
grid-distance to the embedded boundary or embedded interface. We use the terms bound-
ary smoothing region width (BSRW; Neumann, Dirichlet) and interface smoothing region
width (ISRW; interface) to refer to this distance defining the boundary/interface-local region
we apply extra Gauss-Seidel sweeps to. Thus, a BSRW/ISRW of 1 refers to all bound-
ary/interfacial degrees of freedom, while a BSRW/ISRW of 2 refers to all degrees of freedom

80

within an L∞-grid-distance of 1 from a boundary/interfacial degree of freedom.

Within an interface-local Gauss-Seidel sweep, we found it necessary to relax co-located
interior and exterior degrees of freedom consecutively. In other words, co-located pairs of
degrees of freedom resulting from a single grid vertex duplication should be relaxed one after
the other. To be clear, an interface-local Gauss-Seidel sweep which iterates over all interior
degrees of freedom followed by all exterior degrees of freedom (or vice versa) fails to reduce
the residuals around the interface within a reasonable number of iterations.

-3

-3

-3

-2 -1 +1

-2-1+1

-2
-1

+1

-4
-2 -1 +1

-2

-1

+1

-1 +1

-2
-1
+1

(a) Ω (Neumann, Dirichlet) or Ω− (interface) dis-
cretization

-1

-1

-1

-1

-1

-1

-1+1

+1

+1

+1

+1

+1

+1

+2

+2

+2

+2

+2

+2

+2

+3

+3

+3

+3

+4

+4
+5

(b) Ω+ discretization

Figure 4.10: Partitioning the degrees of freedom according to their grid-distance from the
embedded boundary or embedded interface.

For completeness, we provide pseudocode for a multigrid v-cycle for Neumann prob-
lems (Algorithm 4.3) and Dirichlet problems (Algorithm 4.4) (the pseudocode for interface
problems would be nearly identical to that for Dirichlet problems, so we omit it). In these
algorithm listings, L denotes the number of levels, with the finest level indexed as 1; and we
index all variables associated with a given level with the level index (as opposed to h, 2h, . . . ,
as we had been doing above).

4.4 Numerical Examples

We now present some numerical examples demonstrating the second order accuracy of our
methods for embedded Neumann, embedded Dirichlet, and embedded interface problems,
including an example utilizing discontinuity removal for an interface problem with smooth β

81

Algorithm 4.3 Multigrid v-cycle algorithm for Neumann problems.

1: initialize Poisson operators A1, . . . , AL at all levels as described in §4.2.2; allocate space
for solution vectors ~u1, . . . , ~uL and right-hand side vectors ~f 1, . . . , ~fL

2: set ~f 1 ← ~f from (4.6)
3: set ~u1 as some convenient initial guess satisfying any (grid-aligned) Dirichlet conditions

(if present)
4: for ` = 1, . . . , L− 1 do
5: perform a full smoothing sweep on A`~u` = ~f ` {§4.3.2, with 2`−1NBSS boundary-local

Gauss-Seidel sweeps on each side of a Gauss-Seidel sweep over all degrees of freedom}
6: restrict the fine-grid residual ~r` := ~f `−A`~u` to the coarse-grid right-hand side: ~f `+1 ←

R`~r` {§4.3.3; only restrict to coarse-grid material equations}
7: set ~u`+1 ← ~0
8: end for
9: solve AL~uL = ~fL exactly {using a sufficient number of Gauss-Seidel iterations, for ex-

ample}
10: for ` = L− 1, . . . , 1 do
11: prolongate the coarse-grid correction ~u`+1 to the fine-grid solution: ~u` ← ~u`+P `+1~u`+1

{§4.3.3; prolongate zeros at coarse-grid virtual degrees of freedom}
12: perform a full smoothing sweep on A`~u` = ~f ` {§4.3.2, with 2`−1NBSS boundary-local

Gauss-Seidel sweeps on each side of a Gauss-Seidel sweep over all degrees of freedom}
13: end for

across the interface. We will additionally present some examples demonstrating the efficiency
of our geometric multigrid algorithms.

We discretized our examples on a variety of N × N × N -cell grids (up to 4163 for Neu-
mann, Dirichlet, and interface problems with smooth β; up to 3203 for interface problems
with discontinuous β) within the box [−1,+1]3. For each example below, we give a graphic
depicting the embedded boundary or interface; a few plots showing typical slices of the
discrete approximation uh, e.g., plots of uh(x, y, z0) against (x, y) with z = z0 fixed; and
log-log plots of the errors in the discrete approximation

∥∥u− uh∥∥∞ and the gradient of the

discrete approximation
∥∥∇u−∇uh∥∥∞ against the resolution N , which demonstrate second

order convergence in u and first order convergence in ∇u. We compute
∥∥u− uh∥∥∞ as the

maximum absolute difference between the analytic solution u and the discrete approxima-
tion uh over all material degrees of freedom. We compute

∥∥∇u−∇uh∥∥∞ as the maximum

L∞-norm between ∇u and ∇uh over, again, all material degrees of freedom. Note that,
strictly speaking, ∇uh is discontinuous across grid cell faces, and specifically around grid
vertices. Thus, we evaluate ∇uh at a grid vertex by averaging its limits when approached
from each of the (up to 8) non-boundary/non-interfacial incident grid cells (using the trilin-
ear representation of uh within each incident grid cell). We restrict this averaging to only
non-boundary/non-interfacial grid cells to ensure we use only material degrees of freedom in
the evaluation of ∇uh.

Occasionally, at higher resolutions, a degree of freedom is so poorly supported that catas-

82

Algorithm 4.4 Multigrid v-cycle algorithm for Dirichlet problems.

1: initialize Poisson operators A1, . . . , AL and aggregated constraint matrices B1, . . . , BL

(and/or fundamental basis matrices Z1, . . . , ZL) at all levels as described in §4.2.3; allo-

cate space for solution vectors ~u1, . . . , ~uL and right-hand side vectors ~f 1, . . . , ~fL

2: set ~f 1 ← ~f from (4.6) (without the q contribution, of course)

3: let ~c :=

(
B−1
ma
~p

0

)
{~c satisfies the embedded Dirichlet constraints}

4: set ~f 1 ← Zt
(
~f 1 − A1~c

)
(note: we implicitly identify the domains and codomains of Z

and Zt)
5: set ~u1 as some convenient initial guess satisfying any grid-aligned Dirichlet conditions (if

present)
6: for ` = 1, . . . , L− 1 do
7: perform a full smoothing sweep on (Z`)tA`Z`~u` = ~f ` {§4.3.2, with 2`−1NBSS

boundary-local Gauss-Seidel sweeps on each side of a Gauss-Seidel sweep over all
degrees of freedom; be sure to update independent degrees of freedom as necessary to
maintain ~u` in the null space of the Dirichlet constraints}

8: restrict the fine-grid residual ~r` := ~f `− (Z`)tA`Z`~u` to the coarse-grid right-hand side:
~f `+1 ← R`~r` {§4.3.3; restrict zero values from fine-grid boundary degrees of freedom,
and only restrict to coarse-grid non-boundary equations}

9: set ~u`+1 ← ~0
10: end for
11: solve (ZL)tALZL~uL = ~fL exactly {using a sufficient number of Gauss-Seidel iterations,

for example}
12: for ` = L− 1, . . . , 1 do
13: prolongate the coarse-grid correction ~u`+1 to the fine-grid solution: ~u` ← ~u`+P `+1~u`+1

{§4.3.3; prolongate zeros at coarse-grid virtual degrees of freedom}
14: perform a full smoothing sweep on (Z`)tA`Z`~u` = ~f ` {§4.3.2, with 2`−1NBSS

boundary-local Gauss-Seidel sweeps on each side of a Gauss-Seidel sweep over all
degrees of freedom; be sure to update independent degrees of freedom as necessary to
maintain ~u` in the null space of the embedded Dirichlet constraints}

15: end for
16: set ~u1 ← ~c + Z~u1 (note: here we are implicitly identifying the domains and codomains

of Z and Zt)

83

trophic cancellation and/or round-off error dominates in the integration calculations (§4.2.1)
associated with the degree of freedom. For all the examples below, we eliminate a virtual
degree of freedom i from the linear system whenever Aii ≤ 1 × 10−12 maxj Ajj, i.e., when
its corresponding diagonal entry in the striffness matrix is vanishingly small. We found this
elimination to be occasionally necessary to improve the solve times and/or reduce the error
in the approximate solution. An alternative solution to this problem of poorly supported
degrees of freedom is to perturb the boundary or interface away from grid vertices lying too
close (via a perturbation of the level set function values), thus attempting to give sufficient
support to all degrees of freedom.

4.4.1 Embedded Neumann Example 1

Our first two examples apply our method to the embedded Neumann problem:

−∇ · (β(x)∇u(x)) = f(x), x ∈ Ω;

β∇u · n̂ = q(x), x ∈ ∂Ωn.

This first example uses β(x, y, z) = 2+y2+xz and sets f and q according to the exact solu-
tion u(x, y, z) = x cos y+y2 sin z. The domain is given by Ω = {x : 0.4 < ‖x‖2 and ‖x‖∞< 1},
with Neumann conditions applied to the embedded portion of the boundary ∂Ωn =
{x : ‖x‖2 = 0.4} and Dirichlet conditions applied to the grid-aligned portion of the boundary
∂Ωd = {x : ‖x‖∞ = 1}. Figure 4.11 depicts the geometry at resolution N = 32, a conver-
gence plot of the errors, and several z-slices of uh at N = 32. A least-squares linear regression
on the error data yields a convergence order of 1.893 for u and 1.002 for ∇u.

4.4.2 Embedded Neumann Example 2

Our second example is also an embedded Neumann problem, with β(x, y, z) = 3 + x cos z +
y sin z and f and q set according to the exact solution u(x, y, z) = z cos (x2 − y2). The
domain Ω is bounded by the 24-point star level set given in Algorithm 4.5 with parameters
rmin = 0.6 and rmax = 0.9. Additionally, we rotate the star surface described in Algorithm 4.5
by −0.3 radians about the +x-axis (to introduce some asymmetry). See Figure 4.12 for a
graphic of the star level set at resolution N = 64.

We apply Neumann boundary conditions over the entire star surface (∂Ωn = ∂Ω), hence
the solution u is only determined up to a constant shift. We accounted for this both during
during the linear solves (the stiffness matrix is indefinite) and in the evaluation of the error.
Figure 4.12 shows the convergence plot of the errors and some typical z-slices of uh at N = 64.
We obtain convergence orders of 1.775 and 0.875 for u and ∇u, respectively.

4.4.3 Embedded Dirichlet Example

We next demonstrate our method on the embedded Dirichlet problem:

84

(a) Geometry of ∂Ω = ∂Ωnt∂Ωd(b) Close-up embedded geome-
try of ∂Ωn ⊂ ∂Ω

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
log10(N)

6

5

4

3

2

1

0

lo
g 1

0(
er

ro
r)

|u−uh |∞
-1.893 x - 0.37
|∇u−∇uh |∞
-1.002 x + 0.787

(c) Estimated orders of 1.893 for u, 1.002
for ∇u

(d) z = −5/8 slice of uh (e) z = 0 slice of uh (f) z = +5/8 slice of uh

Figure 4.11: Figures for Example 4.4.1: geometry of ∂Ω at N = 32, convergence plot
of the errors, and z-slices of uh at N = 32. The black wireframe box in (c) - (e) is
{(x, y) ∈ [−1,+1]2} × [−1,+1].

85

(a) Embedded geometry of ∂Ωn = ∂Ω

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
log10(N)

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

lo
g 1

0(
er

ro
r)

|u−uh |∞
-1.775 x + 0.2708
|∇u−∇uh |∞
-0.8745 x + 0.2879

(b) Estimated orders of 1.775 for u, 0.875 for ∇u

(c) z = −1/2 slice of uh (d) z = −5/32 slice of uh (e) z = +5/32 slice of uh (f) z = +1/2 slice of uh

Figure 4.12: Figures for Example 4.4.2: geometry of ∂Ωn at N = 64, convergence plot of
the errors, and z-slices of uh at N = 64. The black wireframe box in (c) - (f) is {(x, y) ∈
[−1/2,+1/2]2} × [−1/2,+1/2].

86

Algorithm 4.5 Level set function for the 24-point star surface in Example 4.4.2.

1: {input: x ∈ R3}
2: {parameters: 0 < rmin < rmax}
3: let i := argmaxi |xi|
4: if xi = 0 then
5: return −rmin

6: end if
7: let j1, j2 ∈ {1, 2, 3} be the other 2 indices other than i
8: let sk := xjk/ |xi|, for k = 1, 2
9: {s1, s2 are local coordinates on the face of the [−1,+1]3 cube intersected by the ray from

0 through x}
10: assert(−1 ≤ sk ≤ +1), for k = 1, 2
11: sk ← 1

2

(
sk + sin π

2
sk
)
{apply a slight distortion to give better spacing to the star’s

points}
12: let h := (1− cos 2πs1)(1− cos 2πs2)
13: return |x| − (rmin + (rmax − rmin)h)

−∇ · (β(x)∇u(x)) = f(x), x ∈ Ω;

u = p(x), x ∈ ∂Ωd.

This example uses β(x, y, z) = 7 + x + 2y + 3z and sets f and p according to the exact
solution u(x, y, z) = xey +

√
1 + y2ez. The domain Ω is bounded by a torus centered at 0

with major radius 0.6, minor radius 0.3, and axis along (0,− sin 0.75, cos 0.75) (the k̂ vector
rotated −0.75 radians with respect to the +x-axis; again, to introduce some asymmetry).
We apply Dirichlet boundary conditions over all of ∂Ω, i.e., ∂Ωd = ∂Ω. Figure 4.13 depicts
a graphic of the torus surface at resolution N = 64, a convergence plot of the errors, and a
few x-slices of uh at N = 64 (that is, we plot uh(x0, y, z) against (y, z) for fixed x = x0). We
calculated convergence orders of 1.864 and 0.977 for u and ∇u, respectively.

4.4.4 Embedded Interface Examples

We now apply our method to the embedded interface problem:

−∇ · (β(x)∇u(x)) = f(x), x ∈ Ω;

[u] = a(x), x ∈ Γ;

[β∇u · n̂] = b(x), x ∈ Γ.

We take β−(x, y, z) = α−(10+sin(xy+z)) and β+(x, y, z) = α+(10+cos(x+yz), where α−

and α+ are constants. We will vary the ratio α−/α+ between 1/100 and 100 to demonstrate

87

(a) Embedded geometry of ∂Ωd = ∂Ω

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
log10(N)

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

lo
g 1

0(
er

ro
r)

|u−uh |∞
-1.864 x + 1.108
|∇u−∇uh |∞
-0.9769 x + 0.8531

(b) Estimated orders of 1.864 for u, 0.977 for ∇u

(c) x = −1/2 slice of uh (d) x = 0 slice of uh (e) x = +1/2 slice of uh

Figure 4.13: Figures for Example 4.4.3: geometry of ∂Ωd at N = 64, convergence plot of
the errors, and x-slices of uh at N = 64. The black wireframe box in (c) - (e) is {(y, z) ∈
[−1,+1]2} × [1, 3].

88

the behavior of our method with respect to the contrast in β. We set a and b according to
the exact solution u−(x, y, z) = x2 + y2 + z2, u+(x, y, z) = (x + z)2

√
2 + y. The interface Γ

is the surface of a thickened trefoil knot, with major radius rmajor = 0.8 and minor radius
rminor = 0.23. To be precise, let γtrefoil denote the trefoil knot curve parameterized as

γtrefoil :=
{rmajor

3
((2 + cos 3t) cos 2t, (2 + cos 3t) sin 2t, sin 3t) : 0 ≤ t < 2π

}
.

We then take

Ω− :=

{
x ∈ R3 : min

y∈γtrefoil

‖x− y‖2 < rminor

}
,

with Γ = ∂Ω− and Ω+ = (−1,+1)3 \ (Ω− t Γ). See Figure 4.14 for a graphic of the trefoil
knot surface at resolution N = 64, a few z-slices of uh with (α−, α+) = (2, 1) at N = 64,
and convergence plots of the errors for various combinations of α− and α+. For all tested
combinations of α− and α+ we obtained an estimated convergence order of ≥ 1.794 and
≥ 0.923 for u and ∇u, respectively.

Table 4.1 shows the effect of the β contrast on the conditioning of the linear systems
and the number of (preconditioned) conjugate gradient iterations. We compare the various
combinations of α− and α+ together with, for reference, the standard 7-pt variable coefficient
Laplacian with no interface. For the 7-pt Laplacian system, we show the results from using
each of β− := 10 + sin(xy + z) and β+ := 10 + cos(x + yz) as the Laplacian coefficient
throughout the whole domain. All tests are at a resolution of N = 256. We normalized
the linear systems to have constant diagonal (Jacobi preconditioning) and solved them via
PETSc’s [BBG09, BBE08, BGM97] conjugate gradient function to a relative residual norm
of 2.3 × 10−13 of the Jacobi preconditioned system. We configured PETSc to estimate the
extreme singular values of the system upon completion of a solve and computed the condition
number as the ratio of these extreme singular values. In each test case, we also demonstrate
the effects of preconditioning (using PETSc’s incomplete Cholesky (ICC) preconditioner,
applicable since the ZtAZ system is symmetric positive definite) on the conditioning of the
system and the number of conjugate gradient iterations. We observe that high β constrasts
could moderately increase solve times over low β constrasts and the standard 7-pt Laplacian
matrix.

4.4.5 Discontinuity Removal

Recall from §4.2.4.1 that if β is smooth across the interface Γ, our method reduces to solving
a standard 7-point Poisson system. We demonstrate the applicability of this procedure in
this example. We take β(x, y, z) = e1+x2+z2

+ x sin 4y and set a and b according to the
exact solution u−(x, y, z) = (cos 4x) log(1 + y2 + z2), u+(x, y, z) = xy2 + 3yz2 + 7zx2. The
interface Γ is the surface of a dumbbell, described by the level set function in Algorithm 4.6.
In this example, the “balls” of the dumbbell are centered at x0 = (−0.4,−0.4,−0.4) and
x1 = (0.4, 0.4, 0.4) with radii rball = 0.5; the “neck” of the dumbbell has radius rneck = 0.2.
See Figure 4.15 for a graphic of the dumbbell level set at N = 64, a convergence plot of the
errors, and a few z-slices of uh at N = 64. We calculated convergence orders of 1.969 and
0.984 for u and ∇u, respectively.

89

(a) Embedded geometry of
Γ

(b) z = −1/8 slice of uh (c) z = 0 slice of uh (d) z = +1/8 slice of uh

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
log10(N)

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

lo
g 1

0(
er

ro
r)

|u−uh |∞
-1.794 x + 1.311
|∇u−∇uh |∞
-0.966 x + 1.088

(e) (α−, α+) = (2, 1); estimated or-
ders of 1.794 for u, 0.966 for ∇u

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
log10(N)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

lo
g 1

0(
er

ro
r)

|u−uh |∞
-1.798 x + 1.76
|∇u−∇uh |∞
-0.9255 x + 1.281

(f) (α−, α+) = (10, 1); estimated or-
ders of 1.798 for u, 0.926 for ∇u

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
log10(N)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

lo
g 1

0(
er

ro
r)

|u−uh |∞
-1.824 x + 2.762
|∇u−∇uh |∞
-0.9229 x + 2.131

(g) (α−, α+) = (100, 1); estimated
orders of 1.824 for u, 0.923 for ∇u

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
log10(N)

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

lo
g 1

0(
er

ro
r)

|u−uh |∞
-1.919 x + 1.754
|∇u−∇uh |∞
-1.014 x + 1.236

(h) (α−, α+) = (1, 2); estimated or-
ders of 1.919 for u, 1.014 for ∇u

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
log10(N)

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

lo
g 1

0(
er

ro
r)

|u−uh |∞
-1.932 x + 2.431
|∇u−∇uh |∞
-1.012 x + 1.864

(i) (α−, α+) = (1, 10); estimated or-
ders of 1.932 for u, 1.012 for ∇u

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
log10(N)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

lo
g 1

0(
er

ro
r)

|u−uh |∞
-1.938 x + 3.431
|∇u−∇uh |∞
-1.023 x + 2.876

(j) (α−, α+) = (1, 100); estimated
orders of 1.938 for u, 1.023 for ∇u

Figure 4.14: Figures for Example 4.4.4: geometry of Γ, z-slices of uh with (α−, α+) = (2, 1)
at N = 64, and convergence plots of the errors at various combinations of α− and α+. The
black wireframe box in (b) - (d) is {(x, y) ∈ [−1,+1]2} × [0, 2].

90

Test case cond. # (no ICC) cond. # (w/ICC) # CG iter. # PCG iter.
(2, 1) 4.0× 105 5.6× 103 5148 616
(10, 1) 1.4× 106 6.5× 105 8421 5856
(100, 1) 1.3× 107 6.1× 106 12855 8817
(1, 2) 3.3× 105 5.5× 103 5168 630
(1, 10) 4.7× 105 2.3× 105 6450 4529
(1, 100) 6.6× 105 3.1× 105 7709 5350

7-pt Laplacian, β− 2.7× 104 2.7× 103 1190 395
7-pt Laplacian, β+ 2.7× 104 2.7× 103 1194 427

Table 4.1: Condition numbers (as estimated by PETSc) and number of (preconditioned)
conjugate gradient ((P)CG) iterations for the linear systems resulting from discretizing Ex-
ample 4.4.4 at resolution N = 256 for various combinations of (α−, α+). For the precon-
ditioning, we used PETSc’s incomplete Cholesky (ICC) preconditioner. We also include
statistics for the standard 7-pt Laplacian matrix for reference.

Algorithm 4.6 Signed distance function for the dumbbell surface in Example 4.4.5.

1: {input: x ∈ R3}
2: {parameters: 0 < rneck ≤ rball; x0,x1 ∈ R3}
3: let y := x− 1

2
(x0 + x1)

4: {(a, b) are the local coordinates of x projected onto the plane defined by x0,x1,x where
(0, 0) corresponds to 1

2
(x0 + x1) and (±ã, 0) corresponds to xi}

5: let a := y · x1−x0

‖x1−x0‖2
; b :=

∥∥∥y − a x1−x0

‖x1−x0‖2

∥∥∥
6: let ã := 1

2
‖x1 − x0‖2; b̃ := (ã2 − (rball − rneck)2) /(2(rball − rneck))

7: if b̃ ≤ 0 or |a|
ã

+ b
b̃
≥ 1 then

8: let d0 :=
√

(ã+ a)2 + b2 {distance from x to x0}
9: let d1 :=

√
(ã− a)2 + b2 {distance from x to x1}

10: assert (di = ‖x− xi‖) for i = 1, 2
11: return min{d0, d1} − rball

12: else

13: return (b̃− rneck)−
√
a2 + (b̃− b)2

14: end if

91

(a) Embedded geometry of Γ

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
log10(N)

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

lo
g 1

0
(e

rr
or

)

|u−uh |∞
-1.969 x + 1.315
|∇u−∇uh |∞
-0.9839 x + 1.624

(b) Estimated orders of 1.969 for u, 0.984 for ∇u

(c) z = −3/8 slice of uh (d) z = 0 slice of uh (e) z = +3/8 slice of uh

Figure 4.15: Figures for Example 4.4.5: geometry of Γ, convergence plot of the errors, and
z-slices of uh at N = 64. The black wireframe box in (c) - (e) is {(x, y) ∈ [−1,+1]2}× [−4, 4].

92

4.4.6 Multigrid

We described a collection of multigrid algorithms in §4.3 to solve domain problems with β
constant (i.e., β ≡ 1) and interface problems with β+ and β− constant (i.e., β is constant over
Ω− and Ω+, but not necessarily the same constant). We demonstrate the efficacy of these
algorithms in this section. For each of the following examples, we study the convergence
behavior of iteratively applying the multigrid v-cycle described in §4.3. We vary the number
of pre-restriction and post-prolongation additional boundary/interface smoothing sweeps
together with the width of the boundary/interface smoothing region, and show what kinds of
parameters might be typically necessary to achieve good v-cycle convergence. We note that,
generally speaking, for the class of smoothers we are using (straightforward Gauss-Seidel or
variants thereof), embedded Neumann and embedded Dirichlet problems require relatively
little additional smoothing effort along the boundary. Embedded interface problems, on the
other hand, may require significantly more work along the interface, depending highly on
the contrast in β.

We first present the results of applying our multigrid algorithm to the embedded Neu-
mann examples in §4.4.1 and §4.4.2, but with β ≡ 1. Figure 4.16 shows plots of the residual

norm
∥∥∥~f − A~u∥∥∥

∞
and the ratio of successive residual norms versus the v-cycle iteration

number at resolution N = 384 = 3 · 27. For both examples, we were able to obtain a v-
cycle convergence rate of about 0.25 with a boundary smoothing region width of only 1 (i.e.,
only expending extra smoothing effort on boundary degrees of freedom) and relatively few
additional boundary smoothing sweeps.

Figure 4.17 shows the results of applying our multigrid algorithm to the embedded Dirich-
let example in §4.4.3 (except, again, with β ≡ 1). For this example, we found it necessary
to extend the boundary smoothing region out to a width of 2 or 3 to obtain good v-cycle
convergence, encompassing all degrees of freedom incident to a grid cell with an L∞-distance
from a boundary grid cell of at most 1 or 2, respectively. In each case, we needed only 3 or
4 additional boundary smoothing sweeps to achieve a stable v-cycle convergence rate. Addi-
tional boundary smoothing sweeps above 3 or 4 did not significantly improve the convergence
rate. Unsurprisingly, a boundary smoothing region width of 3 gives a better convergence rate
(again, about 0.25) than a boundary smoothing region width of 2 (where the convergence
rate is, at best, about 0.39). The former, however, requires non-negligibly more effort for
smaller resolutions.

Lastly, we demonstrate our multigrid algorithm on the embedded interface example in
§4.4.4 with β− ≡ α− and β+ ≡ α+. See Figure 4.18 for the results. Here, we vary α−/α+

only between 1/10 and 10. As for the embedded Dirichlet case, an interface smoothing
region width of 2 or 3 is sufficient to obtain a v-cycle convergence rate of about 0.40 or 0.25,
respectively. We found that we also needed significantly more additional interface smoothing
sweeps than for the embedded Neumann and embedded Dirichlet cases, especially at more
extreme β contrasts (e.g., 1/100 or 100).

93

0 5 10 15 20 25 30 35
iteration #

16
14
12
10

8
6
4
2
0

lo
g

10
(r

es
id

u
a
l)

NBSS = 1
NBSS = 2
NBSS = 3

0 5 10 15 20 25 30 35
iteration #

0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55

re
si

d
u
a
l i
/r

es
id

u
a
l i
−

1

avg = 0.465
avg = 0.292
avg = 0.265

(a) Example 4.4.1

0 5 10 15 20 25 30 35
iteration #

18
16
14
12
10

8
6
4
2

lo
g

10
(r

es
id

u
a
l)

NBSS = 3
NBSS = 4
NBSS = 6

0 5 10 15 20 25 30 35
iteration #

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

re
si

d
u
a
l i
/r

es
id

u
a
l i
−

1

avg = 0.398
avg = 0.304
avg = 0.248

(b) Example 4.4.2

Figure 4.16: Multigrid v-cycle convergence plots for embedded Neumann Examples 4.4.1
and 4.4.2 with β ≡ 1. The grid resolution is N = 384 and the boundary smoothing region

width is 1. The top plot in each subfigure shows the residual norm
∥∥∥~f − A~u∥∥∥

∞
after each

v-cycle iteration for various numbers of boundary smoothing sweeps (NBSS). The bottom
plots shows the ratio of successive residual norms. The estimated rate given in each bottom
plot is the average ratio of successive residual norms over the final 10 iterations.

0 5 10 15 20 25 30
iteration #

14

12

10

8

6

4

2

0

lo
g 1

0(
re

si
d
u
al

)

NBSS = 2
NBSS = 3

0 5 10 15 20 25 30
iteration #

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

re
si

d
u
al
i/

re
si

d
u
al
i−

1

avg = 0.403
avg = 0.393

(a) BSRW = 2

0 5 10 15 20 25
iteration #

14

12

10

8

6

4

2

0

lo
g 1

0(
re

si
d
u
al

)

NBSS = 2
NBSS = 3
NBSS = 4

0 5 10 15 20 25
iteration #

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

re
si

d
u
al
i/

re
si

d
u
al
i−

1

avg = 0.331
avg = 0.242
avg = 0.246

(b) BSRW = 3

Figure 4.17: Multigrid v-cycle convergence plots for embedded Dirichlet Example 4.4.3 with
β ≡ 1 for a boundary smoothing region width (BSRW) of 2 and 3. The grid resolution is

N = 384. The top plot in each subfigure shows the residual norm
∥∥∥~f − A~u∥∥∥

∞
after each

v-cycle iteration for various numbers of boundary smoothing sweeps (NBSS). The bottom
plots shows the ratio of successive residual norms. The estimated rate given in each bottom
plot is the average ratio of successive residual norms over the final 10 iterations.

94

0 10 20 30 40 50 60 70 80 90
iteration #

14

12

10

8

6

4

2

0

lo
g 1

0(
re

si
d
u
al

)

NISS = 8
NISS = 12
NISS = 16
NISS = 24
NISS = 32

0 10 20 30 40 50 60 70 80 90
iteration #

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

re
si

d
u
al
i/

re
si

d
u
al
i−

1

avg = 0.763
avg = 0.666
avg = 0.596
avg = 0.506
avg = 0.394

(a) (α−, α+) = (2, 1), ISRW = 2

0 20 40 60 80 100
iteration #

14

12

10

8

6

4

2

0

lo
g 1

0(
re

si
d
u
al

)

NISS = 8
NISS = 12
NISS = 16
NISS = 24
NISS = 32

0 20 40 60 80 100
iteration #

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

re
si

d
u
al
i/

re
si

d
u
al
i−

1

avg = 0.777
avg = 0.659
avg = 0.551
avg = 0.383
avg = 0.253

(b) (α−, α+) = (2, 1), ISRW = 3

0 5 10 15 20 25 30 35 40
iteration #

14
12
10

8
6
4
2
0
2

lo
g 1

0(
re

si
d
u
al

)

NISS = 40
NISS = 48

0 5 10 15 20 25 30 35 40
iteration #

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

re
si

d
u
al
i/

re
si

d
u
al
i−

1

avg = 0.503
avg = 0.466

(c) (α−, α+) = (10, 1), ISRW = 2

0 5 10 15 20 25
iteration #

14
12
10

8
6
4
2
0
2

lo
g 1

0(
re

si
d
u
al

)

NISS = 64
NISS = 80

0 5 10 15 20 25
iteration #

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

re
si

d
u
al
i/

re
si

d
u
al
i−

1

avg = 0.411
avg = 0.260

(d) (α−, α+) = (10, 1), ISRW = 3

0 10 20 30 40 50 60 70
iteration #

14

12

10

8

6

4

2

0

lo
g 1

0(
re

si
d
u
al

)

NISS = 8
NISS = 12
NISS = 16
NISS = 24

0 10 20 30 40 50 60 70
iteration #

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

re
si

d
u
al
i/

re
si

d
u
al
i−

1

avg = 0.731
avg = 0.644
avg = 0.590
avg = 0.537

(e) (α−, α+) = (1, 2), ISRW = 2

0 10 20 30 40 50 60 70
iteration #

14

12

10

8

6

4

2

0

lo
g 1

0(
re

si
d
u
al

)

NISS = 8
NISS = 12
NISS = 16
NISS = 20
NISS = 24
NISS = 32

0 10 20 30 40 50 60 70
iteration #

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

re
si

d
u
al
i/

re
si

d
u
al
i−

1 avg = 0.722
avg = 0.589
avg = 0.477
avg = 0.389
avg = 0.323
avg = 0.260

(f) (α−, α+) = (1, 2), ISRW = 3

0 5 10 15 20 25 30 35 40 45
iteration #

14
12
10

8
6
4
2
0
2

lo
g 1

0(
re

si
d
u
al

)

NISS = 40
NISS = 48

0 5 10 15 20 25 30 35 40 45
iteration #

0.1

0.2

0.3

0.4

0.5

0.6

re
si

d
u
al
i/

re
si

d
u
al
i−

1

avg = 0.581
avg = 0.580

(g) (α−, α+) = (1, 10), ISRW = 2

0 5 10 15 20 25
iteration #

14
12
10

8
6
4
2
0
2

lo
g 1

0(
re

si
d
u
al

)

NISS = 64
NISS = 72

0 5 10 15 20 25
iteration #

0.1

0.2

0.3

0.4

0.5

0.6

re
si

d
u
al
i/

re
si

d
u
al
i−

1

avg = 0.322
avg = 0.260

(h) (α−, α+) = (1, 10), ISRW = 3

Figure 4.18: Multigrid v-cycle convergence plots for embedded interface Examples 4.4.4 with
β− ≡ α−, β+ ≡ α+ for a interface smoothing region width (ISRW) of 2 and 3 and various
combinations of α−, α+. The grid resolution is N = 256. The top plot in each subfigure shows

the residual norm
∥∥∥~f − A~u∥∥∥

∞
after each v-cycle iteration for various numbers of interface

smoothing sweeps (NISS). The bottom plots shows the ratio of successive residual norms.
The estimated rate given in each bottom plot is the average ratio of successive residual norms
over the final 10 iterations.

95

4.5 Discussion, Conclusion, and Future Work

We presented a virtual node method to solve embedded Neumann, Dirichlet, and interface
problems (4.1) (cf. [BBZ10]) which uses Lagrange multipliers to enforce the Dirichlet con-
dition (4.1d) and the jump condition (4.1b) weakly. We described a general algorithm to
define the Lagrange multiplier space that ultimately yields a symmetric positive definite
system with better conditioning than that yielded when using the double-wide constraints
described in [BBZ10]. The geometric intuitiveness of our method makes it relatively easy
to implement, and the numerical examples in §4.4 demonstrate its second order accuracy in
L∞. Although simpler embedded domain discretizations exist (see, for example, [GFC02]
and [NMG09a]), we believe one distinct advantage of our embedded domain discretizations is
that they naturally extend to our embedded interface discretization. Thus, it takes relatively
little machinery to understand and implement all three methods.

We described a collection of multigrid algorithms in §4.3 to solve our embedded Neumann,
Dirichlet, and interface problems. The results given in §4.4.6 demonstrate that simple v-
cycle iteration built around our multigrid algorithms yields an efficient solver for embedded
Neumann and embedded Dirichlet problems at almost any resolution. Using simple v-cycle
iteration to solve embedded interface problems requires a significant amount of interface-
local smoothing, so it would likely be most effective at higher resolutions. One avenue of
research would be to investigate alternative grid-transfer operators or smoothers around the
embedded interface with the hopes of reducing the amount of interface-local smoothing.
We would also expect that far fewer interface-local (and boundary-local) smoothing sweeps
would be necessary when using a single multigrid v-cycle as a preconditioner to a Krylov
method, such as is done in [MST10].

96

CHAPTER 5

Nearly Incompressible Linear Elasticity

5.1 Background and Existing methods

1 To review, this chapter addresses the solution of the equilibrium equations of linear elas-
ticity, repeated here for convenience:

−
(
µ∆I + (λ+ µ)∇∇t

)
u = f ∈ Ω (5.1a)

u = u0 ∈ ∂Ωd (5.1b)

µ (u · n̂ +∇ (u · n̂)) + λ (∇ · u) n̂ = g ∈ ∂Ωn. (5.1c)

where we wish to solve for the unknown displacement map u.

Following the early methods of Hyman [Hym52] and Saul’ev [Sau63], the fictitious do-
main approach has been used with incompressible materials in a number of works [BTT97,
GPP94b, GPH99, GPH01, BYZ04, Par08, Rut08, PP09, TP09]. These approaches embed
the irregular geometry in a more simplistic domain for which fast solvers exist (e.g., fast
Fourier transforms). The calculations include fictitious material in the complement of the
domain of interest. A forcing term (often from a Lagrange multiplier) is used to maintain
boundary conditions at the irregular geometry. Although these techniques naturally allow
for efficient solution procedures, they depend on a smooth solution across the embedded
domain geometry for optimal accuracy, which is not typically possible.

The eXtended Finite Element Method (XFEM) and related approaches in the finite ele-
ment literature also make use of geometry embedded in regular elements. Although originally
developed for crack-based field discontinuities in elasticity problems, these techniques are also
used with embedded problems in irregular domains. Daux et al. first showed that these tech-
niques can naturally capture embedded Neumann boundary conditions [DMD00, SCM01].
These approaches are equivalent to the variational cut cell method of Almgren et al. in
[ABC97]. Enforcement of Dirichlet constraints is more difficult with variational cut cell ap-
proaches [MBT06, LB08] and typically involves a Lagrange multiplier or stabilization. Dol-
bow and Devan recently investigated the convergence of such approaches with incompressible
materials and point out that much analysis in this context remains to be completed [DD04].
Despite the lack of thorough analysis, such XFEM approaches appear to be very accurate

1The content of this chapter is a version of “A second-order virtual node algorithm for nearly incom-
pressible linear elasticity in irregular domains” by Yongning Zhu, Yuting Wang, Jeffrey Hellrung, Alejandro
Cantarero, Eftychios Sifakis, and Joseph M. Teran (accepted for publication in Journal of Computational
Physics, 2012) with moderate revisions.

97

and have been used in many applications involving incompressible materials in irregular
domains [WML01, CB03, CC05, GW08, BBH09].

There are also many Finite Difference Methods (FDM) and Finite Volume Methods
(FVM) that utilize cut uniform grid cells. Many of these methods have been developed in the
context of incompressible flow. For example, Almgren et al. use cut uniform bilinear cells to
solve the Poisson equation for pressures in incompressible flow calculations [ABC97]. Marelle
et al. use collocated grids and define define sub cell interface and boundary geometry in cut
cells via level sets [MKL05]. Ng et al. also use level set descriptions of the irregular domain
and achieve second order accuracy in L∞ for incompressible flows [NMG09b]. The approach
of Batty et al. is similar, but not as accurate [BBB07]. Although not technically a cut cell
approach, the immersed interface method has been used to improve accuracy for incompress-
ible flow calculations in irregular domains [WB00, RW04, LWI06, CS08, Rut08, XW08]. Cut
cell FDM and FVM have also been developed for incompressible and nearly incompressible
elastic materials. Bijelonja et al. use cut cell FVM to enforce incompressibility more accu-
rately than is typically seen with FEM [BDM06]. Beirão da Veiga et al. use polygonal FVM
cells to avoid remeshing with irregular domains [VGL09]. Barton et al. [BD10] and Hill et
al. [HPO10] use cut cells with Eulerian elastic/plastic flows.

Many approaches have been proposed to solve elasticity equations in a scalable way at
high resoultions. For this class of problems, iterative methods are usually employed rather
than direct methods due to memory considerations. For iterative methods to be scalable,
we mean that the method requires only a constant (and small) number of iterations, in-
dependent of the grid resolution, to obtain a solution. While many methods of this type
have proven quite effective, accommodating mixed boundary conditions on an embedded
interface is highly nontrivial, especially when efficiency of implementation is a priority. Most
methods have also been created specifically to work with either purely Dirichlet or purely
traction boundary conditions, but have not been demonstrated to be effective in both cases.
Constructing preconditioners for solving the KKT systems that result from discretizing the
equations in a mixed formulation have been studied by Klawonn [Kla95, Kla98] and Bram-
ble and Pasciak [BP88]. Work has also been done on using domain decomposition methods
with PCG [FLP00] and GMRES [KP98] to solve Stokes and elasticity problems. Balancing
Domain Decomposition by Constraints (BDDC) has also been used to build preconditioners
for solving these problems [Doh03, PWZ10]. Many authors have also looked at applying
multigrid methods to problems in solid mechanics [Ver84, KM87, Hau90, Bre93, CMM98,
AP99, HH99, Sch99, Wie00, HMM04, GGL08, LWC09, ZST10], including handling issues
arising from nearly incompressible materials. Mixed FEM formulations are one example that
maintain good multigrid convergence properties for nearly incompressible materials demon-
strated on the Dirichlet boundary case [Bre93, Sch99, LWC09]. FOSLS methods have been
demonstrated to produce systems that can be effectively solved using algebraic multigrid
methods by rewriting the elasticity equations as a first order system using least squares
[CMM98, HMM04]. Multigrid applied to FEM discretized equations using a smoother based
on a Schur complement has been studied by different authors [AP99, Wie00]. While demon-
strating the ability to solve large problems, the Schur complement approach requires the
action of the inverse of the displacements matrix in the smoothing process which is a more

98

expensive smoothing operation than that offered by other methods. Distributive smoothers
offer a different option for the smoothing process that has proved effective on elasticity equa-
tions discretized with FEM [HH99] and on staggered grids [GGL08]. In our approach, we
will look at using distributive smoothing similar to those described in Gaspar et al. [GGL08].

5.2 Mixed Finite Element Formulation

In order to accurately handle linear elastic materials near the incompressible limit, we use
an augmented form of the equilibrium equations. By introducing a pressure variable as an
unknown, we can achieve a stable numerical discretization independent of the degree of in-
compressibility. We will use the weak form of this augmented system to derive a mixed finite
element formulation [BF91]. The augmented form of our equations arises by introducing
p := −(λ/µ)∇ · u. With this definition, σ(u) = µ(∇u + (∇u)t) − µpI and the derived
equations

−µ(∆I +∇∇t)u + µ∇p = f ∈ Ω; (5.2a)

−µ∇ · u− µ2

λ
p = 0 ∈ Ω; (5.2b)

u = u0 ∈ ∂Ωd; (5.2c)

µ(u · n̂ +∇(u · n̂))− µpn̂ = g; ∈ ∂Ωn (5.2d)

are then equivalent to the original equations (5.1).

We use this augmented form of the equations to derive an equivalent variational form of
the equilibrium equations of linear elasticity. A weak form can be derived by taking the inner
product of the strong form with an arbitrary vector-valued function v ∈ V0 := (H1

0,∂Ωd
(Ω))d

and by enforcing p = −(λ/µ)∇ · u weakly:

Find (u, p) ∈ (H1(Ω))d × L2(Ω), u|∂Ωd
= u0, such that

∫
Ω

2µ

(
∇u + (∇u)t

2

)
:

(
∇v + (∇v)t

2

)
− µp(∇ · v)dx (5.3a)

= −
∫

Ω

f · vdx +

∫
∂Ωn

g · vdS(x) ∀v ∈ (H1
0,∂Ωd

(Ω))d, (5.3b)∫
Ω

(
−µq∇ · u− µ2

λ
pq

)
dx = 0 ∀q ∈ L2(Ω). (5.3c)

5.2.1 Discretization

We discretize this variational formulation using a mixed finite element method defined on a
MAC-type staggered grid. Han et al. demonstrated the stability and optimal convergence of
this formulation applied to the Stokes equations on a square domain [HW98]. We generalize

99

this approach to the case of nearly incompressible linear elasticity in embedded domains.
We approximate the Sobolev space V := (H1(Ω))d with a finite element subspace Vh, where
each displacement component of a function in Vh is represented as a piecewise bilinear scalar
function defined on a staggered quadrilateral grid (see Figure 5.1). To be more specific,
consider the staggered grids

Gxh :=
{

(ih, (j − 1/2)h) : (i, j) ∈ Ix ⊂ Z2
}
,

Gyh :=
{

((i− 1/2)h, jh) : (i, j) ∈ Iy ⊂ Z2
}
.

Here, h is the discrete spacing between grid points. Furthermore, we use the following
notation to denote quadrilaterals defined by these grids:

T xij := {(x, y) : ih < x < (i+ 1)h, (j − 1/2)h < y < (j + 1/2)h} ,
T yij := {(x, y) : (i− 1/2)h < x < (i+ 1/2)h, jh < y < (j + 1)h} .

The sets Ix and Iy used in the definition of grids Gxh and Gyh are defined as the collection of
vertices incident on some quadrilateral T xij or T yij, respectively, whose intersection with the
domain Ω is non-empty. In other words, Ix and Iy are the sets of vertices in the staggered
lattices that are at most an L∞-distance of h away from Ω. Henceforth, we will use

T xh :=
{
T xij : T xij ∩ Ω 6= ∅

}
,

T yh :=
{
T yij : T yij ∩ Ω 6= ∅

}
to denote the collection of x and y grid quadrilaterals that intersect (or embed) the domain
Ω.

(a) T p
h (b) T x

h (c) T y
h

Figure 5.1: Staggered grid finite element quadrangulation and embedded domain boundary.

We construct two subspaces of H1(Ω) based on these respective quadrangulations:

V h
x :=

{
vh ∈ C0(Ω) : vh|Tx

ij
∈ Q1(T xij) ∀T xij ∈ T xh

}
,

V h
y :=

{
vh ∈ C0(Ω) : vh|T y

ij
∈ Q1(T yij) ∀T

y
ij ∈ T

y
h

}
,

100

where Q1(T kij) is the space of bilinear functions on the quadrilateral T kij. For simplicity of
notation in subsequent equations we will also use the mappings

η1 : I1 := {1, 2, . . . , Nx} → Ix,
η2 : I2 := {1, 2, . . . , Ny} → Iy

to associate each x and y grid vertex with a unique integer between 1 and Nx := |Ix| and 1
and Ny := |Iy|, respectively. With this convention, any approximate solution uh ∈ V h

x × V h
y

can be expressed as

uh(x) :=

∑
k1∈I1

u1
k1
N1
k1

(x)∑
k2∈I2

u2
k2
N2
k2

(x)

 , (5.4)

where N1
k1

and N2
k2

are the commonly used piecewise bilinear interpolating basis functions
associated with nodes k1 and k2, respectively, in T xh and T yh . Our discrete equations for the
approximate solution uh can thus be seen to be over Nx +Ny scalar unknowns.

We additionally approximate the pressure space Vp := L2(Ω) with a piecewise constant fi-
nite element space V h

p defined on a quadrangulation T ph over the primary grid (or, henceforth,
the pressure grid) Gph:

Gph :=
{

((i+ 1/2)h, (j + 1/2)h) : (i, j) ∈ Ip ⊂ Z2
}
,

T pij := {(x, y) : ih < x < (i+ 1)h, jh < y < (j + 1)h} ,
T ph :=

{
T pij : T pij ∩ Ω 6= ∅

}
,

V h
p :=

{
ph ∈ L2(Ω) : ph|T p

ij
∈ P0(T pij) ∀T

p
ij ∈ T

p
h

}
,

where P0(T pij) is the space of constant functions on the quadrilateral T pij. The grid Gph is
a cell-centered grid (as opposed to a node-centered grid, such as Gxh or Gyh); there is one
pressure degree of freedom associated with the center of each pressure cell T pij ∈ T

p
h . The set

Ip is defined similarly to Ix and Iy, however here it refers to the collection of cell-centered
indices in the grid Gph whose associated quadrilaterals T pij have a non-empty intersection with
Ω. For the sake of simplicity in subsequent equations, we again use a mapping

η3 : I3 := {1, 2, . . . , Np} → Ip

to associate each cell in the pressure grid with a unique integer between 1 and Np := |Ip|.
Thus, any approximate pressure solution ph has the representation

ph(x) :=
∑
k3∈I3

pk3χT p
k3

(x) (5.5)

where (with some abuse of notation) χT p
k
(x) is the characteristic function associated with

the quadrilateral T pk . That is,

χT p
k
(x) :=

{
1, x ∈ T pk
0, x /∈ T pk

.

101

We choose test functions vh(x) = Nm
km

(x)em (m ∈ {1, 2}, km ∈ Im) and substitute the
finite element discretization (5.4), (5.5) into each term in the mixed variational form (5.3):

2µ

∫
Ω

(
∇uh + (∇uh)t

2

)
:

(
∇vh + (∇vh)t

2

)
dx (5.6a)

= µ

∫
Ω

(
∇uh + (∇uh)t

)
: ∇vhdx = µ

∑
i,j∈{1,2}

∫
Ω

(uhi,j + uhj,i)v
h
j,idx (5.6b)

= µ
∑

i,j∈{1,2}

∫
Ω

(uhi,j + uhj,i)N
m
km,iδmjdx = µ

∑
i∈{1,2}

∫
Ω

(ui,m + um,i)N
m
km,idx (5.6c)

= µ
∑
i∈{1,2}

∫
Ω

(∑
ki∈Ii

uikiN
i
ki,m

+
∑
km∈Im

umkmN
m
km,i

)
Nm
km,idx (5.6d)

= µ
∑
i∈{1,2}

∑
ki∈Ii

uiki

∫
Ω

N i
ki,m

Nm
km,idx + µ

∑
km∈Im

umkm

∑
i∈{1,2}

∫
Ω

(
Nm
km,i

)2
dx; (5.6e)

− µ
∫

Ω

p∇ · vhdx = −µ
∑
k3∈I3

pk3

∫
T p
k3
∩Ω

Nm
km,mdx; (5.6f)∫

Ω

f · vhdx =

∫
Ω

fmN
m
kmdx; (5.6g)∫

∂Ωn

g · vhdS(x) =

∫
∂Ωn

gmN
m
kmdS(x). (5.6h)

We can also choose vh ≡ 0 and qh(x) = χT p
k3

(x) (k3 ∈ I3) to give the corresponding pressure

equations:

−µ
∑
i∈{1,2}

∑
ki∈Ii

uiki

∫
T p
k3
∩Ω

N i
ki,i
dx− µ2

λ
pk3

∫
T p
k3
∩Ω

dx = 0.

Since the variational form is derived from an energy minimization problem, the discretized
linear system can trivially be seen to be symmetric. Specifically, if ~u ∈ RNx+Ny is our vector
of displacement unknowns (where, say, the x degrees of freedom are ordered first followed
by the y degrees of freedom second) and ~p ∈ RNp our vector of pressure unknowns, then our
system over the vector ũ of N := Nx +Ny +Np degrees of freedom is of the form:(

Au Gt

G Dp

)(
~u
~p

)
=

(
~f
~0

)
or Ãũ = f̃ (5.7)

where ũ = (~u ~p) and f̃ = (~f ~0). Furthermore, our use of regular grids gives the discrete
equations a finite difference interpretation. If we scale the system by 1/h2, each block in
the discrete system approximates the corresponding differential operator in (5.2), i.e., (5.7)
discretizes the following equation:

h2

(
−µ(∆ +∇∇t) µ∇
−µ∇t −µ2/λ

)(
u
p

)
=

(
h2f
0

)
. (5.8)

102

The linear system is the Hessian matrix of a saddle point problem, therefore the discretized
system is symmetric but indefinite. Indeed, the upper-left block Au is positive definite whie
the lower-right block Dp is negative definite.

5.2.2 Implementation Details

For ease of implementation, we perform the integrations involved in the discrete equations
(5.6) in an element-by-element fashion. Each area integral is represented as a sum of inte-
grals over spatially disjoint elements whose union is the embedded domain. Specifically, we
individually address the integration over the intersection of each quadrilateral of the pressure
grid with the domain T pk3

∩ Ω:∫
Ω

(
Nm
km,i

)2
dx =

∑
k3∈I3

∫
T p
k3
∩Ω

(
Nm
km,i

)2
dx;∫

Ω

N i
ki,m

Nm
km,idx =

∑
k3∈I3

∫
T p
k3
∩Ω

N i
ki,m

Nm
km,idx;∫

Ω

Nm
kmdx =

∑
k3∈I3

∫
T p
k3
∩Ω

Nm
kmdx∫

∂Ωn

Nm
kmdS(x) =

∑
k3∈I3

∫
T p
k3
∩∂Ωn

Nm
kmdS(x).

In the interior, this simply amounts to evaluating the same integrals over each uncut quadri-
lateral T pk3

. However, at the boundary, care must be taken to respect the material region
when the intersection between a pressure cell and the domain is non-trivial. In both the
boundary and interior cases there will be 13 degrees of freedom involved in the integration
over such a pressure cell. This is because the staggering of various grids leads to 13 inter-
polating basis functions supported over a given pressure cell: 6 x-basis functions, 6 y-basis
functions, and 1 pressure basis function. In other words, we express the stiffness matrix Au
of our discrete linear system as a sum of 13× 13 element stiffness matrices Ak3

u . We further
break the integrals involved in a given pressure cell T pk3

up into four subintegrals over the
sub-cell quadrants {ω1, ω2, ω3, ω4} of T pkp (see Figure 5.2). This is because the integrands
are smooth over each quadrant; indeed, the integrands are quadratic, and we simply per-
form these integrations analytically. This observation effectively decomposes the element
stiffness matrix Ak3

u over the sub-cell quadrants {ωi} into the sub-element stiffness matrices{
(Ak3

u)ωi

}
. For example, referring to Figure 5.2(c), (Ak3

u)ω1 involves X1, X2, X3, X4, Y7, Y8,
Y10, Y11, and P13 so it only has nonzero values on rows and columns involving these 9 degrees

103

of freedom. The resulting equations based on those degrees of freedom are

(Ak3
u)ω1 = µ

i�j X1 X2 X3 X4 Y7 Y8 Y10 Y11 P13

X1

X2

X3

X4

∫
ω1
∇N1

i · ∇N1
j +N1

i,1N
1
j,1

∫
ω1
N1
i,2N

2
j,1 −

∫
ω1
N1
i,1

Y7

Y8

Y10

Y11

∫
ω1
N2
i,1N

1
j,2

∫
ω1
∇N2

i · ∇N2
j +N2

i,2N
2
j,2 −

∫
ω1
N2
i,2

P13 −
∫
ω1
N1
j,1 −

∫
ω1
N2
j,2 −µ

λ

∫
ω1

1

If we order the 13 nodes with indices shown in Figure 5.2(a), then on the interior of the
domain, where T pk3

⊂ Ω, the sum of these four subintegrals is always the same:

Ak3
u = µ

1

64

+16 0 0−16 0 0 +9 −6 −3 +3 −2 −1
0 +16−16 0 0 0 +3 +6 −9 +1 +2 −3
0−16 +96−64 0−16 −6 +4 +2 +6 −4 −2

−16 0−64 +96−16 0 −2 −4 +6 +2 +4 −6
0 0 0−16 +16 0 −3 +2 +1 −9 +6 +3
0 0−16 0 0 +16 −1 −2 +3 −3 −6 +9

+9 +3 −6 −2 −3 −1 +16 0 0 0−16 0
−6 +6 +4 −4 +2 −2 0 +96 0−16−64−16
−3 −9 +2 +6 +1 +3 0 0 +16 0−16 0
+3 +1 +6 +2 −9 −3 0−16 0 +16 0 0
−2 +2 −4 +4 +6 −6 −16−64−16 0 +96 0
−1 −3 −2 −6 +3 +9 0−16 0 0 0 +16

−h

8

−1
+1
−6
+6
−1
+1
−1
−6
−1
+1
+6
+1

−h

8

(
−1 +1 −6 +6 −1 +1 −1 −6 −1 +1 +6 +1

)
−h2µ/λ

. (5.9)

The global stiffness matrix Au generated from the sum of all the element stiffness matrices{
Ak3
u

}
at an interior degree of freedom (x, y, or p) has a stencil shown in Figure 5.3.

For boundary cells where T pk3
6⊂ Ω, we must perform the integrations involved in each

of the entries of (Ak3
u)ωi

more carefully, taking into account the boundary geometry. The
technique is similar to that presented in Chapter 4, specifically §4.2.1, and will be discussed
in more detail in the following subsection. The process of constructing the global stiffness
matrix Au from each of the 13 × 13 element stiffness matrices Ak3

u is explained in Algo-
rithm 5.1.

5.2.3 Discrete Geometric Representation and Integration

We discretize the domain Ω by embedding it in a regular Cartesian grid. Specifically, we use
a level set function defined over a subgrid doubly refined with respect to Gxh ,G

y
h,G

p
h:

Gφ = {(ih/2, jh/2)} .

104

(a) (b) (c)

Figure 5.2: (a) A interior pressure cell and the 13 degrees of freedom involved in the corre-
sponding element stiffness matrix. (b) A typical boundary pressure cell. (c) The degrees of
freedom involved in the sub-elemental stiffness matrix corresponding to quadrant ω1.

Figure 5.3: Global stiffness matrix stencils centered at an interior x degree of freedom (left),
y degree of freedom (middle), and p degree of freedom (right).

105

Algorithm 5.1 Construction of global stiffness matrix Au from the element stiffness matrices
Ak3
u

1: Au ← 0
2: for k3 = 1, . . . , Np do
3: if T pk3

⊂ Ω then
4: Use Ak3

u from (5.9).
5: else
6: Evaluate integrations over each quadrant ωi to compute (Ak3

u)ωi

7: Ak3
u =

∑
i(A

k3
u)ωi

8: end if
9: for i′ = 1, . . . , 13 do

10: i := mesh(k3, i
′) {i is the global index corresponding to the local element index i′}

11: for j′ = 1, . . . , 13 do
12: j := mesh(k3, j

′)
13: (Au)ij += (Au)

k3

i′j′

14: end for
15: end for
16: end for

This doubly refined subgrid is thus a superset of the grids Gxh ,G
y
h,G

p
h. The level set function

values at the vertices of the doubly refined subgrid Gφ are used to determine the points of
intersection between the zero isocontour and the coordinate axes-aligned edges of Gφ. The
boundary of Ω is then approximated by a segmented curve ∂Ωh connecting these intersection
points. The geometric domain is approximated within the region enclosed by ∂Ωh (see
Figure 5.4). Near the boundary, the domain within each subgrid cell is approximated by a
polygon determined from the boundary edges of the subgrid cell and by straight lines that
connect boundary intersection points as demonstrated in Figure 5.4. Thus we can think of
our discrete domain as a union of doubly refined uncut quadrilaterals on the interior and
polygonal regions contained within doubly refined cut quadrilaterals on the boundary.

This partitioning of the domain into doubly refined quadrilaterals naturally supports
our integration conventions needed for the sub-element stiffness matrices (Ak3

u)ωi
discussed

in the previous section. The integrals needed for these matrices are trivially precomputed
analytically when ωi is uncut. On the other hand, when ωi is cut by the boundary, we can
still perform the integrations analytically in the same fashion as in [BBZ10] and analogous
to §4.2.1. To summarize, the integrands of the requisite integrals necessary to compute the
entries of (Ak3

u)ωi
are (at most) degree 2 polynomials, hence one may easily apply the diver-

gence theorem to explicitly transform the area integrals over ωi ∩ Ω into line integrals over
∂(ωi ∩ Ω). One may then analytically evaluate these latter integrals via an explicit param-
eterization of the individual line segments; or via an appropriate 1-dimensional Gaussian
quadrature rule (which is, of course, more similar to the approach taken in §4.2.1). As with
the discretization described in Chapter 4, this careful treatment of the integrals near the
boundary is key to obtaining second order accuracy in L∞.

106

(a) (b)

Figure 5.4: A zoomed-in view of Figure 5.1(a). We sample a the level set function implicitly
defining Ω on the doubly refined subgrid depicted in (a), and use this to generate a segmend
curve approximation ∂Ωh to ∂Ω, as in (b).

5.3 Dirichlet Boundary Conditions

We have thus far assumed that our solution satisfies the Dirichlet boundary conditions (5.1b)
and that our test functions vanish on the Dirichlet boundary. However, because we use a
regular Cartesian grid that does not conform to the actual domain, it is not convenient to
directly define a finite element space with a specific value at the irregular boundary. Instead,
we enforce these conditions weakly (cf. (5.3)):

Find (u, p) ∈ (H1(Ω))d × L2(Ω) such that∫
Ω

2µ

(
∇u + (∇u)t

2

)
:

(
∇v + (∇v)t

2

)
− µp(∇ · v)dx (5.10a)

= −
∫

Ω

f · vdx +

∫
∂Ωn

g · vdS(x) ∀v ∈ (H1
0,∂Ωd

(Ω))d, (5.10b)∫
Ω

(
−µq∇ · u− µ2

λ
pq

)
dx = 0 ∀q ∈ L2(Ω), (5.10c)∫

∂Ωd

u ·wdS(x) =

∫
∂Ωd

u0 ·wdS(x) ∀w ∈ (H−1/2(∂Ωd))
d. (5.10d)

Here, we introduce the Dirichlet condition as a (weak) constraint. Specifically, we require
that the L2 inner product of the solution and an arbitrary function w ∈ (H−1/2(∂Ωd))

d is

107

the same as the inner product of the Dirichlet data u0 with w. This makes the problem a
constrained minimization.

5.3.1 Discretizing the Dirichlet Problem

We discretize the Dirichlet constraints in a similar manner as that described in Chapter 4,
§4.2.3. We approximate (H−1/2(∂Ωd))

d with a subspace Λh
x×Λh

y := P0(T x∩ ∂Ωh
d)×P0(T y ∩

∂Ωh
d), which is composed of piecewise constant functions over x and y component grid cells

that intersect the Dirichlet boundary. Here we use ∂Ωh
d to denote the portion of ∂Ωh over

which the Dirichlet constraints are being enforced. We call any x or y cell T i with T i∩∂Ωh 6= ∅
a boundary cell. The superscript i is used to denote whether the cell is in the x or y grids
with i = 1 signifying an x cell and i = 2 signifying a y cell. We use {wT i := χT iei} as the
basis functions for Λh

x × Λh
y = P0(T x ∩ ∂Ωh

d)× P0(T y ∩ ∂Ωh
d). Here, χT i is the characteristic

function of the cell T i:

χT i(x) :=

{
1, x ∈ T i

0, x /∈ T i
.

Note that we have one basis function per boundary x cell and one per y cell. If we use Nd
x

and Nd
y to denote the number of x and y boundary cells, respectively, we can see that the

dimension of the space Λh
x × Λh

y is Nd
x +Nd

y .

With this approximation, the discretized Dirichlet constraint can be expressed as a linear
system Buh = uh0 (B ∈ R(Nd

x+Nd
y)×(Nx+Ny), uh0 ∈ RN

d
x+Nd

y). Each equation enforces an integral
constraint over the intersection of the discrete boundary ∂Ωh

d with some x or y boundary
cell T i: ∑

ki∈Ii

uiki

∫
T i∩∂Ωh

d

N i
ki
dS(x) =

∫
T i∩∂Ωh

d

ui0dS(x), (5.11)

where u0 =: (u1
0, u

2
0). In practice, similar to the integrals discussed in §5.2.2, we evaluate the

above integrals for a given boundary cell T i from the four quadrants of T i arising from the
doubly refined subgrid (see §5.2.3).

The discrete constrained minimization problem may be formulated as an equivalent saddle
point system involving Lagrange multipliers:Au Gt Bt

G Dp 0
B 0 0

~u~p
~λ

 =

 ~f
~0
~u0

 . (5.12)

We have one Lagrange multiplier degree of freedom per discrete Dirichlet constraint; that
is, ~λ ∈ RNd

x+Nd
y . When we consider boundary equations in the sections that follow, we

temporarily eliminate pressure degrees of freedom ~p with the substitution A := Au−GtD−1
p G:(

A Bt

B 0

)(
~u
~λ

)
=

(
~f
~u0

)
. (5.13)

Although this latter system is extremely ill-conditioned in the nearly incompressible regime,
it will simplify the exposition of the forthcoming discussion of Dirichlet boundary condition

108

treatment. Furthermore, our multigrid algorithms make use of this elimination near the
boundary during relaxation.

Ultimately, we use a constraint aggregation algorithm similar to that described in Chap-
ter 4, §4.2.3.2, to reformulate the discretized Dirichlet constraints. But before continuing,
we would like to point out a couple important details related to the constraint matrix B (cf.
§4.2.3).

• B ∈ R(Nd
x+Nd

y)×(Nx+Ny), and Nd
x+Nd

y � Nx+Ny, so the presence of B in (5.12) or (5.13)
only directly affects a small subset of the Nx +Ny displacement degrees of freedom.

• B consists of two decoupled blocks: one for the x boundary equations and one for the
y boundary equations:

B =

(
Bx 0
0 By

)
, (5.14)

where Bx ∈ RN
d
x×Nx and By ∈ RN

d
y×Ny . Further, the only nonzero columns of B

are associated with vertices incident to an x or y boundary grid cell. Therefore, for
sufficiently interior degrees of freedom, the saddle point system (5.12) is exactly the
same as (5.7).

As in Chapter 4, and specifically motivated in §4.2.3.1, we reduce the saddle point system
(5.13) by eliminating the Lagrange multiplier ~λ via a null space method using a fundamental
basis of the constraint matrix B. The discussion from §4.2.3.1 carries over almost entirely
without modification to the present setting. To summarize, we aim to construct a matrix
Z ∈ R(Nx+Ny)×((Nx+Ny)−(Nd

x+Nd
y)) whose columns span the null space of B and a vector ~c ∈

RNx+Ny satisfying the constraint system B~c = ~u0. Given such a Z and ~c, we may solve (5.13)
by first solving for ~v ∈ R(Nx+Ny)−(Nd

x+Nd
y) in

ZtAZ~v = Zt
(
~f − A~c

)
(5.15)

and setting ~u = ~c + Z~v. We construct Z and ~c by reordering the degrees of freedom such
that the leading square block of B is easily invertible (indeed, as in Chapter 4, diagonal!),
say, B = (Bm|Bn−m), and setting

Z :=

(
−B−1

m Bn−m
In−m

)
, ~c :=

(
B−1
m ~u0

0n−m

)
.

Note that the reordering of the degrees of freedom only makes the notation more convenient
and, in practice, is not done explicitly.

It turns out that, as for the Λh
1-induced (i.e., single-wide) constraints from Chapter 4, the

present discretization (5.11) given above of the Dirichlet constraint (5.10d) does not readily
lend itself to constructing a fundamental basis matrix Z of B (see §4.2.3.2). Additionally,
while the Λh

2-induced (i.e., double-wide) constraints from §4.2.3.2 and [BBZ10] appear to
yield an adequately conditioned linear system for Poisson in 2 dimensions, the analogous

109

discrete constraints in the present context of nearly incompressible linear elasticity yield a
relatively poorly conditioned linear system, similar to the situation of Poisson in 3 dimen-
sions (see Appendix C for a specific example). We instead reformulate our discretization of
(5.10d) using a constraint aggregation algorithm nearly identical to that described in §4.2.3.2
and Algorithm 4.1. Indeed, since the Bx and By blocks from (5.14) are decoupled, one may
aggregate each discrete constraint set independently, and each of these aggregations is iden-
tical to the case for Poisson Dirichlet constraints described in §4.2.3.2 and Algorithm 4.1.
We henceforth presume the aggregation of the single-wide constraints (5.11) into aggregate
constraints.

5.4 Multigrid

We develop an efficient multigrid framework for the discrete linear system (5.12) / (5.13).
Our method is purely geometric and based on the Multigrid Correction Scheme (see Al-
gorithm 5.2). The framework admits a simple implementation, and at a high level, it is
very similar to that described in Chapter 4, §4.3. However, in contrast §4.3, the following
multigrid components are significantly more sophisticated and customized to the present
discretization, which is necessary to retain near-textbook multigrid convergence rates in
the presence of highly irregular domains or near the incompressible limit. The subsections
that follow will detail the key components of our multigrid algorithm: a hierarchy of dis-
cretizations, a smoothing operator, and appropriate transfer operators (i.e., restriction and
prolongation) between levels of the hierarchy.

Algorithm 5.2 Multigrid Defect Correction

1: function V-Cycle
(
Ãh, ũh, f̃h

)
:

2: if resolution is low enough then

3: ũ←
(
Ãh
)−1

f̃h

4: return
5: end if
6: Pre-Relaxation

(
Ãh, ũh, f̃h

)
7: f̃ 2h ← R2h

h

(
f̃h − Ãhũh

)
{Restriction}

8: V-Cycle
(
Ã2h, ũ2h, f̃ 2h

)
9: ũh ← ũh + P h

2hũ
2h {Prolongation}

10: Post-Relaxation
(
Ãh, ũh, f̃h

)
11: return

110

5.4.1 Discretization Hierarchy

We consider a hierarchy of grids, each corresponding to a discretization of (5.10) at a pro-
gressively larger grid resolutions. In particular, we employ a grid spacing of h on the finest
level of the hierarchy (level index zero), followed by discretizations with grid spacings of
2h, 4h, . . . , 2Lh, for a total of L + 1 grid levels. In detail, we construct the hierarchy as
follows:

• At level ` of the hierarchy we define the background grids Gx
2`h
,Gy

2`h
,Gp

2`h
corresponding

to the x, y, and p degrees of freedom, respectively.

• We sample the level set function implicitly defining Ω over the respective doubly re-
fined subgrids Gφh ,G

φ
2h,G

φ
4h, . . . at each level. Clearly, coarser grids may fail to resolve

some high frequency features of the domain geometry, leading to possible incoherency
between the discrete systems at neighboring levels. We will addressed such issues in
our discussion of the smoothing and transfer operators.

• Using the level set function values associated with a given grid, we generate the dis-
cretized domains T x

2`h
, T y

2`h
, T p

2`h
and allocate the arrays of unknowns ~u2`h, ~p2`h and

right-hand sides ~f 2`h, ~f 2`h
p of the respective equations. The discrete operators A2`h

u ,

G2`h, D2`h
p of the system (5.7) are likewise defined on the discretized domain associated

with hierarchy level `, following the same process detailed in §5.2.1. Note that although
~fhp ≡ ~0 at the finest level of our hierarchy (at least initially), the right hand side ~f 2`h

p

at coarser levels (` ≥ 1) will generally be nonzero in the Multigrid Correction Scheme
(see Algorithm 5.2).

From this point on, we will simply use h instead of 2`h to denote the grid spacing at
any specific level of the multigrid hierarchy, whenever this does not incur any ambiguity. In
the presence of a Dirichlet boundary condition (5.1b), we construct an aggregate constraint
matrix B at each level, as summarized in §5.3.1 and detailed in Chapter 4, §4.2.3.2. Each
row of B corresponds to one Lagrange multiplier. Following the null space method (again,
summarized in §5.3.1 and detailed in §4.2.3.1), we eliminate these multipliers by solving
for the null basis coefficients ~v in ~u = ~c + Z~v. By definition (5.3.1) of ~c and Z, there is
a one-to-one mapping between ~v components and x and y degrees of freedom which are
not independent (recall that the independent degrees of freedom correspond to the leading
diagonal block Bm of B; see Chapter 4, §4.2.3.2). Thus, the reduced system (5.15) is defined
precisely over all non-independent degrees of freedom. Due to the fact that the reconstructed
~u := ~c+Z~v satisfies the (aggregate) constraint equations automatically, we need not restrict

any residuals for the constraint system. Further, we need not solve for ~λ, thanks to our
null space method, hence do not store any ~λ components nor prolongate any ~λ corrections.
When we restrict the residuals of the governing equation, i.e., ~r = ~f − A~u− B~λ, we simply
restrict zero for all equations that involve a ~λ component. In other words, we restrict zero
residuals from equations involving any x or y degrees of freedom on an x or y boundary
grid cell, respectively. Although omitting these equations from the intergrid transfers is

111

a deviation from conventional practice, we compensate by moderately increasing the pre-
restriction smoothing effort in a boundary band, effectively driving the residuals in this
band very close to zero (which is the value that is actually restricted!). This approach avoids

the use of specialized, elaborate transfer operators involving the ~λ variables, which are not
in perfect correspondence between neighboring levels due to the independent constraint
aggregations employed at each level. Note that this aspect of our multigrid framework is the
same as that in Chapter 4, §4.3.

5.4.2 Relaxation

The interior equations are uniform and have the same properties, while near the boundary,
the equations have very different stencils. In order to design a stable and efficient relaxation
scheme while keeping the computational cost low, we define two (overlapping) sets of equa-
tions, and apply an appropriate relaxation subscheme to each one. The two sets correspond
to equations in the interior of the discretized domain and equations near the boundary, re-
spectively. We define the extent of the interior region by excluding 5×5 blocks of cells, each
centered around any cell that intersects the Dirichlet boundary. See Figure 5.5(b) for an
example using 1× 1 cell blocks. This interior region is relaxed with the distributive process
detailed in §5.4.2.1.

We then define the boundary band to be the union of all 7× 7 blocks of cells centered at
any cell that intersects the Dirichlet boundary (excluding any cells completely exterior to the
domain). This defines the set of equations to which we will apply our boundary relaxation
scheme. In each single level relaxation, we first sweep over the boundary band, apply a
few iterations of boundary relaxations, then apply one iteration of interior relaxation, and
finally follow this by another few iterations of boundary relaxations. In Figure 5.5(a), we
show an example of the cells and equations that end up in a boundary region calculated
with the method described above. Soely for the sake of example, due to the coarseness of
the illustrated grid, Figure 5.5 uses 3 × 3 cell blocks rather than the 7 × 7 cell blocks used
in our examples.

The efficiency of a multigrid algorithm is closely related to the smoothing efficiency of
a single level relaxation. With Poisson’s equation, simple Jacobi or Gauss-Seidel will typi-
cally suffice as an efficient smoother. These techniques effectively reduce the high-frequency
components of the error and make it possible for a coarse grid to provide a meaningful cor-
rection to a fine grid. This property is fundamentally important for the efficiency of the
geometrically hierarchical approach. Unfortunately, the equations of nearly incompressible
linear elasticity with augmented pressure require more care than the comparably simplistic
discrete Poisson equation (cf. Chapter 4). Although our system is not symmetric positive
definite, we can reformulate the equations in a more convenient form as in [ZST10] to de-
sign an effective geometric multigrid smoother. Indeed, our change of variables leads to an
approximate block triangularization of the discrete system with each diagonal block being a
symmetric semi-definite discretization of the Laplacian. Our smoother is then constructed
to be an application of the Gauss-Seidel relaxation on each block.

112

(a) An example boundary band of pressure cells and
boundary variables using 3× 3 blocks of cells centered
at each cell that intersects the boundary.

(b) An example of distributive pressure cells and vari-
ables relaxed using distributive relaxation. This exam-
ple region is defined by excluding 1× 1 blocks of cells
(i.e., a single cell) centered at each cell intersecting the
boundary.

Figure 5.5: Boundary band and distributive region.

5.4.2.1 Approximate distributive relaxation

We follow the idea in [ZST10] and develop a distributive relaxation scheme. We apply the
following transformation on the continuous variable ũ := (u p):(

u
p

)
=

(
I −∇
∇t −2∆

)(
v
q

)
or ũ = M̃ṽ; (5.16)

substituting into (5.2) yields the auxiliary system(
µ∆I 0

µ(1 + µ/λ)∇t −µ(1 + 2µ/λ)∆

)(
v
q

)
=

(
f
0

)
or ÃM̃ṽ = f̃ (5.17)

for some auxiliary variable ṽ := (v q). This auxiliary system is a block lower triangular
system and can be solved via forward substitution: first solve the v equations (which don’t
involve q), then solve for q given the previously solved v. Moreover, with an intelligent
discretization, the same triangulation can be realized on the discretized system, i.e., ÃM̃ is
also a block lower triangular linear system [ZST10].

Since each of the diagonal blocks of the discrete auxiliary system is a discretization of the
Laplacian operator, we can relax the whole system using a Gauss-Seidel relaxation on each
component of the ~v degrees of freedom followed by a (3rd) Gauss-Seidel relaxation on the

113

~q degrees of freedom and achieve the same smoothing efficiency as Gauss-Seidel relaxation
simply applied to Poisson’s equation. Note that given any ~v and ~q, one can reconstruct ~u
and ~p via the discrete form of (5.16).

In practice, we never explicitly construct ṽ := (~v ~q). In a Gauss-Seidel relaxation applied
to ṽ, we iteratively solve for local corrections ṽi ← ṽi + δẽi, such that the local residual
r̃i := (f̃−ÃM̃ ṽ)i is zeroed out. From this, we see that δ = r̃i/(ÃM̃)ii. Such local corrections
to ṽ induce local, distributive corrections to ũ as well via the discrete form of (5.16): ũi ←
ũi + δM̃ ẽi. This analysis is encapsulated in Algorithm 5.3.

Algorithm 5.3 Distributive relaxation.

1: function DistributiveSmooth
(
Ã, M̃ , ũ, f̃

)
:

2: for ~w ∈ {~u1, ~u2, ~p} do
3: for i ∈ Lattice(~w) do
4: r ← f̃i − Ãũ
5: δ ← r/(ÃM̃)ii
6: ũ+= δM̃ ẽi
7: end for
8: end for

For a staggered finite difference discretization, the triangularization of the discretized
system can be effected by discretizing the transformation operator M̃ in (5.16) using centered
differences for the gradient and divergence operators and the standard 5-point stencil for the
Laplacian operator [ZST10]. Unfortunately, when one uses a finite element discretization,
there exists no discrete change of variables with the same sparsity that leads to an exact
triangularization. Instead, we discretize the gradient operator in (5.16) using the stencils
derived from a finite element method, i.e.,

∇ ≈ 1

µh2
Gt =

(
Dx

Dy

)
,

which maps p degrees of freedom onto x and y degrees of freedom with the locations illus-
trated in Figure 5.3(right) and stencils as

Dx :=
1

h

−1/8 +1/8
−3/4 +3/4
−1/8 +1/8

 , Dy :=
1

h

]
+1/8 +3/4 +1/8
−1/8 −3/4 −1/8

[
.

Similarly, the Laplacian operator in (5.16) is discretized from a standard piecewise bilinear
finite element discretization:

Mp :=
1

h2

+1/3 +1/3 +1/3
+1/3 −8/3 +1/3
+1/3 +1/3 +1/3

 .
Although the linear system ÃM̃ is not strictly block triangular, our numerical results in

§5.5 show that the derived distributive relaxation is able to reduce the high-frequency error
components efficiently.

114

5.4.2.2 High order defect correction

We can decrease the cost of our distributive relaxation via high order defect correction. To
introduce the idea, suppose we wish to solve the linear system L~u = ~f for the unknown ~u.
In a defect correction scheme, we solve for a correction δ~u to a current approximation ~u via
some alternate, typically easier system L′δ~u = ~f−L~u. For example, in a multigrid correction
scheme with L a fine grid operator, L′ (roughly) corresponds to the coarse grid operator. In
a high order defect correction scheme, a lower order discretization alternate system is used
to to solve for a higher order discretization correction. In our case, the lower order operator
is based on a finite difference approximation while the high order operators corresponds to
our finite element discretization described in §5.2.1. In other words, we solve the following
correction equation:

ÃFDδũ = f̃ − ÃFEMũ.

We use the staggered finite difference operator ÃFD detailed in [ZST10]. Note that this
operator is only lower order near the boundary; indeed, it is still second order in the interior.
However, we still use this finite difference operator as the lower order operator in the defect
correction scheme, even when focused on the domain interior.

One of the benefits we obtain from such an approximation is that we can use the dis-
tributive relaxation described above with an exact triangulation of the discretized system
(5.17). To be specific, let us write the finite difference system as

ÃFDũ =

(
AFD
u (GFD)t

GFD DFD
p

)(
~uFD

~pFD

)
, f̃FD =

(
~fFD

~0

)
,

and scale finite element system by 1/h2 to match the scaling of the both the finite difference
equation and the differential equation:

1

h2
ÃFEMũ =

1

h2

(
AFEM
u (GFEM)t

GFEM DFEM
p

)(
~uFEM

~pFEM

)
,

1

h2
f̃FEM =

1

h2

(
~fFEM

~0

)
.

(Note that ÃFEM is precisely the operator Ã defined in (5.7), and similarly for the other
variables marked with ·FEM; we only add the superscript to emphasize the difference with
the ·FD variables.) We thus solve for a correction δũ = M̃FDδṽ via

ÃFDM̃FDδṽ =
1

h2

(
f̃FEM − ÃFEMũcurrent

)
.

This induces a sparser distributive relaxation scheme; the details are given in Algorithm 5.4.

5.4.2.3 Boundary relaxation

Neither of the distributive relaxation algorithms discussed in the previous subsubsections
may be applied near the domain boundary as some variables in the distribution stencil may
not even exist. Instead, we follow [ZST10] and temporarily build an unaugmented system

115

Algorithm 5.4 Distributive relaxation with finite difference defect correction (FDDC).

1: function DistributiveSmoothWithFDDC
(
ÃFD, M̃FD, ÃFEM, M̃FEM, ũ, f̃FEM

)
:

2: for ~w ∈ {~u1, ~u2, ~p} do
3: for i ∈ Lattice(~w) do
4: r ← f̃FEM

i − ÃFEMũ
5: δ ← r/(ÃFDM̃FD)ii
6: ũ+= δM̃FDẽi
7: end for
8: end for

in the boundary band (e.g., see Figure 5.5(a)). In the case of Neumann boundary condition,
we eliminate ~p from the augmented system (5.7) by left multiplying by

Ũ :=

(
I −GtD−1

p

0 I

)
yielding

Ũ f̃ = ŨÃũ =

(
Au −GtD−1

p G 0
G Dp

)(
~u
~p

)
. (5.18)

In the first equation for ~u, the equation is symmetric and positive definite, and hence can
be solved by using, e.g., Gauss-Seidel relaxation. This unaugmented system is a consistent
discretization to the original PDE (5.2). Although Gauss-Seidel relaxation is not an efficient
smoother for the unaugmented system if defined everywhere, for the purposes of boundary
relaxation, we only build the unaugmented system temporarily, relax it within a very narrow
boundary band, as in Figure 5.5, and temporarily freeze the interior degrees of freedom.
The solution is strongly restricted by nearby interior values, so Gauss-Seidel relaxation is
still efficient and stable. Typically, with about 5 to 10 boundary relaxation sweeps before
and after each interior relaxation sweep, the boundary residual is reduced to as small as the
interior residual. Once we have relaxed ~u sufficiently, we freeze ~u and substitute into the
second equation of (5.18) to relax the pressure degrees of freedom.

5.4.2.4 Boundary relaxation with Dirichlet boundary conditions

In the case of Dirichlet boundary conditions, the system (5.13) is strongly indefinite and
cannot be relaxed using, e.g., Gauss-Seidel. Alternative approaches such as Kaczmarz relax-
ation or box relaxation may be efficient smoothers; however, they have a high computational
cost. Instead, we utilize the fundamental basis of the constraint matrix to solve ~v in the
ZtAZ system (5.15) and then reconstruct ~u in (5.13) via ~u := ~c + Z~v. Since ZtAZ is sym-
metric positive definite (see Chapter 4, §4.2.3.1), one may confidently apply Gauss-Seidel
relaxation; see Algorithm 5.5 and compare Chapter 4, §4.3.2.

In practice, a Gauss-Seidel iteration on (5.15) iteratively solves for a correction on each

116

Algorithm 5.5 Boundary relaxation with Dirichlet boundary conditions - ~v.

1: ~v ← ~0
2: for i = 1, . . . ,m do

3: δ ← ~etiZ
t
(
~f − A~c− AZ~v

)
/Aii

4: ~v += δ~ei
5: end for

single degree of freedom by solving the scalar equation

~etiZ
tAZ (~v + δ~ei) = ~etiZ

t
(
~f − A~c

)
,

i.e.,

Aiiδ = ~etiZ
t
(
~f − A~c− AZ~v

)
= ~etiZ

t
(
~f − A~u

)
,

and then applying the correction ~v ← ~v + δ~ei. Equivalently, one may update the ~u degrees
of freedom directly: ~u← ~u+ δZ~ei; see Algorithm 5.6.

Algorithm 5.6 Boundary relaxation with Dirichlet boundary conditions - ~u.

1: ~u← ~c
2: for i = 1, . . . ,m do

3: δ ← ~etiZ
t
(
~f − A~u

)
/Aii

4: ~u+= δZ~ei
5: end for

5.4.3 Coarsening

In contrast to our smoothing operator discussed in the preceding subsections, our grid trans-
fer operators are relatively straightforward. On the interior of the domain, we restrict fine
grid residuals to the coarse grid by applying a restriction operator R with the stencils il-
lustrated in Figure 5.6. We consider two kinds of prolongation operators for our numerical
examples in §5.5.2. First, we consider simply the transpose of the restriction operator:
Plo := 4Rt. Second, we also consider piecewise bilinear interpolation for ~u in combination
with the same pressure prolongation given by Plo, which we denote as Phi.

However, near the boundary, there is no guarantee that all dependencies of the coarse
grid restriction stencils are legitimate fine grid degrees of freedom. Therefore, we truncate
our restriction stencils to the actual degrees of freedom, which is equivalent to restricting
zero residuals from fine grid vertices which are not degrees of freedom. Also, in the presence
of Dirichlet boundary conditions, we cannot compute the components of the residual ~r =

117

X

1/8 1/4 1/8

1/8 1/4 1/8

Y1/4 1/4

1/8 1/8

1/8 1/8 P

1/4 1/4

1/4 1/4

Figure 5.6: Stencils for the restriction operator R.

~f − A~u− Bt~λ when ~λ components are nontrivially involved. In this case, we apply enough
boundary relaxation sweeps to ensure these boundary residuals are smaller than interior
residuals, then simply restrict zero boundary residual values for these equations. Now,
normally, the right hand side to the coarse grid constraint system has been computed from
the restriction of the residual of the fine grid constraint system. However, due to the fact
that our solutions ~u = ~c+ Z~v always satisfy the Dirichlet boundary constraints exactly, the
Dirichlet boundary condition on all coarse grids should be zero.

We implement prolongation distributively, i.e., we iterate over the coarse grid degrees of
freedom and distribute a coarse grid scalar correction to all appropriate fine level degrees of
freedom. Near the domain boundary this is equivalent to prolongating a zero correction from
exterior coarse grid vertices, which we believe is reasonable. Notice that such a prolongation
may shift the fine grid solution away from a fundamental basis solution. Hence we apply a
projection onto the solution space after prolongation. We use the projection ~u′ := ~c+ ZQ~u
where ~u is the (possibly) shifted fine grid solution and Q is a projection which simply
removes those components corresponding to independent degrees of freedom with respect to
the aggregate constraint system.

5.5 Numerical Examples

We numerically investigate two aspects of our discretization: order of convergence and multi-
grid performance. In this section, we apply our method on various domains with Neumann
or Dirichlet boundary conditions and with a wide range of Poisson’s ratios. We considered
three deformations defined on three geometric domains:

1. Keyhole domain. A Keyhole domain enclosed by a smooth curve connecting 8

118

tangential circles with centers

c1 = (0.2500, 0.2500); s1 = (0.5000, 0.6875);

c2 = (0.7500, 0.2500); s2 = (0.5000, 0.3125);

c3 = (0.2500, 0.7500); s3 = (0.3125, 0.5000);

c4 = (0.7500, 0.7500); s4 = (0.6875, 0.5000);

and radius 0.2 for the “c” circles and rs =
√

17/4− 0.2 for the “s” circles. The radius
rs is chosen such that the circle curves are tangential and hence generate a smooth
boundary. The boundary of the keyhole domain can also be represented by the zero
isocontour of the level set function

ϕ(x) := max
{

min
{
α (x,0, r0) ,min

i
{α (x, ci, 0.2)}

}
,−min

i
{α (x, si, rs)}

}
where

α (x,x0, r) := ‖x− x0‖ − r, r0 :=

∥∥∥∥ 0.2√
17

(4, 1)− (0.25, 0.25)

∥∥∥∥ .
A constant divergence deformation is considered, giving the exact boundary conditions
and the exact solution for the purpose of error computation:

φ1(x, y) = 2x+
1

2
cos πx sin πy,

φ2(x, y) = 2y − 1

2
sin πx cosπy.

2. Flower domain. A flower-shaped domain with inner radius 0.2 and outer radius
0.4. We represent the boundary of this domain by the zero isocontour of the level set
function

ϕ(x) := α (x,0.5, 0.3 + 0.1 cos 5θ) ,

where 0.5 := (0.5, 0.5) and θ is the argument of x. We use the following deformation
with spatially varying divergence:

φ1(x, y) :=
2x√
π

cos
π

2
y,

φ2(x, y) :=
2x√
π

sin
π

2
y.

3. Spiral domain We represent the boundary of the spiral domain as the zero isocontour
of the level set function

ϕ(x) := r(y)−
(
0.33 + 0.08 cos 5θ(y)1/3

)
119

(a) Undeformed. (b) Deformed.

Figure 5.7: Keyhole domain.

(a) Undeformed. (b) Deformed.

Figure 5.8: Flower domain.

120

where y = y(x) is x− (0.5, 0.5) rotated around (0.5,0.5) by θ = 14 (2r(x))1/6. We use
the deformation

φ1(x, y) =

(
1

2
x+

1

2

)
cos

(
π

6
+

2

3
πy

)
,

φ2(x, y) =

(
1

2
x+

1

2

)
sin

(
π

6
+

2

3
πy

)
.

(a) Undeformed. (b) Deformed.

Figure 5.9: Spiral domain.

5.5.1 Convergence

We embed all our testing domains in a regular square Cartesian grid over [0, 1] × [0, 1]
with resolutions ranging from 32 × 32 to 1024 × 1024. We use a log-log plot of the er-
ror (log2 ‖~uexact − ~uapprox‖∞) versus the resolution (log2 resolution) to estimate the order of
convergence via a least squares linear regression. We remove any solution null space in an
example with entirely Neumann boundary conditions by enforcing a non-embedded Dirichlet
condition on all degrees of freedom within the domain [7/16, 9/16]× [7/16, 9/16]. We observe
second order convergence over all three example domains for both Neumann and Dirichlet
boundary conditions and for a wide range of material parameters, including in the nearly
incompressible regime (see Figures 5.10, 5.11, and 5.12).

121

(a) Neumann BCs; ν = 0.3 (b) Neumann BCs; ν = 0.49

(c) Dirichlet BCs; ν = 0.3 (d) Dirichlet BCs; ν = 0.49

Figure 5.10: Log-log plots of the L∞-error of the approximate solution versus the grid res-
olution, and the corresponding computed orders of convergence, ρ, for the keyhole domain.
We stipulate an embedded Neumann boundary condition for the top ((a), (b)) examples and
an embedded Dirichlet boundary condition for the bottom ((c), (d)) examples. The left ((a),
(c)) examples have a Poisson’s ratio of ν = 0.3, while the right ((b), (d)) use a Poisson’s
ratio of ν = 0.49, very close to the incompressible limit. Square (circle) markers in the above
error plots correspond to errors in the x (y) component.

122

(a) Neumann BCs; ν = 0.3 (b) Neumann BCs; ν = 0.49

(c) Dirichlet BCs; ν = 0.3 (d) Dirichlet BCs; ν = 0.49

Figure 5.11: Log-log plots of the L∞-error of the approximate solution versus the grid reso-
lution, and the corresponding computed orders of convergence, ρ, for the flower domain. We
stipulate an embedded Neumann boundary condition for the top ((a), (b)) examples and an
embedded Dirichlet boundary condition for the bottom ((c), (d)) examples. The left ((a),
(c)) examples have a Poisson’s ratio of ν = 0.3, while the right ((b), (d)) use a Poisson’s
ratio of ν = 0.49, very close to the incompressible limit. Square (circle) markers in the above
error plots correspond to errors in the x (y) component.

123

(a) Neumann BCs; ν = 0.3 (b) Neumann BCs; ν = 0.49

(c) Dirichlet BCs; ν = 0.3 (d) Dirichlet BCs; ν = 0.49

Figure 5.12: Log-log plots of the L∞-error of the approximate solution versus the grid reso-
lution, and the corresponding computed orders of convergence, ρ, for the spiral domain. We
stipulate an embedded Neumann boundary condition for the top ((a), (b)) examples and an
embedded Dirichlet boundary condition for the bottom ((c), (d)) examples. The left ((a),
(c)) examples have a Poisson’s ratio of ν = 0.3, while the right ((b), (d)) use a Poisson’s
ratio of ν = 0.49, very close to the incompressible limit. Square (circle) markers in the above
error plots correspond to errors in the x (y) component.

124

5.5.2 Multigrid

We now numerically investigate the efficiency of our multigrid framework from §5.4. First, we
consider a periodic boundary condition problem defined on [0, 1]× [0, 1] with exact solution

φ1(x, y) = sin 2πx+ cos 2πy,

φ2(x, y) = cos 2πx+ sin 2πy.

Although periodic boundary conditions will not appear in practical elasticity problems, we
initially consider periodic boundary conditions to evaluate various algorithm parameters
while avoiding complications due to boundary relaxation.

We first consider a fixed resolution of 128×128 and compare finite element distributive re-
laxation (described §5.4.2.1) and the distributive relaxation derived from the finite difference
defect correction (FDDC) (described in §5.4.2.2) as the interior relaxations. We also com-
pare the prolongation operators Plo (transpose of restriction) and Phi (bilinear interpolation)
(both described in §5.4.3).

While relatively compressible problems exhibit stablized convergence rates no larger than
0.3 for a multigrid V-(1, 1) cycle with all discussed combinations of prolongation and dis-
tributive relaxation, we focus on the harder nearly incompressible case with Poisson’s ratio
ν = 0.49 and investigate both V-(1, 1) cycle and W-(1, 1) cycle convergence. As shown in
Table 5.1, both finite element distributive relaxation and FDDC distributive relaxation give
convergence rates less than 0.5 with a multigrid V-(1, 1) cycle. Although the FDDC dis-
tributive relaxation generally gives a slower convergence than the finite element distributive
relaxation for the V-(1, 1) cycle, combining it with bilinear interpolation prolongation or
using a W-(1, 1) cycle brings the convergence rate down to 0.23.

We now investigate the multigrid cycle convergence rates at various resolutions by fixing
the multigrid cycle to a V-(1, 1) cycle with finite element distributive relaxation and low order
prolongation Plo. We observe a consistent convergence rate across a spectrum of resolutions
from 32× 32 to 1024× 1024; see Figure 5.13.

While all combinations of parameters discussed thus far give nice convergence rates for
periodic boundary conditions, convergence rates in the presence of embedded Neumann and
Dirichlet boundary conditions varies; the main bottleneck is the efficacy of the boundary
relaxation. Therefore, a W-(1, 1) cycle provides little if any advantage over a V-(1, 1) cycle;
similarly, our two prolongation operators under consideration, Plo and Phi, yield very sim-
ilar convergence rates, everything else equal. The choice of interior relaxation seems to be
the most differentiating characteristic when embedded boundary conditions are present; see
Table 5.1.

This time with embedded boundary conditions, we again investigate the multigrid cycle
convergence rate over a variety of resolutions. Since, in the presence of embedded boundary
conditions, the multigrid cycles and prolongation operators discussed previously yield largely
similar convergence rates, we only give results for a V-(1, 1) cycle with prolongation operator
Plo. Further, motivated by the results in Table 5.1, we use finite element distributive relax-
ation in the interior. As shown in Figures 5.14 and 5.15, we observe a consistent convergence

125

BC relaxation MG cycle Phi Plo

periodic FD V-(1, 1) 0.24 0.42
FD W-(1, 1) 0.23 0.25

FEM V-(1, 1) 0.13 0.24
FEM W-(1, 1) 0.13 0.30

Dirichlet FD V-(1, 1) 0.72 0.72
FD W-(1, 1) 0.72 0.72

FEM V-(1, 1) 0.37 0.36
FEM W-(1, 1) 0.42 0.42

Neumann FD V-(1, 1) 0.70 0.70
FD W-(1, 1) 0.68 0.68

FEM V-(1, 1) 0.50 0.50
FEM W-(1, 1) 0.35 0.35

Table 5.1: Asymptotic multigrid cycle convergence rates for different combinations of bound-
ary conditions, distributive relaxation (“FEM” refers to the finite element distributive re-
laxation described in §5.4.2.1; “FD” refers to the distributive relaxation based on the finite
difference defect correction described in §5.4.2.2), and prolongation (Plo and Phi; see §5.4.3).
For these results, we used the flower domain at resolution 128 × 128 with Poisson’s ratioa
ν = 0.49.

Figure 5.13: Multigrid V-(1, 1) cycle convergence for a variety of resolutions between 32 ×
32 and 1024 × 1024 (ν = 0.49, periodic boundary conditions, finite element distributive
relaxation, and low order prolongation Plo).

126

rate over a spectrum of resolutions from 32× 32 to 1024× 1024.

(a) Dirichlet BCs (b) Neumann BCs

Figure 5.14: Multigrid V-(1, 1) cycle convergence rates at various resolutions from 32 × 32
to 1024× 1024 (ν = 0.49).

5.6 Discussion, Conclusion, and Future Work

We developed a second order mixed finite element discretization for the equilibrium equa-
tions of linear elasticity practical over all material parameters from compressible to nearly
incompressible. We additionally formulated a geometric multigrid framework to solve the
linear system derived from the discretization. Utilizing an approximated distributive relax-
ation, we achieve a fast and parameter-independent multigrid cycle convergence rate in the
absence of embedded boundary conditions. With the addition of embedded boundary condi-
tions, we can still maintain good multigrid cycle convergence rates with only a small number
of boundary relaxations. However, we were unable to reproduce the optimum convergence
rates observed with periodic boundary conditions. Thus, future research may investigate a
more efficient boundary smoother that avoids unaugmentation. We may also be interested
in extending our methods to the Stokes equation.

127

(a) Dirichlet BCs (b) Neumann BCs

Figure 5.15: Residual norm reduction as a function of iteration number for a multigrid
V-(1, 1) cycle at various resolutions from 32× 32 to 1024× 1024 (ν = 0.49).

128

APPENDIX A

Quadrature

In Chapter 4, §4.2.1 we mention the use of Gaussian quadrature rules to compute surface
integrals over triangles of polynomial integrands. For convenience, we reproduce the triangle
Gaussian quadrature rules of various orders from [Cow73] in Table A.1. For the quadrature
points with multiplicity 3, the coordinates should be permuted to give 3 total symmetrically
distributed quadrature points, all with the same given quadrature weight. For example, to
integrate a cubic polynomial p(x) : R3 → R over a triangle T with vertices {x1,x2,x3} ⊂ R3,
one would use the order 3 quadrature rule from Table A.1, which manifests itself as∫

T

p(x)dx = area(T)

(
−27

48
p̃

(
1

3
,
1

3
,
1

3

)
+

25

48

(
p̃

(
1

5
,
1

5
,
3

5

)
+ p̃

(
1

5
,
3

5
,
1

5

)
+ p̃

(
3

5
,
1

5
,
1

5

)))
,

(A.1)

where p̃ (α1, α2, α3) = p (α1x1 + α2x2 + α3x3). Note how the multiplicity 3 quadrature point
with barycentric coordinates (1/5, 1/5, 3/5) in Table A.1 represents all of the latter 3 quadra-
ture points in (A.1) via permutation of the coordinates.

order mult. weight barycentric coordinates

1 1 1 (1/3, 1/3, 1/3)
2 3 1/3 (1/6, 1/6, 2/3)

3
1 −27/48 (1/3, 1/3, 1/3)
3 25/48 (1/5, 1/5, 3/5)

4
3 0.109951743655322 (0.091576213509771, 0.0915 . . . , 0.816847572980459)
3 0.223381589678011 (0.108103018168070, 0.445948490915965, 0.4459 . . .)

5
1 9/40 (1/3, 1/3, 1/3)
3 0.125939180544827 (0.101286507323456, 0.1012 . . . , 0.797426985353087)
3 0.132394152788506 (0.059715871789770, 0.470142064105115, 0.4701 . . .)

Table A.1: Triangle Gaussian quadrature rules of order 1 through 5, as given in [Cow73].
[Some repeated barycentric coordinates have been abbreviated with “. . . ” for formatting
purposes.]

129

APPENDIX B

Cell Averages

The Poisson discretizations described in Chapter 4, §4.2 require computing cell averages β,
f , and q of β, f , and q, respectively. One can use any of a variety of techniques to compute
these averages, and one’s choice would likely depend upon whether one has β, f , and q
immediately defined pointwise at grid vertices; pointwise at grid edge, face, or cell centers;
or analytically throughout the domain, domain boundary, or interface.

We used evaluations of β and f at grid vertices to compute their cell averages. For
non-boundary and non-interfacial grid cells, the cell average amounts to a straightforward,
equal-weighted average of the values at the 8 grid vertices of the cell. For boundary and
interfacial grid cells, we used trilinear interpolation to compute the cell average. For example,
in the domain discretizations, we compute the cell average of β over grid cell ck ∈ Ch∂Ω as

β :=

∫
ck∩Ω

βdx∫
ck∩Ω

dx
≈

∑
i∈Nh

ck

βi
∫
ck∩Ω

Nidx∫
ck∩Ω

dx
,

where, as introduced in §4.2.2,
{
Ni : i ∈ N h

ck

}
denotes the set of trilinear basis functions

associated to the 8 grid vertices of ck. Note that all integrands remaining in the right-most
expression are polynomials, hence the integrals may be evaluated as described in §4.2.1. We
compute f , as well as cell averages in embedded interface discretizations, in a completely
analogous fashion.

For embedded Neumann discretizations, to simplify implementation, we assume that
q ≡ β∇u · n̂ is available everywhere along the polyhedral representation of ∂Ω. We use the
second order quadrature rule from Table A.1 in Appendix A over each polygon of Pck∂Ω (where
ck ∈ Ch∂Ω) to approximate q:

q :=

∫
ck∩∂Ω

qdS(x)∫
ck∩∂Ω

dS(x)
≈
∑

g∈Pck
∂Ω

∫
g
qdS(x)∑

g∈Pck
∂Ω

area(g)
.

130

APPENDIX C

Double-Wide Constraint Conditioning

In the context of the constraint aggregation algorithm for the discretization of Dirichlet
boundary conditions and interfacial jump conditions for Poisson’s equation, as mentioned
in Chapter 4, §4.2.3.2, we found that the double-wide constraints introduced in [BBZ10]
present significant conditioning issues in 3 dimensions that do not exist in 2 dimensions.
Table C.1 shows the condition numbers and the number of conjugate gradient solve iterations
for the ZtAZ matrices resulting from the discretization of a simple Dirichlet problem and
from the discretization of a similarly simple interface problem using each of two alternate
discretizations Λh of the Lagrange multiplier space Λ: Λh

2 , which corresponds to the double-
wide constraints; and Λh

a, which corresponds to the aggregate constraints constructed via the
algorithm described in §4.2.3.2. We calculated these statistics using PETSc in exactly the
same way as for Table 4.1. This includes applying Jacobi preconditioning and then solving
with (incomplete Cholesky-preconditioned) conjugate gradient to a relative residual norm
of 2.3 × 10−13 of the Jacobi preconditioned system. Clearly, the conditioning of the ZtAZ
system arising from the double-wide constraints is several orders of magnitude worse than
that arising from the constraint aggregation algorithm described in §4.2.3.2.

Test case cond. # (no ICC) cond. # (w/ICC) # CG iter. # PCG iter.
Dirichlet, Λh = Λh

2 3.7× 1012 1.1× 1012 59846 61568
Interface, Λh = Λh

2 4.4× 1012 1.4× 1013 97061 80225
Dirichlet, Λh = Λh

a 9.3× 102 2.3× 101 200 44
Interface, Λh = Λh

a 3.9× 103 4.1× 101 494 61

Table C.1: Condition numbers and (preconditioned) conjugate gradient ((P)CG) solve it-
erations, both with and without Incomplete Cholesky (ICC) preconditioning, for the ZtAZ
system arising from the discretization of a Dirichlet and from the discretization of an inter-
face problem at grid resolution 32× 32× 32. The Dirichlet problem has Ω = {x : |x| ≤ 0.8}
and β ≡ 1; the interface problem has Γ = {x : |x| = 0.8} and (β−, β+) ≡ (1, 2).

131

References

[AB05] Pedro M. A. Areias and Ted Belytschko. “Analysis of three-dimensional crack
initiation and propagation using the extended finite element method.” Inter-
national Journal for Numerical Methods in Engineering, 63(5):760–788, June
2005.

[AB06] P. Areias and T. Belytschko. “A comment on the article “A finite element
method for simulation of strong and weak discontinuities in solid mechanics”
by A. Hansbo and P. Hansbo [Comput. Methods Appl. Mech. Engrg. 193 (2004)
3523-3540].” Computer Methods in Applied Mechanics and Engineering, 195(9–
12):1275–1276, February 2006.

[ABC97] Ann S. Almgren, John B. Bell, Phillip Colella, and Tyler Marthaler. “A Carte-
sian grid projection method for the incompressible euler equations in complex
geometries.” SIAM J. Sci. Comput., 18:1289–1309, September 1997.

[AC04] Loyce Adams and Timothy P. Chartier. “New Geometric Immersed Interface
Multigrid Solvers.” SIAM J. Sci. Comput., 25:1516–1533, May 2004.

[AC05] Loyce Adams and Timothy P. Chartier. “A comparison of algebraic multigrid
and geometric immersed interface multigrid methods for interface problems.”
SIAM J. Sci. Comput., 26:762–784, March 2005.

[AH08] Yazid Abdelaziz and Abdelmadjid Hamouine. “A survey of the extended finite
element.” Computers & Structures, 86(1112):1141 – 1151, 2008.

[AJT04] Grégoire Allaire, François Jouve, and Anca-Maria Toader. “Structural opti-
mization using sensitivity analysis and a level-set method.” J. Comput. Phys.,
194(1):363–393, February 2004.

[AL02] Loyce Adams and Zhilin Li. “The Immersed Interface/Multigrid Methods for
Interface Problems.” SIAM J. Sci. Comput., 24:463–479, February 2002.

[And05] T.L. Anderson. Fracture Mechanics: Fundamentals and Applications. Taylor &
Francis, 2005.

[AP99] Owe Axelsson and Alexander Padiy. “On a robust and scalable linear elasticity
solver based on a saddle point formulation.” International Journal for Numerical
Methods in Engineering, 44(6):801–818, February 1999.

[APN07] J. L. Asferg, P. N. Poulsen, and L. O. Nielsen. “A consistent partly cracked
XFEM element for cohesive crack growth.” International Journal for Numerical
Methods in Engineering, 72:464–485, October 2007.

[Bab70] Ivo Babuška. “The finite element method for elliptic equations with discontinu-
ous coefficients.” Computing, 5:207–213, 1970.

132

[Bab73] Ivo Babuška. “The finite element method with Lagrangian multipliers.” Nu-
merische Mathematik, 20:179–192, 1973.

[BB99] T. Belytschko and T. Black. “Elastic crack growth in finite elements with min-
imal remeshing.” International Journal for Numerical Methods in Engineering,
45(5):601–620, June 1999.

[BBB07] Christopher Batty, Florence Bertails, and Robert Bridson. “A fast variational
framework for accurate solid-fluid coupling.” ACM Trans. Graph., 26(3), July
2007.

[BBE08] Satish Balay, Kris Buschelman, Victor Eijkhout, William D. Gropp, Dinesh
Kaushik, Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith, and
Hong Zhang. “PETSc Users Manual.” Technical Report ANL-95/11 - Revision
3.0.0, Argonne National Laboratory, 2008.

[BBG09] Satish Balay, Kris Buschelman, William D. Gropp, Dinesh Kaushik, Matthew G.
Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong Zhang. “PETSc Web
page.”, 2009. http://www.mcs.anl.gov/petsc.

[BBH09] Roland Becker, Erik Burman, and Peter Hansbo. “A Nitsche extended finite ele-
ment method for incompressible elasticity with discontinuous modulus of elastic-
ity.” Computer Methods in Applied Mechanics and Engineering, 198(4144):3352
– 3360, 2009.

[BBZ10] Jacob Bedrossian, James H. von Brecht, Siwei Zhu, Eftychios Sifakis, and
Joseph M. Teran. “A second order virtual node method for elliptic problems
with interfaces and irregular domains.” Journal of Computational Physics,
229(18):6405 – 6426, 2010.

[BC04] Ted Belytschko and Hao Chen. “Singular enrichment finite element method
for elastodynamic crack propagation.” International Journal of Computational
Methods, 1(1):1–15, 2004.

[BCL08] J. Thomas Beale, Davod L. Chopp, Randall J. LeVeque, and Zhilin Li. “Correc-
tion to the article a comparison of the extended finite element method with the
immersed interface method for elliptic equations with discontinuous coefficients
and singular sources by Vaughan et al.” Comm. App. Math. and Comp. Sci.,
3(1):95–101, 2008.

[BD10] Philip T. Barton and Dimitris Drikakis. “An Eulerian method for multi-
component problems in non-linear elasticity with sliding interfaces.” J. Comput.
Phys., 229(15):5518–5540, August 2010.

[BDL07] Stephane Pierre Alain Bordas, M. Duflot, and P Le. “A simple error estimator
for extended finite elements.” Communications in Numerical Methods in Engi-
neering, 24(11):961–971, 2007.

133

[BDM06] I. Bijelonja, I. Demirdic, and S. Muzaferija. “A finite volume method for in-
compressible linear elasticity.” Computer Methods in Applied Mechanics and
Engineering, 195(4447):6378 – 6390, 2006.

[Ber04] Petter Andreas Berthelsen. “A decomposed immersed interface method for vari-
able coefficient elliptic equations with non-smooth and discontinuous solutions.”
J. Comput. Phys., 197:364–386, June 2004.

[BF91] Franco Brezzi and Michel Fortin. Mixed and hybrid finite element methods.
Springer-Verlag New York, Inc., New York, NY, USA, 1991.

[BG09] Fedderik van der Bos and Volker Gravemeier. “Numerical simulation of pre-
mixed combustion using an enriched finite element method.” J. Comput. Phys.,
228:3605–3624, June 2009.

[BGL05] Michele Benzi, Gene H. Golub, and Jrg Liesen. “Numerical solution of saddle
point problems.” ACTA NUMERICA, 14:1–137, 2005.

[BGM97] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith.
“Efficient Management of Parallelism in Object Oriented Numerical Software
Libraries.” In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern
Software Tools in Scientific Computing, pp. 163–202. Birkhäuser Press, 1997.

[BGV09] Ted Belytschko, Robert Gracie, and Giulio Ventura. “A review of ex-
tended/generalized finite element methods for material modeling.” Modelling
and Simulation in Materials Science and Engineering, 17(4):043001, 2009.

[BGW04] René De Borst, Miguel A. Gutiérrez, Garth N. Wells, Joris J. C. Remmers,
and Harm Askes. “Cohesive-zone models, higher-order continuum theories and
reliability methods for computational failure analysis.” International Journal for
Numerical Methods in Engineering, 60(1):289–315, 2004.

[BHT07] Zhaosheng Bao, Jeong-Mo Hong, Joseph Teran, and Ronald Fedkiw. “Fracturing
rigid materials.” IEEE Transactions on Visualization and Computer Graphics,
13:370–378, March 2007.

[BK96] James Bramble and J. King. “A finite element method for interface problems in
domains with smooth boundaries and interfaces.” Advances in Computational
Mathematics, 6:109–138, 1996.

[BL06] J. Thomas Beale and Anita T. Layton. “On the accuracy of finite difference
methods for elliptic problems with interfaces.” Commun. Appl. Math. Comput.
Sci., 1:91–119, 2006.

[BMM05] E. Béchet, H. Minnebo, N. Moës, and B. Burgardt. “Improved implementation
and robustness study of the X-FEM for stress analysis around cracks.” Interna-
tional Journal for Numerical Methods in Engineering, 64(8):1033–1056, October
2005.

134

[BMU01] T. Belytschko, N. Moës, S. Usui, and C. Parimi. “Arbitrary discontinuities in
finite elements.” Int. J. Numer. Meth. Engng, 50:993–1013, February 2001.

[BP88] James H. Bramble and Joseph E. Pasciak. “Corrigenda: “A preconditioning
technique for indefinite systems resulting from mixed approximations of elliptic
problems”.” Math Comp, 51(181):387–388, 1988.

[Bra07] D. Braess. Finite Elements: Theory, Fast Solvers, and Applications in Elasticity
Theory. Cambridge University Press, 2007.

[Bre93] Susanne C. Brenner. “A nonconforming mixed multigrid method for the pure
displacement problem in planar linear elasticity.” SIAM J. Numer. Anal.,
30(1):116–135, February 1993.

[BTT97] F. Bertrand, P. A. Tanguy, and F. Thibault. “A three-dimensional fictitious
domain method for incompressible fluid flow problems.” International Journal
for Numerical Methods in Fluids, 25(6):719–736, 1997.

[BTV08] E. Benvenuti, A. Tralli, and Giulio Ventura. “A regularized XFEM model for
the transition from continuous to discontinuous displacements.” International
Journal for Numerical Methods in Engineering, 74(6):911–944, 2008.

[BYZ04] George Biros, Lexing Ying, and Denis Zorin. “A fast solver for the Stokes
equations with distributed forces in complex geometries.” J. Comput. Phys.,
193(1):317–348, January 2004.

[BZM04] É. Budyn, G. Zi, N. Moës, and T. Belytschko. “A method for multiple crack
growth in brittle materials without remeshing.” International Journal for Nu-
merical Methods in Engineering, 61(10):1741–1770, November 2004.

[CB93] D. Chapelle and K.J. Bathe. “The inf-sup test.” Computers & Structures, 47(4-
5):537 – 545, 1993.

[CB03] J. Chessa and T. Belytschko. “An Extended Finite Element Method for Two-
Phase Fluids.” ASME J of Appl Mech, 70(1):10, 2003.

[CC05] A. H. Coppola-Own and R. Codina. “Improving Eulerian two-phase flow finite
element approximation with discontinuous gradient pressure shape functions.”
International Journal for Numerical Methods in Fluids, 49(12):1287–1304, De-
cember 2005.

[CCG10] R. K. Crockett, P. Colella, and D. T. Graves. “A Cartesian grid embedded
boundary method for solving the Poisson and heat equations with discontinuous
coefficients in three dimensions.” June 2010. LBNL Paper LBNL-2929E.

[CGL09] Bernardo Cockburn, Jayadeep Gopalakrishnan, and Raytcho Lazarov. “Unified
hybridization of discontinuous Galerkin, mixed, and conforming Galerkin meth-
ods for second order elliptic problems.” SIAM J. Numer. Anal., 47:1319–1365,
February 2009.

135

[CLR06] Elie Chahine, Patrick Laborde, and Yves Renard. “A quasi-optimal convergence
result for fracture mechanics with XFEM.” Comptes Rendus Mathematique,
342(7):527 – 532, 2006.

[CLR08] E. Chahine, Patrick Laborde, and Yves Renard. “Crack tip enrichment in the
XFEM using a cutoff function.” International Journal for Numerical Methods in
Engineering, 75(6):629–646, 2008.

[CMM98] Zhiqiang Cai, Thomas A. Manteuffel, Stephen F. McCormick, and Seymour V.
Parter. “First-Order System Least Squares (FOSLS) for Planar Linear Elasticity:
Pure Traction Problem.” SIAM J. Numer. Anal., 35(1):320–335, February 1998.

[Cow73] G. R. Cowper. “Gaussian quadrature formulas for triangles.” International
Journal for Numerical Methods in Engineering, 7:405–408, 1973.

[CRW08] Vivien Challis, Anthony Roberts, and Andrew Wilkins. “Fracture resistance via
topology optimization.” Structural and Multidisciplinary Optimization, 36:263–
271, 2008. 10.1007/s00158-007-0160-0.

[CS07] I-Liang Chern and Yu-Chen Shu. “A coupling interface method for elliptic in-
terface problems.” J. Comput. Phys., 225:2138–2174, August 2007.

[CS08] Tianbing Chen and John Strain. “Piecewise-polynomial discretization and
Krylov-accelerated multigrid for elliptic interface problems.” J. Comput. Phys.,
227:7503–7542, August 2008.

[CZ96] Zhiming Chen and Jun Zou. “Finite element methods and their convergence for
elliptic and parabolic interface problems.” Numer. Math, 79:175–202, 1996.

[DD04] J. E. Dolbow and A. Devan. “Enrichment of enhanced assumed strain approxima-
tions for representing strong discontinuities: addressing volumetric incompress-
ibility and the discontinuous patch test.” International Journal for Numerical
Methods in Engineering, 59(1):47–67, 2004.

[DF08] J.E. Dolbow and L.P. Franca. “Residual-free bubbles for embedded Dirichlet
problems.” Comput. Methods Appl. Mech. Engrg., 197:3751–3759, August 2008.

[DH09] John Dolbow and Isaac Harari. “An efficient finite element method for embedded
interface problems.” Int. J. Numer. Meth. Engng, 78:229–252, April 2009.

[DIL03] Shaozhong Deng, Kazufumi Ito, and Zhilin Li. “Three-dimensional elliptic
solvers for interface problems and applications.” J. Comput. Phys., 184:215–
243, January 2003.

[DMD00] Christophe Daux, Nicolas Moës, John Dolbow, Natarajan Sukumar, and Ted
Belytschko. “Arbitrary branched and intersecting cracks with the extended finite
element method.” Int. J. Numer. Meth. Engng, 48:1741–1760, August 2000.

136

[DMJ06] Pierre Duysinx, Laurent Miegroet, Thibault Jacobs, and Claude Fleury. “Gen-
eralized Shape Optimization Using X-FEM and Level Set Methods.” In Mar-
tin Philip Bendse, Niels Olhoff, Ole Sigmund, and G. M. L. Gladwell, editors,
IUTAM Symposium on Topological Design Optimization of Structures, Machines
and Materials, volume 137 of Solid Mechanics and Its Applications, pp. 23–32.
Springer Netherlands, 2006.

[Doh03] Clark R. Dohrmann. “A Preconditioner for Substructuring Based on Constrained
Energy Minimization.” SIAM J. Sci. Comput., 25(1):246–258, January 2003.

[Dol99] John Dolbow. An extended finite element method with discontinuous enrichment
for applied mechanics. PhD thesis, Northwestern University, December 1999.

[Dry05] Maksymilian Dryja. “A Neumann-Neumann algorithm for a mortar discretiza-
tion of elliptic problems with discontinuous coefficients.” Numer. Math., 99:645–
656, February 2005.

[DSM09] Qinglin Duan, Jeong-Hoon Song, Thomas Menouillard, and Ted Belytschko.
“Element-local level set method for three-dimensional dynamic crack growth.”
International Journal for Numerical Methods in Engineering, 80(12):1520–1543,
December 2009.

[Duf07] M. Duflot. “A study of the representation of cracks with level sets.” International
Journal for Numerical Methods in Engineering, 70(11):1261–1302, June 2007.

[FB06] Thomas-Peter Fries and Ted Belytschko. “The intrinsic XFEM: a method for
arbitrary discontinuities without additional unknowns.” Int. J. Numer. Meth.
Engng, 68:1358–1385, December 2006.

[FLP00] Charbel Farhat, Michael Lesoinne, and Kendall Pierson. “A scalable dual-primal
domain decomposition method.” Numerical Linear Algebra with Applications,
7(7-8):687–714, October-December 2000.

[GF05] Frédéric Gibou and Ronald Fedkiw. “A fourth order accurate discretization for
the Laplace and heat equations on arbitrary domains, with applications to the
Stefan problem.” J. Comput. Phys., 202:577–601, January 2005.

[GFC02] Frederic Gibou, Ronald P. Fedkiw, Li-Tien Cheng, and Myungjoo Kang. “A
second-order-accurate symmetric discretization of the Poisson equation on irreg-
ular domains.” J. Comput. Phys., 176:205–227, February 2002.

[GGL08] F. J. Gaspar, J. L. Gracia, F. J. Lisbona, and C. W. Oosterlee. “Distributive
smoothers in multigrid for problems with dominating graddiv operators.” Nu-
merical Linear Algebra with Applications, 15(8):661–683, October 2008.

[GLJ09] Grégory Guyomarc’h, Chang-Ock Lee, and Kiwan Jeon. “A discontinuous
Galerkin method for elliptic interface problems with application to electropo-
ration.” Commun. Numer. Meth. Engng, 25:991–1008, October 2009.

137

[GMB02] A. Gravouil, Nicolas Moës, and Ted Belytschko. “Non-planar 3D crack growth
by the extended finite element and level sets-Part II: Level set update.” In-
ternational Journal for Numerical Methods in Engineering, 53(11):2569–2586,
2002.

[GPH99] R. Glowinski, T.-W. Pan, T.I. Hesla, and D.D. Joseph. “A distributed Lagrange
multiplier/fictitious domain method for particulate flows.” International Journal
of Multiphase Flow, 25(5):755 – 794, 1999.

[GPH01] R. Glowinski, T. W. Pan, T. I. Helsa, D. D. Joseph, and J. Périaux. “A fictitious
domain approach to the direct numerical simulation of incompressible viscous
flow past moving rigid bodies: application to particulate flow.” J. Comput.
Phys., 169(2):363–426, May 2001.

[GPP94a] Roland Glowinski, Tsorng-Whay Pan, and Jacques Periaux. “A fictitious domain
method for Dirichlet problem and applications.” Comput. Methods Appl. Mech.
Engrg., 111:283–303, 1994.

[GPP94b] Roland Glowinski, Tsorng-Whay Pan, and Jacques Periaux. “A fictitious domain
method for external incompressible viscous flow modeled by Navier-Stokes equa-
tions.” Computer Methods in Applied Mechanics and Engineering, 112(14):133
– 148, 1994.

[GR07] Sven Gróı and Arnold Reusken. “An extended pressure finite element space for
two-phase incompressible flows with surface tension.” J. Comput. Phys., 224:40–
58, May 2007.

[GW08] Axel Gerstenberger and Wolfgang A. Wall. “An eXtended Finite Element
Method/Lagrange multiplier based approach for fluidstructure interaction.”
Computer Methods in Applied Mechanics and Engineering, 197(1920):1699 –
1714, 2008. Computational Methods in FluidStructure Interaction.

[Hau90] Z. Haung. “A multi-grid algorithm for mixed problems with penalty.” Numer.
Math., 57(3):227–247, May 1990.

[HB09] D. B. P. Huynh and T. Belytschko. “The extended finite element method for
fracture in composite materials.” International Journal for Numerical Methods
in Engineering, 77(2):214–239, January 2009.

[HD10] Isaac Harari and John Dolbow. “Analysis of an efficient finite element method
for embedded interface problems.” Computational Mechanics, 46:205–211, 2010.

[HH99] Ralf Hiptmair and Ronald H.W. Hoppe. “Multilevel methods for mixed finite
elements in three dimensions.” Numerische Mathematik, 82:253–279, 1999.

[HH02] Anita Hansbo and Peter Hansbo. “An unfitted finite element method, based on
Nitsche’s method, for elliptic interface problems.” Comput. Methods Appl. Mech.
Engrg., 191:5537–5552, November 2002.

138

[HH04] Anita Hansbo and Peter Hansbo. “A finite element method for the simulation
of strong and weak discontinuities in solid mechanics.” Comput. Methods Appl.
Mech. Engrg., 193:3523–3540, August 2004.

[HL05] Songming Hou and Xu-Dong Liu. “A numerical method for solving variable
coefficient elliptic equation with interfaces.” J. Comput. Phys., 202:411–445,
January 2005.

[HMM04] J. J. Heys, T. A. Manteuffel, S. F. McCormick, and J. W. Ruge. “First-order
system least squares (FOSLS) for coupled fluid-elastic problems.” J. Comput.
Phys., 195(2):560–575, April 2004.

[HNS08] David J. Holdych, David R. Noble, and Robert B. Secor. “Quadrature rules for
triangular and tetrahedral elements with generalized functions.” International
Journal for Numerical Methods in Engineering, 73(9):13101327, 2008.

[HPO10] D. J. Hill, D. Pullin, M. Ortiz, and D. Meiron. “An Eulerian hybrid
WENO centered-difference solver for elastic-plastic solids.” J. Comput. Phys.,
229(24):9053–9072, December 2010.

[HSS09] Jeffrey Hellrung, Andrew Selle, Arthur Shek, Eftychios Sifakis, and Joseph Teran.
“Geometric fracture modeling in Bolt.” In SIGGRAPH 2009: Talks, SIGGRAPH
’09, pp. 7:1–7:1, New York, NY, USA, 2009. ACM.

[HW65] F. H. Harlow and J. E. Welch. “Numerical calculation of time-dependent viscous
incompressible flow of fluid with free surface.” Physics of Fluids, 8(12):2182–
2189, 1965.

[HW98] Houde Han and Xiaonan Wu. “A New Mixed Finite Element Formulation and
the MAC Method for the Stokes Equations.” SIAM J. Numer. Anal., 35(2):560–
571, April 1998.

[HWS12] Jeffrey Lee Hellrung, Jr., Luming Wang, Eftychios Sifakis, and Joseph M. Teran.
“A second order virtual node method for elliptic problems with interfaces and
irregular domains in three dimensions.” J. Comput. Phys., 231(4):2015–2048,
February 2012.

[HWW10] Songming Hou, Wei Wang, and Liqun Wang. “Numerical method for solving
matrix coefficient elliptic equation with sharp-edged interfaces.” J. Comput.
Phys., 229:7162–7179, September 2010.

[Hym52] Morton Hyman. “Non-iterative numerical solution of boundary-value problems.”
Applied Scientific Research, Section B, 2:325–351, 1952. 10.1007/BF02919780.

[HZ01] Jianguo Huang and Jun Zou. “A mortar element method for elliptic problems
with discontinuous coefficients.” IMA J Numer Anal, 22:549–576, July 2001.

139

[ITF04] G. Irving, J. Teran, and R. Fedkiw. “Invertible finite elements for robust
simulation of large deformation.” In Proceedings of the 2004 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, SCA ’04, pp. 131–
140, Aire-la-Ville, Switzerland, Switzerland, 2004. Eurographics Association.

[JC98] Hans Johansen and Phillip Colella. “A Cartesian grid embedded boundary
method for Poisson’s equation on irregular domains.” J. Comput. Phys., 147:60–
85, November 1998.

[JCD02] H. Ji, D. Chopp, and J. E. Dolbow. “A hybrid extended finite element/level set
method for modeling phase transformations.” International Journal for Numer-
ical Methods in Engineering, 54(8):1209–1233, July 2002.

[JD04] H. Ji and J. E. Dolbow. “On strategies for enforcing interfacial constraints and
evaluating jump conditions with extended finite element method.” Int. J. Numer.
Meth. Engng, 61:2508–2535, December 2004.

[JM05] Z. Jomaa and C. Macaskill. “The embedded finite difference method for the
Poisson equation in a domain with an irregular boundary and Dirichlet boundary
conditions.” J. Comput. Phys., 202:488–506, January 2005.

[JM10] Z. Jomaa and C. Macaskill. “The Shortley-Weller embedded finite-difference
method for the 3D Poisson equation with mixed boundary conditions.” J. Com-
put. Phys., 229:3675–3690, May 2010.

[JSC06] B. L. Vaughn Jr., B. G. Smith, and D. L. Chopp. “A comparison of the extended
finite element method with the immersed interface method for elliptic equations
with discontinuous coefficients and singular sources.” Comm. App. Math. and
Comp. Sci., 1(1):207–228, 2006.

[Kla95] Axel Klawonn. “An Optimal Preconditioner for a Class of Saddle Point Problems
with a Penalty Term.” SIAM J. Sci. Comput, 19:540–552, 1995.

[Kla98] Axel Klawonn. “Block-Triangular Preconditioners for Saddle Point Problems
with a Penalty Term.” SIAM J. Sci. Comput., 19(1):172–184, January 1998.

[KM87] Michal Kočvara and Jan Mandel. “A multigrid method for three-dimensional
elasticity and algebraic convergence estimates.” Appl. Math. Comput.,
23(2):121–135, August 1987.

[KP98] Axel Klawonn and Luca F. Pavarino. “Overlapping Schwarz methods for mixed
linear elasticity and Stokes problems.” Computer Methods in Applied Mechanics
and Engineering, 165(14):233 – 245, 1998.

[KPB08] Ashok V. Kumar, Sanjeev Padmanabhan, and Ravi Burla. “Implicit boundary
method for finite element analysis using non-conforming mesh or grid.” Int. J.
Numer. Meth. Engng, 74:1421–1447, May 2008.

140

[KWC10] Do Y. Kwak, Kye T. Wee, and Kwang S. Chang. “An Analysis of a Broken P1-
Nonconforming Finite Element Method for Interface Problems.” SIAM Journal
on Numerical Analysis, 48(6):2117–2134, 2010.

[KX03] B.L. Karihaloo and Q.Z. Xiao. “Modelling of stationary and growing cracks
in FE framework without remeshing: a state-of-the-art review.” Computers &
Structures, 81(3):119 – 129, 2003.

[LB08] Adrián J. Lew and Gustavo C. Buscaglia. “A discontinuous-Galerkin-based im-
mersed boundary method.” Int. J. Numer. Meth. Engng, 76:427–454, October
2008.

[LFK00] Xu-Dong Liu, Ronald P. Fedkiw, and Myungjoo Kang. “A boundary condition
capturing method for Poisson’s equation on irregular domains.” J. Comput.
Phys., 160:151–178, May 2000.

[Li98a] Zhilin Li. “A fast iterative algorithm for elliptic interface problems.” SIAM J.
Numer. Anal., 35:230–254, February 1998.

[Li98b] Zhilin Li. “The immersed interface method using a finite element formulation.”
Appl. Numer. Math., 27:253–267, July 1998.

[LI01] Zhilin Li and Kazufumi Ito. “Maximum principle preserving schemes for interface
problems with discontinuous coefficients.” SIAM J. Sci. Comput., 23:339–361,
January 2001.

[LI06] Zhilin Li and Kazufumi Ito. The immersed interface method: numerical solutions
of PDEs involving interfaces and irregular domains, volume 33 of Frontiers in
Applied Mathematics. Society for Industrial and Applied Mathematics, Philadel-
phia, PA, USA, July 2006.

[LKP06] D. V. Le, B. C. Khoo, and J. Peraire. “An immersed interface method for viscous
incompressible flows involving rigid and flexible boundaries.” J. Comput. Phys.,
220:109–138, December 2006.

[LL94] Randall J. Leveque and Zhilin Li. “The immersed interface method for elliptic
equations with discontinuous coefficients and singular sources.” SIAM J. Numer.
Anal., 31:1019–1044, August 1994.

[LL97] Randall J. LeVeque and Zhilin Li. “Immersed interface methods for stokes flow
with elastic boundaries or surface tension.” SIAM J. Sci. Comput., 18:709–735,
May 1997.

[LL01] Zhilin Li and Ming-Chih Lai. “The immersed interface method for the Navier-
Stokes equations with singular forces.” J. Comput. Phys., 171:822–842, August
2001.

141

[LL03] Long Lee and Randall J. LeVeque. “An immersed interface method for incom-
pressible Navier-Stokes equations.” SIAM J. Sci. Comput., 25:832–856, March
2003.

[LLW03] Zhilin Li, Tao Lin, and Xiaohui Wu. “New Cartesian grid methods for inter-
face problems using the finite element formulation.” NUMERISCHE MATHE-
MATIK, 96(1):61–98, 2003.

[LPR05] Patrick Laborde, Julien Pommier, Yves Renard, and Michel Salaün. “High-order
extended finite element method for cracked domains.” International Journal for
Numerical Methods in Engineering, 64(3):354–381, 2005.

[LS03] Xu-Dong Liu and Thomas C. Sideris. “Convergence of the ghost fluid method
for elliptic equations with interfaces.” Math. Comput., 72:1731–1746, October
2003.

[LW04] B. P. Lamichhane and B. I. Wohlmuth. “Mortar finite elements for interface
problems.” Computing, 72:333–348, May 2004.

[LWC09] Young-Ju Lee, Jinbiao Wu, and Jinru Chen. “Robust multigrid method for the
planar linear elasticity problems.” Numer. Math., 113(3):473–496, August 2009.

[LWI06] Zhilin Li, Xiaohai Wan, Kazufumi Ito, and Sharon R. Lubkin. “An augmented
approach for the pressure boundary condition in a Stokes flow.” Commun. Com-
put. Phys., 1:874–885, 2006.

[MB96] J.M. Melenk and I. Babuka. “The partition of unity finite element method:
Basic theory and applications.” Computer Methods in Applied Mechanics and
Engineering, 139(14):289 – 314, 1996.

[MBF05] Neil Molino, Zhaosheng Bao, and Ron Fedkiw. “A virtual node algorithm for
changing mesh topology during simulation.” In ACM SIGGRAPH 2005 Courses,
SIGGRAPH ’05, New York, NY, USA, 2005. ACM.

[MBT03] Neil Molino, Robert Bridson, Joseph Teran, and Ronald Fedkiw. “A Crystalline,
Red Green Strategy for Meshing Highly Deformable Objects with Tetrahedra.”
In IMR, pp. 103–114, 2003.

[MBT06] Nicolas Moës, Eric Béchet, and Matthieu Tourbier. “Imposing Dirichlet bound-
ary conditions in the extended finite element method.” Int. J. Numer. Meth.
Engng, 67:1641–1669, September 2006.

[MCC03] N. Moës, M. Cloirec, P. Cartraud, and J.F. Remacle. “A computational approach
to handle complex microstructure geometries.” Comput. Methods Appl. Mech.
Engrg., 192:3163–3177, July 2003.

142

[MDB99] Nicolas Moës, John Dolbow, and Ted Belytschko. “A finite element method for
crack growth without remeshing.” Int. J. Numer. Meth. Engng, 46:131–150,
September 1999.

[MDH07] Hashem M. Mourad, John Dolbow, and Isaac Harari. “A bubble-stabilized fi-
nite element method for Dirichlet constraints on embedded interfaces.” Int. J.
Numer. Meth. Engng, 69:772–793, January 2007.

[MG07] Chohong Min and Frédéric Gibou. “Geometric integration over irregular domains
with application to level-set methods.” J. Comput. Phys., 226:1432–1443, Oc-
tober 2007.

[MGB02] Nicolas Moës, A. Gravouil, and Ted Belytschko. “Non-planar 3D crack growth
by the extended finite element and level sets-Part I: Mechanical model.” Interna-
tional Journal for Numerical Methods in Engineering, 53(11):2549–2568, April
2002.

[MGS11] S. E. Mousavi, E. Grinspun, and N. Sukumar. “Harmonic enrichment func-
tions: A unified treatment of multiple, intersecting and branched cracks in the
extended finite element method.” International Journal for Numerical Methods
in Engineering, 85(10):1306–1322, March 2011.

[MKL05] S. Marella, S. Krishnan, H. Liu, and H. S. Udaykumar. “Sharp interface Carte-
sian grid method I: An easily implemented technique for 3D moving boundary
computations.” J. Comput. Phys., 210(1):1–31, November 2005.

[Mo02] Nicolas Mo˙“Extended finite element method for cohesive crack growth.” Engi-
neering Fracture Mechanics, 69(7):813 – 833, May 2002.

[MP03] Stefano Mariani and Umberto Perego. “Extended finite element method for
quasi-brittle fracture.” International Journal for Numerical Methods in Engi-
neering, 58(1):103–126, September 2003.

[MS10] S.E. Mousavi and N. Sukumar. “Generalized Gaussian quadrature rules for dis-
continuities and crack singularities in the extended finite element method.” Com-
puter Methods in Applied Mechanics and Engineering, 199(4952):3237 – 3249,
2010.

[MST10] A. McAdams, E. Sifakis, and J. Teran. “A parallel multigrid Poisson solver
for fluids simulation on large grids.” In Proceedings of the 2010 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, SCA ’10, pp. 65–74,
Aire-la-Ville, Switzerland, Switzerland, 2010. Eurographics Association.

[NMG09a] Yen Ting Ng, Chohong Min, and Frédéric Gibou. “An efficient fluid-solid cou-
pling algorithm for single-phase flows.” J. Comput. Phys., 228:8807–8829, De-
cember 2009.

143

[NMG09b] Yen Ting Ng, Chohong Min, and Frédéric Gibou. “An efficient fluid-solid cou-
pling algorithm for single-phase flows.” J. Comput. Phys., 228(23):8807–8829,
December 2009.

[OF04] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces,
volume 57. Springer, 2004.

[OK06] M. Oevermann and R. Klein. “A Cartesian grid finite volume method for elliptic
equations with variable coefficients and embedded interfaces.” J. Comput. Phys.,
219:749–769, December 2006.

[OS88] Stanley Osher and James A. Sethian. “Fronts propagating with curvature-
dependent speed: algorithms based on Hamilton-Jacobi formulations.” J. Com-
put. Phys., 79(1):12–49, November 1988.

[OS01] Stanley J. Osher and Fadil Santosa. “Level Set Methods for Optimization Prob-
lems Involving Geometry and Constraints: I. Frequencies of a Two-Density Inho-
mogeneous Drum.” Journal of Computational Physics, 171(1):272 – 288, 2001.

[OSK09] M. Oevermann, C. Scharfenberg, and R. Klein. “A sharp interface finite volume
method for elliptic equations on Cartesian grids.” J. Comput. Phys., 228:5184–
5206, August 2009.

[Par08] Lucia Parussini. “Fictitious Domain Approach Via Lagrange Multipliers with
Least Squares Spectral Element Method.” J. Sci. Comput., 37(3):316–335, De-
cember 2008.

[PCG07] B. Prabel, A. Combescure, A. Gravouil, and S. Marie. “Level set X-FEM non-
matching meshes: application to dynamic crack propagation in elasticplastic me-
dia.” International Journal for Numerical Methods in Engineering, 69(8):1553–
1569, February 2007.

[Pes72] Charles S. Peskin. “Flow patterns around heart valves: A numerical method.”
Journal of Computational Physics, 10(2):252 – 271, 1972.

[PGR10] Joseph Papac, Frédéric Gibou, and Christian Ratsch. “Efficient symmetric dis-
cretization for the Poisson, heat and Stefan-type problems with Robin boundary
conditions.” J. Comput. Phys., 229:875–889, February 2010.

[Pit79] Juhani Pitkäranta. “Boundary subspaces for the finite element method with
Lagrange multipliers.” Numerische Mathematik, 33:273–289, 1979.

[PLR95] S.D. Pieper, D.R. Jr. Laub, and J.M. Rosen. “A finite-element facial model
for simulating plastic surgery.” Plastic and Reconstructive Surgery, 96(5):1100–
1105, October 1995.

144

[PP09] Lucia Parussini and Valentino Pediroda. “Fictitious Domain approach with hp-
finite element approximation for incompressible fluid flow.” J. Comput. Phys.,
228:3891–3910, June 2009.

[PPD09] Kyoungsoo Park, Jeronymo P. Pereira, C. Armando Duarte, and Glau-
cio H. Paulino. “Integration of singular enrichment functions in the general-
ized/extended finite element method for three-dimensional problems.” Interna-
tional Journal for Numerical Methods in Engineering, 78(10):1220–1257, June
2009.

[PTH10] Kejia Pan, Yongji Tan, and Hongling Hu. “An interpolation matched interface
and boundary method for elliptic interface problems.” J. Comput. Appl. Math.,
234:73–94, May 2010.

[PWZ10] Luca F. Pavarino, Olof B. Widlund, and Stefano Zampini. “BDDC Precondi-
tioners for Spectral Element Discretizations of Almost Incompressible Elasticity
in Three Dimensions.” SIAM J. Sci. Comput., 32(6):3604–3626, December 2010.

[RHS11] Casey L. Richardson, Jan Hegemann, Eftychios Sifakis, Jeffrey Hellrung, and
Joseph M. Teran. “An XFEM method for modeling geometrically elaborate crack
propagation in brittle materials.” Int. J. Numer. Meth. Engng, 88:1042–1065,
December 2011.

[Rut08] V. Rutka. “A staggered grid-based explicit jump immersed interface method for
two-dimensional Stokes flows.” International Journal for Numerical Methods in
Fluids, 57(10):1527–1543, 2008.

[RW04] V. Rutka and A. Wiegmann. “A fast finite difference method for elliptic PDEs
in domains with non-grid aligned boundaries with application to 3D linear elas-
ticity.” MATHEMATICS IN INDUSTRY, 5:363–366, 2004.

[SAB06] Jeong-Hoon Song, Pedro M. A. Areias, and Ted Belytschko. “A method for
dynamic crack and shear band propagation with phantom nodes.” Int. J. Numer.
Meth. Engng, 67:868–893, August 2006.

[Sau63] V. K. Saul’ev. “On solution of some boundary value problems on high perfor-
mance computers by fictitious domain method.” Dokl Akad Nauk SSSR 144 1962
497500 in Russian English translation in Soviet Math Dokl, 4:912–925, 1963.

[SB09a] Jeong-Hoon Song and Ted Belytschko. “Cracking node method for dynamic
fracture with finite elements.” International Journal for Numerical Methods in
Engineering, 77:360–385, 2009.

[SB09b] Jeong-Hoon Song and Ted Belytschko. “Dynamic Fracture of Shells Subjected
to Impulsive Loads.” Journal of Applied Mechanics, 76(5):051301, September
2009.

145

[SBC00] T. Strouboulis, I. Babuka, and K. Copps. “The design and analysis of the Gen-
eralized Finite Element Method.” Computer Methods in Applied Mechanics and
Engineering, 181(13):43 – 69, 2000.

[SBC03] F. L. Stazi, E. Budyn, J. Chessa, and T. Belytschko. “An extended finite el-
ement method with higher-order elements for curved cracks.” Computational
Mechanics, 31:38–48, 2003.

[SBC06] Peter Schwartz, Michael Barad, Phillip Colella, and Terry Ligocki. “A Cartesian
grid embedded boundary method for the heat equation and Poisson’s equation
in three dimensions.” J. Comput. Phys., 211:531–550, January 2006.

[SBM08] N. Sukumar, E. Béchet, and N. Moës. “Three-Dimensional Non-Planar Crack
Growth by a Coupled Extended Finite Element and Fast Marching Method.” In-
ternational Journal for Numerical Methods in Engineering, 76(5):727–748, 2008.

[Sch99] Joachim Schöberl. “Multigrid methods for a parameter dependent prob-
lem in primal variables.” Numerische Mathematik, 84:97–119, 1999.
10.1007/s002110050465.

[SCM01] N. Sukumar, D.L. Chopp, N. Mos, and T. Belytschko. “Modeling holes and in-
clusions by level sets in the extended finite-element method.” Computer Methods
in Applied Mechanics and Engineering, 190(4647):6183 – 6200, 2001.

[SDF07] Eftychios Sifakis, Kevin G. Der, and Ronald Fedkiw. “Arbitrary cutting of
deformable tetrahedralized objects.” In Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, SCA ’07, pp. 73–80,
Aire-la-Ville, Switzerland, Switzerland, 2007. Eurographics Association.

[SHT09] E. Sifakis, J. Hellrung, J. Teran, A. Oliker, and C. Cutting. “Local flaps: a real-
time finite element based solution to the plastic surgery defect puzzle.” Studies
in Health Technology and Informatics, 142:313–318, 2009.

[SL09] Yongxing Shen and Adrian Lew. “An optimally convergent discontinuous
Galerkin-based extended finite element method for fracture mechanics.” Interna-
tional Journal for Numerical Methods in Engineering, 82(6):716–755, May 2009.

[SMM00] N. Sukumar, N. Moës, B. Moran, and T. Belytschko. “Extended finite element
method for three-dimensional crack modelling.” International Journal for Nu-
merical Methods in Engineering, 48(11):1549–1570, August 2000.

[SSI07] Eftychios Sifakis, Tamar Shinar, Geoffrey Irving, and Ronald Fedkiw. “Hy-
brid simulation of deformable solids.” In Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, SCA ’07, pp. 81–90,
Aire-la-Ville, Switzerland, Switzerland, 2007. Eurographics Association.

146

[SW00] J.A. Sethian and Andreas Wiegmann. “Structural Boundary Design via Level
Set and Immersed Interface Methods.” Journal of Computational Physics,
163(2):489 – 528, 2000.

[TLL08] Zhijun Tan, D. V. Le, Zhilin Li, K. M. Lim, and B. C. Khoo. “An immersed
interface method for solving incompressible viscous flows with piecewise constant
viscosity across a moving elastic membrane.” J. Comput. Phys., 227:9955–9983,
December 2008.

[TP09] J.M. Teran and C.S. Peskin. “Tether force constraints in Stokes flow by the
immersed boundary method on a periodic domain.” SIAM Journal on Scientific
Computing, 31(5):3404–3416, 2009.

[TSI05] Joseph Teran, Eftychios Sifakis, Geoffrey Irving, and Ronald Fedkiw. “Robust
quasistatic finite elements and flesh simulation.” In Proceedings of the 2005
ACM SIGGRAPH/Eurographics symposium on Computer animation, SCA ’05,
pp. 181–190, New York, NY, USA, 2005. ACM.

[Ven06] Giulio Ventura. “On the elimination of quadrature subcells for discontinuous
functions in the eXtended Finite-Element Method.” International Journal for
Numerical Methods in Engineering, 66(5):761–795, 2006.

[Ver84] R. Verfürth. “A Multilevel Algorithm for Mixed Problems.” SIAM J. on Nu-
merical Analysis, 21(2):264–271, April 1984.

[VGB09] Giulio Ventura, Robert Gracie, and Ted Belytschko. “Fast integration and weight
function blending in the extended finite element method.” International Journal
for Numerical Methods in Engineering, 77(1):1–29, January 2009.

[VGL09] L. Beirão da Veiga, V. Gyrya, K. Lipnikov, and G. Manzini. “Mimetic finite
difference method for the Stokes problem on polygonal meshes.” J. Comput.
Phys., 228(19):7215–7232, October 2009.

[WB00] Andreas Wiegmann and Kenneth P. Bube. “The explicit-jump immersed inter-
face method: finite difference methods for pdes with piecewise smooth solutions.”
SIAM J. Numer. Anal., 37:827–862, February 2000.

[Wie00] Christian Wieners. “Robust multigrid methods for nearly incompressible elas-
ticity.” Computing, 64(4):289–306, July 2000.

[WK99] Barbara I. Wohlmuth and Rolf H. Krause. “Multigrid Methods Based On The
Unconstrained Product Space Arising From Mortar Finite Element Discretiza-
tions.” SIAM J. NUMER. ANAL, 39:2001, 1999.

[WL04] Justin W. L. Wan and Xu-Dong Liu. “A Boundary Condition–Capturing
Multigrid Approach to Irregular Boundary Problems.” SIAM J. Sci. Comput.,
25:1982–2003, June 2004.

147

[WML01] G.J. Wagner, N. Moës, W. K. Liu, and T. Belytschko. “The extended finite
element method for rigid particles in Stokes flow.” International Journal for
Numerical Methods in Engineering, 51(3):293–313, May 2001.

[WW08] Peng Wei and Michael Yu Wang. “A structural optimization method with XFEM
and level set.” Structural Optimization, (February):1–16, 2008.

[WX10] Haijun Wu and Yuanming Xiao. “An unfitted hp-interface penalty finite element
method for elliptic interface problems.” 2010.

[XW06] Sheng Xu and Z. Jane Wang. “An immersed interface method for simulating the
interaction of a fluid with moving boundaries.” J. Comput. Phys., 216:454–493,
August 2006.

[XW08] Sheng Xu and Z. Jane Wang. “A 3D immersed interface method for fluid-solid
interaction.” Computer Methods in Applied Mechanics and Engineering, 197(25-
28):2068 – 2086, 2008. Immersed Boundary Method and Its Extensions.

[YMB90] David P. Young, Robin G. Melvin, Michael B. Bieterman, Forrester T. John-
son, Satish S. Samant, and John E. Bussoletti. “A locally refined rectangular
grid finite element method: application to computational fluid dynamics and
computational physics.” J. Comput. Phys., 92:1–66, December 1990.

[YW07] Sining Yu and G. W. Wei. “Three-dimensional matched interface and boundary
(MIB) method for treating geometric singularities.” J. Comput. Phys., 227:602–
632, November 2007.

[ZB03] Goangseup Zi and Ted Belytschko. “New crack-tip elements for XFEM and
applications to cohesive cracks.” International Journal for Numerical Methods
in Engineering, 57(15):2221–2240, August 2003.

[ZSB04] G. Zi, J. H. Song, É. Budyn, S. H. Lee, and T. Belytschko. “A method for growing
multiple cracks without remeshing and its application to fatigue crack growth.”
Modelling and Simulation in Materials Science and Engineering, 12(1):901–915,
2004.

[ZST10] Yongning Zhu, Eftychios Sifakis, Joseph Teran, and Achi Brandt. “An efficient
multigrid method for the simulation of high-resolution elastic solids.” ACM
Trans. Graph., 29(2):16:1–16:18, April 2010.

[ZW06] Y. C. Zhou and G. W. Wei. “On the fictitious-domain and interpolation for-
mulations of the matched interface and boundary (MIB) method.” J. Comput.
Phys., 219:228–246, November 2006.

[ZW09] Shan Zhao and G. W. Wei. “Matched interface and boundary (MIB) for the
implementation of boundary conditions in high-order central finite differences.”
Int. J. Numer. Meth. Engng, 77:1690–1730, March 2009.

148

[ZZF06] Y. C. Zhou, Shan Zhao, Michael Feig, and G. W. Wei. “High order matched
interface and boundary method for elliptic equations with discontinuous coeffi-
cients and singular sources.” J. Comput. Phys., 213:1–30, March 2006.

149

