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ASSESSING THE STRUCTURE OF KNOWLEDGE
IN A PROCEDURAL DOMAIN

Michel C. Desmarais, Luc Giroux, Serge Larochelle, Serge Leclerc

Université de Montréal and
Canadian Workplace Automation Research Center

In most domains of knowledge, the process by
which someone learns to become more expert is rela-
tively constrained. People learn the basic concepts
before they learn the more complex ones. They learn
the simple, even though inefficient, methods for doing
things before they learn the efficient but more com-
plex methods.

These constraints in the process of learning reflect
the structure of precedence, or of increasing complex-
ity among knowledge items. This structure can be re-
garded in terms of implications: the knowledge of
some complex concept implies the knowledge of some
other, more simple concept. Similarly, the usage of
an inefficient method implies that another, more effi-
cient method is not known.

Obviously, the structure of implications among
knowledge items is of extreme importance from a
pedagogical point of view. It dictates the order in
which to teach those items. It is also of great impor-
tance for knowledge assessment, since it is by such a
structure that a tutor can infer what is or isn't known,
and test just the right knowledge items such that the
result will yield the most information about the
individual's state of knowledge.

Structures that represent precedence, or increasing
complexity of knowledge items, are well known in
education (see Tatsuoka, 1985) and have, in fact, al-
ready been used in human-computer interaction 1o
automatically infer user knowledge of a system
(Zissos & Witten, 1986; Chin, 1986). Formal prop-
erties of implication structures have also been investi-
gated by Doignon & Falmagne (1985). So far, the
main approach has been to construct these structures
intuitively, based on someone's experience of how the
knowledge items are interrelated or on some evaluation
of knowledge item complexity. Another approach has
been to use text-books, course content, or doc-
umentation to verify the ordering in which knowledge
items are introduced and to consider this as a basis for
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the knowledge structure. For instance, Pavel (1985)
constructed a knowledge structure from the automatic
analysis of UNIX™ on-line documentation. Our ap-
proach, similar to that of Pavel (1985), is based how-
ever on empirical data (see Desmarais & Pavel, 1987,
for a previous study with the current approach). We
will show how to construct such a structure from data
on a number of individuals' knowledge of a domain.
This approach has the advantage of not being biased
by subjective judgment about the precedence or com-
plexity of knowledge items. Moreover, given data on
a number of individuals' knowledge states, the whole
process of knowledge structure construction can be
automatized.

This paper thus presents an empirical assessment
of the methodology for constructing knowledge struc-
tures from data on individuals' knowledge state. We
will demonstrate how such structures can be build and
how efficient they are for inferring a single individual
knowledge state from partial knowledge of that state.

THE KNOWLEDGE STRUCTURE

The knowledge structure is composed of knowl-
edge items. No constraints is imposed on the defini-
tion of knowledge items. They can represent the
comprehension of conceptual information as well as
the ability to perform some task. All that matters is
that the knowledge items define the knowledge domain
in some meaningful and complete way.

The knowledge items are related to one another by
two types of binary relations: the logical implications
(or simply “implications™) which states that A implies
B, and the negative implications, which states that A
implies not B. Those relations form the knowledge
structure in question, which we will call the im-
plication network.
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Logical Implications

Probably the most important types of relation for
knowledge assessment are that of precedence and of
increased complexity among knowledge items. Those
will be represented by logical implications in the
implication network, in so far as they permit the
inference of items that are known or not. In other
words, precedence or increased complexity from A to B
corresponds to a logical implication from B to A, to
the extent that we infer that A is known if B is, and
that B is not known if A isn't. This is not to say that
precedence, increased complexity, and logical implica-
tion are all the same thing, but simply that they have
the same properties and we will treat them as inter-
changeable here.

Figure 1 illustrates, by means of implication
relations, the interdependencies that may exist
amongst the abilities to solve problems in mathemat-
ics. Notice first that the structure forms a minimal
partial order (it contains no cycles and no transitive
relations). Notice also that the relations can be of dif-
ferent nature. In some cases, as in 2= 1, the
implication stems from the fact that the type of prob-
lem in 1 is found in 2 as a sub-problem (i.e. we find a
division problem in the algebra problem 2). Thus we
have a clear precedence from 1 to 2. However, the
implications from 5 to 4 and to 3 bear no such prece-
dence, since problem 5 belongs to graph theory and
does not require any knowledge of calculus nor matri-
ces. It turns out that the implication is due to the ex-
treme complexity of the solution for 5 (this problem
was first proposed in 1852 and solved 125 years later
after great efforts by many mathematicians) which
suggests that if you solved that problem you must be
knowledgeable enough to solve 3 and 4.

Negative Implications

The second type of relations is a negative im-
plication. As an example, consider the fact that a stu-
dent laboriously solves a complex system of linear
equations algebraically, when the usage of matrices
would have been much more efficient. From this ex-
ample, we can conclude that the student does not mas-
ter the matrix method, and that there is a negative
implication from the algebraic to the matrix method of
solving a complex linear equations system. Note that
in a negative implication, one must discriminate be-
tween usage and knowledge, for it is the usage of
some knowledge item that implies that another
knowledge item is not known. Naturally, this type of
relation is found in domains where knowledge items
are manifest in some performance, that is, in procedu-
ral domains.
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5

Four-Color problem—graph theory
(prove that no more than four colors are needed
to color any map of various countries so that no
countries with adjacent borders are the same color)

7 ~
(4 solve | 3x dx) G [g g] X [g g])
T~ —
(2 21/x - 31 =0)
|

Figure 1. Implication network composed of logi-
cal implications among abilities to solve math-
ematical problems. Success for an item permits lo
infer that items implied are known, whereas failure
permits to infer that items implying the failed
item are not known.

Implication Network in a Procedural
Domain

Although we have discussed the notion of implication
structure in a general sense so far, we will now move
the discussion in the context of procedural knowledge
domains. Procedural domains can be characterized by
task structures that define plans for completing spe-
cific tasks. Tasks also define competences that
can be represented by knowledge items. Let
us say a few words on the task domain in order to de-
scribe how the knowledge of that domain is rep-
resented and how the task structure relates to the im-
plication network.,

Text-editing

The domain in which we conducted our study is
text-editing. This choice is determined by the fact that
this study is part of a project for building an expert-
system consultant for text editing (Desmarais,
Larochelle, & Giroux, 1987). Thus, we are interested
in the implication network both for pedagogical and
for knowledge assessment purposes.

Text-editing is largely a procedural domain, in
the sense that, in addition to concepts, the knowledge
of this domain consists of actions, or procedures, for
doing text-editing tasks. In fact, in the current study,
we will limit ourselves to the procedural
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dimension of text-editing, that is, to knowledge
items that represent tasks, or goals, and to primitive
actions, into which goals will ultimately be de-
composed. (A primitive action is a task that cannot
be further decomposed into sub-tasks and generally
represents system functions, whereas a goal is a task
that can be decomposed into sub-tasks, which can ei-
ther be sub-goals if they are themselves further de-
composed, or actions if they are not.) Thus, we will
not have knowledge items that directly represent con-
cepts like “buffers”, or properties we can attach to
characters (font, orientation, etc.) or to paragraphs
(indentation, centering, etc), etc. Note, however, that
such information could, indeed, be directly represented
in the implication network and play an important role
for knowledge inference.

Many tasks may be decomposed in a number of
alternative ways which we will call methods. For in-
stance, the task of replacing every occurrence of a word
by another word can be achieved “by hand”, replacing
each occurrence one by one, or with some specialized
system function designed especially for that task. The
first method will thus be further decomposed into sub-
goals and actions for replacing text, whereas the sec-
ond method will consists of a single primitive action
(a system function).

Evidently, the second method will generally be
much more efficient than the first one. In fact, given
this information on method efficiency, we could pre-
sume that someone who uses the “find and replace
each occurrence” method doesn't know the “search-
replace” system function method. This leads us to a
negative implication:

<find and replace each occurrence>
=— <search-replace function>

This relation is based on the postulate that if someone
uses a sub-optimal method of doing some task, then
the optimal method is not known. In a context where
knowledge assessment is based solely on known
knowledge items, as is the case of a coach who ob-
serves someone's performance, negative implications
play a fundamental role for they are the only means of
inferring what is not known from an implication net-
work.

IMPLICATION NETWORK
CONSTRUCTION

We described so far the nature of an implication
network and its relation to the knowledge domain. In
particular, we showed how some of the implications
can be inferred from the task structure. We now turn
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to the problem of inferring implications and negative
implications from data on a number of individ-
uals' knowledge state.

Assessing Individuals' Knowledge State

The first step in the process of building an
implication network is to gather information on a
number of individuals' knowledge state. In order to do
so, we elaborated a fairly exhaustive test to assess
someone's knowledge of the editor WordPerfect™
(Leclerc, in preparation)!. The test contains 190
tasks. It is designed so that the mastery of every
major system function is tested individually
by a task.

There are three types of knowledge items that are
associated with each task:

(1) goal: knowledge item that represents the task it-
self and which is considered mastered if the task is
successfully completed, no matter what method is
used;

methods: knowledge item that corresponds to
one or more primitive actions used in the context
of a goal.

primitive action: knowledge item that cor-
responds to a system function used; a primitive
action is considered mastered if it is used success-
fully, no matter what the context is.

@

3)

Hence, for each task, we find one knowledge item for
the goal, one for each primitive action the task is de-
composed into, and one for each method by which that
task can be accomplished.

The distinction between a primitive action and a
method enables us to discriminate between the usage
of a system function in two different context. For in-
stance, consider the two tasks of moving the cursor to
the end of a word and to the end of the document. Al-
though we will get a single knowledge item for the
primitive action of moving the cursor one character to
the right in both tasks, we will also get two different
knowledge items for the methods which make use of
that primitive action in each context. Indeed, moving
the cursor to the right for going to the end of a word
and for going to the end of the document legimately
constitutes two different competences.

1 Leclerc, Serge (in preparation). Analyse de la
structure de la connaissance des usagers d'un éditeur
de texte, M.Sc. thesis in preparation, Département de
psychologie, Université de Montréal.
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Using the three types of knowledge items for the
190 tasks, we obtain the following distribution of
knowledge items that compose the nodes of the
implication network:

+ 190 goals
« 195 primitive actions
+ 286 methods

The total number of knowledge items is thus 671 (190
+ 286 + 195).

The test was administered to 30 subjects. The
performance varied from 56 to 146 successful tasks,
which corresponds to 162 to 431 mastered knowledge
items with an average of 307.

Compilation of Implications and Negative
Implications

Once the data on individual knowledge states is
gathered, the next step is to establish implications and
negative implications among knowledge items. To
determine if there is a relation between a pair of
knowledge items, say A and B, we take the distribu-
tion of subjects along the following four situations:

(1) A and B are known

(2) A is known and B is unknown
(3) A is unknown and B is known
(4) A is unknown and B is unknown

then we state that there is an implication from A to B
if we find people in situations 1, 3, and 4, but none in
2, as this situation would be impossible if, indeed,
there were an implication. If there were a negative
implication from A to B, then we would find people
in all situations but 1. Establishing the implication
network's relations then consists of analyzing the
distribution of subjects over the four situations for
each pair of knowledge items (the total number of
pairs is 671 * 671 = 450,241).

Statistical parameters

If the world was black and white and there was an
implication from A to B, we should never find a
distribution like the following:

B
Known Unknown
Known 20 1
A
Unknown 8 1

But because of noise, or simply because the im-
plication does not reflect a clear precedence but some-
thing more like a strong surmise relation, we need
some kind of statistical criterion to determine if there
is or not a relation. We have used two statistical pa-
rameters Lo make this decision:

(1) the minimal conditional probability of B
given A, paired with an alpha error. That is,
given a measured conditional probability
(20/21 = 0.95 in the distribution above) and a
minimal conditional probability (we chose
P(B|A)>0.85), we accept the implication from
A to B if the lower bound of a [1 - alpha error]
confidence interval around the measured condi-
tional probability is greater than the minimal
conditional probability (we chose an alpha error of
p<-20 which corresponds to an 80% confidence
interval). In the distribution above, the lower
bound of an 80% confidence interval around 0.95
is .86. Since it is greater than 0.85 we would ac-
cept the implication on this basis. However,
even if we had a significant conditional probabil-
ity, it is not necessarily different from the initial
probability, meaning that the fact that A is
known does not tell us anything more about B
and that, consequently, there is no relation be-
tween A and B. For that reason, a second
statistical parameter is needed.

(2) the minimal probability of interaction,
chi-square: the chi-square value of the distribu-
tion determines if, indeed, there is a relation be-
tween two items. In the current study, we chose a
chi-square corresponding p<0.15. For the
distribution above, the chi-square is 0.41 and not
significant at p<0.15. Thus we would reject the
implication on the basis of this parameter.

Both parameters must be over the chosen criteria in
order to set a relation, and both criteria apply to
implication as well as negative implication relations
(except that instead of 0.85 we will take 0.15 for the
minimal conditional probability and look at the upper
bound of the confidence interval),

Pruning and grouping

Having set the relations, it is often the case that
we find transitive (A= B, B= C, A= C) and
symmetric implications (A = B and B = A). Be-
cause transitive relations are redundant in the knowl-
edge inference process, they are removed from the
structure. As for knowledge items involved in a
symmetric implications, they are grouped together to
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Table 1 Table 2
Distribution of the number of relations, Distribution of intermediate nodes in
nodes, and knowledge items in the transitive implications
implication network
Intermediate Frequency
relations nodes K.I. nodes
implications 2804 145 355 1 718
non transitive 393 2 790
-incoming 77 203 3 579
-outgoing 137 289 4 239
-incoming & outgoing 69 137 ] 69
negative implications 3247 346 555 6 16
-outgoing 145 354
-incoming 201 201
-incoming & outgoing 0 0 As for the negative implications, they are much

form a single node in the structure. All incoming and
outgoing relations of each node in the group are redi-
rected to that node. The resulting structure cor-
responds 1o a minimal digraph.

Composition of the Implication Network
Derived

Of the 671 knowledge items to start with, only
555 are involved in the implication network and,
consequently, 116 knowledge items (671 — 555) are
not related to any other items (35 of those 116 are not
related because they are known by every subject and
thus are rejected by the minimal probability of
interaction criterion: indeed, it is impossible to
establish any interaction with another item in this
case). Moreover, because of grouping, the 555
knowledge items only form 346 nodes in the structure.
There are 97 groups involving between 2 and 6
knowledge items, and one involving 47 knowledge
items (grouping often occurs because a goal is always
achieved by a single method, in which case the goal
and the method will mutually imply each other); 248
nodes are composed of a single knowledge item. The
distribution of implications and negative implications
is given in table 1.

The structure is composed of a total of 2804 im-
plications. 137 nodes have outgoing implications, 77
have incoming and 69 have both incoming and outgo-
ing implications. Taking into account nodes that
comprise multuple knowledge items, those figures be-
come 289, 203, and 137 knowledge items respec-
tively. Of the 2804 implications, only 1220 are non
redundant (i.e. are not different paths between the same
nodes) and only 393 are non transitive (i.e. form the
minimal digraph). The distribution of the number of
intermediate nodes in the transitive implications is
compiled in table 2.
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more numerous with 3247 relations, but there is no
transitivity with this kind of relation. All the 346
nodes in the implication network are involved in
negative implications. 145 nodes have outgoing
negative implications (355 knowledge items) and 201
have incoming negative implications (all of which are
single knowledge item nodes).

VALIDATION OF THE IMPLICATION
NETWORK

How valid are the implications derived? To answer
this question, we conducted a simulation of knowledge
inference for each of the 30 subjects with the follow-
ing procedure: we sampled randomly a portion of the
successfully completed tasks of a subject and fed
this information to the knowledge inference module,
which inferred the known and unknown knowledge
items according to the implication and negative
implication relations, and from the grouping of
knowledge items. (Because of the context of our re-
search, we wish to simulate the situation of a coach
which is restricted to infer a pupil's knowledge from
the observation of competence—a coach does not have
direct information on what isn't known). We then
compared the inferred known and unknown knowledge
items with the actual knowledge state of the subject as
measured directly from the test.

The results of the simulation are summarized in
figure 2. A compilation of the correct (“*hits”) and in-
correct (“false alarms™) inferences is plotted for both
known and unknown knowledge items, as a function
of the proportion of the subjects' successful tasks that
was sampled and fed to the knowledge inference mod-
ule. The graphs show the values averaged for the 30
subjects. The white area indicates the size of the
sample; the grey area indicates the information added
by the inference process (hits); and, finally, the black
area indicates the incorrect inferences (false alarms).
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Figure 2 Analysis of the inference of known and unknown knowledge items as a function of the proportion of
known items given to the knowledge inference module. The area labeled 'K' represents the actual known and un-

known knowledge items.

The dark area represents incorrect inferences (False Alarms) whereas the grey area

represents the correct inferences, or 'hits'. 'n' is the number of knowledge items given. Hence the grey area rep-
resents the correctly inferred information for knowledge assessment. We included a “random inference” curve as a

comparison.

The proportion of false alarms is relatively low in
both graphs (below 10%), but increases for the known
items to the point where all inferences are false alarms
when the inference module is fed with all of the suc-
cessful tasks, as can be expected. In fact, the greatest
proportion of “added information” is between 10% and
40%, where the unknown inferred knowledge items are
close to their maximum and where the proportion of
false alarms over the hits is still relatively low for the
known knowledge items.

Initial vs. added information

It must be noted that, for the purpose of knowl-
edge assessment, the knowledge items inferred on the
basis of the implication network constitute “added in-
formation” to what we ought to call the “initial in-
formation”. That is, if we were to make a knowledge
assessment from a sample of a subject's knowledge
state, we would start with the initial information,
namely, the initial probability of knowledge, and add
to it the knowledge inferred from the implication net-
work. For instance, in our case, we would start with
at least 35 items known since their initial probability
is 1 (they were known by every subjects).
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The more severe the minimal probability of
interaction is, the more the added information will dif-
fer from the initial information. In other words, the
minimal probability of interaction assures us that the
inferences made constitute information we didn't start
with.

CONCLUSION

We have demonstrated that we can establish im-
plications and negative implications among knowledge
items, as well as grouping, by means of an empirical
method and that we can characterize the structure con-
structed by some statistical parameters. We have also
demonstrated that this structure can be used to infer a
portion of known and unknown knowledge items from
the observation of a portion of the known items.
Moreover, we have all reasons to believe that with a
sufficient number of individual knowledge states we
can capture the structure of implication among
knowledge items and that this structure constitutes a
fundamental dimension of knowledge.

On the other hand, a number of questions remains
unanswered. Although the simulation showed that the
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structure has a relevant power for knowledge inference,
it is not clear how much more efficient it is compared
to other, more simple schemes, like a linear structure
where we simply order knowledge items as a function
of the number of people who know them. If, in fact,
the structure of the knowledge domain was linear, the
performance of the current model (in terms of knowl-
edge inference) would turn out to be similar to that of
model based on a linear structure, as, indeed, the
structure derived would itself be linear.

It would also be interesting to know precisely
how many implications we missed with the small
number of subjects we had and how many would be
required to miss only a few (hopefully there might be
a computable answer to this question from the
statistical parameters of the network).

We are currently in the process of comparing the
present knowledge inference scheme to simpler ones.
A qualitative analysis of the structure obtained is also
under way (Leclerc, in preparation). Finally, we have
plans to repeat this experiment with other knowledge
domains.
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