
UC San Diego
UC San Diego Previously Published Works

Title
Benchmarking blockchain-based gene-drug interaction data sharing methods: A case study 
from the iDASH 2019 secure genome analysis competition blockchain track

Permalink
https://escholarship.org/uc/item/9h39g32z

Authors
Kuo, Tsung-Ting
Bath, Tyler
Ma, Shuaicheng
et al.

Publication Date
2021-10-01

DOI
10.1016/j.ijmedinf.2021.104559
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9h39g32z
https://escholarship.org/uc/item/9h39g32z#author
https://escholarship.org
http://www.cdlib.org/


Benchmarking Blockchain-Based Gene-Drug Interaction Data 
Sharing Methods: A Case Study from the iDASH 2019 Secure 
Genome Analysis Competition Blockchain Track

Tsung-Ting Kuo1,*,†, Tyler Bath1,*, Shuaicheng Ma2,*, Nicholas Pattengale3,*, Meng 
Yang4,5,*, Yao Cao6, Corey M. Hudson3, Jihoon Kim1, Kai Post1, Li Xiong2, Lucila Ohno-
Machado1,7

1UCSD Health Department of Biomedical Informatics, University of California San Diego, La Jolla, 
CA, USA

2Department of Computer Science, Emory University, Atlanta, GA, USA

3Sandia National Laboratories, Albuquerque, NM, USA

4BGI-Shenzhen, Shenzhen, Guangdong, China

5Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, 
Denmark

6Department of Social Informatics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, Japan

7Division of Health Services Research & Development, VA San Diego Healthcare System, San 
Diego, CA, USA

Abstract

Background.—Blockchain distributed ledger technology is just starting to be adopted in 

genomics and healthcare applications. Despite its increased prevalence in biomedical research 

applications, skepticism regarding the practicality of blockchain technology for real-world 

problems is still strong and there are few implementations beyond proof-of-concept. We focus 
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on benchmarking blockchain strategies applied to distributed methods for sharing records of 

gene-drug interactions. We expect this type of sharing will expedite personalized medicine.

Basic Procedures.—We generated gene-drug interaction test datasets using the Clinical 

Pharmacogenetics Implementation Consortium (CPIC) resource. We developed three blockchain-

based methods to share patient records on gene-drug interactions: Query Index, Index Everything, 

and Dual-Scenario Indexing.

Main Findings.—We achieved a runtime of about 60 seconds for importing 4,000 gene-drug 

interaction records from four sites, and about 0.5 seconds for a data retrieval query. Our results 

demonstrated that it is feasible to leverage blockchain as a new platform to share data among 

institutions.

Principal Conclusions.—We show the benchmarking results of novel blockchain-based 

methods for institutions to share patient outcomes related to gene-drug interactions. Our findings 

support blockchain utilization in healthcare, genomic and biomedical applications. The source 

code is publicly available at https://github.com/tsungtingkuo/genedrug.

Keywords

Blockchain Distributed Ledger Technology; Pharmacogenetics; Gene-Drug Interaction; Data 
Sharing; Smart Contract

1. INTRODUCTION

1.1 Gene-Drug Interaction

Genetic variation is known to affect drug response. Presence of specific genetic variants can 

result in variability of drug efficacy and adverse drug reactions (ADR) through alternate 

pharmacokinetic (PK) and pharmacodynamic (PD) pathways. One such example is warfarin, 

an anticoagulant commonly used to prevent or treat blood clots. It is notoriously challenging 

to correctly adjust warfarin doses due to inter-patient variability resulting from both clinical 

data (e.g., age, sex, race, body mass index, conditions, and other medications) and genetics 

(e.g., variants in VKORC1, CYP2C9, and CYP4F2 genes) [1]. While patients with AA 

genotypes in SNP rs9923231 of the VKORC1 gene are sensitive to warfarin and require 

lower doses, those with AG or GG genotypes are less sensitive. Complications arising from 

inadequate warfarin dosing constitute some of the most common ADRs reported to the Food 

and Drug Administration (FDA) [2]. For this reason, warfarin has been added to the FDA list 

of drugs with pharmacogenomics labeling; the recent list has 304 unique drugs [3].

Gene-drug relationship data are very important for clinicians and researchers. There are 

several publicly available gene-drug interaction datasets, such as the one produced by the 

Clinical Pharmacogenetics Implementation Consortium (CPIC) [4]. Based on these datasets, 

researchers may evaluate and investigate interactions for associations with specific patient 

outcomes (e.g., improved, unchanged, or deteriorated), suspected gene-outcome-relations 

(e.g., yes, or no), and serious side-effects (e.g., yes, or no). However, these evaluation results 

may be siloed within an institution. A mechanism for institutions to share the evaluation 

results of the gene-drug interactions they obtained locally could help speed up research.
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With the advance of sequencing technology, genetic testing is becoming more available, 

making pharmacogenetic-based drug dosing more viable in clinical practice. CPIC is one 

such effort to provide peer-reviewed, updated, and evidence-based guidelines for gene-drug 

pairs. However, a level 1 quality guideline in CPIC requires consistent evidence, with large 

sample sizes in well-designed and well-conducted studies. Gathering sufficient and high-

quality evidence of gene-drug outcomes is still a daunting task due to technical, economic, 

administrative, and ethical reasons.

1.2 Traditional Methods and Threat Models

Intuitively, we can adopt a centralized method that uses a central server and collect the 

evaluation results (Figure 1A) via a traditional local software program performing logging/

querying operations (Figure 2A). However, this setting could introduce multiple threats. As 

shown in previous studies [5 6], a central server and traditional program can present the 

barriers/challenges listed below:

i. Single-point-of-failure (e.g., the whole system stops working when the server 

stops due to a routine maintenance or a malicious attack).

ii. Mutable data (e.g., the information on the server may be altered by the “root” 

user).

iii. Unverifiable data source (e.g., the sources of the evaluation results may also be 

changed on the central server).

iv. Non-transparent software (e.g., unspecified changes and thus inconsistent code).

v. Alterable programs (e.g., the deployed program can still be altered locally).

1.3 Blockchain Smart Contracts

To overcome these issues, we consider a decentralized architecture to solve the above-

mentioned risks brought by a central server and traditional program. This architecture 

enables consistent and large-scale evidence gathering from multiple participating hospitals 

and individuals. Among the decentralized data storage methods, blockchain [7-10] is one 

of the more promising candidates (Figure 1B). The latest blockchain platforms, such as 

Ethereum [9], Hyperledger Fabric [12], or R3 Corda [13], support smart contracts, (Figure 

2B) which are computer programs running on blockchain [14]. The desired technical 

properties of blockchain with smart contracts [14-16] include:

i. No single-point-of-failure (i.e., it is peer-to-peer).

ii. Immutable data (i.e., it is very difficult to change the data on the chain).

iii. Data provenance (i.e., the source of data is confirmed and therefore cannot be 

falsified).

iv. Transparent software (e.g., each software change can be verified and confirmed).

v. Unchangeable program code (e.g., the deployed program is not alterable, and 

new versions of the program are recorded and visible to all nodes) [17].
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Therefore, using smart contracts on blockchain to store and query patient outcomes related 

to gene-drug data pairs could further improve the transparency and immutability of the 

software among the participating institutions.

Blockchain has been proposed in various healthcare, genomic and biomedical applications 

[5 6 16-19], such as medical record management [16 20 21], dynamic consent in 

biobanking [21], genomic data access logging [18 23], pharmaceutical supply chain 

[24-26], and privacy-preserving predictive modeling [27-29]. Meanwhile, applications 

in pharmacogenetics are still limited [19]. While blockchain has been the underlying 

infrastructure for crypto-currencies such as Bitcoin [8] for more than a decade, the design 

and usability of blockchain have yet to be well-understood in health sciences as they 

currently are in the world of finance.

Although the idea of adopting blockchain and smart contracts for sharing gene-drug 

evaluation results may conceptually be feasible, practical issues in implementing such a 

system have yet to be investigated. Many blockchain-based solutions are still in early 

stages [23 34] and the resources to support blockchain and smart contract developers are 

also scarce [35 36]. Therefore, we aim at benchmarking the potential of a decentralized 

gene-drug system on blockchain, with smart contracts.

2. MATERIAL AND METHODS

2.1 Competition

University of California San Diego (UCSD) adopted a community-based approach to 

benchmarking, and organized Track 1 of the iDASH Secure Genome Analysis Competition 

in 2019 [17]. There were 30 teams from 11 countries, including China, Germany, India, 

Japan, Luxembourg, Netherlands, Singapore, Switzerland, Turkey, United Kingdom, and 

the USA. The development phase lasted three months, after which five teams submitted 

solutions. We requested that each solution be able to store all patient outcomes for gene-drug 

pair records on-chain (i.e., no off-chain local storage of data was allowed). For querying 

the records, the solution was required to support searching records by any combination of 

gene name, variant number, and drug name. Results had to contain counts and percentages 

of outcomes, suspected-gene-outcome-relations, and serious-side-effects. The solution was 

also required to make the records searchable from any site (e.g., Institution 1 should be able 

to search any record from Institution 2 and so on).

Existing blockchain and smart contract studies have demonstrated their features and 

advantages, such as immutability/robustness [8 37 38], either by mathematical proof or 

empirical analyses, along with thorough comparisons with centralized or redundant solutions 

[17 35 36]. In this competition, we aimed to demonstrate the feasibility of adopting 

blockchain and smart contracts to share patient outcomes related to gene-drug interactions 

among institutions. Of the five submitted solutions, one was unable to complete within the 

competition timeline and another published their results separately [41]. Therefore, in this 

study, we focus on the benchmarking and comparison of three solutions.
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The blockchain platform we selected based on prior review [15] was Ethereum [9], which 

is an open source platform that supports smart contracts and that is maintained by the 

community. We configured the Ethereum blockchain network as a permissioned network, 

so that the evaluations could be executed independently of the public blockchain, and 

the testing environment would not be tied to the concept of crypto-currency. We adopted 

the Proof-of-Authority (PoA) consensus protocol using the Clique algorithm [42], which 

is suitable for permissioned networks that do not need intensive computation like the 

one needed for the Proof-of-Work (PoW) Ethash algorithm [37] to secure the network. 

Compared to other platforms (e.g., Hyperledger Fabric [12] or R3 Corda [13]) that also 

support smart contracts, Ethereum does not require additional ordering or notary services, 

thus it is appropriate for our purpose. We adopted Solidity [43], one of the most popular 

smart contract languages running on Ethereum, to implement the solutions.

2.2 Data

The dataset for benchmarking was generated using the gene-drug relationship data from 

CPIC [4]. Each record contained the following six fields (Table 1): gene name, variant 

number, drug name, outcome, suspected gene outcome relation, and serious side effect. 

First, we obtained 127 unique gene names and 226 unique drug names from CPIC and 

randomly chose one gene name and one drug name as a pair to generate a record. Next, 

for each record, we selected a variant number [1 – 99], an outcome status [Improved, 

Unchanged, Deteriorated], a suspected gene outcome relation [Yes, No], and a serious 

side effect [Yes, No], all randomly. For the development process the teams were provided 

with four patient outcomes of gene-drug pair files, each of which with 10,000 records 

representing the observed patient outcome for a gene-drug pair from four institutions. 

During the evaluation process we utilized 200 and 1,000 records from each of the four sites.

2.3 Methods Overview

We developed three methods to solve the distributed data sharing problem: Query Index 
(hashing-based mapping), Index Everything (comprehensive mapping), and Dual-Scenario 
Indexing (complete/wildcard mapping). The three solutions were developed by the following 

three teams, respectively: Emory Team, formed by members from Emory University and 

Kyoto University (1st place winner of the competition), Team Genigma from Sandia 

National Laboratories (2nd place), and Omics for all from BGI-Shenzhen (Honorable 

Mention). The details of these promising solutions are introduced in the following 

subsections.

2.4 Query Index

The first method, Query Index, was a domain knowledge-based approach to implement a 

storage and query efficient solution. The following two kinds of domain knowledge in the 

gene-drug interaction data sharing were utilized in the design of an efficient solution: (1) 

the query output is the accumulated statistics of the gene-drug interaction data, and (2) 

the amount of unique gene-drug relations (i.e., approximately 106 in CPIC specification) is 

much smaller than the amount of raw gene-drug interaction records. This implementation 

utilized the above two facts, stored the statistical information of all unique gene-drug 

relations (i.e., gene-variant-drug triples) in an upper-bounded size array and cached all 
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indices in a hash table for fast insertion and query. Figure 3 illustrates an example of the 

array and hash table data structure of Query Index. Every gene-variant-drug triple could be 

invoked in 8 different types of queries (i.e., a query specifying gene name, drug name, and 

variant number and 7 queries with wildcard characters in different fields). For example, the 

result of GBA-nicotine-74 will be returned in query (GBA, nicotine, 74), query (GBA, *, 

*), query (*, *, *), and so on. Based on this small number of query fields, a key-value hash 

table was built to support all possible queries. In the hash table, the keys were gene-variant-
drug tuples and their wildcard alternatives, and the values were the indices of the actual 

information in the array. Upon receiving a query request, the Query Index method first found 

the matching index list in the hash table if the record existed, then traversed the indices to 

retrieve the actual information from the array. For the insertion, with the help of the hash 

table, the method could locate the index of the gene-variant-drug tuple in the array in O(1) 
time and update the counts. If the record did not exist, the method would append the record 

at the end of the array and insert corresponding entries in the hash table.

2.5 Index Everything

The second method, Index Everything, was a straightforward implementation approach. 

Since there were only a few hundred distinct genes and drugs, a unique 8-bit unsigned 

integer (uint8) value was assigned to each distinct gene (respectively, drug) value. These 

values were assigned lazily, i.e., the next available ascending value was assigned upon the 

first insert containing that gene or drug. As such, a unique 24-bit unsigned integer (uint24) 

could be trivially derived for each gene-variant-drug triple, specifically by concatenating the 

corresponding three uint8s. Thus, for any observation, this uint24 derived by concatenation 

was used as an index into various outcome counts stored in the Solidity mapping 

structures. This indexing/storage scheme is illustrated in Figure 4. The two query modalities 

(entryExists and query) implementations were similarly straightforward. Specifically, given 

the wildcard value (‘*’) in any position, all possible values were searched for that position, 

expressed as a triple for which any non-wildcard search value collapsed the specific 

dimension.

2.6 Dual-Scenario Indexing

The third method, Dual-Scenario Indexing, adopted a special data structure to store gene-

drug relationship data. It was also assumed here that query operations (such as query and 

entryExists) were more frequently invoked than insert operations, thus the team focused on 

query performance optimizations. Two different data structures were used to support the 

precise search with all three given inputs (gene name, variant number and drug name) and 

the search with wildcard inputs under two scenarios: complete (i.e., gene-variant-drug ) 

and wildcard searches. For the complete search scenario, a mapping structure named 

geneData mapping was used to store all GeneDrugRelation items with a key that was 

the concatenation of gene name A, variant number B and drug name E. Therefore, the 

geneData map could easily support all queries with “ABE” inputs. For the wildcard search 

scenario, the team built a special mapping structure GeneDrugRelationKeyMapping with 

keys of wildcard search strings (e.g., “AB*”) and values of the complete search strings 

(e.g., “ABE”, the keys of the geneData data structure). The algorithm then pre-generated 

all possible combinations of geneData mapping keys for each wildcard input, and stored 
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these combinations into the GeneDrugRelationKeyMapping data structure . For querying, 

the algorithm first searched GeneDrugRelationKeyMapping by “AB*” to get all geneData 
keys (e.g., “ABE” and others) that correspond to GeneDrugRelation items with A and 

B. Then, it searched geneData mapping to get the detailed GeneDrugRelation items. An 

example explaining how GeneDrugRelationKeyMapping supports wildcard query operations 

is shown in Figure 5.

3. RESULTS

3.1 Evaluation

To evaluate the solutions, we inserted the two datasets (i.e., 200 and 1,000) to the blockchain 

either 1 or 200 records at a time to simulate different insertion speeds and generated 

60 queries to compute the query time required by each solution. Our evaluation criteria 

specified that: (a) a solution must complete the insertion of all records, (b) a solution 

must provide 100% correct query results, and (c) the speed of insertion and query is 

the most important feature, followed by storage and memory cost, and then scalability. 

Therefore, after checking the completeness and correctness of the solutions, we measured 

the insertion times, query times, disk storage, and memory usage, and then normalized these 

measurements to raw scores from 0 to 100. The raw scores were then weighted-summed to 

a subtotal score (insertion time = 35%, query time = 35%, disk usage = 15%, and memory 

usage = 15%). Next, the subtotal scores were weighted-summed to an overall score, with 

the weights corresponding to the number of test records (i.e., 200 and 1,000) to account for 

scalability. Finally, the overall scores for inserting 1 and 200 records at a time were averaged 

to generate the final scores.

The compute environment for evaluation was iDASH 2.0 [44], a Health Insurance Portability 

and Accountability Act (HIPAA) compliant platform based on Amazon Web Services 

(AWS) and supported by the UCSD Health Information Services and Department of 

Biomedical Informatics. We set up 24 Virtual Machines (VMs) to evaluate the solutions. 

Each VM had 2 CPU cores, 8 GB of RAM and 100 GB of storage; Ubuntu was the 

operating system.

3.2 Measurement Results and Final Scores

Results and the scores are summarized in Table 2 and Figure 6, respectively. As shown in the 

tables, inserting 200 records at a time reduced insertion time per record significantly. Also, 

while the insertion time increased linearly with the number of records in the test data, query 

times were more consistent, which could reflect the blockchain characteristic that writing 

is relatively slow (because it requires consensus block creation), while reading is fast (only 

local blocks are searched). The required disk space (< 40 MB) and memory (< 300 MB) 

were relatively small. In terms of final scores, the Query Index method performed the best, 

followed by the Index Everything method. The Dual-Scenario Indexing method used more 

memory, and its insertion/query time and disk usage were comparable with those of other 

solutions.
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3.3 Comparison of the Three Proposed Methods

To further understand the differences between our three proposed methods, we analyzed the 

results in Table 2 for each of our proposed methods as follows. The storage usage for all 

solutions is similar (approximately 20 – 35 MB) and negligible when considering modern 

storage devices (e.g., 100 GB in our experiments). Therefore, our analysis focused on the 

other three measurements (i.e., runtime of insertion, runtime of query, and memory usage).

1. Query Index. This method constructed a hash table for the queries and provided 

superior runtimes of query (23 – 24 seconds for 60 queries, or about 0.5 seconds 

per query, the fastest in all different scenarios regardless of the number of records 

per insertion). It also had relatively small memory usage (like the best solution, 

Index Everything, in all scenarios). For the runtime of insertion, it performed 

better when one record at a time was inserted, while it was comparatively slower 

when multiple records were inserted at a time.

2. Index Everything. This approach indexed all possible queries ahead in a mapping 

table and performed extremely well when multiple records at a time were 

inserted (only 24% - 42% of the time used by the other two methods). It 

also used the least memory in all combination scenarios. However, this method 

required more insertion time when one record at a time was inserted. Also, the 

query time was slightly slower than that for the Query Index method.

3. Dual-Scenario Indexing. This solution created two mapping structures to store 

the complete and wildcard queries and provided the shortest insertion time when 

one record at a time was inserted. The runtimes of insertion for multiple records 

at a time were comparable to those for the Query Index method. It required more 

time to query and more memory usage when compared to the other two methods.

To summarize, different methods can be more suitable for different applications and 

scenarios. To reach a fast insertion time, Index Everything (inserting multiple records at 

a time) and the Dual-Scenario Indexing (inserting one record at a time) would be more 

appropriate. To optimize query time, Query Index would be the best method. To preserve 

memory usage, both Index Everything and Query Index approaches could be considered.

4. DISCUSSION

To benchmark and understand the potential of the decentralized gene-drug relationship 

sharing system on blockchain with smart contracts, we developed three methods: Query 

Index, Index Everything, and Dual-Scenario Indexing. These methods applied different 

techniques (hash, comprehensive, and complete/wildcard mapping) to index the queries. 

The concepts of the proposed methods were straightforward, and we demonstrated their 

feasibility. Our results can serve as the basis for future researchers to improve their 

blockchain-based solutions in different applications (e.g., requiring faster insertion time, 

needing shorter query time, or preferring smaller memory usage).

Although the speed of logging and querying gene-drug outcome records on blockchain 

via smart contract is not comparable with that of a traditional database and may limit 

the real-world applications, we believe the benefits of our proposed solution (i.e., no single-
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point-of-failure, immutable data, guaranteed data provenance, transparent software, and an 

unchangeable program) are important to the sharing of the gene-drug evaluation results. Our 

work also provides a contribution to the broader perspective of benchmarking blockchain 

platforms for non-healthcare applications and implementations [45 46].

During the development and evaluation of solutions, we identified that the rapidly evolving 

blockchain and smart contract platform could create challenges. Looking at the example of 

Ethereum, the platform is implemented in using the GO programming language and has 

had more than 150 releases since its first release in 2014 (i.e., about 2 weeks per release 

on average) [47]. Therefore, the performance of our methods may be improved when the 

underlying blockchain platform becomes more mature.

Our observations are limited to the results based on Ethereum smart contract implementation 

using PoA consensus protocol. Although the general concept of the simulated evaluation 

for the pharmacogenetics gene-drug sharing application can be adopted by using other 

blockchain platforms such as Hyperledger Fabric and R3 Corda, more experiments need to 

be conducted to compare the speed and scalability of different blockchain platform options. 

Also, evaluations on a larger dataset and more blockchain nodes can further reveal the 

scalability performance of this application.

Moving forward, this benchmark study only simulated multiple-site record sharing, and 

real deployments of the suggested solutions can be the next step. For example, the 

implementations can be packaged into Docker [48] image files to simplify the process of 

adopting our proposed approaches. Additionally, our benchmarking is limited to evaluating 

the performance of our methods on pharmacogenetics data; investigating other aspects of 

blockchain (e.g., governance, adjudication, and permission controls) could also extend this 

study.

5. CONCLUSION

We demonstrated that sharing gene-drug interaction data using smart contracts on 

blockchain technology is feasible. Specifically, we can store 4,000 gene-drug evaluation 

results from 4 sites within 1 minute and query all these pairs within 0.5 seconds. We believe 

these results can serve as benchmarks for future blockchain-based healthcare, genomic and 

biomedical applications.
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HIGHLIGHTS

• We developed blockchain-based methods to share gene-drug interactions.

• We showed the feasibility to using blockchain to share data among 

institutions.

• Our results suggested that blockchain can enhance the process of drug 

development.
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SUMMARY TABLE

What was already 
known on the topic

• Adoption of blockchain distributed ledger technology for genomics 
and healthcare applications is on the rise

• Blockchain and smart contracts are increasingly being used in 
biomedical research applications

What this study 
added to our 
knowledge

• Benchmarking results of novel blockchain-based methods for 
institutions to share patient outcomes of gene-drug interactions may 
promote data sharing and thus enable personalized medicine

• The results can eventually support future blockchain-based 
healthcare, genomic and biomedical applications
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Figure 1. 
Architecture of storing the patient outcome of gene-drug pairs. A. Centralized architecture 

(central server) where the centralized gene-drug outcome server can lead to a single-point-

of-failure. The central server can change the records from other sites and can even modify 

the source of evaluation results. B. Decentralized architecture (blockchain) without a central 

server that can eliminate the possibility of a single point-of-failure. By adopting blockchain 

technology, the data are immutable and source-verifiable.
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Figure 2. 
Programs used to store and query patient outcomes for gene-drug pairs. A. Traditional 

off-chain program that is non-transparent and mutable. B. On-chain smart contracts that are 

transparent and immutable among the sites.
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Figure 3. 
Example of two records for the Query Index method.
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Figure 4. 
Visual depiction of the scheme of the Index Everything method (∣∣ denotes integer 

concatenation) on the left, and an example mapping data structure counting side effects 

for each unique gene/variant/drug triple on the right. Structures like the one on the right 

exist for all observation categories: improved, unchanged, deteriorated, suspected relation, 

and side effect.
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Figure 5. 
Key data store structure of the Dual-Scenario Indexing method.
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Figure 6. 
Final scores for each solution. The results were weighted based on the number of records in 

the test data (i.e., 200 records in red and 1,000 records in blue) and were averaged from the 

results of inserting 1 or 200 records at a time.
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Table 1.

Description of a record in our dataset. The dataset is available in [17].

Field Possible Values Example

Gene Name 127 unique drug names [4] HLA-B

Variant Number 1 to 99 57

Drug Name 226 unique drug names [4] abacavir

Outcome Improved, Unchanged, or Deteriorated Improved

Suspected Gene Outcome Relation Yes or no Yes

Serious Side Effect Yes or no No
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Table 2.

Results of each solution with different combination scenarios of records in test data (i.e., 200 versus 1,000) 

and number of records inserted at a time (i.e., 1 versus 200). The Runtime of Query is the time to execute 

60 different queries. Note: A software update of the Dual-Scenario Indexing (marked with “*”) was applied 

after the competition deadline to produce correct results with performance no worse than that of the original 

submission on one record per insert, and a negligible increase in insertion speed on 200 records per insert; 

measured query speed increased in all cases since the correct results had smaller size.

Number
of Total
Records
per Site

Number of
Records

per Insert
Solution Complete Correct

Runtime of
Insertion

(s)

Runtime of
Query

(s)

Storage
Usage
(MB)

Memory
Usage
(MB)

200

1

Query Index Yes Yes 212.75 23.00 21.18 56.54

Index Everything Yes Yes 226.75 28.00 21.23 56.44

Dual-Scenario Indexing Yes Yes* 203.00 30.00 21.19 106.11

200

Query Index Yes Yes 13.25 23.00 19.49 90.32

Index Everything Yes Yes 4.75 28.00 19.46 73.26

Dual-Scenario Indexing Yes Yes* 11.25 29.50 19.50 106.06

1,000

1

Query Index Yes Yes 1006.75 24.00 31.44 59.41

Index Everything Yes Yes 1157.25 29.00 32.98 58.87

Dual-Scenario Indexing Yes Yes* 1003.50 53.00 31.36 226.14

200

Query Index Yes Yes 51.50 24.00 24.99 110.10

Index Everything Yes Yes 12.25 29.00 24.09 103.72

Dual-Scenario Indexing Yes Yes* 49.75 53.00 25.11 225.73
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