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Neurorobots are robots whose control has been modeled after some aspect of the
brain. Since the brain is so closely coupled to the body and situated in the environment,
Neurorobots can be a powerful tool for studying neural function in a holistic fashion. It
may also be a means to develop autonomous systems that have some level of biological
intelligence. The present article provides my perspective on this field, points out some of
the landmark events, and discusses its future potential.
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INTRODUCTION

I have been involved in Neurorobotics for over 20 years now, long before the field had a name. I
thought I would take this time and space to reflect on how the field got started and where I think
it is heading. Many believe Neurorobotics got its start with Grey Walter’s Tortoises1, which were
built prior to the digital age and had rudimentary light sensors and collision detectors controlled
by a simple analog circuit (Figure 1). However, these simple brains produced seemingly complex
behavior that we might call intelligent.

Another seminal moment for the field was the Vehicles thought experiments by famed
neuroanatomist Valentino Braitenberg (Braitenberg, 1986). Each chapter of this short book
introduced a simple robot or vehicle that was a lesson in neuroscience. For example, by connecting
the left light sensor to the right motor of these imaginary robots, and vice versa, Braitenberg
described the difference between contralateral and ipsilateral connections and their effect on
behavior. Using Vehicles, he introduced concepts of sensorimotor loops, inhibition and valence
with these simple thought experiments.

I also would argue that the work of Rodney Brooks in the early 90s was important for the
establishment of Neurorobotics. At this time, Good Old Fashion AI (GOFAI) was dominating
the field of ‘‘intelligent’’ robots (Kuipers et al., 2017). Following GOFAI, these robots had a
representative real-world model, a reasoning engine, and rule-based systems to guide the robot’s
behavior. Brooks wrote two very influential articles that turned the field on its head: Intelligence
without reason (Brooks, 1991a) and Intelligence without representation (Brooks, 1991b). The idea
was similar to Grey Walter in that sensorimotor integration led to seemingly natural behavior.
Brooks introduced the subsumption architecture as a means to trigger primitive behaviors and
arbitrate between them. Their robots resembled insects as they scurried around avoiding obstacles,
finding objects, and responding to changes in the environment. Later on, the subsumption
architecture was used to create robots that moved like humans or interacted naturally with humans.

1For a truly delightful video of these tortoises in action, see: https://www.youtube.com/watch?v=lLULRlmXkKo
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FIGURE 1 | Grey Walter’s tortoises. Left. Picture taken from http://
cyberneticzoo.com. Right. Photo taken from http://www.extremenxt.com.

Unlike other robots at the time they were ‘‘Fast, Cheap and
Out of Control’’2. Just like biological organisms. Their work
made the point that the selection and interaction of low level
processes could lead to intelligent behavior. From a neuroscience
point of view, this has similarities to subcortical processing of
homeostatic behaviors, such as autonomic activities, hunger,
body weight regulation, neuroendocrine functions, reproductive
behavior, aggression and self-preservation (Parvizi and Damasio,
2001; Venkatraman et al., 2017).

This is the backdrop (circa 1997) of where my neurorobotics
story begins. I was a newly minted Ph.D. trying to figure out
where I wanted to go with my research. At the time, I was
working with Giorgio Ascoli on the importance of dendritic
morphology (Ascoli et al., 2001a,b). Giorgio is a brilliant
scientist and I was a fairly skilled computer programmer. So,
the combination of the two of us led to early work generating
and visualizing dendritic trees. Although my Ph.D. was in
Computational Neuroscience, I had a background in computer
science. More specifically, I worked on real-time and embedded
systems in industry before entering academia. As exciting as
the field of computational neuroanatomy and neuroinformatics
was, I was more interested in the behavior of organisms under
natural conditions. I thought that my industry experience might
be applicable to a new line of research.

Late in 1998, I saw an opening for a postdoctoral fellow
position for the Keck Machine Psychology Laboratory at The
Neurosciences Institute in La Jolla, California. I was intrigued by
this idea and reached out to the point of contact, Olaf Sporns.
After an encouraging conversation with Olaf, he suggested that I
should visit The Neurosciences Institute for an interview.

The Neurosciences Institute was a unique place. The director
was Nobel Laureate Gerald Edelman. In addition to his work
in immunology, which led to the Nobel Prize, he introduced
a theory of the nervous system called Neural Darwinism:
The Theory of Neuronal Group Selection (Edelman, 1987,
1993). The theory suggested that there was selection of neural
circuits during development through synaptic pruning, and
selection of groups of neurons during adulthood through
reentrant connections. Important for neurorobotics was the
notion of value systems to tie environmental signals to neuronal

2‘‘Fast, Cheap & Out of Control,’’ a film by Errol Morris. Distributed by Sony
Pictures Classics, 1997.

groups, which led to the selection of behaviors important
for survival. Because of this linkage, or as Edelman would
say, ‘‘The brain is embodied, and the body is embedded in
the environment,’’ their group developed the Darwin series
of Brain-Based Devices (Reeke et al., 1990; Edelman et al.,
1992). Another phrase that drove this work, was ‘‘the world
is an unlabeled place,’’ which meant that perceptual categories
must be selected through experience, rather than supervision.
These Brain-Based Devices were robots3 with large-scale neural
networks controlling their behavior (Figure 2). However, these
were not the feedforward input layer→hidden layers→output
layer neural networks that were popular then and became the
deep neural networks of today. The Brain-Based Device’s neural
networks had anatomical details that resembled biological neural
networks. There were sensory streams, top-down connections,
long-range connections between regions that were bi-directional,
as well as local lateral excitation and inhibition within brain
regions.

By the time I visited The Neurosciences Institute, they had
already developed Darwin V, a Brain-Based Device with an
artificial nervous system that could learn preferences and predict
the value of objects (Almassy et al., 1998). This was what I
dreamed of doing, but they had a 10-year head start over me, and
they were like no other group at the time.

My visit to The Neurosciences Institute was almost too
good to be true. I bought into the overall mission of the
institute that Edelman had created, and I enjoyed discussing
research with Sporns and his colleagues. It didn’t hurt that
La Jolla was beautiful, especially for someone visiting from
the East Coast of the United States during December. But,
one thing that helped seal the deal was meeting Jim Snook,
their engineer on staff. Jim was a self-taught engineer who was
both creative and talented. I can’t say enough how invaluable
a person like this is for running a neurorobotics lab. I knew
if I joined their team, I could concentrate on the science
knowing that there was someone who could keep the machines
running (see Figure 3). I have been extremely fortunate over
the years to work with some very talented engineers, including
Jim Snook, Donald Hutson, Doug Moore, Brian Cox and Liam
Bucci. Which is good because over the years I broke a lot of
machines!

Needless to say, I jumped at the opportunity, moved out to
San Diego, and began my career in the field of Brain-Based
Devices, cognitive robots and neurorobotics.

EARLY YEARS

My coming out party in this research area was the Simulation
of Adaptive Behavior (SAB) conference in 2000. We reported
on Darwin VII, our brain-based device that was capable of
perceptual categorization (Krichmar et al., 2000). At this time,
there were just a few like-minded research groups investigating
how embodied computational neuroscience models could be

3Because Brain-Based Devices were adaptive and stochastic, we were not
allowed to call them robots, which had more fixed behavior. At least that was
the idea. It sometimes caused confusion and even derision.
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FIGURE 2 | Darwin IV Brain-Based Device. Left. Neural network model to control Darwin IV’s behavior. Right. Darwin IV in a conditioning task. Adapted from
Edelman et al. (1992) with permission.

FIGURE 3 | The Neurosciences Institute Build-A-Brain team (circa 2007). The team was a mix of PhD research fellows (Jason Fleischer, Jeff Krichmar, Jeff McKinstry,
Anil Seth, Botond Szatmary), engineers (Brian Cox, Donald Hutson, Doug Moore), and student interns (Thomas Allen, Alisha Lawson).

used as a tool for understanding brain and behavior. For example,
Tony Prescott and his group at the University of Sheffield was
developing robotic models of action selection based on the basal
ganglia (Girard et al., 2003; Prescott et al., 2006). This group was
also studying whisking in the rodent, and developing a robotic
sensorimotor circuit with biomimetic whiskers (Pearson et al.,
2011). Figure 4 shows their Whiskerbot, which was completed
around 2005.

Also related to neurorobotics was the work by Dario
Floreano’s group on evolutionary robotics and Rolf Pfeifer’s
group on morphological computation.

Nolfi and Floreano (2000) established the field of
Evolutionary Robotics. They used evolutionary algorithms
to evolve neural networks that supported a range of behaviors
from navigating mazes to developing predator-prey strategies
(Floreano and Keller, 2010). Figure 5 shows the strategy: (1) A
genome defines the neural network controller, which has input
neurons receiving inputs from sensors, and output neurons
that control actuators. These genomes could directly define
the weights or indirectly define plasticity and topology rules.
(2) The fitness was based on the robot’s performance in a
task. (3) The best neural network controllers were selected
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FIGURE 4 | Whiskerbot from the University of Sheffield. Whiskerbot had two
active whiskers and a detailed neural network model to convert whisker
deflection signals into simulated spike trains. Adapted from Pearson et al.
(2011) with permission.

and (4) subject to mutation and/or crossover. (5) From this
selection, a new population of neural network controllers was
generated.

Pfeifer and Bongard (2006) had the insight that the ‘‘Body
Shapes the Way We Think’’. They suggested that biological
organisms perform morphological computation, that is, certain
processes are performed by the body that would otherwise be
performed by the brain. By ingenious use of body plans and
materials, they showed how the morphology of the robot could
lead to intelligent behavior with minimal neural control. For
example, their quadruped puppy had a small neural network to
control gaits, but the main control of the gaits came from the
springiness of its hips and knees, and the amount of friction
on its feet (Hoffmann et al., 2012). I remember visiting Pfeifer’s

AI lab in Zurich and talking with his students. Often their
most important design consideration was choosing the proper
materials. In the case of the puppy, they chose a material
used to cover skis that had just the right amount of friction.
The combination of springy legs and sticky feet allowed the
puppy to adapt its gait over a wide variety of terrains due to
the morphology’s dynamic interaction with the environment,
rather than a complex control policy. The movement of the
puppy moved far more naturally than other legged robots at this
time.

Despite these advancements in the field, the Darwin series
of automata was an outlier. However, it should be mentioned
that other groups had similar goals to produce brain inspired
robots and develop architectures that support this effort. For
instance, the Computational Embodied Neuroscience approach
(Caligiore et al., 2010), whose aim was to develop systems level
models that account for an increasing number of experiments,
while avoiding at the same time to build ad hoc models which
account for only specific single experiments. Another related
approach is Cognitive Developmental Robotics (Asada et al.,
2009), which is a synthetic approach that developmentally
constructs cognitive functions. In these approaches, and forgive
me if I neglect other related approaches, the simulations
are constrained by our knowledge about cognitive science,
neuroscience, and psychology, and experiments are carried
out on a physical embodied system situated in the real
world.

Our own group followed up to the SAB perceptual
categorization work by demonstrating that Darwin VII was
capable of first and second order conditioning with visual
and auditory stimuli (Krichmar and Edelman, 2002). The
neural network that controlled its behavior was approximately
20,000 neurons and nearly 5,00,000 synaptic connections, all of
which had to updated in real-time to keep up with the active
vision and sensors. Invariably, when I gave talks on Darwin
VII and other brain-based devices at this time, the question

FIGURE 5 | Evolutionary neural network controllers for robots. Adapted from Floreano and Keller (2010) with permission.
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would come up as to why we needed so many neurons. Such
behavior could be realized with a far smaller neural network. For
example, work by Floreano and Keller (2010) on evolutionary
robotics showed that small neural networks were sufficient
to support interesting behaviors. Moreover, the dynamics of
passive walkers showed that complex behavior, such as bipedal
locomotion could be observed with little or no control (Collins
et al., 2005).

Although the size of the neural network often depends on
the problem domain, there are practical and theoretical reasons
for constructing and analyzing large-scale neural networks when
studying the brain using embodied models. The practical reason
is that if you want to preserve neuroanatomical pathways, such
as in a neurorobotic vision experiment, you will need many
neurons. For example, our model of the visual cortex that
allowed us to test theories of feature binding and invariant
object recognition required a neuron at every camera pixel (or
receptive field) for each feature (color opponency and orientation
selectivity). This resulted in a large-scale neural network to
encode environmental features (Seth et al., 2004b). Compare
that to our neural network model that encoded tactile features
with whiskers (Seth et al., 2004a). This model required an order
of magnitude smaller neural network to encode environmental
features.

The theoretical reason is if you want to use neurorobots
to study the brain, you need to consider both the neural
dynamics and the functional neuroanatomy. When I was
at the Neurosciences Institute, Edelman would sometimes
ask our group ‘‘If I held a gun to your head and asked
you what is the most important feature of the brain, what
would be your answer?’’ Eugene Izhikevich, who was my
co-worker and colleague at the time answered the neuron
(Izhikevich, 2004). My answer was always anatomy. The brain
can operate over a wide-range of neural dynamics. But, if
a key brain area is lesioned through stroke for example,
it can render a person to a vegetative state. For neural
modeling, preserving anatomical projections leads to large scale
heterogeneous architectures. Having large groups of neurons
with biophysical properties leads to interesting neural dynamics,
as was observed in our large-scale model of the hippocampus
and surrounding regions (Krichmar et al., 2005a; Fleischer
et al., 2007). In this model, the complex interplay between
the entorhinal cortex and hippocampal subfields resulted in
the reliance of different functional pathways at different points
in the robot’s learning. Both the neuronal dynamics and
anatomical pathways were necessary for realistic brain responses.
Although this fidelity results in highly complex networks, it
does allow one to test theories of the brain and make better
predictions.

Interestingly, the question of network size does not come up
anymore. With the advent of neuromorphic hardware that can
support brain-scale neural networks at very low power (Indiveri
et al., 2011; Merolla et al., 2014), and the resurgence of deep
neural networks with many hidden layers (LeCun et al., 2015),
large-scale neural networks are now in vogue. It turns out that
size, in the form of many layers, is necessary to solve more
challenging problems. In the brain, many anatomical regions,

diverse topologies, and neuron types are necessary to handle real
world challenges.

START OF A COMMUNITY

Over the next several years a neurorobotics community emerged
in part due to workshops and special journal issues on the
topic. I was fortunate enough to participate in several of
these events. In 2004, Anil Seth, Olaf Sporns and I organized
a special session on ‘‘Neurorobotic Models in Neuroscience
and Neuroinformatics’’ at the International Conference on the
SAB (Seth et al., 2005). To introduce the session, we stated
that a neurorobotic device has the following properties: (1) It
engages in a behavioral task. (2) It is situated in a structured
environment. (3) Its behavior is controlled by a simulated
nervous system having a design that reflects, at some level,
the brain’s architecture and dynamics. The session included
Auke Ijspeert’s research on evolving neural networks for a
robotic salamander (Ijspeert et al., 2005, 2007). In this research,
different motor patterns (i.e., swimming or walking) emerged
due to the interaction between brain and body with the
specific environment (i.e., water or land). Olaf Sporns and Max
Lungarella showed how embodiment can alter and improve the
information processing of a neural system (Lungarella et al.,
2005). Brain-inspired navigation has made many contributions
to this neurorobotics by not only suggesting how head direction
cells, place cells, and grid cells contribute to rodent navigation,
but also by demonstrating how these systems can lead to robot
navigation. In that vein, there were several articles on the topic
(Arleo et al., 2004; Banquet et al., 2005; Chavarriaga et al.,
2005).

At this time, we introduced Darwin X, a highly detailed
model of the hippocampus and surrounding areas that supported
spatial and episodic memory in a Brain-Based Device4 (Krichmar
et al., 2005a,b). Like many of these embodied navigation models,
we used the robot to examine how neural activity gives rise
to goal-directed behavior5. The robot’s task was navigating
a dry variant of the Morris water maze (Figure 6). Similar
to a rat, the robot was able to create routes to the hidden
platform. During its experience, place cells emerged in the
simulated hippocampus. What made this work special was the
sheer size of the network (∼100,000 neurons and 1.5 million
synapses), which had to run in real-time. Because of this
size and complexity, we had to develop novel methods for
analyzing large-scale networks. In our case, we wanted to
know what neural activity led to the firing of a place cell.
In one article, we developed a method called backtracing to
recursively trace back from the onset of a hippocampal place
response to the sensory data that led to this response (Krichmar
et al., 2005a). The other article was one of the first studies
applying Granger causality to a neural network, where we

4OK. It’s a robot. Old habits die hard.
5As much as I think the hippocampus and spatial navigation is interesting,
I do believe it’s over studied and there are many interesting, untapped
brain regions and behaviors that need study. However, like the quote in
Godfather III, ‘‘Just when I thought I was out, they (my students, postdocs,
and collaborators), pull me back in.’’
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FIGURE 6 | Darwin X and a hippocampal model of episodic memory.
(A) Overall neural network architecture included neuronal groups for the visual
“what” and “where” streams (V1→V2/4→IT, V1→V2/4→Pr, respectively),
head direction system (HD), reward system (R+, R−, S), and hippocampus.
(B) Subfields within the hippocampus neural group. Arrows denote synaptic
projections between sub-groups. (C) Schematic of a dry variant of the Morris
water maze. Colors denote landmarks, numbers denote starting positions of
trials. (D) Darwin X Brain-Based Device. The hidden platform was a piece of
black construction paper, which Darwin X could not see with its camera, but
could detect with a downward facing IR sensor.

analyzed what simulated entorhinal cortex, dentate gyrus, and
CA3 activity led to a CA1 place cell response (Krichmar et al.,
2005b). One key finding from this work was showing that
the trisynaptic pathway (EC→DG→CA3→CA1) was relied on
more for learning new places and routes, and that the perforant
pathway (EC→CA1) was relied on more for recalling familiar
places and routes. Another key finding was that this experiment
demonstrated degeneracy at multiple levels. Degeneracy is the
ability of elements that are structurally different to perform
the same function or yield the same output, and has been
shown throughout biological systems (Edelman and Gally, 2001).
Darwin X showed degeneracy at the: (1) Behavioral level. No
two Darwin X’s solved the maze in the same way, but they
all solved the maze. We ran Darwin X through the maze
protocol nine different times, with only slight differences in
the connectivity of its neural network. Some Darwin X’s went
directly to the platform, some bounced of walls to get to
the platform. Some were perseverant, some were exploratory.
(2) Neural level. We examined place cell activity on different
trials where Darwin X was going through the same place on the
same heading. Even under these similar conditions, a different
set of neurons led to the firing of this place cell. This could only
be shown in a computational model where we had access to the
complete artificial brain and in a robotic system where unreliable

sensing and environmental noise changes context. (3) Systems
level. Darwin XI, which navigated a plus maze (Fleischer and
Krichmar, 2007; Fleischer et al., 2007), received sensory input
from its camera (vision), whiskers (somatosensory), compass
(head direction) and laser range finder (depth/distance). Darwin
XI’s spatial memory was multimodal and degenerate. Even
when one or more of its sensory modalities were lesioned,
Darwin XI’s behavior and place cell activity remained stable.
In addition, system level tools such as Granger Causality and
Dynamic Causal Modeling can reveal functional pathways in
complex models (Friston, 2009). In the case of Darwin X
and IX, Granger Causality showed the importance of the
trisynaptic pathway when learning a novel environment, and the
reliance on the perforant pathway when the environment was
familiar.

Another landmark event for me was meeting Hiroaki
Wagatsuma. This led to the organization of a series of workshops,
articles, and discussions. Hiro coerced me into co-editing a book
on the topic, which was a laborious yet rewarding experience,
that eventually led to a book called, ‘‘Neuromorphic and Brain-
Based Robotics’’ (Krichmar and Wagatsuma, 2011). This book
covered a wide range of topics from neuromorphic designs, to
brain architectures for robots, to philosophical considerations.
There were essays on the ethics of using these robots and
treating these robots as sentient entities as they become more
sophisticated, as well as a chapter on using neurorobots to study
consciousness.

By now, Neurorobotics was becoming more mainstream.
The IEEE Robotics and Automation Magazine devoted an issue
to the topic (Browne et al., 2009). There were occasionally
special sessions on the topic at major IEEE robotics conferences.
There were government backed consortiums devoted to studying
and developing cognitive robots, such as the European Union’s
iCub project (Metta et al., 2010), the Cognitive Developmental
Robots initiatives in Japan (Asada et al., 2009), and the
Computational Embodied Neuroscience approach (Caligiore
et al., 2010). The European Union’s Human Brain Project,
which is a large-scale research project for understanding the
nervous system, included a Neurorobotics division headed up
by Alois Knoll and Florian Rohrbein (Falotico et al., 2017). The
Australian RatSLAM team was reporting results with neuro-
inspired algorithms that were as good or better than state of the
art localization and mapping by conventional robots (Milford
et al., 2016).

Also, important around this time was the reemergence of
neuromorphic engineering (Krichmar et al., 2015). Similar to
the goal of neurorobotics, neuromorphic engineering was using
inspiration from the brain to build devices, in this case computer
architectures and sensors. Because these computers were
specifically designed for spiking neural networks, algorithms
that controlled neurorobots were ideal for these platforms. Our
group demonstrated that a large-scale spiking neural network
model of the dorsal visual stream could lead to effective obstacle
avoidance and tracking on a robot (Beyeler et al., 2015). Working
with IBM’s low-power TrueNorth (TN) neuromorphic chip
(Esser et al., 2016), we demonstrated that a convolutional neural
network could be trained to self-drive a robot on a mountain
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FIGURE 7 | A self-driving robot using deep convolutional neural networks on IBM’s TrueNorth (TN) neuromorphic hardware. (A) Photograph was taken in Telluride,
Colorado where the robot autonomously traversed mountain trails. From left to right are Rodrigo Alvarez-Icaza (IBM), Jacob Isbell (University of Maryland), Tiffany
Hwu (University of California, Irvine), Will Browne (Victoria University of Wellington), Andrew Cassidy (IBM), and Jeff Krichmar (University of California, Irvine). Missing
from the photograph is Nicolas Oros (BrainChip). (B) On the left, the connectivity on the IBM TN neuromorphic chip. On the right, an image of IBM TN NS1e board
used in the experiments. (C) Data pipeline for running the self-driving robot. Training was done separately with the Eedn MatConvNet package using Titan X GPUs.
During testing, a Wi-Fi connection between the Android Galaxy S5 and IBM NS1e transmitted spiking data back and forth, using the TN Runtime API. Figure
adapted from Hwu et al. (2017) with permission.

trail (Hwu et al., 2017). The robot and TN chip were all
powered by a single hobby level nickel metal hydride battery
(Figure 7)6. The circuit diagram and pipeline shown in
Figure 7 can generalize to other hardware and neurorobot
applications.

Because of their low-power, event-driven architectures,
recent developments in neuromorphic hold great promise for
neurorobot applications. In addition to our work on IBM’s
chip, SpiNNaker has been used in a robot obstacle avoid and
random exploration task (Stewart et al., 2016). New chips are
being developed, such as Intel’s Loihi that will support embedded
neuromorphic applications (Davies et al., 2018). In addition
to running neural networks on specialized hardware, very low
power neuromorphic vision and auditory sensors are being
developed (Liu and Delbruck, 2010; Stewart et al., 2016). Similar
to biology, these sensors only respond to change or salient events,

6So, it violated my rule of the importance of neuroanatomy. Call me a
hypocrite. Still, it was a first for TrueNorth and one of the few demonstrations
of a neuromorphic chip embedded in a closed loop system. Moreover,
it was pretty cool to see IBM’s multi-million dollar piece of hardware
cruising down a mountain trail, attached on the back of our robot
with Velcro and connected to the robot’s power source with a jumper
cable.

and when they do respond, it is with a train of spikes. This
allows seamless integration of these sensors with spiking neural
networks, and their event-driven nature leads to power efficiency
that’s ideal for embedded systems (i.e., robots!).

FRONTIERS IN NEUROROBOTICS

A landmark event for the community was the inaugural issue
of Frontiers in Neurorobotics in 2007, which was founded
by Alois Knoll and Florian Rohrbein. Finally, the field had a
dedicated platform to exchange ideas, and an official name. The
initial year not only had articles from many of the pioneers
in this field, but it also showed the breadth of the field.
Tani (2007) explored top-down and bottom-up influences on
sensorimotor couplings using recurrent neural networks in a
humanoid robot. Angelo Cangelosi and Stefano Nolfi, who are
experts in evolutionary algorithms, evolved a neural controller
for reaching and grasping (Massera et al., 2007). Goodman
et al. (2007) introduced their virtual neurorobotic environment,
which could support very large-scale neurobiologically inspired
networks. Philippe Gaussier’s group described their latest results
on hippocampal inspired navigation on robots (Cuperlier et al.,
2007). Finally, Steve Potter used real neurons in a multielectrode
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array to control a robotic arm that painted artwork (Bakkum
et al., 2007).

FUTURE OUTLOOK

Neurorobotics and cognitive robotics is now a vibrant, active
field. Looking at some of the most recent articles in Frontiers in
Neurorobotics, many of the same issues, such as motor control,
navigation, mapping and developing neural networks remain.
I personally would like us as a community to focus on more
general cognition. Too often, present company included, we
focus on a particular brain area or behavior. However, biological
organisms are the ultimate multi-taskers and can readily adapt
to new situations. Many of us, again present company included,
preach on coupling brain, body and environment, but focus too
much on the brain. The same could be said of neuroscience
where currently the focus is on detailed studies of brain
components and neurotechnology to gather more data. In
contrast, Krakauer et al. (2017) point out that the goal of
neuroscience is to understand behavior, thus we should be
studying the brain in the context of naturalistic behaviors.
Many roboticists focus too much on the body and simplify
the robot’s behavior. Overall, the field needs to take a more
holistic approach. Brains and bodies co-evolved to develop more
successful behaviors in a dynamic, challenging world. However,
the body often leads the brain, and its morphology is critical to
what we call intelligence (Pfeifer and Bongard, 2006; Krichmar,
2012). The notion of ‘‘morphological computation’’ in which
processes are performed by the body and its exploitation of the
environment, rather than by a central control system (Pfeifer
and Bongard, 2006), could greatly impact how we understand
the brain, body and environment (Clark, 1996), and how we
design future neurorobots. As discussed, the morphology of
passive walkers relieved the necessity of complex control policies
(Collins et al., 2005), and the materials used in the Whiskerbot
had appropriate dynamics for recognizing objects during active
whisking (Prescott et al., 2006). Although I have presented
many examples of how embodied neural models have resulted
in interesting behaviors in the real-world, in the future we
need to develop more realistic scenarios to test our models and
take into consideration how the body plan can offload brain
processing.

Another reason to be optimistic about the future of this
field is that now anyone can be a Neuroroboticist. Although
we occasionally need to make custom robots for a particular
task, most of today’s robots can be constructed from kits, off-
the-shelf parts and 3D printing for a fraction of the cost when
I first entered this field. For example, Nicolas Oros, who was
a postdoctoral scholar in our lab, constructed a low cost, yet
highly capable robot with hobby-grade platforms and Android
smartphones as the computing and sensing engine (Oros and
Krichmar, 2013). We have used this Android based robot idea
for a wide range of research and student projects. Similar to the
days of Radio Shack, there is now an online hobbyist community
that makes it easy to obtain all the components necessary to build
sophisticated robots. Also, open source software has made it
easy to get started on programming neural networks, controlling

physical robots (e.g., Robotic Operating System7), and creating
environments for virtual robots8 These advances make it easy
for any researcher, student, or hobbyist to get started on a
neurorobotics project.

In general, this is an exciting time in Artificial Intelligence
and Artificial Neural Networks. We are seeing artificial systems
show better than human performance in certain tasks (Mnih
et al., 2015; Silver et al., 2016). In addition, deep neural networks
have been used for robotic applications with promising results.
For example, an incremental deep model that extends Restricted
Boltzmann Machines was developed to recognize the context
of scenes (e.g., objects typically found in an office, kitchen,
restroom) so that the robot can respond appropriately (Dogan
et al., 2017). In another example, a Deep Belief Neural Network
was trained for object recognition and robot grasping (Hossain
and Capi, 2016). The DBNN was able to recognize objects in
different positions and orientations by extracting object features,
and then use this information to grasp objects in real time.

However, I believe there are limitations with this current,
popular approach. It works in a limited domain, often requires
lengthy, specific training, and may not be able to address many
of the behaviors that we take for granted, but attribute to
intelligence (Larson, 2017). To address these limitations Jeff
Hawkins recently argued in IEEE Spectrum that intelligent
systems must incorporate three key features of the brain
(Hawkins, 2017): (1) Learning by rewiring; we learn quickly,
incrementally, and over a lifetime. (2) Sparse representations;
biological systems are under extreme metabolic constraints
and need to represent information efficiently. (3) Embodiment;
sensorimotor integration is observed throughout an intelligent
system. I would add (4) Value systems; extracting saliency
from the environment and responding appropriately (Friston
et al., 1994; Krichmar, 2008), and (5) Prediction; using past
experience to be more successful in the future (Clark, 2013).
In the area of value systems, models of neuromodulation have
been used to simulate value prediction and drive action selection
(Sporns and Alexander, 2002; Cox and Krichmar, 2009; Vargas
et al., 2009; Krichmar, 2013; Navarro-Guerrero et al., 2017).
Predictive coding strategies using hierarchical Bayesian systems
and recurrent neural networks have been used for robots to
develop internal models that predict movement of object and of
other robots (Park et al., 2012; Murata et al., 2017). However,
future neurorobot applications will need to address all five of
the above features in a holistic manner and demonstrate that the
robot’s behavior can generalize across multiple task domains and
over longer timeframes. I am a firm believer that neurorobotics
is the ideal methodology to address these issues and limitations.

I argue that in order to get a truly cognitive system one must
study and be inspired by the brain and body of natural systems.
Sometimes these discussions get heated. There are those that
do not feel this is a necessary requirement. However, biological
intelligence is an existence proof and currently our only working
model. Following its path by using Neurorobots will ultimately
lead to intelligent cognitive robots and assistants.

7http://www.ros.org/
8https://neurorobotics.net/
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