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(57) ABSTRACT

A method is described for routing network traffic based on
distance information to provide multiple paths that need not
have equal costs. The routing algorithm MPATH of the
present method provide loop-free routing at every instant,
without the need of internodal synchronization which spans
more than a single hop. Paths are computed using shortest
distances and predecessor information in the routing com-
putation. The use of multiple-successors allows for load-
balancing within the network. The algorithm is both distrib-
uted and scalable to large networks due to its use of only
one-hop synchronization. A number of procedures are
described by way of example, including path computation,
main table updating, neighbor table updating, and a multi-
path (MPATH) algorithm.
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{{invoked when the node comes up.}

1. Initialize all tables.

2. Run PATH algorithm.

End INIT-PATH

Algorithm PATH

{Invoked when a message M is received from neighbor k,
or an adjacent link to k has changed or when a node is

initialized.}

1. Run NTU to update neighbor tables.
2. Run MTU to update main tables.
3. For each destination j marked as changed,
Add update entry [, Dj p]?] 1o the new message M".
4. Within finite amount of time, send message M' to

cach neighbor.
End PATH
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Procedure INIT-MPATH
{Invoked when the node comes up.}
1. Initialize tables and run MPATH.
End INIT-MPATH

Algorithm MPATH
{Invoked when a message M is received from neighbor k,
or an adjacent link to k has changed.}
1. Run N7U to update neighbor tables.
2. Run MTU to obtain new D}-i and p;
3. If node is PASSIVE or node is ACTIVE A last reply arrived,
Reset goactive flag.
For each destination j marked as report-it,
a. FDJ’<— min{_Djf RDJ?}
b. If Dj’ > RDJ‘, Set goactive flag.
c. RD! ¢ Dj‘
d. Ad]d [, RD]’ p ]‘:] to message M.
e. Clear report-it flag for j.
Otherwise, the node is ACTIVE and waiting for more replies,
For each destination j marked as changed,
f. FDJ.’ «— min{D]f, FDJ-‘}
4. For each destination j marked as changed,
a. Clear changed flag for j
b. §; < {kD} < FDj}
5. For each neighbor %,
a. M"— M
b. If event is query from k, Set reply flag in M".
c. If goactive set, Set query flag in M".
d.If M" non-empty, send M" to k.
6. If goactive set, become ACTIVE, otherwise
become PASSIVE.
END MPATH

FIG. 6
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METHOD FOR LOOP-FREE MULTIPATH
ROUTING USING PREDECESSOR
INFORMATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority from U.S. provisional
application Ser. No. 60/239,420 filed on Oct. 10, 2000,
incorporated herein by reference.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with Government support under
Grant No. F30602-97-2-0338, awarded by the Air Force
Office of Scientific Research (AFOSR). The Government
has certain rights in this invention.

REFERENCE TO A COMPUTER PROGRAM
APPENDIX

Not Applicable

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention generally pertains to computing
routes within a network, and more particularly to a routing
algorithm for computing multiple loop-free routes between
each source-destination pair.

2. Description of the Background Art

The most popular routing protocols used in today’s inter-
nets are based on the exchange of vectors of distance, such
as RIP and EIGRP; or topology maps, such as OSPF. It
should be noted that RIP and a number of similar routing
protocols which are based on the distributed Bellman-Ford
algorithm (DBF) for shortest-path computation, suffer from
the bouncing effect and counting-to-infinity problems,
which limit their applicability to small networks using hop
count as the measure of distance. While OSPF and algo-
rithms based on topology-broadcast are hindered by exces-
sive communication overhead, which forces the network
administrators to partition the network into distinct areas
which are interconnected by a backbone. As a result the use
of OSPF leads to a complex solution, in terms of the required
router configuration. The routing protocol EIGRP utilizes a
loop-free routing algorithm called DUAL (Diffusing Update
Algorithm), which is based on internodal coordination that
can span multiple hops.

In addition to DUAL, several algorithms based on dis-
tance vectors have been proposed to overcome the counting-
to-infinity problem of DBF. All of these algorithms rely on
exchanging queries and replies along multiple hops, a tech-
nique that is sometimes referred to as diffusing computa-
tions, because it has its origin in Dijkstra and Scholten’s
basic algorithm.

A couple of routing algorithms have been proposed that
operate using partial topology information to eliminate the
main limitations of topology-broadcast algorithms. Further-
more, several distributed shortest-path algorithms have been
proposed that use the distance and second-to-last hop to
destinations as the routing information exchanged among
nodes. These algorithms are often called path-finding algo-
rithms or source-tracing algorithms. All of these algorithms
eliminate DBF’s counting to infinity problem, and some of
them are more efficient than any of the routing algorithms
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based on link-state information proposed to date. Further-
more, LPA (the Loop-free Path-finding Algorithm) is main-
tained loop-free at every instant.

With the exception of DASM (Diffusing Algorithm for
Shortest Multipath), all of the above routing algorithms
focus on the provision of a single path to each destination.
A drawback of DASM, however, is that it uses multi-hop
synchronization, which limits its scalability. Recently a
routing protocol referred to as MPDA (Multiple-path Partial-
topology Dissemination Algorithm) has been proposed
which is a method based on link-states that provides mul-
tiple loop-free path routing utilizing one-hop synchroniza-
tion.

Therefore, a need exists for a routing protocol which is
scalable, and provides multipath unequal cost routing based
on distance vectors, which is assured to be loop-free. The
present invention satisfies those needs, as well as others, and
overcomes the deficiencies of previously developed proto-
cols.

BRIEF SUMMARY OF THE INVENTION

The present invention is a routing method that determines
multiple loop-free paths between source and destination
pairs, which utilizes shortest distances and predecessor
information in its route computation. A variant of MPDA is
herein presented which is referred to as MPATH, which is a
routing algorithm based on distance vectors that: (a) pro-
vides multiple paths of unequal cost to each destination that
are free of loops at every instant, both in steady state as well
as during network transitions, and (b) utilizes a synchroni-
zation mechanism that spans only one hop, which makes it
more scalable than routing algorithms based on diffusing
computations spanning multiple hops. MPATH is a path-
finding algorithm, and differs from prior similar algorithms
in the invariants used to ensure multiple loop-free paths of
unequal cost. The peculiar differences between MPATH and
MPDA is a result of the differences in the kind of informa-
tion that nodes exchange.

An object of the invention is to provide a routing protocol
for computing multiple routes of unequal cost.

Another object of the invention is to provide a routing
protocol in which the routes are assured to be loop-free at
every instant.

Another object of the invention is to provide a routing
protocol that does not require internodal synchronization
which spans greater than a single hop.

Another object of the invention is to provide a routing
protocol of low complexity, wherein the requirements for
storage, time, computation, and communication are mini-
mized.

Another object of the invention is to provide a routing
protocol which always converges to a shortest distant route.

Further objects and advantages of the invention will be
brought out in the following portions of the specification,
wherein the detailed description is for the purpose of fully
disclosing preferred embodiments of the invention without
placing limitations thereon.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be more fully understood by reference
to the following drawings which are for illustrative purposes
only:

FIG. 1 is pseudocode for a path algorithm according to an
aspect of the present invention, shown with an initialization
procedure and a path routing algorithm to each destination.
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FIG. 2 is pseudocode for a neighbor table update algo-
rithm according to an aspect of the present invention.

FIG. 3A is a topology diagram within which table updates
are exemplified according to an aspect of the present inven-
tion, shown with adjacent links and neighbor tables.

FIG. 3B is a topology diagram with a distance table for
illustrating the table update procedure within an aspect of
the present invention, shown with a table of preferred
neighbors.

FIG. 4A is a topology diagram which exemplifies tie-
breaking rules according to an aspect of the present inven-
tion, shown with unit link costs.

FIG. 4B is a topology diagram which exemplifies tie-
breaking rules according to an aspect of the present inven-
tion, shown with costs of adjacent links and shortest-path
trees of neighboring nodes.

FIG. 4C is a topology diagram which exemplifies tie-
breaking rules according to an aspect of the present inven-
tion, showing a tie-break resolution.

FIG. 5 is pseudocode which exemplifies updating of the
main table according to an aspect of the present invention.

FIG. 6 is pseudocode which exemplifies multipath routing
according to an aspect of the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

Referring more specifically to the drawings, for illustra-
tive purposes the present invention is embodied in the
apparatus and methods generally shown in FIG. 1 through

FIG. 6. It will be appreciated that the apparatus may vary
as to configuration and as to details of the parts, and that the
method may vary as to the specific steps and sequence,
without departing from the basic concepts as disclosed
herein.

1. Distributed Multipath Routing Algorithm

1.1. Problem Formulation

A computer network is represented as a graph G=(N,L)
where N is the set of nodes, typically routers, and L is the
set of edges, links, connecting the nodes within the network.
A cost is associated with each link that can change over time,
but is always positive. Two nodes connected by a link are
called adjacent nodes or neighbors. The set of all neighbors
of a given node i is denoted by N'. Adjacent nodes commu-
nicate with each other using messages and messages trans-
mitted over an operational link are received with no errors,
in the proper sequence, and within a finite timeframe.
Furthermore, such messages are processed by the receiving
node one at a time in the order received. A node detects the
failure, recovery and link cost changes of each adjacent link
within a finite time.

The goal of the present distributed routing algorithm is to
determine at each node i the successor set of i for destination
j, which we denote by S/(t)eN’, such that the routing graph
SG,(t) consisting of link set {(m,n)nES,"(t), mEN} is free
of'loops at every instant t, even when link costs are changing
with time. The routing graph SG(t) for single-path routing
is a sink-tree rooted at j, because the successor sets S/(t)
have at most one member. In multipath routing, there can be
more than one member in S ji(t) therefore, SG,(t) is a directed
acyclic graph with j as the sink node. There are potentially
several SG(t) for each destination j; however, the routing
graph we are interested is defined by the successor sets
S,/ ()={kID,"()<D; (1), kEN'}, where D, is the shortest dis-
tance of node i to destination j, which is referred to as a
shortest multipath routing graph for destination j.
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After a series of link cost changes which leave the
network topology in arbitrary configuration, the distributed
routing algorithm should work to modify SG; in such a way
that it eventually converges to the shortest multipath of the
new configuration, without ever creating a loop in SG;
during the process.

Since Djk is a local variable of node k, its value has to be
explicitly or implicitly communicated to node i. If D" is the
value of Djk as known to node i, the problem now becomes
one of computing S/(O={kiD,’()<D/(1)}. However,
because of non-zero propagation delays during network
transitions, discrepancies can exist in the value of Djk and its
copy Dj;” at i, which may cause loops to form in SG(t). To
prevent loops, therefore, additional constraints must be
imposed when computing Sji. If the successor set at each
node i for each destination j satisfies certain conditions
called loop-free invariant conditions, then the snapshot at
time t of the routing graph SG (t) implied by Sji(t) is free of
loops. The solution within the present invention solves this
problem in two parts: (1) computing Dji using a shortest-path
routing algorithm called PATH, and (2) extending it to
compute Sji such that they satisfy loop-free invariant con-
ditions at every instant.

1.2. Node Tables and Message Structures

As in DBF, nodes executing MPATH exchange messages
containing distances to destinations. In addition to the dis-
tance to a destination, nodes also exchange the identity of
the second-to-last node, also called predecessor node, which
is the node just before the destination node on the shortest
path. In this respect MPATH is similar to several prior
algorithms but differs in its specification, verification and
analysis and, more importantly, in the multipath operation
described in the next section.

The following information is maintained at each node:

1. A Main Distance Table that contains D; and p;, where
D/ is the distance of node i to destination j and p, is the
predecessor to destination j on the shortest path from i to j.
The table also stores for each destination j, the successor set
S/, feasible distance FD/, reported distance RD/, and two
flags “changed” and “report-it”.

2. A Main Link Table T’ that is the node’s view of the
network and contains links represented by (m, n, d) where
(m, n) is a link with cost d.

3. A Neighbor Distance Table for neighbor k containing
D and p;’ where D, is the distance of neighbor k to j as
communicated by k, and p;’ is the predecessor to j on the
shortest path from k to j as notified by k.

4. A Neighbor Link Table T, containing the view that
neighbor k has of the network as known to i and contains
link information derived from the distance and predecessor
information in the neighbor distance table.

5. An Adjacent Link Table that stores the cost 1,” of
adjacent link to each neighbor k. If a link is down its cost is
infinity.

Nodes exchange information using update messages
which have the following format:

1. An update message can one or more update entries. An
update entry is a triplet [j,d, p], where d is the distance of the
node sending the message to destination j and p is the
predecessor on the path to j; and

2. Each message carries two flags used for synchroniza-
tion: query and reply.

1.3. Computing D/

As mentioned earlier, the strategy within the present
invention is to first design a shortest-path routing algorithm
and then make the multipath extensions to it. This subsection
describes our shortest-path algorithm PATH and the next
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subsection describes the multipath extensions. FIG. 1 illus-
trates pseudocode for an example of the PATH procedure.
INIT-PATH is called at node startup to initialize the tables,
distances are initialized to infinity and node identities are
initialized to a null value. PATH is executed in response to
an event that can be either a receipt of an update message
from a neighbor, or detection of an adjacent link cost or link
status (up/down) change. PATH invokes procedure NTU,
described in FIG. 2, which first updates the neighbor dis-
tance tables and then updates T, with links (m, n, d) where
d=D,,’-D,,,* and m=p,,’. PATH then invokes procedure
MTU, specified in FIG. 5, which constructs T by merging
the topologies T, and the adjacent links 1,”.

FIG. 3A and FIG. 3B illustrate updating of the main table
6 for an example network topology 2. FIG. 3A depicts
adjacent links and neighbor tables 4 of node i, while FIG. 3B
depicts the network topology 2 along with a table 6 of
preferred neighbors along with the main link table of node
i after merging the neighbor tables 4.

The merging process is straightforward if all neighbor
topologies T,’ contain consistent link information, but when
two or more neighbors link tables contain conflicting infor-
mation regarding a particular link, the conflict must be
resolved. Two neighbor tables are said to contain conflicting
information regarding a link, if either both report the link
with different cost or one reports the link and the other does
not. Conflicts are resolved as follows: if two or more
neighbor link tables contain conflicting information of link
(m, n), then T’ is updated with link information reported by
the neighbor k that offers the shortest distance from the node
i to the head node m of the link, such as I,/+D,, ,/=min{l,’+
D,../KEN'}. Ties are broken in a consistent manner; one way
is to break ties always in favor of lower address neighbor.
Because i itself is the head of the link for adjacent links, any
information about an adjacent link supplied by neighbors
will be overridden by the most current information about the
link available to node 1.

FIG. 4A through FIG. 4C shows the significance of the
tie-breaking rule. FIG. 4A depicts an example network
topology 12 with unit link costs. FIG. 4B illustrates node i
having the costs of its adjacent links and the shortest path
trees 14 of its neighbors p and q. The distances of nodes x
and y from i is identical through both neighbors p and q.
FIG. 4C illustrates that if MTU breaks ties in an arbitrary
manner while constructing T’, it may choose p as the
preferred neighbor for node x and choose q as the preferred
neighbor for node y, which results in a graph 16 that has no
path from 1 to j. It will be appreciated, therefore, that ties
should not be broken in an arbitrary manner.

After merging the topologies, MTU runs Dijkstra’s short-
est path algorithm to find the shortest path tree and deletes
all links from T’ that are not in the tree. Because there can
be more than one shortest-path tree, while running Dijkstra’s
algorithm ties are again broken in a consistent manner. The
distances Dji and predecessors pji can then be obtained from
T,. The tree is compared with the previous shortest path tree
and only the differences are then reported to the neighbors.
If there are no differences, no updates are reported. Even-
tually all tables converge such that D, yields the shortest
distances and all message activity ceases.

1.4. Computing S’

In this subsection, the final desired routing algorithm
MPATH is derived by making extensions to PATH. MPATH
computes the successor sets Sji by enforcing the Loop-free
Invariant conditions described below and using a neighbor-
to-neighbor synchronization.
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Let an “estimate” of the distance of node i to node j, be
referred to as the feasible distance, FDji; in a similar manner
as FD/ is equal to D;” when the network is in a stable state,
but to prevent loops during periods of network transitions, it
is allowed to temporarily differ from D,". Loop-free invariant
conditions can be expressed as follows:

FD/()=D,}(HkeEN' 1)
@

The invariant conditions (1) and (2) state that, for each
destination j, a node i can choose a successor whose distance
to j, as known to i, is less than the distance of node i to j that
is known to its neighbors.

5/ ={kD 0 <FD/ @)}

Theorem 1: If the LFI conditions are satisfied at any time t,
the SG(t) implied by the successor sets S/(t) is loop-free.

Proof: Let kESji(t) then from Eq. 2 it follows that:

Dyl (<FDji(z) S}
At node k, because node i is a neighbor, from Eq. 1 above,
it follows that:

FD}0=D,(0) @

Combining Eq. 3, and Eq. 4, it follows that:

FD}0)<FD; () ®
Eq. 5 states that, if k is a successor of node i in a path to
destination j, then k’s feasible distance to j is strictly less
than the feasible distance of node i to node j. Now if the
successor sets define a loop at time t with respect to node j,
then for some node p on the loop, an absurd relation is
arrived at wherein FD#(O)<FDf (D).

Therefore, the LFI conditions are sufficient for loop-free-
dom.

The invariants used in LFI are independent of whether the
algorithm uses link states or distance vectors; in link-state
algorithms, such as MPDA, the Djki are computed locally
from the link-states communicated by the neighbors while in
distance-vector algorithms, like the MPATH presented here,
the D, are directly communicated.

The invariants (1) and (2) suggest a technique for com-
puting Sji(t) such that the successor graph SG(t) for desti-
nation j i1s loop-free at every instant. The key is determining
FDji(t) in Eq. (1), which requires node i to know Djik(t), the
distance from node i to node j in the topology table T that
node i communicated to neighbor k. As a result of non-zero
propagation delays, T/ is a time-delayed version of T’. It
will be appreciated that, if node 1 delays updating of FDji
with D/’ until k incorporates the distance D} in its tables, then
FD; satisfies the LFI condition.

FIG. 6 exemplifies pseudocode for MPATH which
enforces the LFI conditions by synchronizing the exchange
of update messages among neighbors using query and reply
flags. If a node sends a message with a query bit set, then the
node must wait until a reply is received from all its neigh-
bors before the node is allowed to send the next update
message. The node is said to be in ACTIVE state during this
period. The inter-neighbor synchronization used in MPATH
spans only one hop, unlike algorithms that use diffusing
computation that potentially span the whole network, such
as DASM.

Assume that all nodes are in a PASSIVE state initially
with correct distances to all other nodes and that no mes-
sages are in transit or pending to be processed. The behavior
of the network where every node runs MPATH is such that
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when a finite sequence of link cost changes occurs in the
network within a finite time interval, some or all nodes to go
through a series of PASSIVE-to-ACTIVE and ACTIVE-to-
PASSIVE state transitions, until eventually all nodes
become PASSIVE with correct distances to all destinations.

Let a node in PASSIVE state receive an event resulting in
changes in its distances to some destinations. Before the
node sends an update message to report new distances, it
checks if the distance Dji to any destination j has increased
above the previously reported distance RDji. If none of the
distances increased, then the node remains in PASSIVE
state. Otherwise, the node sets the query flag in the update
message, sends it, and goes into ACTIVE state. When in
ACTIVE state, a node cannot send any update messages or
add neighbors to any successor set. After receiving replies
from all its neighbors, the node is allowed to modify the
successor sets and report any changes that may have
occurred since the time it has transitioned to ACTIVE state,
and if none of the distances increased beyond the reported
distance, the node transitions to PASSIVE state. Otherwise,
the node sends the next update message with the query bit
set and becomes ACTIVE again, and the whole cycle
repeats. If a node receives a message with the query bit set
when in PASSIVE state, it modifies its tables and then sends
back an update message with the reply flag set. Otherwise,
if the node happens to be in ACTIVE state, it modifies the
tables but because the node is not allowed to send updates
when in ACTIVE state, the node sends back an empty
message with no updates but the reply bit set. If a reply from
a neighbor is pending, when the link to the neighbor fails
then an implicit reply is assumed, and such a reply is
assumed to report an infinite distance to the destination.
Because replies are given immediately to queries and replies
are assumed to be given upon link failure, deadlocks due to
inter-neighbor synchronization cannot occur. Eventually, all
nodes become PASSIVE with correct distances to destina-
tions.

2. Correctness of MPATH

The following properties of MPATH are to be proven: (1)
MPATH eventually converges with Dji; giving the shortest
distances and (2) the successor graph SG; is loop-free at
every instant and eventually converges to the shortest mul-
tipath. PATH works essentially like PDA except that the kind
of update information exchanged is different; PDA
exchanges link-state while PATH exchanges distance-vec-
tors with predecessor information. The correctness proof of
PATH is identical to PDA and are reproduced here for
correctness. The convergence of MPATH directly follows
from the convergence of PATH because extensions to
MPATH are such that update messages in MPATH are only
delayed a finite amount of time.

Definitions: The n-hop minimum distance of node i to
node j in a network is the minimum distance possible using
a path of n hops, (links) or less. A path that offers the n-hop
minimum distance is called n-hop minimum path. If there is
no path with n hops or less from node i to j then the n-hop
minimum distance from i to j is undefined. An n-hop
minimum tree of a node i is a tree in which node i is the root
and all paths of n hops or less from the root to any other node
is an n-hop minimum path.

Let G denote the final topology of the network, as would
be seen by an omniscient observer after all link changes have
occurred. Without loss of generality, assume G is connected;
if G is disconnected, the proof applies to each connected
component independently.
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It is presumed that a router i knows at least the n-hop
minimum tree, if the tree contained in its main link table T"
is at least an n-hop minimum tree rooted at i in G, and there
are at least n nodes in T’ that are reachable from the root i.
Note that T” is such that the links with head nodes that are
more than n hops away from i may have costs that do not
agree with the link costs in G.

Theorem 2: If node 1 has adjacent link costs that agree with
G and for each neighbor k, T, represents at least an
(n-1)-hop minimum tree, then after the execution of MTU,
the minimum cost tree contained in T’ is at least an n-hop
minimum tree.

Proof: Let H,’ denote an n-hop minimum tree rooted at node
iin G and let M,/ be the set of nodes that are within n hops
fromiin H,’. Let D,? denote the distance ofitojin H,. Let
d,; be the cost of the link i—j. Node i is called the head of
the link i—j. The notation i indicates a path from i to j of
zero or more links; if the path has zero links, then i=j. The
length of path i3] is the sum of costs of all links in the path.

Property 1: From the principle of optimality (the sub-path of
a shortest path between two nodes is also the shortest path
between the end nodes of the sub-path), if H and H' are two
n-hop minimum trees rooted at node i and M and M’ are sets
of nodes that are within n hops from i in H and H'
respectively, then M=M'=M,’ and M,’Zn. For each jEM,’
the length of path ij in both H and H' is equal to D,?. For
hzn, D,YED, Y.

Let A=A/, where A, is the set of nodes in T,
Because T, is at least an (N-1)-hop minimum tree and node
ican appear at most once in each of A}/, each A" has at least
N-1 unique elements. Therefore, A’ has at least N-1 ele-
ments.

Let M,/ be the set of n~1 nearest elements to node iin A’
That is, M 'cA’, IM,I=n-1, and for each jEM,, and vEA'~
M,/ mln{ )i +1klIkENl} Emln{ka +1,/kEN'Y.

To prove the theorem it is sufficient to prove the following:
1. Let G, represent the graph constructed by MTU on lines
2 and 3. (i.e., before applying Dijkstra in line 4). For each
JEM,/ there is a path i3] in G, such that its length is at

most D V.

2. After running Dijkstra on G,’ on line 4 in MTU, the
resulting tree is at least an n-hop minimum tree.

Let us first assume part 1 is true and prove part 2. From
the statement in part 1 for each node jEM, there is a path
iPj in G, with length at most D,?. In the resulting tree after
running Dijkstra, we can infer there is a path i»j with length
at most D,”. Because there are n—1 nodes in M,, the tree
constructed has at least n nodes including node i. From
property 1, it follows that the tree constructed is at least an
n-hop minimum tree.

To prove part 1, order the nodes in M’ in non-decreasing
order. The proof'is by induction on the sequence of elements
in M, . The base case is true because for m, the first element
of Ml 1, =min{l,/kEN'} and 1, '=D,""s 1. As induction
hypothe51s let the statement hold for the first m-1 elements
of M,’. Consider the m” element JEM,;". Let K be the highest
priority neighbor for which D ,"+1,/=min{D,’+1,[kEN}. At
most m-1 nodes in T, can have lesser or equal distance than
j which implies path KJ—)J exists with at most m—1 hops. Let
v be the neighbor of j in T,'. Then the path K»v—j has at
most m—1 hops. Because T, is at least a (n—1)-hop mini-
mum tree, the link v—j must agree with G. Since D '+
1 <D]K '+1,/, from the induction hypothesis there is a path
iV in G, such that the length is at most D,
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The following now shows that the preferred neighbor for
v is also K, so that the link v—j will be included in the
construction of G,’ thus ensuring the existence of the path
i in G,/. If some neighbor K' other than K is the preferred
neighbor for v then one of the following two conditions
should hold: (a) D,/ +lx/<D, '+’ or (b) D"*"+1./=D .+
1" and priority of K' is greater than priority of K.

Case (a) Because D,/ 41 Z<D '+1,7 it follows that the
path vj in TKZ, is greater than cost of v—j in G which
implies that T/, is not an (n—1) hop minimum tree, which
contradicts the assumption. Therefore kai+lki:min{kai+
L/KEN].

Case (b): Let Q; be the set of neighbors that give the
minimum dlstance for j, such as for each k€Q, D’ "+
1/=min{D,’+,/kEN’}. Similarly, let Q.be such that for
each k€Q,, D /+1,/=min{D '+l klIkENl} IFkEQ and k&,
then it follows from same argument as in case (a) that vi-j
in T,' is greater than cost of v—j in G implying T, is not a
(n-1) hop minimum tree, which again is a contradiction of
the assumption. Because K has the highest priority among
all members of Q; and Q,cQ, and k&Q,, K also has the
highest priority among all members of Q, . Therefore Q, Q).
Also, from the same argument it can be inferred that KEQ,,.
This proves that v—j will be included in the construction of
G, . Because D, ZV+d =D,’” in G, where d,,; is the final cost
of link v—j, and length of v in G,/ less than or equal to

 Vfrom the induction hypothesis, the length of i>v in G,
is less than or equal to D,”/. This proves part 1 of the
theorem.

Theorem 3: A finite time after the last link cost change in the
network, the main topology T° at each node i gives the
correct shortest paths to all known destinations.

Proof: The proof is identical to the proof of Theorem 2 and
is performed by induction on t,, the global time when for
each node i, T" is at least an n-hop minimum tree. Because
the longest loop-free path in the network has at most N-1
links where N is number of nodes in the network, t,, , is the
time when every node has the shortest path to every other
node, wherein t,, ; should be shown to be finite. The base
case of ty._, is t;, the time when every node has a one-hop
minimum distance and because the adjacent link changes are
notified within finite time, t,<co. Let t, <o for some n<N.
Given that the propagation delays are finite, each node will
have each of'its neighbors n-hop minimum tree in finite time
after t,,. From Theorem 2 we can see that the node will have
at least the (n+1)-hop minimum tree in finite time after t,,.
Therefore, t,,, ;<. From induction it will be appreciated that
Ty <00,

A node generates update messages only to report changes
in distances and predecessor, so after convergence no mes-
sages will be generated. The following theorems show that
MPATH provides instantaneous loop-freedom and correctly
computes the shortest multipath.

Theorem 4: For the algorithm MPATH executed at node i, let
t,, be the time when RDji is updated and reported for the n”
time. Then, the following conditions always hold:

FD/(t,)<min{RD; 1, \).RD/(1,)} ©)

FDAOZFD ()€ [t,8,,1) M
Proof: From the working of MPATH in FIG. 6, it is observed
that RD/ is updated at line 3¢ when (a) the node goes from
PASSIVE-to-ACTIVE because of one or more distance
increases; (b) the node receives the last reply and goes from

ACTIVE-t0-PASSIVE state; (¢) the node is in PASSIVE
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state and remains in PASSIVE state because the distance did
not increase for any destination; and (d) the node receives
the last reply but immediately goes into ACTIVE state. The
reported distance RD; remains unchanged during the
ACTIVE phase. Because FD} is updated at line 3@ each time
RD/ is updated at line 3c, Eq (6) follows. When the node is
in ACTIVE phase, FD/ may also be modified by the state-
ment on line 3f, Wh1ch implies Eq. (7).

Theorem 5: The safety property; at any time t, the successor
sets S/(t) which are computed by MPATH are loop-free.

Proof: The proof is based on showing that the FD/ and S/
computed by MPATH satisfy the LFI conditions. Let t,,, be
the time when RDji is updated and reported for the n” time.
The proof is by induction on the interval [t,t,,,]. Let the
LFI condition be true up to time t,, we show that:

FD/) =D,/ (1€, 1,,1) "

From Theorem 4 we have:

FDj(t,)Smin{RD} (¢, 1).RD;(2,)} ©

FD;(t,.)Smin{RD;(6,),RD; (1)} (10)

FD/()SFD/(t )€ 11,11 (11

Combining the above equations we arrive at:

FD; ) =min{RD; (6, 1).RD; (t,) HE [t 1] (12)

Let t' be the time when a message sent by i at t,, is received
and processed by neighbor k. Because of the non-zero
propagation delay across any link, t' is such that t,<t'<t,

and because RDji is modified at t,, and remains unchanged in
(t,t,, ) it follows that:

RD/(t,_)EDM0MES, 1] 13)

RD/(1,) ED 1€ 11,11 o

From Eq. (13) and (14):

min{RD; (t,_),RD; (t,)} ED;F O t,8,11] (15)
From (12) and (15) the inductive step (8) follows. Because
FD; t,)=D (to) at initialization, from induction it is known
that FD, (t)< J(t,) for all t. Given that the successor sets
are computed based on FD; ‘(t), it follows that the LFI
conditions are always satlsﬁed According to the Theorem 1
this implies that the successor graph SG, is always loop-free.

Theorem 6: Liveness property; a finite time after the last
change in the network, the Dji gives the correct shortest
distances and S;={kID,*<D;, kKEN'}.

Proof: The proof is similar to the proof of Theorem 4. The
convergence of MPATH follows directly from the conver-
gence of PATH because the update messages in MPATH are
only delayed a finite time as allowed at line 4 in algorithm
PATH. Therefore, the distances D;” in MPATH also converge
to shortest distances. Because changes to D/ are always
reported to the neighbors and are 1nc0rp0rated by the
neighbors in their tables in finite time D,'=D/f, for kEN’
after convergence. From line 3a in MPATH, it is observed
that when node i becomes passive FD/=D; holds true.
Because all nodes are passive at convergence 1t follows that
S;/={kiD,/'<FD;, kEN'}={kID,*<D;, kEN'}.
3. Complexity Analysis

The main difference between PATH and MPATH is that

the update messages sent in MPATH are delayed a finite
amount of time in order to enforce the invariants. As a result,
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the complexity of PATH and MPATH are essentially the
same and are therefore collectively analyzed.

The storage complexity is the amount of table space
needed at a node. Each one of the N” neighbor tables and the
main distance tables has size of the order O(INI) and the main
link table T’ can grow, during execution of MTU, to size at
most IN“ltimes O(INI). The storage complexity is therefore of
the order O(IN'INI).

The time complexity is the time it takes for the network
to converge after the last link cost change in the network. To
determine time complexity it is assumed that the computa-
tion time is negligible in comparison with the communica-
tion time. If t,, is the time when every node has the n-hop
minimum tree, because every node processes and reports
changes in finite time It,, ,—t, | is bounded. Let It,,,—t,|=0 for
some finite constant 6. From theorem 3, the convergence
time can be at most INIO and, hence, the time complexity is
O(IND).

The computation complexity is the time taken to build the
node’s shortest path tree in T’ from the neighbor tables T,’.
Updating of T with T, information is O(IN’INI) operation
and running Dijkstra on T’ takes O(ININllog(INI)). Therefore
the computational complexity is O(NIN+NINIllog(INI)).

The communication complexity is the number of update
messages required for propagating a set of link-cost changes.
The analysis for multiple link-cost-changes is complex
because of the sensitivity to the timing of the changes. So,
therefore the analysis is provided only for the case of a
single link-cost change. A node removes a link from its
shortest path tree if only a shorter path using two or more
links is discovered and the path is stored. Therefore, a
removed link will not be added again to the shortest path
which means that a link can be included and deleted from the
shortest path by a node at most one time. It will be
appreciated that since nodes report each change only once to
each neighbor, that an update message can travel only once
on a given link and therefore the number of messages sent
by a node can be at most O(IEl).

For certain topologies and sensitively timed sequences of
link cost changes the amount of communication required by
PATH can be exponential. One industry example (Humblet)
exhibits such behavior, and though PATH is different from
the shortest-path algorithm utilized therein, it should be
noted that PATH is not immune from such exponential
behavior. However, it appears that such scenarios would
require sensitively timed link-cost changes which are very
unlikely to occur in practice. If necessary, a small hold-down
time before sending update messages may be used to prevent
such behavior.

Accordingly, it will be seen that this invention provides a
routing algorithm based on distance information that pro-
vides multiple paths that need not have equal costs and that
are loop-free at every instant, without requiring inter-nodal
synchronization spanning more than one hop. The loop-free
invariant conditions presented here are quite general and can
be used with existing internet protocols. The multiple suc-
cessors that MPATH makes available at each node can be
used for traffic load-balancing, which is necessary for mini-
mizing delays in a network as has been shown using other
algorithms, such as MPDA. MPATH can therefore be used
as an alternative to MPDA to get similar performance.

Although the description above contains many specifici-
ties, these should not be construed as limiting the scope of
the invention but as merely providing illustrations of some
of the presently preferred embodiments of this invention.
Therefore, it will be appreciated that the scope of the present
invention fully encompasses other embodiments which may
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become obvious to those skilled in the art, and that the scope
of the present invention is accordingly to be limited by
nothing other than the appended claims, in which reference
to an element in the singular is not intended to mean “one
and only one” unless explicitly so stated, but rather “one or
more.” All structural, chemical, and functional equivalents
to the elements of the above-described preferred embodi-
ment that are known to those of ordinary skill in the art are
expressly incorporated herein by reference and are intended
to be encompassed by the present claims. Moreover, it is not
necessary for a device or method to address each and every
problem sought to be solved by the present invention, for it
to be encompassed by the present claims. Furthermore, no
element, component, or method step in the present disclo-
sure is intended to be dedicated to the public regardless of
whether the element, component, or method step is explic-
itly recited in the claims. No claim element herein is to be
construed under the provisions of 35 U.S.C. 112, sixth
paragraph, unless the element is expressly recited using the
phrase “means for.”

What is claimed is:

1. A method for loop-free multipath routing of data in a

network, comprising:

(a) maintaining at each node i in a network,

(i) a main distance table (MDT) containing D, and p/,
where D’ is the distance of node i to destination j and
p, is the predecessor to destination j on the shortest
path from i to j,

(ii) said MDT further containing, for each destination j,
successor set S/, feasible distance FD/, reported
distance RD/, and flags designated as changed and
report-it,

(iii) a main link table (MLT) T* which is the node’s
view of the network and contains links represented
by (m, n, d) where (m, n) is a link with cost d,

(iv) a neighbor distance table (NDT) for neighbor k
containing D,,” and p,’ where D, is the distance of
neighbor k to j as communicated by k and p,, is the
predecessor to j on the shortest path from k to j as
notified by k,

(v) a neighbor link table (NLT)T,” which is the view
that neighbor k has of the network as known to i and
contains link information derived from the distance
and predecessor information in the NDT, and

(vi) an adjacent link table (ALT) containing the cost 1,/
of an adjacent link to each neighbor k, wherein said
cost is infinity if a link is down;

(b) in response to receipt of an update message M from a
neighbor k, detection of a change in cost of an adjacent
link to k, or detection of a change in status of an
adjacent link to k,

(1) updating the NDT and NLT for neighbor k with links
(m, n, d) where d=D,,’-D,,,’ and m=p,,’, and

(i1) constructing an MLT for neighbor k by merging
topologies T,’ and adjacent links 1,’; and

(c) routing data through a loop-free path in the network;

wherein at least one said loop-free path is determined

using information in each of said tables at each node i.

2. A method as recited in claim 1, further comprising:

(d) for each destination j marked as changed, adding an
update entry [j,D/, p/] to a new message M'; and

(e) within a finite amount of time, sending message M' to
each neighbor k.

3. A method as recited in claim 2, wherein an update

message comprises:

at least one update entry;
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said update entry comprising a triplet [j,d,p], where d is
the distance of the node sending the message to desti-
nation j and p is the predecessor on the path to j; and
flags for synchronization designated as query and reply.
4. A method as recited in claim 1, further comprising:
updating the MLT with link information reported by the
neighbor k that offers the shortest distance from the
node i to the head node m of the link if two or more
NLTs contain conflicting information of link (m, n).

5. A method as recited in claim 1, further comprising:

after merging topologies T, and adjacent links 1,7, running
Dijkstra’s shortest path algorithm to find the shortest
path tree and deletes all links from the MLT that are not
in the tree.

6. A method as recited in claim 5, further comprising:

obtaining distances Dji and predecessors pji from the MLT.

7. A method as recited in claim 6, further comprising:

comparing the tree with the previous shortest path tree

and reporting only the differences to the neighbors.

8. A method as recited in claim 1, further comprising:

computing a successor set Sji by, for each destination j,

allowing a node i to choose a successor having a
distance to j as known to i that is less than the distance
of'node i to destination j that is known to a neighbor of
node i.

9. A method as recited in claim 8, further comprising
synchronizing the exchange of update messages among
neighbors using query and reply flags contained within the
messages.

10. A method as recited in claim 9, wherein if a node sends
a message with a query flag set, said node must wait until a
reply is received from all of said node’s neighbors before
said node is allowed to send the next update message.

11. A method as recited in claim 10, wherein said node is
deemed to be in an ACTIVE state when said node sends a
message with a query flag set.

12. A method as recited in claim 11, wherein said node is
deemed to be in a PASSIVE state when said node has no
message with a query flag set that is in transit or pending to
be processed.

13. A method as recited in claim 12:

wherein if a node in a PASSIVE state receives an event

resulting in changes in its distances to a destination,
before the node sends an update message to report a
new distance, said node checks if the distance D, to any
destination j has increased above the previously
reported distance RD}’;

wherein if no distance has increased, then said node

remains in a PASSIVE state; and

wherein if a distance has increased, said node sets the

query flag in the update message, sends said message,
and goes into an ACTIVE state.
14. A method as recited in claim 11;
wherein a node in an ACTIVE cannot send any update
messages or add neighbors to any successor set;

wherein after receiving replies from all its neighbors, the
node is allowed to modify the successor sets and report
any changes that may have occurred since the time it
has transitioned to ACTIVE state; and

wherein if none of the distances increased beyond the

reported distance, the node transitions to PASSIVE
state.

15. A method as recited in claim 12:

wherein if a node receives a message with the query flag

set when in PASSIVE state, said node modifies said
node’s tables and sends back an update message with
the reply-flag set; and
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wherein if a node receives a message with the query flag
set when in ACTIVE stage, said node modifies said
node’s tables and sends back an empty message with no
updates and with the reply flag set.

16. A method for loop-free multipath routing of data in a

network, comprising:

(a) maintaining at each node i in a network,

(i) a main distance table (MDT) containing D, and p,/,
where D/’ is the distance of node i to destination j and
p, is the predecessor to destination j on the shortest
path from i to j,

(ii) said MDT further containing, for each destination j,
successor set S/, feasible distance FD/, reported
distance RD/, and flags designated as changed and
report-it,

(iii) a main link table (MLT) T which is the node’s
view of the network and contains links represented
by (m, n, d) where (m, n) is a link with cost d,

(iv) a neighbor distance table (NDT) for neighbor k
containing D,," and p,’ where D, is the distance of
neighbor k to j as communicated by k and p;’ is the
predecessor to j on the shortest path from k to j as
notified by k,

(v) a neighbor link table (NLT)T,’ which is the view
that neighbor k has of the network as known to i and
contains link information derived from the distance
and predecessor information in the NDT, and

(vi) an adjacent link table (ALT) containing the cost 1,/
of an adjacent link to each neighbor k, wherein said
cost is infinity if a link is down;

(b) in response to receipt of an update message M from a
neighbor k, detection of a change in cost of an adjacent
link to k, or detection of a change in status of an
adjacent link to k,

(1) updating the NDT and NLT for neighbor k with links
(m, n, d) where d=D_,’-D, ;" and m=p,,’, and

(i1) constructing an MLT for neighbor k by merging
topologies T,’ and adjacent links 1,;

(c) for each destination j marked as changed, adding an
update entry [j,D/, p/] to a new message M';

(d) within a finite amount of time, sending message M' to
each neighbor k; and

(e) routing data through a loop-free path in the network;

wherein at least one said loop-free path is determined

using information in each of said tables at each node i.

17. A method as recited in claim 16, wherein an update

message comprises:

at least one update entry;

said update entry comprising a triplet [j,d,p], where d is
the distance of the node sending the message to desti-
nation j and p is the predecessor on the path to j; and

flags for synchronization designated as query and reply.

18. A method as recited in claim 16, further comprising:

updating the MLT with link information reported by the
neighbor k that offers the shortest distance from the
node i to the head node m of the link if two or more
neighbor link tables contain conflicting information of

link (m, n).

19. A method as recited in claim 16, further comprising:

after merging topologies T,’ and adjacent links 1,’, running

Dijkstra’s shortest path algorithm to find the shortest

path tree and deletes all links from the MLT that are not

in the tree.

20. A method as recited in claim 19, further comprising:

obtaining distances D, and predecessors p;’ from the MLT.

21. A method as recited in claim 20, further comprising:
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comparing the tree with the previous shortest path tree
and reporting only the differences to the neighbors.
22. A method for loop-free multipath routing of data in a

network, comprising:

(a) maintaining at each node i in a network,

(i) a main distance table (MDT) containing D, and p,/,
where D/’ is the distance of node i to destination j and
p, is the predecessor to destination j on the shortest
path from i to j,

(ii) said MDT further containing, for each destination j,
successor set S’ feasible distance FD/, reported
distance RD/, and flags designated as changed and
report-it,

(iii) a main link table (MLT) T* which is the node’s
view of the network and contains links represented
by (m, n, d) where (m, n) is a link with cost d,

(iv) a neighbor distance table (NDT) for neighbor k
containing D,," and p,’ where D, is the distance of
neighbor k to j as communicated by k and p;,’ is the
predecessor to j on the shortest path from k to j as
notified by k,

(v) a neighbor link table (NLT)T,” which is the view
that neighbor k has of the network as known to i and
contains link information derived from the distance
and predecessor information in the NDT, and

(vi) an adjacent link table (ALT) containing the cost 1,’
of an adjacent link to each neighbor k, wherein said
cost is infinity if a link is down;

(b) in response to receipt of an update message M from a
neighbor k, detection of a change in cost of an adjacent
link to k, or detection of a change in status of an
adjacent link to k,

(1) updating the NDT and NLT for neighbor k with links
(m, n, d) where d=D,,’-D,,,’ and m=p,,’,

(i1) constructing an MLT for neighbor k by merging
topologies T,' and adjacent links 1,;

(c) computing a successor set Sji by, for each destination
j, allowing a node i to choose a successor having a
distance to j as known to i that is less than the distance
of'node i to destination j that is known to a neighbor of
node i; and

(d) routing data through a loop-free path in the network;

wherein at least one said loop-free path is determined

using information in said tables at each node i.

23. A method as recited in claim 22, further comprising:

updating the MLT with link information reported by the
neighbor k that offers the shortest distance from the
node i to the head node m of the link if two or more

NLTs contain conflicting information of link (m, n).

24. A method as recited in claim 22, further comprising:

after merging topologies T, and adjacent links 1,7, running

Dijkstra’s shortest path algorithm to find the shortest

path tree and deletes all links from the MLT that are not

in the tree.

25. A method as recited in claim 24, further comprising:

obtaining distances Dji and predecessors pji from the MLT.

26. A method as recited in claim 25, further comprising:

comparing the tree with the previous shortest path tree
and reporting only the differences to the neighbors.

27. A method as recited in claim 22, further comprising

synchronizing the exchange of update messages among
neighbors using query and reply flags contained within the
messages.

28. A method as recited in claim 27, wherein if a node
sends a message with a query flag set, said node must wait
until a reply is received from all of said node’s neighbors
before said node is allowed to send the next update message.
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29. A method as recited in claim 28, wherein said node is
deemed to be in an ACTIVE state when said node sends a
message with a query flag set.

30. A method as recited in claim 29, wherein said node is
deemed to be in a PASSIVE state when said node has no
message with a query flag set that is in transit or pending to
be processed.

31. A method as recited in claim 30:

wherein if a node in a PASSIVE state receives an event

resulting in changes in its distances to a destination,

before the node sends an update message to report a

new distance, said node checks if the distance Dji to any

destination j has increased above the previously
reported distance RD';

wherein if no distance has increased, then said node

remains in a PASSIVE state; and

wherein if a distance has increased, said node sets the

query flag in the update message, sends said message,

and goes into an ACTIVE state.

32. A method as recited in claim 29, wherein a node in an
ACTIVE cannot send any update messages or add neighbors
to any successor set.

33. A method as recited in claim 29:

wherein after receiving replies from all its neighbors, the

node is allowed to modify the successor sets and report

any changes that may have occurred since the time it
has transitioned to ACTIVE state; and

wherein if none of the distances increased beyond the

reported distance, the node transitions to PASSIVE

state.

34. A method as recited in claim 30:

wherein if a node receives a message with the query flag

set when in PASSIVE state, said node modifies said

node’s tables and sends back an update message with
the reply flag set; and

wherein if a node receives a message with the query flag

set when in ACTIVE stage, said node modifies said

node’s tables and sends back an empty message with no
updates and with the reply flag set.

35. A method for loop-free multipath routing of data in a
network, comprising:

(a) maintaining at each node i in a network,

(i) a main distance table (MDT) containing D, and p/,
where D’ is the distance of node i to destination j and
p, is the predecessor to destination j on the shortest
path from i to j,

(ii) said MDT further containing, for each destination j,
successor set S/, feasible distance FD/, reported
distance RD/, and flags designated as changed and
report-it,

(iii) a main link table (MLT) T which is the node’s
view of the network and contains links represented
by (m, n, d) where (m, n) is a link with cost d,

(iv) a neighbor distance table (NDT) for neighbor k
containing D,," and p,’ where D, is the distance of

neighbor k to j as communicated by k and p;’ is the
predecessor to j on the shortest path from k to j as
notified by k,

(v) a neighbor link table (NLT)T,’ which is the view
that neighbor k has of the network as known to i and
contains link information derived from the distance
and predecessor information in the NDT, and

(vi) an adjacent link table (ALT) containing the cost 1,/
of an adjacent link to each neighbor k, wherein said
cost is infinity if a link is down;
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(b) in response to receipt of an update message M from a
neighbor k, detection of a change in cost of an adjacent
link to k, or detection of a change in status of an
adjacent link to k,

(1) updating the NDT and NLT for neighbor k with links
(m, n, d) where d=D,,’-D,,,’ and m=p,,’,

(i1) constructing an MLT for neighbor k by merging
topologies T,’ and adjacent links 1,7, and

(iii) running Dijkstra’s shortest path algorithm to find
the shortest path tree and deletes all links from the
MLT that are not in the tree;

(¢) computing a successor set S by, for each destination
j, allowing a node i to choose a successor having a
distance to j as known to i that is less than the distance
of'node i to destination j that is known to a neighbor of
node i; and

(d) routing data through a loop-free path in the network;

wherein at least one said loop-free path is determined
using information in said tables at each node i.

36. A method as recited in claim 35, further comprising:

updating the MLT with link information reported by the
neighbor k that offers the shortest distance from the
node i to the head node m of the link if two or more
NLTs contain conflicting information of link (m, n).

37. A method as recited in claim 36, further comprising:

obtaining distances D/ and predecessors p;’ from the MLT.

38. A method as recited in claim 37, further comprising:

comparing the tree with the previous shortest path tree
and reporting only the differences to the neighbors.

39. A method as recited in claim 35, further comprising
synchronizing the exchange of update messages among
neighbors using query and reply flags contained within the
messages.

40. A method as recited in claim 39, wherein if a node
sends a message with a query flag set, said node must wait
until a reply is received from all of said node’s neighbors
before said node is allowed to send the next update message.

41. A method as recited in claim 40, wherein said node is
deemed to be in an ACTIVE state when said node sends a
message with a query flag set.

42. A method as recited in claim 41, wherein said node is
deemed to be in a PASSIVE state when said node has no
message with a query flag set that is in transit or pending to
be processed.

43. A method as recited in claim 42:

wherein if a node in a PASSIVE state receives an event
resulting in changes in its distances to a destination,
before the node sends an update message to report a
new distance, said node checks if the distance Dji to any
destination j has increased above the previously
reported distance RD;';

wherein if no distance has increased, then said node
remains in a PASSIVE state; and

wherein if a distance has increased, said node sets the
query flag in the update message, sends said message,
and goes into an ACTIVE state.

44. A method as recited in claim 41, wherein a node in an
ACTIVE cannot send any update messages or add neighbors
to any successor set.

45. A method as recited in claim 41:

wherein after receiving replies from all its neighbors, the
node is allowed to modify the successor sets and report
any changes that may have occurred since the time it
has transitioned to ACTIVE state; and

wherein if none of the distances increased beyond the
reported distance, the node transitions to PASSIVE
state.
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46. A method as recited in claim 42:

wherein if a node receives a message with the query flag
set when in PASSIVE state, said node modifies said
node’s tables and sends back an update message with
the reply flag set; and

wherein if a node receives a message with the query flag
set when in ACTIVE stage, said node modifies said
node’s tables and sends back an empty message with no
updates and with the reply flag set.

47. A method for loop-free multipath routing of data in a

network, comprising:

(a) maintaining at each node i in a network,

(i) a main distance table (MDT) containing D, and p,/,
where D/’ is the distance of node i to destination j and
p, is the predecessor to destination j on the shortest
path from i to j,

(ii) said MDT further containing, for each destination j,
successor set S/, feasible distance FD/, reported
distance RD/, and flags designated as changed and
report-it,

(iii) a main link table (MLT) T* which is the node’s
view of the network and contains links represented
by (m, n, d) where (m, n) is a link with cost d,

(iv) a neighbor distance table (NDT) for neighbor k
containing D,," and p,’ where D, is the distance of

neighbor k to j as communicated by k and p;’ is the

predecessor to j on the shortest path from k to j as

notified by k,

(v) a neighbor link table (NLT)T,” which is the view
that neighbor k has of the network as known to i and
contains link information derived from the distance
and predecessor information in the NDT, and

(vi) an adjacent link table (ALT) containing the cost 1,/
of an adjacent link to each neighbor k, wherein said
cost is infinity if a link is down;

(b) in response to receipt of an update message M from a
neighbor k, detection of a change in cost of an adjacent
link to k, or detection of a change in status of an
adjacent link to k,

(1) updating the NDT and NLT for neighbor k with links
(m, n, d) where d&=D_,’-D, ;" and m=p ,’,

(i1) constructing an MLT for neighbor k by merging
topologies T,' and adjacent links 1,;

(c) computing a successor set Sji by, for each destination
j, allowing a node i to choose a successor having a
distance to j as known to i that is less than the distance
of node 1 to destination j that is known to a neighbor of
node i;

(d) synchronizing the exchange of update messages
among neighbors using query and reply flags contained
within the messages; and

(e) routing data through a loop-free path in the network;

wherein at least one said loop-free path is determined

using information in said tables at each node i.

48. A method as recited in claim 47, further comprising:

updating the MLT with link information reported by the
neighbor k that offers the shortest distance from the
node i to the head node m of the link if two or more

NLTs contain conflicting information of link (m, n).

49. A method as recited in claim 47, further comprising:

after merging topologies T,’ and adjacent links 1,’, running

Dijkstra’s shortest path algorithm to find the shortest

path tree and deletes all links from the MLT that are not

in the tree.

50. A method as recited in claim 49, further comprising:

obtaining distances Dji and predecessors pji from the MLT.
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51. A method as recited in claim 50, further comprising:
comparing the tree with the previous shortest path tree
and reporting only the differences to the neighbors.

52. A method as recited in claim 47, wherein if a node
sends a message with a query-flag set, said node must wait
until a reply is received from all of said node’s neighbors
before said node is allowed to send the next update message.

53. A method as recited in claim 52, wherein said node is
deemed to be in an ACTIVE state when said node sends a
message with a query flag set.

54. A method as recited in claim 53, wherein said node is
deemed to be in a PASSIVE state when said node has no
message with a query flag set that is in transit or pending to
be processed.

55. A method as recited in claim 54:

wherein if a node in a PASSIVE state receives an event
resulting in changes in its distances to a destination,
before the node sends an update message to report a
new distance, said node checks if the distance D, to any
destination j has increased above the previously
reported distance RD}';

wherein if no distance has increased, then said node
remains in a PASSIVE state; and
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wherein if a distance has increased, said node sets the
query flag in the update message, sends said message,
and goes into an ACTIVE state.

56. A method as recited in claim 53, wherein a node in an
ACTIVE cannot send any update messages or add neighbors
to any successor set.

57. A method as recited in claim 53:

wherein after receiving replies from all its neighbors, the

node is allowed to modify the successor sets and report
any changes that may have occurred since the time it
has transitioned to ACTIVE state; and

wherein if none of the distances increased beyond the

reported distance, the node transitions to PASSIVE
state.

58. A method as recited in claim 54:

wherein if a node receives a message with the query flag

set when in PASSIVE state, said node modifies said
node’s tables and sends back an update message with
the reply-flag set; and

wherein if a node receives a message with the query flag

set when in ACTIVE stage, said node modifies said
node’s tables and sends back an empty message with no
updates and with the reply flag set.

#* #* #* #* #*





