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ABSTRACT
')In Iart One Levinson's theorem is generalized to systems of
three particles. The usual two-body result relates ‘the number of
'bouni states of giten angular momentum to the corresnonding eigenphaée
shifts of the S matrix. ’Because of disconnected diagrams the threenbody:
R S matrix has continuous eigenphase shifts in addition to any discrete .’ f
iones, however it is p0551ble to define a unitary connected matrix that |
. has only discrete eigenphase shifts. ILevinson's theorem is given in i
Z':}’3 . ‘terms of these phase shifts, and it is the same as the usual multichannel j
| - result, except that there are an infinite number of eigenphase shifts to ';
" be summeé over for each value of the total angular momentum. The proof é‘
‘_'is carried out within.the framework of the Fa&bev equations by general- |
ft‘{ I izing Jauch's proof for two-body systems.
| E In Part Two we develop a variational principle for finding
'approximate eigenvalues and eigenfunctions-of the kernel,of the : '.f;
Lippmann-Schwinger equation. Regge trajectories are then easily found
‘ti‘_s o from the solution to the eigenvalue-equatidn; We apply the variational f
y . ‘:; _ .’principle to other potential theory calculations with‘very good results
o in both accuraey and simplicity. Finally We‘extenéjthe variational

principle to the three-bodyvFaddeev»eQuations._ /
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particle from a spherically symmetric central potential, the number of

"been generalized to the case where H also has-a_discrete spectrum,

AL _s

I. INTRODUCTION - . oy

One of the important problems in the theory of elementary

particles is the determination of whether or not a particle is elementary

or composite. In a Lagrangian theory an elementary particle must be put

in the legranglan. In a model based on dispersion theory there is the

: well known ambiguity of Castillejo, Dalitz and ﬁyson.1 They showed that

an infinite number of solutions exist in the charged scalar theory without

recoil.' In both kinds of theories it has been suggested that Levinson's

o theorem? could be used as & means of selecting the proper legrangian or
" the proper solution to the dispersion relations. In its simnlest form

as firSt giVen by Levinson the theorem says that in the scattering of a o

bound states of the particle in a given anghlar momentum state is related :

A

~ to the phase shift by o o ;'f o f“ - SRR

Ne = 8(0) - B(=) i o e

J'auch3 generalized the proof to & larger class of potentials

than that treated by Levinson, and also he showed that the relation

(1. l) is' a result of the completeness of the eigenfunctions of two

“ .operators‘' H and H or H is the full Hamiltonian for the system and

'H *1s the Hamiltonian in the absence of interactions. The result has

b5

*
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N, and N are the number of bound states of H and H fespectively.:

H Hb

Since H is the Hamiltonian operator for a noninteracting system, all
.;"v points in its discrete spectrum represent elementa.ry pa.rticles. Lev;!.nson s
:. theorem has been further generalized to many cha.nnel systems by Ka.zes.6
- In view of the possible appiication of Levj.nson’s theorem to d.etermining
which equations and which solutions to them ﬁatgre actually selects, .. l
- - 1t seclis important to extend the theorem to systems of more than two .
| particles. ' 3 ' J' |
We propose to prove the theorem in potent:lal theory for three
l- " particle systems within the framework of a set"of equations developed
by Faddeev. ,1,8,9,10 One important difference between two and three bod,f -
| .'s'ystems' is the connectness structure; that is there exist intera.ctions;‘
between two particles w'j.th the thirfl one al»reys beyond the range of the
| forces. As a result of this discennectedness;, the kernel of the |
Lippman‘n-Sch#ringerv equation has a continuous- Espectrﬁm;:_l‘l Similarly ‘
the S-matrix will have a continuous spectrum, that is it will not
have disci:rete elgenphase shifts which can'be summed to give an equation
such as (1.1) . H‘owever, due ito' the simple origin of the continuous
spectrun, 1t 1s possible to define a wnitary operator ¢losely related

_ o : . /
%o the S-matrix and haviﬁg only & discrete spectrum. We derive a

. Levinson theorem in terms of the eigenphase shifts,of this unitary operator. o

The two body Lippnann-Schwinger eq_ua.tionle“c&n be reduced to a
one dimensional :Lntegral equation by projecting out the angular momentum ;
variables, and for a given total angular momentum and energy the S-ma.tr:bc

is a constan_‘b. This is not the case in three body scattering, as a

ST L [y . . .
N . B . . . .
2 - .
R PR S ] i - St
1y T A 7 e i . S -
* . - - N N . . ' ‘
. . . S . . o
i
}
;
/
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_can be omitted for the casual reader. In Section II we discuss Jauch's

A3 |

continuous subenergy veriable is needed in addition to the total angular

‘momentum. This of course makes the problem much ha::}s;{ter“. Fortunately

I

10

Faddeev™ has discuseed.‘the three body problem in greia.t detall and has

derived - a: set of equations which is in principle solyble. More
recently Lovelace™ and We_:l.nbergn have suggested similar sets of
equations; we will however use Faddeev’s throughout this paper.

Another new‘ feature of three body scattering which doesn't exist
in two body systemns is the possibility of breakup and rearrangement
collisioﬁs which can occur if two particles can 'form a bound state, This;-
greatly increases the complexity of the algebra so it will be treatéd

separately. First it will be assumed that there exist no two body S

i

“bound states.

This article 1s organizéd» into se,wféral perts, many of which
) : ¥y

proof of the two body result. In Section IIT we introduce Faddeev's'C
eq_ua.tionls and the projection operator onto the three particle bound
states assuming there are no two body bound states. In Section IV we |
derive the three body Lév:lnson's t}ieorem; The important ideas are
contained in this section and the reader who is only i_nterested; in
the esséntial result need go noi-‘ftxrther; |

In Section V we a.llow for the possibility of one bound state
between any two pa:Lrs of‘"pérticles and we review the properties of *ﬁhe
various operators that F‘é.ddeév .introduées to handle these bound stafes.
In Section VI Lefvinson’,g théoreﬁx 1s :exbended to allow for the "a‘bove

/ / .

possibility., Finally the jmore tedlois caleulations an be foind in the

appendices. Co / T o
Y AT S ,‘

.

!
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< /
II., LEVINSON'S THEOREM FOR w0 PARTICLE SYSTEMS
. /v . ;.
. Since the three particle equa.tic;ns are so complicated, it is -
easy to get lost in the proof of Levinson's theorem. We therefore
review the method of mroof due to Ja.iich: for two perticle systems,

. / : ’
since it is much simpler and illustrates the important ideas. First

Al

the Hamiltonian is split into tg?'pujes,"
LH = H+V ,
, . o . (2.1}
where ﬁo is the free particle Hamiltonian and V is the :Lnﬁergction
term. We assume that all of the e?.éenstatea; $g of H o’ are continuum’
states with energy E '> 03 . |

‘ - ¥

i
/ / ;
. ![ // i '
L BBy = Efy | !

/5' (202)
and that 'H has N points in the discrete spectrum with E' <0
(n=1, 2, *+*N) . H 4s assumed to have the same continuous spectrun
as Ho . ' ‘ '
' { _ .
RIS i ‘ - _ .
By, = B, ¥y . By <0 _
{2.3)

A1l the calculations are carried out for fixed angular momenttﬁn, so the
fuhctions. # and ¥ only depend upon the varisble E . The isometric

operator that maps‘the continuum eigenstates of H o‘.'onto the continuum

'

\
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eigensta’ces of H is ca.lled the Mﬁ!ller wave opera.torlu :

and -LB give;z by
e '*b-,- ] .

[
[ IR

e h)

(2 6)

I is the identity opera.tor and P 1s the pro.jection opera.tor on thea .

discrete spectrum of H . '_» Comhining Eqs. (2 5) and (2 6) we have,

B
r.




Ciy

- and Vg can be found'ﬁ'om:f‘the Lippmann-Schwinger equation, BRI B

. The result 1is
5 'J‘
!‘-

(ﬁE' Ial ¢E S(E E' ) - E — iE ’r -

which can be rewritten in terms of the 'b-matrix as

e :<.1t 8 RS

The S-matrix 18 given 'by .

L B I8l g = sm-E) [ 1= ent (g, [6] gy ] |

‘ l ‘v .tv . | | | | ‘_,": | ) - ’ .. (2°13) ' .l.‘ |

Using (2 12) , the pro,jection opera,tor By becomes ‘ | '

o {(E Itﬂ E")(E" !tl E”) - (r«* It E") (E" !tTl Bt} }
. _[ " T (E_ ie) (E' L ie) .

(2 :Lh)

1

i
[

is to use the idendity, )

The procedure for evaluating tra,ce P




when this identity is substituted into (2.14) and then into (2.8) , we f
obtain three different terms. One, which will be called A , comes from - |
fhe pgoduct of both delta functions. The second, cclied C comes form the?
product of pfinciple'partSa The thir¥d, B, contains the cross terms. The -
. assumption is made that all orders of integration can be interchanged except
where the denominators are oingoiar. Hence if there were not singularities
in the denominator N would be zero since then trace’ 2 & = trace' e a.
We now evaluate the three contiibutions A,B and C. A is easily |
evaluated giving - | 1 'f
/ \
A = x° trace &(E - E') {(E |7 E)(E' [zt B') - (E ltn*l E)(E' lT] B?)/
| : . @. 16)
The coefficlent of the delta function vanishes atf E = E' and hence
A is identically zero. For C we have

o - (-]

- f f & || B ot B < (® |Tt] B )E |z E)
C =P | QB [ QB v . N
w0 ° . (e - B') .
o (2.17)

The integral 1s well defined -through the principle part since the numerator
vanishes there, and we assume that the integral converges absolutely and
uniformly at infinity so that the orders of integration may be interchanged.
| ':Since the»integrand is antisymmetric in E and E! the ‘double integral
.vanishes identically upon interchange of the order of 1ntegration. The

v

contribution from the cross terms . is given by



" Finally we have for

¢
T

. B = -ix trace E—-——v {(E ol E)<E Ie“f! ) - (E' ltl E'>(E lt” B')

i
1
i
!

s (E Itl E')(E' lt*l E') . (E It] E')(E ltfl E)} R

. This hag the form - P RN ENIE A TR B PP

Lin g(e) v[‘f(E) - P& )] : ‘g‘.(ﬁ)}-’rgﬁ{fij

< E'-R T E- B S

.

' therefore” B becomes S R R

The t-matrix iB given ﬁxterms of phasenshifts by
o PRI ‘s*f&u o 7i
g t(E)ﬂi;:;fej{'f“ sin 8(E)

: W

; "And B becomes * -




LB
IR

CB(0) ma(e) m Wm0

o and use the relation; ﬁ‘,”’: L .

ST

_ [sin‘QS(O") -s:Ln '25('99)] = ‘sin '[6(0)"- B(w)] cos [8(0) +5(°°)] .
 Substititing in (2.22) we obtain
' a =" sina cos [8(0)_ + 5(‘”)]

o o ] . . . B

. for which the only sblution fs @ =0 . Hence we have the desired result, . -

o also ha.s a discrete spectrum. . Then (507) Vﬂ-l read.

|
/

_[5(0)‘ - 5(«»)} . ;;'ff’; e '.;1‘::_- ,
'I‘he result obtained here can be modified A we a.ssume that H
l .

n
A

Tt -

S mpemg s Jatecadt
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. III, THREE~BODY WAVE MATRICES - I
i 13 | '

i

In. this section we wi:Ll introduce the Faddeev 8, 9’ 10 equations
and the isometric opera.tors which are the generalization of the Mgfllerlu
wave matrices to three particle systems. A complete account of the
operatcrs and their properties can be 'i’o,u’rxd in Reference 10 .

It will be convenient to use two sets of variables in our work.

The final answer is given in terms ofx/a trace and 1s independent of the

variables used, but the proofs are then simpler for a particular choice

of variables. One set is the same as that used by 0mnes,l5 which consists

 of the individual kinetic energies (wl, d)a,' m3) in the overall center of
' mass .system, a total anguler mox_nentum Jd and its projections M ona :

- space fixed axis and M' on a body fixed axis. '

The second set of variables is essentiallv an angular momentum .
decomposition of Faddeev's. :A pair of particles is denoted by the symbol <« , _‘
for. exa.ﬂple the 2 » 3 pe.ir ‘is denoted by o = 1. Ih .the cen_ter" of mass |
of pair éx’ we introduc/e tﬁe kinetic energy Vo and the relative'angula.r

momentum varisbles l'o:‘ and B, e These varisbles refer only to pair « .
! . ’

In the total center of ‘mass system we 1et ‘wa be the trenslationa,l energy

of the center of mass of pair ¢« and the third particlea A third total

energy. va.riable E /cua + v, Will often be used instead of @, . For

simplicity ire denote the angular varie.bles 6 - and -"ma' by X, ; sometimes

7\ will be omitted. enﬁt::t.:refl\}r as it :Ls inessential to the calculations.

. Obviously there are three sets of varia.bles as there are three distinet

' pairs of particles, ancl we will often change from one description to-another.

[

AU



‘I'he total angula.r momentum J and its proJection M on a space fixed

axis complete the set of variables. We will always woxk in a system

with J and M fixed so they will be omitted.

Before diacussing the three ‘body problem it is necessary to have
2 for the t-matweix,

the solution to the two-body Lippna.nn-Schwinger equation '

ro
y
t (v 3 v ¥ xa, sb ="Va(va vhs A )
I

O
/’Va(v "' A ) t (v", vo"; Ny 8)

- N dh 1"
.-f' dva /. : ‘ : o
| o (3.)

/

i

We have assumed that the potentisl 18 of the form v, (7, < Z,D) in‘*
‘coordinate space so-that V& and. ta are diagonal in Nd ‘ The kernel

B { .
of the three body equations involves the operator T (s),

(v, A »'l'cna(s)l viaLet) = slo, - al) 8(x, 5 ML) ta(va° Vi Ag s -0)

. . N (.2)

Although the three-'body trensition operator satisfies an integral |
equation 11ke (5.1) , the kernel is not eompaét due to the disconneéted

graphs.'l However it 1is possible to define opera.tors which satisfy a set

of coupled integral equations in which the disconneeted terms are explici’cly

summed., An iterate of the kernel of these equations has been shmm to be

compa.ct by Faddeev. | _ ' E N ‘ ‘ ' '
Let Mw(s) be the smplitude for en: interaction where pa.ir o is

- the first to in'beract ‘and ;pa.:Lr B is the .‘ua.st., - These -operators satisfy ‘

< Cas
. t

‘the equations o o

A..



M (s) ‘ QaTa(‘") ‘Ta(s)‘ﬁ:i:f"; Z My_ﬁ(s)‘;"v.'_é" |
e v{a (33)

H o is ’che energy operator foz' a.ll pa.rticles f‘ree and ncninteracting
In ow repmesentation 1t is Just’ multiplication by E o tva *4-“a @-,mhe' "

kernel of the opera.tor will 'be wr:ltten . T P

(v,w,x I <s)l v',w',h') = M@ Metvate)

s

o

l’ 2,m3,M, IM (B)l a-‘l:m')‘“}:m' M()ﬁ(ml’ 2;“53:M:0>l;w':m3;M':5)- -
E o R

depending upon which varia'bles we are using.

'I.'he generalization of the wa.ve matrix is given by i

(a.\,v,%., ,v',h"s w'+v'+ie)

*

] PR
4
.‘

_'90, " B(w-w') a(v -V )s(x,w) - Z °‘? CEE R
| (5.5)

L

If there a.re no" two pa.rt:l.cle 'bound states, the ptro,jection operator ‘on the

i

three particle bound states is B

";,7».:' : t" Lo

RERSRI FEATE o ot “o “o.. By 8 i |

L The . QPerafbr 8, 1s 'Aa,-sum:Qf’sevéra'l terms VhiCh weWite as . 7

",'.' [P
[P

4]
L h
i

{:
’.;

T



 with wl, Wy

A-13

, W, being the disconnected terms,

0)

3
: , , s(m - w') 8(A A & (v VEIN v_ + i€) ;
(@, v, N lwal @, v1,A) = , % & o 2 o ,'l
D et : _ o ' (ga - v - ie) '
- (.8
The term W, is that part of (3.5) with no delta functions, that is the .
connected part. Ubing Eq. (3.7) we have for A, : ,;
- L Towl T :
A= Z [wa,wﬂ] + [w Wo] " Z [w;,w] .
. afe SEERETEE (3.9)
Using (2.14) the last term can be rewritten,
‘ Lo yli
[ng Wa] o .5(-“)0: - %) By , |
(3.1

where. gz

! Pairao

1s a projection operator on the two~yartic1evbound states of

Since we'assume there are no two particle bound states,

Y.Later we will include the pbssibility of these bound states.

' Because P

(3 9) that don't have an overall delta function,

Ia =

0, we need only take the trace of ‘the terms in

The answer will be given .

in terms of the three-tc-three S-matrix which is defined by

. Soo_ =

. with

Too = g,:é Mo

—,

a;v,x,aﬁ,v sA3s = V! 4+ o + 1€)

5(w - ') 5(v = v!) 5(AN') = 251 S(w+ v - @

- ') Ty
(3.11)

(3. 12)

The trace of A is evaluated in Appmndix I and the separation of eigen-

phase shifts is discussed in the next !

ﬁction.



‘ bare to be omitted from the trace.

A1l
IV. THREE-BODY LEVINSON THEORm "

}{ The number of three body bound states of the system cen now be _
The result as ‘f :‘L”.i;,

 i'obtained by taking the trace of both sides of (3. 6)
e given in Appendix I is“ ’ ' o ' ;’ ‘
‘ . arroo bT :

N o= fo‘mtmce \Too 5 - Too'é’“” P ‘
. | o | 1y

The prime on the integral means that terms with an. overall delta function
To obtain a result in terms of & sum
Al

:over eigenphase shifts, it ie necessary %o have a compect operator.
connected T-matrix is defined by o S ]1,‘vi_3ﬁ._' ,ff'i o

w2

1 - 2x 1 8(E - E) T,

o . P
ZV . ; .
[

| with

B =. 8,7 85" 84 oSOO’f: .o

sy ‘18*he two body S-matrix multiplied by Bla - al), o
. .v‘v—. -., . ‘ -.4 N . ‘ L
8 =1 2::‘ 1 a(E ; _E ) T, K , B

» R T (1+ u)
vios is a unitary operator and it is easily verified that T has no
delta functions in it. - Far fixed total energy; Té

is a sqyare integrable "[-"l

Voperator since its kernel is bounded for ell values of the variables and the C

g integration is over a finite renge. that is




A=15

1

Jtmeee T Tl ST

sv ' Because of nitarity, T, is 8ls0 & normal operator, -

B
K , R (X}

j .

. and therefore it has a spé'ct’ra.l expansion of the i‘.’orm

1 T (-
" x z € 8in 5 |en}(_?nl_° _ _

‘ o ‘ ’ v ) 3 .

: o " T (4.7}
. The eilgenvalues depend. upon the particular order of the Sa in (4.3) ’,
but the final result will not, For the total energy E = 0, trace |
' (T T \ = 0 since the subenergy'integz'ations are over an interval of - o

_  : zero length. Therefore the eigenvalues sin ° 8(E = 0) all vanish 1 B o
: '_ ; - iden‘bica.lly L - Do ’ B R
' ' We now write (k. 1) in terms of SOO 8 . |
N =:th od.'!?}'ﬁlracef “14:;5 {SOOTEA- - SOO-SE." 4] ,Vf‘mvﬁ(Too'-l-T )

then we use the fact that trace ‘I‘ 0 vanishes at zero and infinite

-

“5:f energy to eliminate all but the Smmatrix. Subatituting (h,3) for s

i ' . o
N - . . . g

CL we ha.ve

at
1

'” 7.!§55 ‘ 8,8, ) 5— (sc s:L 32 35) ;}-/



',"Vehave.."v e
. .deE trace Szaﬁsd
. Dt .'_

.

o E .A-16 , e |
Using the unitarity of the S—matrines a.nd the 1denti‘by trace A B = tra.ce?;Bv,A';”_
+TE; S o

'I.‘he prime on - the mtegra.l reminds us tha,t all the terms w:i.th an overa.l.'l.
Finally then we'bave . ol
'&iscﬁscﬁs

delta f\mction are to be omitted.

. PR
o -

| de trace |S

0 -

"‘_r’IN,.‘= 3_1;2’
R lmo
_ This can be revritten with T, & rather than ,ch
i l':N - . fd.‘E tréce : T* 3 T
1 . 0 o c';shﬁ_ C c:
To compute the trace, ve. use the eigenfunctions of T o

The diagonal elements are easily computed to give

‘a basisa '

)

!

f/v \
!,(u:.;)




since the derivative of the eigenﬁmction gives z2ero because of the _

o vsta.tionary property.

; bounded by an integra.ble functionsg

A-17 ,'_ ST L ,x

- § , N
[

The eigenvalues of T a.re g:l.ven a.s a function&l which :la stationary

w with respect to variations of the wave functions, . BRSO

NE) ! e) n
”i . - (h, 1u)

j“I.‘aking 'bhe derivative of both sides with respect to E we ha,ve

: ._(eﬁ IB'E— e «-B(e sin Em) R
o ley Tegd B,

Finally ‘bhen (h.l}) 'becomes

oo T . ‘ B TR

I.Tc ? 3""' I e ) -E-.Bin S, @ s, ]1’

I
s

P s e LS
PR .o K N .

il
T T R S
G )

Irit'e_rehangihg integration and Vsﬁmtien,we nave, T

R v

Zﬂ 5 (o)., /én(oé)*-_«*sin 2553(0) , Bin 2an(oo)
- A

ap

; ‘l‘he integration and summa.tion ca.n 'be intercha.nged if the ;pa.rtia,l sums are
The partial sums will be bounded. if only T

/

e i
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assume that 'chis 1is the case.

a8 .]

a finite number of phase shifts have arbitra.rily large derivatives. We o

'I,‘he bound will be integrable provided 'bha.t e

-®

Py

-

the T-ma.tr:l.x fa.JJ.s 'bo zero sufficiently rapidly as B e
Since the ampm;ude van:lshed at infinite energy; sin a(w)

. and we heve a.lread.y shown sin a(o) _lo ) therefore we ha.ve e T

D
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v. THREE-BODY _wm?'/ MATRICES IN THE PRESENCE OF TWO-BODY BOUND STATES
In this section wé/ extend the discussion of Section ITT to alim;

for the'preéence of two—'ﬁod.y bound states. In thét case it is Enecessary'
b . . e
|

v !
i

‘to know the bound state ‘vave function. ¥

| - e ‘
Volvrry) = FoEE o\‘f“’& V(W viin,) v v sn,) s
. o v | : o (5.1)

/
+ The wave functions are normalized %o

where the 'tia“:lnding energy is —Ba
o © -
N AR . 2 _ . l
- jo dvavlﬂra(va,ka)] = 1 . o
‘ . - (5.2)

We will assume that there 1s one s-wave bound state in each two-body
system. This 1is not essentisl, but it simplifies the algebra considerably. -
0 for the bound state pair o .

=
b=

-In this case xa  = {f',m}a .
The bound state causes the two-body t-matrix to have a pole at
« The three-body amplitude MQﬁ wlll then have a pole at

8 = --Bq
. — :.‘ . - . 3 ) )
8 = O, - Ba o Similarly Maa has a pole at B. a?ﬁ Bﬁ ¢« The
",, = -
(.Dﬁ‘ BB Wy Boz

' residué at these poles and at the double pole & =

are closely related to the S-matrices for bound state scattering; To
 be more ‘jprecise; iﬁ is not the residue of Moﬁ but father the residue of

with the two-body wave function projected out. We list these residues

M
o o ‘ |
and their relationship to the S-matrices and the M;fller wave matrices in
, Equgtiohs (5.3) to (5.12).  For a éomplgﬁe discussion of their properties
the reader may consult Refererce 10, - The residue at 8 = @ -.Bﬁ"- with

RSN o
}
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the wave function pcrojected out is given by -
‘ (w:V:}\u »V ,0 3) 7
<s+B - o) f ”w«ﬁ,g o) v
C(5.3)

L (“3:"' )\-:‘D :B)

" and the residue at g = ‘ba"B ) "b}"_'- L

I P gy v o maselyy)
L (@ 'ay’yv s) ( +B - )f amaﬁ 4 |
NACELF *+ B, “ V. + @ =8

ot
A

et

o f_-,Ma@(“*‘.”"""'?‘.'-"3"'5-8)"-"-*' :MBQ(&‘:;V,'Q\';_‘L"WM]S‘ )
" and the ‘I, satisfy - & BRI RN SRR S

"-’ an(a;v,k;agfs ) = Im(uz3 @V MS) S o
opera’cor has a unity term in it coming from the pro.jection of_' v .
' :r( L

¢ s
Separa,ting this term out We define an. . i -
, P

the term Tasaﬁ :l.n EQ.- (5 3)

o operator X ” and the corres;ponding operator L

Laﬁ =_,.(Va--i»VvBOl);ﬂ’a(Va)_‘ »5(‘”05. m‘) aB"‘K (“-‘:V:)‘v ) 'o,'f f",;:f %

N
L
Lo,

pes
i

at the double pole with both Wa,ve functions removed o

'I'he T sidue of M
€ op
, and it is obtained ‘by se;paratin/g Kaﬁ into a term f_,__~ o

: is denoted F
' regular at s,; ;-_‘-g-B o

ES and. a pole term.-
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Ut Bam(”z’ %(m oy s> -

- W
;g +.qa;

L

Qﬁ 043 B : a+BBewé ;’  et o
DA fF‘?_‘_i:"T‘f ;’(5'9)

L '-We-défine}thre'e_ igometric operators by .. Lo

L o
§

oo F T vt %‘i)_--
- RN R . " .:v .“'/u
e ./'- .

B % ErBle v By <)) Tplovma)

- where. "




,exa',mple s

- and particle one free in the final state.

- on.h &s followss

The subscript zero denotes a state with all/particles free, for
1' is the S-matrix for pa.rticle one scatteging on a bound _ |
- state of particles two and three w'.tth all final p&rticlea free, 812 is L

o ~ the S-matrix for a rearrangement collision with pe,rticle twe free :!.nitial.ly

The Q operators e.re forma.u.y def:l.ned by Fadu.eevlo to be a

mapping of one Hil'bert space onto another Define the space h 'by the

v d

A' {orthogonal sum _'_'__ . T

"‘ . . ' T, s
{ % - -

.)

A

:r>_.

ho@hl@hz@h} o
(5.13)

f . . }' *

“1s thé sPace of f‘unctions of the va.ria’bles o s v, ). that satisf’y L

l

s';

. | S | S (sak)
ha is the spéa.éerof square ..int.eg:;'able fﬂncti&ng of,f wc; » el SR

e -]
.

: fo A% l-fcz(,woz)la..{’- L e . -
- The subspaces ‘ho', ' o rednce the total energy operator H defined.

~

if £, c_-: ho

ik

‘ -t;.h-‘?n-é Beg = {o+v)fy 5.

_A ®o

‘122 e e, n N then Hf ;




'state plus a free particle or all puticles :t‘ree. The total Ha.miltonian
A H a.cts on & s_pace h vhich ie forma.'l_'l.y 1dentical to ho We now

RN def:l.ne an isometr:l.c operator sz wh:!.ch ma.ps h onto h 6 It is reduced

vThe states ' f

a6 hold where T, and I are/the 1dent1ty o;perators on’ ho f

i where. I- is the identity on h .and

A—23

H is the total energy of a free or asymptotic sirstem,. either.a. bound-'.iff’

by the subspaces ho ’ h with

R (5.;.7,'
0 and f are continuum states and they are only mapped

onto continuum sta.tes of H in h « Hence if fa_ is a discrete eigen- '_'"j
state of H ’ a T fd o 5 . The orphogoﬁa}ity I‘el_B’,tions".":-".- i_ ; e

P I BT

b = Tale o MR e v

/
/

""7,.;-;;?0'1 9 = 1, = a(a/ ot ) 8(v - y') a(m.n) }fj‘.“!t,» ]

. 7-

(o]
respectively Fina.lly then we have 3‘f‘_-'A ’,

P |

is the proJection operator on
‘ N

5 DI S
ot e i




fo o a-oh

the space spanned 'by the discrete eigenstates of H.

forma.lly the same space as 0

becomes '_ : e w
< i - ;

D NN

T

s T

h I :l.s the same a8 Io andv(5',19)

Since h is ¢
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VI. THREE-BODY mvmson's THEOREM IN THE PRESENCE
- OF TWO-BODY ‘BowD spares ' | ;" |
The trace of the first two terms of the above equation has ,

already been eva.lua.ted with the exception of the parts having an overall

That part ‘was given in Eq_. .(5.10),

i
i

delta function. .

. T P ,
[Wa’,wa a o

When there were no two body bound states Pa was zero, ‘but now 11; must
'be included. The identity opera.tor is replaced. ’oy' Q f Q eince they
' ‘ L h

are equal and then A(1 / beéomes

L3 RV AP '

= . 1","’ 3 . 1" - 1" .

{fz [Waf'?.:ﬁ] [O’W Z {aaa na Q'n R

| 0,p=0 R
L e (6a)
'r
.The W operators are 'given in Eqs. (3.8) and (3. 9) » and’ the actual -
calculaticgn of the traces is done in Appendices Aand B . The number

of three body 'bound states is given by ;
N i ’ : . B ) ) . ;
¥ %Tod ot
N,'= fd.EtraCe E oo'—&—j + Zfd.E v
, . o o 9 -
, d - O W W |
t?ece SE TQI . TQI,&-“TOG 4+ dE ‘ Taﬁ B'E-Tw - TOﬁ B-ﬁ T
R e L (6e2)
) .
! o4



i :

and Io ;- I . are defined 1n Eq., (5.18) w1th the use of the above

relation, the expression for N can 'be rewritten in 8 form similar

'to Eq. ()4- 8),
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L /- . + oy |
N = liﬁ f dE trace ST gﬁs--- 5 %S- + Eaﬁ (Sf -,_S) "e .

o . I i (6.6)

Since the trace of ‘each amplitude Toﬁ is assumed to vanish at its o

threshold and at infinite energy, and since the amplitﬁdeé are continuous

-~

through other thresholds, the term

. . ’ a +
g f dE trace [ﬁ(s -s)]
Define a unitary operator U, by -

4

1
o

(6.7)}

o
The operator SI S; S; was discussed in Section IV. A unitary connected . ;
S-matrix can now be defined by . ' |

' oL (6.8

'4nd a connected T-matrix by . .. ; ‘ |

w

§ = I=-2xt'8(E=-E") L
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 Substituting U'S_ 'for_ s .in Eq. (6.6), we' btain i
N = I% f aE trace (s’fu) 5 (Ufs ) - U'fs (s*u) . j
Using S8; = I, U'U = I and trace (AB - BA) = 0, the above
expression simplifies to - v
L g | 1- 'i
N =1%j dE trace u%-u*@%‘hsﬁ a§~s ~ . ;
SR ' o ,
.' v ) .!' - [ (6¢]-0)
The prime on the integral Vr'equ:!.re.s that the terms withAa.n_,_ overall delta
function be omitted, that is the U terms. Finally then we have '} - |
. . : K
' ' BS . . .
N j dE trace :’:‘.f ﬁ- &.‘— . R
L . &, B : (6 Jl)
The eigenfunctions of T, are used to compute the trace. For fixed
energy Tq is a normal operator since uni’ca_rity requii'es
To - q gt - ;
‘I'c Tc . Tc l‘c s
.o . . . \ . I/
and :Lt is sq_ua.re integrable since aZL'L :Lntegra’ciona are over a finite
ra.nge and there are no singularitiea :Ln T _ Hence it has 8 spectral
decomposition, V. f ‘ RS , ‘ ;' AT
' T ) i }- 15 .
| T monE Y ed | A s<¢ | |



| o a2 " S

‘{rhere' ¢ form an orthonorml set not necessarily complete. To ma.ke
the set complete an orthonormal set of functions spanning the null |
‘space of T, is a,dded. The trace in Eq. (6:11) 1s computed using
: thisv'bas:l.s.‘ The dia.gona.l elements are given 'by ;'

| ., st a5
(B 18t =g -8, gl £, ) = w7 .
| o . (6.13)
_Suppése. the thresholds are ordered in the following way: '

'0.>-BJ.'>‘-B2 >_33 ", ' ;:H,

Then the answer for the number of three body bound states is

N,r Z[sn(o)-an(f)]' -+' Z-[Bn(l-Bl) -";ngo)] ; Z[a (3) - o3|

n . n

I 5 [Sn(-Ba) - sn'(-na)} |
o - R o (6.1k)

{
|

The phase shifts are only determined modulo x , and since they must be

" a multiple of n at infinite energy, we are free to choose them to be
zero, We can further require them to be continuous across the thresholds. I

. of newly opening channels. Rather than require the phase shifts at

infinite -energy to be zero,. we will specify that only a finite number can
" be non zero. The sum of the phase shifts will converge ‘at any energy and

the only contri'bution will be from the elastic phase shifts at their
l

thresholds, L o N |

r
i

- T Z ) Z @+ T o0
% n '

v SR (6.15_) |
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APPENDIXA

o '-f-.", ,': In this a.ppendix we w:L‘!.J. evalua.te the trace of the right ha.nd

side of equation (3 9), SRR L /

L T - [ e

- y P= _ , J ,
R R

i
i

1

© We he.ve-left out the‘ term [WT-‘ W ] s:ane it :ls given by Eg.o (3 10) -
Although there a.re a great many terms to evaluate, only three of them

are different, so it 1s suff:lcient to ca.lculate the fOllowing.‘ B LN

= . trace = . . S“g‘;
= trace.._" ,'WJ_’ Wov i ¥ i
S T B ‘ ; i
: , .

=
|

. l_’: .’.
tra.ce ‘WO,W o
(A"'fl-)g S

It is convenient to use the set of variables used by 0mnesl5 o { A

*t;f{i, and discussed in Section III. We edd one: redundant variable, the total
energy E ui + u.b ‘“5 With this choicef of variables the operators

', W 'become
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(“5_1‘92;“55:1‘4 lwol “\_L:“by“’j;M') ..= ..

™ = To(aﬁ_,ab,ag;ugjag,ag:s = a +':,wé +a o+ ie;M,M’) e
| a BRI O (a3)
. The total ‘;I.‘-m'atrix as giiren in Eq. (3.12) 4s Just the sun ‘
Toy = Z 5(ay, - m&&)ta+To' . | |

| @ A o (A1)
The variables M, M' and s will be omitfed: as the' M, M' variables
 are always involved in finite sums which present no problem. The a.fguments
@, are always positive, 80 if one of them is replaced by E - @ - aaa ‘for
example, the entire expression 18 to be multiplied by a step function
o(E - @ - ab) . This will also be omitted, but implicitly understood
to be presenf.;. }To further simplify the notation, the set of variables
' “EL’ 0)5 will be denoted by @ whenever there can be no misunderstanding. _'

/

- Th this notation, the expression for . A12 becomes

£f (Yo, (o, o Jo(ay - ) -

(B - E" - 1e)(E* ~ E" + 1€)

- N B
412 = ’.ti'ace j; dw”
' i

o ACT ')t+( y o )S(wl-ai)fi(w -af) o : H
' (B - E" - 1€)(E' -~ E + 1e) | |
| ; | (A 5)

/

To evaluate this expression we sepa.rate the singtﬂ.a.r denominators in’co

’

_principle parts and del.l.ta‘.functions. We assume tha.t all integrals
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conver¢— absolutely and uniformly st infinity so that 1t is permissible
to interchanée orders of: integration except at thé point wh'ere the:
&gnomina.’cqrs both vanish. For simpliéity 'of notation ve let A be the
~ contribution from the prociuct of the two delta functions, C be from
the product of the principle parts a.nd B Be from the cross terms.

A and C will be zero. A12 is ea.sy to eva.luate because of the delta

" functions, _
) f

gy = o trace 8(e - ) tI(“i?'“’a" B %%’E -y - )
Lk tpla, el - o - el %'E' % - “y -
eyt - of - o - x|
Kta_(ai,ah,E - @ - “b‘“i’“b;Ei “al - a) . o
, ' . (a.6) .
The diagonal elements of the term in the ‘bfa.ckets vanish ldentically

and since x6(x) = 0, Ap= 0 & : ~ SR

’l‘he trace in c12 is vritten ‘out explicitly, .

012;: PfodE’[O jo a,lfﬁ%)é _‘
{:L(“w’ - q - “b/“i“bE ﬂa ) 1

RAACYES ’-“rw 5% iy - a)-t] <"1:“@E'-aa % “i"‘t’E“‘i“" X

x by (0,0 - @y - “é“i’“é"”’"‘“i %)
o . (4.7)
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= ER' and the integrals converge

-

. Since the numerdator.vanishes at E
absolutely and uniformly at infinity) it is permissible to interchange

Since the integrand is antisymmetric in

the orders of integration.
A

= O . The only nonvanishing contribution to 10

E and g:', Cip
s By

BL?- = 1ix trace m

P B o ‘ :
5[4 9 (@anE - a-gaaEq - o) “
ey a0y 0y By -t oy 0 By -y 0 By )

t2 (‘“l) %) E""i-“é_; “ﬁ: db: E! ‘rﬂi-a)a )+tI(tli, Clb, E'ai"“b" a)l, ab, E! ._Q-L_‘a)a) ')‘ )

!

(0 By -0 0y By -y )4 0 By - s 0y B -y - )

E I C ."/ . . :
GplpayE e g B g sg)f

This is of the form e T

trace g=mmr {f(E,'E") g(EE) - £(E,E') s(E',E')}

"E 4#E' and integrating becones

"' . .

jdE f(E,E)%é-EJ—z ,

. Finally then we have ,_/‘: /

. which upon -taking the limit



-/
/o
- //
| [ A35
By = i fan fo'@a aa, :{'f{'(“ai%’E- G ity T - @ - ) %
5 (0 G By Oy Gy By -y )=ty () Gy By -5y 0y By =) X

/

. a ) ! . v‘, * ' !'j
4§$%%mﬁ~%%%mﬁ*w} C

| _ _ - (4.9)
This can be put in a compact form by using T, and T, (see Eq. (3.2))
where T, 1s now an on the ‘energy shell T-matrix, - e b
. _ v S L
S j’ m,’/ ' ' _ :
| = ix _[ f/m trace {1 31'2 - 0 i !
Ba Mt b - s N
| S | | (A.10)

The- ana.lysis for Abl is quite similar,

' . | o ,’I Fleos M "o ._ "y_ 1yt !.l' R
N o £y (ay ")T (@, 0 )8 (@ ~ad)-T (@ 0 6T (", @' )5 (af ~af')
= trace aw” . :
OL . " N ot
k o | (B - E" - '1e)(E' « E" + 1¢)

b . ' :
e .'1 } . (Aol].)
Proceeding a8 before and doing all the traces except the - E trace we

~ have -~ . T

' :?‘2 trace s(Ei..E')’ ja«xg day daé tI(ai,ub,E-qi-ub;ai,qé’,E-bi-ug) x'

AOl -

| \-,To(‘*‘.v4&"E"“i‘“gf_“i’.-“ﬁ;"“"'“if“é)“t{(‘&’“S’E"ii‘_‘i“‘*&“i'“b"_E"“i'“b)

i (aa2)

|
!
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‘ interchange and @ in the second term and then the expression

is explicitly antisymmetric in E and E' and hence vanishes. In

the exi)ression for COJ/. we do all the traces explicitly,
|

o °° ‘ °° f’ dw'@aidm - '
COIEI.. = _[OdE fodE J;ﬁe 1(“1’“&’E”‘ﬁ““b oty ’E""i “b)"
ﬁo'(ai,t}g,'E' A “b"“i'“b’ﬁ - agL - “b) -

-

T AT ), - - -
® %%E' 4 o ! ‘w -9 )To(“i"‘b’E @ a3 “i’“b’E' @ - “y}
: (ﬁlei}}
 Again we interchahge @, and “é in the second term. The expression.
is then explicitly antisymmetric in E and E'

‘and the integral -

therefore venishes.. As bef‘dre the entire contribution comes from B .

B. =

o = ix trece gr‘-’-:-ﬁ [ % 0 g By i o)

i <%:%:E-“a asay, a’E"“i “b)"’T(“i’“b'E"“i ay; “i’“é’E"‘“i “’2)"

1
{
{
i

To(ey “b"E‘“i“%mw’:E'~“a-“§>+t§<%a%»E-ﬁ-“bs% %,E'-ﬁ—@x;‘_ |

(e o By ey, oy By )-of (o, 0 By sy, 0 21 e )

-«

v, ' - W 'R . - . :

-To(“’J."")e’E -y - B e - g)) . ,

o B B (A.1%)

: 4 5 4 -

After interchanging a;a ‘and, “32 in the appropriate places and taking S
the limit: E - E' ) Ve ob'bain : Sl -} SR . ‘-

T
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S  Jnt 3 _ 2] i i
N ,BOI in f dE trace '1‘1 -&Q S5 . ; o i; :
o o o o ' | N o
The finai'férm we have to calculate is AOO . . - .:
, :‘ | o | : : . ' 'f
; N ‘ Tg(m‘v ' )TO(“’"J w! )" T (“% )TT(‘D y0') - .
Ay, = -trace f dw" ' S j
o : ' (E < E" = 1c)(E' - E" + ie) v o
| (A.16) '

[ -]

2 trace 8(E - E') f any da, dof day {Ti(a, “b’ By - 3 &5, B =) )
' "o | SR A ,
f”%%#%%%%ﬁﬂ%ﬂ%&%@%%%%@&w&
o ?g(“il“%yEfai-%iai:%)E“ﬁ‘“ﬁ) ‘ i | . o o
o A ann)

Upon -interchange of u&! a& and o, dé.’ the expression inside the
brackets vanishes identically. o ’

.‘l .
. [ 60’ a
dﬁ%W%ﬁ%%%%%%%%ﬁwx

. 0 ‘;.= trace B
°/° '[3 'fo fo (‘ E')
ol B -ef-ehiy “é’E*f“wb)-?é(wf-f’“é'Ef—ua-qgswy A By =) X
%%%&%%%%%%w.j.gi'- -
| e o (A.18)

 The integrand is antisymmetric upon intercmnge of a].l variables a.nd

hence the integra.l vanishes.
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) = in trgcg m dﬁd&éda&d&é | Tg(“i!“éf E'“i".“.‘b‘;‘“i’ %s’ 'E-a:i- o ) :'{

o TOW%’E-%“"'% “’z’E"“"l““a) T“‘ﬁ ‘%’E"“i “b"“i’ - “w

l

X To(“i"‘é’E"“h % %%E“ﬁ %M‘”(%%,Ewﬁ% ﬂw E'-ﬂa

, .

“é)

i Y To(“i’“é'E"“i“‘b'“i’“b’E'“‘*i @-T*W "E““.L““b ‘&»%»E’-wl “y

o (%%»E-“a % “‘.v 'E““i “é)
' This reduces 1in the ‘usﬁal way to
R e S

BOva 1n.detrace To-}-aﬁw,i:'o‘afﬁ . . =

- From Eqs. (A.h) and (3 12) the three body T-matrix associated with Soo

e is given by

-3
0
c]
+
e .
+
H
o

i

"
,I 5
; S
l
r
!

’.", a L

Combining al.'l. the results of this appendix, we‘Ahave.

S _({A.l9)




S U e g f dE trace {7} aTOO - 31’00 - o
R T R ¢ I : bt 00 OB Y00 am- [ 4.
B P D S T ‘

it

K e “ . . . . - .. . . . .

‘ TR " where i“:-: -Ip_:_ime_oﬁ‘ the integral means that the 'di_scohneci:ed pa.t"ts‘ -

-

. that 1s the terms with an overall delta function ~ are to be left out.




o v a unit operator and commut‘.es w-!th the other terms to give zero

APPENDIX B
In this a.ppendix ve will derive '.Ln d.etail ’che trace of 'bhe third
terxn in Bg. (6 1), whichwewi].‘l.call A.B ' - '

Ay Ev.Ztra.ce_u By - W T e

 The :zd}ope;;'atoré we:e,'def'ine'd in (5.10) LT |

B LY T Z T @ +V - BT-G- B - i€
":_:‘ ) "1 s I.’ . i S . e

f s
o

o
n

e gy "“ Sl "‘"""-"5"7’ s 68,

L (v +B ) ‘lf (v ) B(m ~w)® Qﬁ =

- (v +B)¢(V)F(wa.}3)
- aﬁ aB "B dngB.- 1e ..

e
[

R, i a grojection operator ‘on the two bodybound s_tate,j' R

i ;
A !
oA :
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I*H»ww' R R

""_The first term factors into / Pa(va,va) S(w a)') s BO the ’cra.ce over

va can be ta.ken giving unity.a I’qﬁ ha,s a term which is essentially
- )

‘ ‘I.’herefore :
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f: . | o . ) . .o "
| hg = Z trace Z['d dv ay(w @V Kog (@, v" hsal)
' B,7 A0 (a) -B -ty -V" 16)(&'-B -CD"-V"+16)
L . . ' o ‘
L ' ' " 1 oyt
* . ) ) , fdw" xcw(a)v}}\) ) K ((D H ‘V ,7\. )

0.“ (w+y-_a>;+]3 ~ie)(a>'+v'-wa+B +ie) |
| SCR)
The usual assumption is made'thet the orders of integration could,be
interchanged except for.tﬁe sihgule:ities from the denominators. There
are two sources of singuierities which occur when af = @, and

o + v! =0+ Vv . The first is exhibited explicitly above and 1is located
at @' +v" = @ - BO/ /The second 1s hidden in the K ’cerm itsels,
and can be seen in Eq. (5¢8) aboves ;t,is located at @, - B, ,= ag --“B‘3
and will'occur only'whenf B = 7 in Eq. (B.3) . The two singularities

occur at different points 80 they can be discussed geparately. '
- In the proofs there will be many cha.nges of variable of an
essentially triv:lal naéure. As in Appendix A , we will omit all explicit
A reference to changes 1n the integration region. If an argument;of a K
or an -F function is negative, the function will be taken to be zero; that
is a step function of all arguments is implied. With this restriction,
the integration 0n all va.riables is taken over. the region of positive ~
. | arguments of the functions ‘'K and F . The varisble E is used for the

a
o will refer only to E . All other traces will be done explicitly.

total energy, either @+ V' or @ = B, - Hereaﬂﬁfer::the-' operation "trace

First the singuﬂarity at a> + v = a - B ' is discussed as

though the one’ from the F term didn't existe Then presming that the

o v i
s o . L oo o

. . “ R v {
1
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first singularity is a.'bsent ve treat the F teim. 'mé evaluation
follows the by now familiar procedure of splitting the denominators .
into’ principlelparts and delta functions. The term from the yroduqt

of delta functions is cqlled AK or AF depending upon which;singular-
ity is being dlscussed.’ The term from the product of principlé parts

) 4
is called CK or CF/f_
contribution to be evaluated is 'AK .

I

The cross terms - are EK and BF The first

Z trace 8(E E") f av KB (E-v,v,x,E + B ) K (E + B ,E"-v,v,x);.
C‘JB:?’ e ' : '

.

4

- KBa(E - v,¥,E" + B ) Kay(.E + ByE ~ vwoN) |l . S
' (B.4)
The term 1n brackets vanishes at E = E" so AK = .0 . Hereafter .

the variable IS will be omitted as it adds nothing to the proof. The

evaluation of CK is straight forward. D : j' : . B
| : . j _ : i
. w . .o . ) o
- IS0 A% f o T _‘.‘ .
% ° f 'l; (E E')2 jdv Koy (BB B!~y V) o (B!, Vi B Ba)i
' 0‘:5;7’ : : - ' } .' - o
‘ . . . ' . i e . . ‘ A . . ' :
Co- KW(E'-Ba;-E-v,v) %(E-v;v,?E'-Ba) | .
o (8.5)

The term in brackets vanishes at E = E' , so the principle part i
integration is well defined. Therefore the orders of integration may‘ o f
be interchanged and CK'b= 0 due to the antisymmetry of the integrand..

-
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we now consider the contribution from the term involving only

,.
i -

BK =i1tf Z trace —r—- f av {x (E+B E'V:V) KBG(E-V’ :E'*'B )

\f, a,B,7 - ;

v, , o . .
. oy . . # o

Doy v : Lo N
. . . H .

e . Y i )

' R

f'Kw(E'fﬁq;:E‘.:v;V) l%agnv-v,v;EwBé) R |
D | ERE (Bacﬂ

P A ]
St i o
T

’

To evaluate BK take the limit E-* E' which gives a derivative and o
The final result including the angular variable AU
‘ ':'Tinl

" then' integrate over. E .
[

o 1:: z ):f 4E [ v (E+B E-v,v,x) (E-v v, A E+B, )
. BK a,an 7 o Ko” B—Kaa o ‘i :

Sy

o+

f Y U AT
"‘."'*KBa(E_"v"V"M%"Ba)ﬁ KW(E+BQ.;Eu'v,V,,N) o " - T R
_ T Ty LU S
In terms of the transition operators Toa _defined in Eq. (5.12) , the ~ " 7

4 :I
i

result is ,fj




Y A =
In addition to the singularity from the three to two amplitude, '
'there is a term from the two to two ampllitude. It comes from t.he
. _’singularity of the F (/term implicit in (B.3). Referring to Eq_ (5.8).
and substititing the ,/F term for the K term we see that the ;only' new

singularity will come' when B = ¥ . Therefore we have

] N

AF. = Z 8‘37 trace 4['<i'vt3

al 6}7 . 0 :

f ) Fog (e o) Ty @ia)) (vy48,)° ¥, (vg) 12
0

- (R AYRCRE TR . 1 "
[l(a)a B~ -,v )(wa B "~V )] [( B 0! 4B - ie)(w7 B‘y'wa Ba+ie)}

f dm" F, ‘(a.) ;w") F (a)" ,-)' (v +B. )2 H’ (V )l2

[(co+v-a>"+B )(m'+v -w"+B )] [(w -B +Ba'wa ie)'(cp;-By-coc';+B&+ie)l ‘

0 s |
| | | - (B9)
The ie -has been left out of ﬁhé denoﬁiﬁators already treatéﬁ, as o ' :
they are presumed to be noneingular The 7 dependence has been |
indicated. in the denominators to make 1t clear that only B g 7 terms

' are singular The expression is now eva.luated in the usual wa.y 1n terms

l

of principle ;parts and. delta functions. For AF we have, |

| AF o 2 Z tracef dv H’B(V)le 5( -cn') F (co ,BB-KD B ) F (Ba-fa)a Ba,CD )

-

- s( 0 ) F (m BB+Ba,a)B) Fﬁa(‘ ﬁ BB+B ) o

RO Y T TS VYRR AT TR 4 T S s s R sy sy S 1o o s
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A simple change of variables;

-~ o +B,0+B, |
» ‘ a o )

O o
and | ;
. ; !, ‘ﬁal €D1.+ B, o+ Bb _ | o f'f
puts ihe'expression in & form in which 1t 1s ‘explicitly antisymmetric in ..’j’
8w -~ ') . |

It therefore vanishes aince it multiplies

w and o' .-
We change variables

The calcunation for Cp
y = B and obtain ’ ,

v + B )2 Ivﬁ(v)l?'

..' (
' B .
Sk [m/ carper

proceeds along similar lines.

to E = o

(@]
It

¢
i

!

SB'+B)) Fq(E'+B , E+B, )
)2

F (E+B ‘E’+B )F (E+ﬁ,E+Ba) _ Fﬁa(Ef
(B.11)

‘(E+B. +V - E'
v( B .

! ,(:»:-‘v-E'-B,&3 2
= E' and therefore the principle part »

. P
' The integrand vanishes at E
‘ Interchanging orders of integration and

integration is well defined.
. /
 using the antisymmetry of the integrand we obtain’ Cpi= 0. ,
o The final term to be evaluated is By, : : ?
. e o ;
| v+ [y0)I?
trace !
. : . E' - /
o, B E) _
1 1 1 o ;. 1 ‘ .
F (E+B B +B ) F (B'+ B,E +Ba) ) Foﬁ(E+Ba,E +B.) Fﬁa(E+B ,E+Ba)
 (E' +V o+ :BB - E)(v + BB) (v + B, )(E' + BB +v -~ E)
o . ol 0 1 1 ol
. FaB(E+B ,E+BJ3) Fﬁa(E+BB,E ,+Ba) ) Faﬁ(E -fBa,E +B, ) EBG(E+B ;E +Ba) .
o \2 ' : » :
B, + v E + v + B,-E! E+Vv+B, -E'){(v+B
(By + )2 ( BeE) prE)v )

Py
E

!
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By expanding the term (E' + v + By - E)"} in powers of (E - E'), it is

easily ééen that ﬁhe'only term thatvneed be kept in. the above equation '

1s the constant term as- all others cancel in'the limit E~ E' “From Lo
‘ o . . A' "l - .

Eq. (5 2) we have +the- normalization integral, o
In the 11mit B E' the' remaining terms give a derivate to . /-"”g;.u'”

Cyleld SO -
. .y. . - "‘." 4 C , N aF . o . - N
(E+B E+B)B—m'(E._+Bﬁ;E+Ba)

BF=1“ 5‘ aE an

d,";s‘ -min(Ba, Bé);[.._ .

t

v N ';” N s L
- Faa(E “L,Bﬁ’ E + Ba)vEE- Foﬁ(E-+ B E+ .BB) . (B-l?)
This'expression can Be rewritten in terms of‘ Tbé defined in Eq. (5};1),6 {:'

P AR EETUR N IR SRS B

2 o (Belk)

Compem ) f ‘ ."E Tsa!F&E_ St T E Teaf

»-l'

Combining Eqs. (B-lh) and (B-8) we have S
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I. INTRODUCTION

In this'part.we~devélop & method of simplifying and improving
some potential theory calculatiéns. Thevbasic ideafis to expand the
scattering matrix T in eigenfunctions of the kernel of the Lippmenn-
Schwinger equation.l In éeneral these eigenfunctions'cap not be found
exactly;lbut we have Aeveioped a variational principle which enab;es us
to make a reasonably accurate approximatlon to them.

| Most of the existing methods for finding approximate elgenfunctions

and eigenvalues are only useful for Hermitian operators Unfortunately

the kernel of the Lippmann-Schwinger equation is not Hermitian; however

1
0

it has similar properties and the variational principle for the eigen~ -
.valuesffakes a form analogous to the one for Hermitian operatofs. 'In
Section Ii we discuss ﬁﬁis relationship and prpve this variational
p principle, |

In Section III‘we discusé the form the approximate trial wave
functionsishould take, and we extend the results of Sect;on IT to partial
. waves. In Section IV we discuss Regge pbles apd their residues and
present the resplts of a éalculation of Regge trajectories from the
eigenvalues of the Lippmann-Schwinger kernél.. The poles of the T-
-matrix occur wﬁen one of these eigenvalues ig Equal to one, éoAit is
a2 simple matﬁer to find,g Regge pole once an eigenvalue is known as a
function of the complex éngular momentum and the complex energy.

In Section V we discuss the relationship of the eigenfunction

expansion to.Weinberg's2 quasiparticle method. They are quite closely ,‘

o otree A e B e s 2
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related, ahd our techniques can be used to improvetcalculations:by that

method. We Calcuiate some low energy parameters and compare them with

.some pfesumably accurate calcﬁlations and also with those of Scadron and .

Weinberé.3
In Section VI we consider the possibility of exteﬁding these -
methods to the three-body problem. A more complicated variational

principle is proved for the an.ddeev)‘L equations. It is suggested that

- these equations can be simplified by using the'eigenfunétion expansion

for the twoébddy'T-matrices in these equations.:,
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y . S :
Do R : ' . 7
. . .
i

EIGENFUNC”ION EXPANSION

-‘:,k R ./II‘*
In this sectioJ'we introduce a variational principle for finding

JZH - i
' approximate eigenfuncﬁions and eigenvalues of the kernel for the Lippmann-

C
N

. S PR B

| :;achhwinger equation P
R R ;i (2.1)

S m(s) = v+ (s) G (s)V .
. e o _ :
' The formal solution to this equation ¢an be written
T = VIl -c V], . o C o (e.2)
' . : - T . ' . ». o 1, v . .
- For well-behaved potentials.the kernel has been shown. to be'compact4’5’6"
for all cdmplex and real sb, and therefore the only singularities of tne
kernel eccur when an eigenvalue of 'GOV is equalttovbne.\ The elgenvalue - f;/
"i}'eqpation is - . S
(s)V Hf(s}) aMs) lw(s)y , 0 |

which is:just the Schroedinger equation
SV ) = Me)s - B l.w(,s)> [ A A 3 I
_ . S S 'v.'}‘f.

Weinberg haS shown that the eigenvalues ot

- for a complex potential V/A .

"ére real analytic functiOns of s, and that the phases of W may be

R

chosen so that it is also real analytic, that is

X (s ) = x(s) » ;i:¢2r”:n;v;fjiksf}fiﬁ “U‘W:

.!‘ :

T e RN i gt e s
ST .




B-k4
functions can also be chosen such that
(plus) ) = (plus) ) . g (2.7) . -
To have a practiéal stationary principle it is hecessar&-that L
~ there exist a simple relationship between the solutions of (2.L4) and .
vits adjoint,’
. N * ' ‘ S -
VIp(s)) = a(s) (s -H) [g(s) ) . (2.8) |

- * T S 5
Change s to s 1in (2.8) and use (2.6) to see that [6(s)) is a '
solution of (2.4). We choose the normalization and phase such that
ok : ' | | S
s = [gs)) . | (a9

!

. With this simple relationship we have the following useful theorem,

' Pheorem
The functional form

|

M(s)) w e v . (2.10)
R BCCREER-SRIOY L

is stationary, i.e., B\ = 0, if and only if the étate l¥(s)) 1is a
solution of (2.4) ‘
Proof

The variation of AN is glven by

(¥(sM) s = B[R = (oW(s)IV = As)(s - B )[¥(e))

NI - A s - BYlera)
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Let S\ =0 . Then usigg (2.5) we have
[V - Ms)(s - B [¥(s)) = 0.

Obyiously if (2.4) is satisfied, 8\ =0 .

_ Special care must be taken for s on the positive real axis.
The proper method to handle the singularities is to evaluate |
(W(s*)ls - HOIW(S))' in momentum space for s compiex with & small
'positi?e imaginary part. It is often more conveniént tq compute
(?(s*)IV[W(s)) in coordinate space. L

In ﬁrinciple the kernel GOV can be expanded in its eigenfunctions,8

!-
1

v (N (sD1V

GV = _ . | <2~1l)
A g (¢ (s )]s - Bl '
Using this expansion we formally solve (2.2) to obtain
— ' - .X s *
o - v Z .vwi(s» 2(s) (v (s)]v. - (2.22)
L (D VI (5N = (5] o

If‘only éne of the eigenvalues is large and all the others are much
smaller than one, the T matrix can be.approximated'quite accurately by
the potential plus one term ih the_expansion.? Bound states occur when
X(s):= 1 fbr s <0, and the resonance pole; occur when .Im X(s) <1
and Re As) E 1 for é > 0 . In the next section we discuss the partial

wave problem and some criteria for selecting approximate éigenfunctions.
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ITT. PARTIAIrWAVE EIGENFUNCTIONS
When we consider spherlcally symmetric potentials, the eigen-

valx.ua-s_,}\.n and the eigenfunctions Iv (s)) become parameterized by

the angular momentum 4. S . {;
L R R . T R o
CFl) = Ll o) 1 6 . G

For simplicity we will omit the index v . The partialfwaﬁe Schroedinger

. _ . v
equation with the_complex potenﬁlal x;rgy is

a2 2 (e +1) v(x) ' L
= + kK - 25 - (rly,(s)) = o oo (3.3)
dr , r ‘ k(,(s) . , , :
where . S : - ST
k2 =8, . ‘va'k”> 0 o ' ' . L (3.4)
and i , , ‘
X (s ) = -k(s)/. o o (35)
j o ) . } .
1 We shall use the Riccattl Bessel functions . S {
.- | /‘: /’l ’. | . ; ) .
. nZ . o ! .
F=3 — / . . ! )
ua‘(z) | 2 Tedle) , , - (5.6)
_ vi . 4: .
vwhere . - / y
2 ] ule) uler)ar = 8la-p) f (3.7)
X AR AT _ p/ o Ao
50 that the’partialfwéve Green's function is
o | S
b



. e o | _ | g | 5
= Jr o uz(qr) ?a(qr )y ’Im s >—O S
O . . J . x':, v S ' ’ o

S R
/ . . ne

'Ga(s;vr,r')'

f’ffj:‘ The partial-wave momentum-spaée wave - functions can b% found from-fhe ‘

e ‘ f:éolutions'of (3.3) by ; . L‘ o DT

-

" so that the functional (2.10) becomes

f r s : = '.f L a
T vt {u!w))}

v -~
- of' dq { v&(s')[q.>(s - & )alv, ()

f.

RSN

L At this point we restricf'oufselves to the Yukawa potential ;g‘

/ / _ : T . o
-I / o - o /
g e y .
re ’ . - L I
I

!
{
P

(i»!vlq ) -,%- Q@ <9=—+—1L—+—1-> .

©. Our trial wave functions are chosen in as simple a. form as possible '

V()
for which .

3o

1

i

|

|
P
i
i

|

' ‘“-,.cons1stent with the boundary condibions they must satisfy.

‘;gfbe found directly from the defining eqpation, _a°_f .‘f “;ff'A
: .,rl : ' %

'-° ' x(a,s> <qu£<s)>

(L—-B—-t-h pw <s> N

- l

f54from which we see that
qw,gs) ) s

P -"l;'

7 ana

<?4wz(s>_.> Ve f amgq}) Celoge) )
e e ) » / R B

| (58) i v.'t"‘,

5.9)

(5a10>

..(3.113 N
 Ga2)

Theseican

' ayl;ﬁ3 15) ?M?ﬂl

T T e Y



L ! .
(alv,(s) ) @ 5 - | (3.16)
.»' I t :' ‘ R
We now construct a trial wave function corregponding to the '
lowest eigenfunction, with one arbitrary parameter, gu . :
L+l ' A
| (3.17)

q

2}&+1 !

Calvy(s) ) -
’ (& -8) [q? + (1 - 1K)

with k? = s . In the limit p - 0, this wave function goes over to the
exact lowest coulomb wave functions, o

o : q£+l . :
(-QNL(S) )qoulomb = (qe' ‘ . :(3'18>

| g
, Wiﬁh these trial wave_functions'we‘can use the variatignal
principle fo find good approximate eigenvalues; we do so in the next
two sections to find Regge trajectoriesvana some other properties of

scattefing by a Yﬁkawa potential.

[
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IV. EIGENVALUE REGGE TRAJECTORIES
We now let ¢ become complex and examine the expansion (2.12) .

near & pole. The poles occur at those points where

i

CMes) = 1. E R e

This solution is then inverted to give a Regge tréjectory)

!

L 1= afs) . | ,. | ' o . (k.2)

The refléction properties (2.5, (2.6) and (2.7) become

L

*, * %
AN(L,s ) = Ag,s)

(o [W(ts) ) = Cp e,y

ey = (WSS ). (b3

t

~ The residues of the poles are also easily determined from (Q.LE), since

" near a pole we have

{
) 2
. {02 - o Iviite,o )y
0(e,5) =~ — . (b.4)
L1 - M) (Cwle,s ) [viw(eys) ) -

The factor [1 - A(4,s)] can be further simplified: to give

1= Me,8) =~ -l - afs)] {%{-ﬁl } 5 (h.5)

L=0(s)

pod] - [ e, e

with

1=0(s)
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It is a very simple matter to calculate 5— by using the
stationary principle (2.10).. The derivative of the vwave function
with respect to s must vanish because O\ = O, and the entire contribu-
tion comes from the derivative of the operators (s - Ho) and V.
Since we assume energy independent pdtentials.the only contribution,.’

is from
""‘g’ (S - HO) = .1 o'

Therefore we have

s | NS w ) 1, ) R
s '_f«:a(s) ( y(e :S ) V] ¥(e,8) ) ¢=d(5) |

*

 and the residue of the pole in T (h.kh) is

(R s 1] vlate, e ) (o)
R(s) = ¥ % . . : (4.8)
A vla(s ),s.1 | W[a(s),él ) .

Using (4.8) it 1s easy to prove that the reduced residues don't

change sign for s < 0. The reduced residues are defined by factoring

out the threshold behavior. There is also an additional factor of

‘- X gsince our amplitude is not the usuwal partial wave amplitudé, and

2s
this gives for the usual reduced residue ' 2 . ‘
[+
' , "o dols)
f A dals)
7(s) = , =~ » -
o3

[ (x Mots)sl ) ) o
0
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The ﬁesselvfunctibns ’&p(ix) are relatedfto I?(x)'_by ;:““ | ;_; f*a
' ' ) o ol : R I ‘i ,r‘ )

ey Lp . o _ . _

. and I (x) is a real function for x real° Therefore y(s) is real |

!.- and-positive for '8 <‘O since %% is positive.

As an. 1llustratlon of the use of (h l) in calculating Regge )

‘ ’traJectories, we consider the coulomb potential V(r) % o If the

" vave function (3.18) is 1nserted in (3 10), the result is of course the.'f

. 3f exact lowest coulomb eigenvalue ,./ "e'ﬁ:f'fiVl.ﬁ;>}ﬂ.fljji"* Vl o R

_f_ B , I e , 1*,w‘,_{vf~_ L .:;'-‘ S
:?;'*(9’3) SoEk(r L) e c‘¢_-».,g(u'10)

L ;
! . / L '
. 1

' ff,:ffwnich,givesfthe exéct:leading,trejecfory,9

i

‘/ /’

""i”ill,," For the Yukawe. potential (h ll) we were forced to do the '

. l R
‘integrals numerically./ USing the wave functions (k. 17), we have the o
: . o ! ‘/': - ‘ . . -

L result;?ilfi:. ".‘fehf,/s~ f‘F ;f?_i S "i o {
N

l

|

B Y T, B B
e T : e u,(ar) o
L Shnl B T R R T
R o S D 1k)° ]

[ oe4e
[ q.

—-81

aq

2%+2

0 (d® - s)[q + (u'- lk) ;ﬁgff,"y,glgsi IO
ST T R R _,'ngng S _l~>}gc;(¥-12)?'ily'
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U Combining the denominators in (h 12) by Feynman B method, we obtain the . _
'l'r simplification o o 7’:“-.f, ‘juglj -fﬂ{va'j*;[ l;'
My s) | = C(kaz) o

O ey

~wWhere = ioo ,
¢ . - . P .

1
T~
;r:‘ .
(=]
Ul .
~ ,

¢ dy o
2L+2 o e
. cok P

ol e % ¥
Bl .[ b("j_ { b(y) [b(x) + bly ) + l] P

o as)y

;f;withg . o
o el = DGl -2iuk).-kz1 | .
In the above form the 1ntegrals ‘are easily evaluated numerically. PRI

Ih Figures 1 and 2 we compare our results with the Regge
We used the same value /.

S

d

‘ ‘trajectories calculated by Lovelace,and Masson.
-
of B for an entire traaectory, with u being chosen at some average S
In & more accurate calculation u would be determined at each

= value.ll
point on the tragectory by finding stationary points of (3 lO)
Lo Y B ':.?”s.i{f'wﬁ" Lo




Flgl Flrst Regge tra,jectory of a Yukawa poten’cial V(r)




*;plotted in the complex & plane.

A

c. Lovelace and D j Masson, Ref. 10.

Our results.
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‘V. THE VAﬁIA‘ﬁONAL METHOD AND QUASIPARTICIES
The methods deveiojed in Section II are ideally suited:to the

qpasipartiéle2 method ofvcalculating scattering amplitudes. ihe two
improvemenés we have té offer are the use of the variational érinciple

» B to improve:the choice/ﬁf the subtraction dyad and the use of a‘simplér
'expressionlthan Weinp;rg'se to calculate the eigenvalues. To illustrafe
the differéncelin coﬁpufational labor and the incréase in accuraéy
dbtained'ﬁy the suggested modifications, we perform two simple calcula-
tions. | o ‘A -

The introduction 'of a quasiparticle into the theory is just
. , o
"the separation from 'GOV of a dyad term, which we take to be formed -’

from our approximate eigenfunctions. . ' : ,

[¥())¥(s )1V

- 6V = K, + — -, (5.1)
R OO RS A RENS
A littleialgébral2 yieidé the result for the T matfix,

| 2(s). = Tels) + Tels) [¥(s)) A(s) { W(s)IT(s) - (5.2)

where' f- ‘ | | }
1 o

: ) = ' s o (5.3)
| ) s = E W) ) - Cws) Il W)y T T
; and _”, S S - 4;>v . ,',i
o _ TQ(s) | = Vi1 - KQ]"J‘ . _ o o '(-5.1;)!{'

T ————
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Foi’poteneials weak enough so that
T.'Q..; ~ v, oo :
(5;2jjgimplifies>to ’ ' : - .‘.'-V :i. : ‘>: 7f',- 'i -
e e VIw(s) ) A(s) ( ¥(s )IV- S
T(s) =~V 4 N 1) B
e <w(s ) 1Vl ¥(s) ) (1 -2), i ]

.. 'which’ is the same as keeping one term in (2. 12) ~ Weinberg uées a much -
. “more complicated expre551on for h( ) than (2 10), namely

w(s)lvc VHr(s)> R R

B .__j;;x('-s) |
w(s)IVst))--_W. PG .

ST -'IW) _1s the exact elgenfunctlons the two are the same, but in _
practice 1t is harder to.calculate with (5 6) ' R | ::' .»’
g e ¥
- r

R In our calculatlons ve treat the Yukawa potential V

'] for & EO ,‘ The trial vave functlon (3 17) becomes. e
q | &

< Hf( ) > ‘ )
e , (qe"- s)[qe_f (- 1x)°)

B ,rlv,(s) ) \'/'_e'.."eumfle;k? R FRCcEoN

Using (3 10) we obtain the eigenvalue
1+ p - 21k SR
G+ - 2a)” - (5)9)

S) = -XEL———-—l log - - . "‘ff
X : (1 + 2y - 21k)(l - eik) = o

A

1

5 L
A A
]

g i i o e
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Using (5.6), Scadron and Weinberg3 obtained a very compliqéted expression

involving several di-logarithms with complex argument, For sample calcu-

lations to compare with known results, we choose first to obtain an
upper limit on the radius of convergence of the Born series at zero

This gives the coupling strength necessary to yleld a zero-

energy.
=1 in (5.9) for

energy bound state and is obtained by setting A

= 0 and solving for g .
3

Without benefit of a variational principle Scadron and Weinberg

=1 in (5.7) end obtained g = 1. 693 We obta.in with less

effort g = 1. 680h (with u = l 5550) The best value in the literature
. : . o

chose

is g = 1.6798 .

For our second example we perform a scattering length calculation
' and compare results with those obtained from Blatt and Jackson's’

interpolation formula The scattering length is given by

2
, \ .
{ nMO) (15 “>
B = =-g{l-+ - : . (5.10)
s BRI |
1 - x(o)].zn Lﬁ—-——ﬁl—l T
, We calculate the value of g necessary to give a scattering
 length of a_ = 5 obtaining

g = 2.234 (5.11)
as compared with Scadron and Wein‘berg's3 value of 2.342 and Blatt and
. 1 . ) .

i
i

Jackson's value of 2.222. | . I
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-In both examples our results are more accurate and vere
Calculations at >0 will show up the xj |

i

G‘dbtained with less effort. -
difference even more, as the di-logarithms of complex argument

P

obtained in Reference 3 are very hard to handle.

e o i o e e e e oy Syt e g
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VI. .THREE-BODY VARIATIONAL FPRINCIPLE
The methods developed in Section II for finding eigenfunctions
and eigenvalues of the kernel of the Lippmann~Schwinger equation cen

be generalized to the three—body Faddeevu equations. Formally the

eqpations can be written

Tl(s) : Tl(s)
TE(S) ) 4‘]:"2(5) + ‘ s .Ho
13(8) - TB(S) i ixj 5 . | ).
.'2 | A S (6.1)
. / o : ‘ ‘ v:'
" Th S.matrix_is‘given byv/ : ' : f
/ Sﬁi"é 5. - Fn;_s(Ea - Eb) Tab(g) L , ‘ (6.2)
with . o :
T<%) = 71(5) + T2(s>‘ + -73(5) < | - (6.3)

The kernel of Eq. (6.1) involves the two-body t matrices. Tl(s) is
the scattéring-amplitude.for particles two and three with particle one
noﬁinterécting. If we describe the relative motion of pérficle two and

three in their center of-mass system by kl ». and the motion of particle

- one-in the total center of-mass system by Pl » then

-

( k,'p'lm (I F, 3 ) = 4E, T e - SLORERE (6.4)

where t. “is the solution to Eq. (2.1). The two-body t matrices and the
1

s =~ HO

free Green's function G, = satisfy tT(s) t(s ) and

]
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G (s) G (s ).  Using thése‘reiationships it is possible to derive

a variatlonal principle similar to (2. 10) Define EE AT
- Ty(s)

o (6.j)f.f ",

- s We are 1nterested in the kernel K G o but it is simpler to
derive the eqpatlons fork G K after which it is easy to obtain K G

Con31der the two elgenvalue equations

S z;',_i';f;'f;iv(‘s)fc w(s) -»'=_Y_K_(‘s_) W) ARNE O e
¢(s '5TK$(S*) ¢(é)s;?:ffEfi?st.:_‘ ssljg‘;v;‘..‘

u(S) G _ K(s

" yhere vv. and - §  have three ¢omponents;
A T A S
If we take the scalar product of Eq. (6 6) with ¢' and'(6;7)]ﬁiﬁh"[vs'-s; ;

‘ I ;
o T
{
'

(6 8)

!

and subtract the two equations, ve obtaln

]
o

—l
R [X(S) - u (s)] ( ¢(s) ]G I V(s
S | ’
¢ and v are rlght and left eigenvectors of (6 6) and they satisfy the ;# -
e
It 1is 1mportant to identlfy ¢ _ with i_:'

Th;s is eas1ly done,by writihg_ :

,'v‘

S

~orthogonallty relation (6.8).

R R . .
somé!linéar combination'of*the vi*
v i
i

TR A i e e
B O s A T
s A ‘
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out the three equations implied in (6.6) and (6.7).

n

M8) 67 (e) ¥y (s) = m(e) Duy(e) o+ (o))

I}

. v.!,?\(s) Go-l(S)_ ‘1’2(5) T?(S) [\]fl(s) +\V3(S)]

n

__QX(S) Go-l(s) W3(§) Tj(sj [Wl(s) +v¢é(s)]4

~ and ’

RO OFMOINEAOFNORE NS FAE

M) 0 8,7(8) = m(s) 4,78 + my(e) £57(6)

It

M) 6, M) B7(8) = (e) () + () B .

. By taking appropriate linear combinations of (6.7) we obtain

UM 6 He) 14,7(s) + 87 (e) S M@ - Bm(e) e
| c o | (6.9)

' P :
Comparing (6.9) and (6.6) we can make the identification,

28,6 = (e + 45s)

. ST (6.10)
o) = As) +B(s) - Bi(8) . |
" The kernel G, K will have a 4yad term in it equal to
Ms) | w(s) ) (#(s) | K(s) S
X @ ‘ (6.1:1)

G
° ( 8(s) | x(s) | ¥(s) )

where
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(B(s) Ix(s)l w(s) ) | I
_ — . . C(6.22)
OB R OIRTOB -

‘As ‘in the two-body problem, the expression for A "can be shown to be ' i
| stationary. The proof is formally identical to that given in Section iI.

Equation (6 11) is easily rewritten in terms of X G, ,

‘ ] (S) V(s) ) ( ¢( )| L
K6 a« A(s) . o (6.13)
0 ( ¢(s) |6, ()] w(s) ) |

Using (6.13) and (6 3) it is easy to isolate the effect of the

A elgenfunction [¥) on the T matrix.

. oM 2 A Z v (s) ()]
- o(s) @ ‘1 -l}\,(s) 1 L
| . ( 8(s) la,” HOIRON! .
b (6.14)
With the aid of (6.10),' this becomes
! L3 *
| o) Z ACHICRICO IR O]
T(s) .o Ms) <' . S .
R I pe) le M) ws) ) |
| S - (6.15)

vThe poles of the T matrix occur when A =1, and by ?sing the
expression (6.12), the pbsitions of bound states and resonances can'be
calculated.

'If it were desired to expand the T matrix in the eigenfunctions

¥ ,.the square of the kernel would have toO be used since the kernel is

not compact.




The equations simplify somewhat if & separable expansion such as ;-;f.sfi

'uﬁ-(2 12) is used for ‘the’ two-body T matrix.- Lovelace5 ‘has suggested such

“an approxlmation, however his method must always be approximate,,-f.“

"’Whereas if (2 12) is used the resulting equatlons aré .in principle o
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