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Abstract

Information processing in micro and meso-scale neural circuits during normal and disease

states

by

Francisco J. Luongo

Doctor of Philosophy in Neuroscience

University of California, San Francisco

Professor Vikaas Sohal, Chair

Neural computation can occur at multiple spatial and temporal timescales. The sum

total of all of these processes is to guide optimal behaviors within the context of the con-

straints imposed by the physical world. How the circuits of the brain achieves this goal

represents a central question in systems neuroscience. Here I explore the many ways in

which the circuits of the brain can process information at both the micro and meso scale.

Understanding the way information is represented and processed in the brain could shed

light on the neuropathology underlying complex neuropsychiatric diseases such as autism

and schizophrenia. Chapter 2 establishes an experimental paradigm for assaying patterns of

microcircuit activity and examines the role of dopaminergic modulation on prefrontal mi-

crocircuits. We find that dopamine type 2 (D2) receptor activation results in an increase

in spontaneous activity while dopamine type 1 (D1) activation does not. Chapter 3 of this
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dissertation presents a study that illustrates how cholingergic activation normally produces

what has been suggested as a neural substrate of attention; pairwise decorrelation in mi-

crocircuit activity. This study also shows that in two etiologicall distinct mouse models

of autism, FMR1 knockout mice and Valproic Acid exposed mice, this ability to decorre-

late in the presence of cholinergic activation is lost. This represents a putative microcircuit

level biomarker of autism. Chapter 4 examines the structure/function relationship withing

the prefrontal microcircuit. Spontaneous activity in prefrontal microcircuits is shown to be

organized according to a small world architecture. Importantly, this architecture is impor-

tant for one concrete function of neuronal microcircuits; the ability to produce temporally

stereotyped patterns of activation. In the final chapter, we identify subnetworks in chronic

intracranial electrocorticographic (ECoG) recordings using pairwise electrode coherence and

dimensionality reduction techniques. We show that we can further reduce the dimension-

ality of these networks by identifying ’key-interactions’ that are informative of the overall

subnetwork state at any given point in time. This study highlights that redundancy in

ECoG data can be exploited to identify low-dimensional representation of brain-wide sub-

networks. Taken together, these studies represent the development of multiple technological

and analytical techniques aimed at understanding how information is processed and modu-

lated at emergent circuit and network levels as well as understanding their dysfunction in a

neuropsychiatric disease state.
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Chapter 1

Introduction

Neuroscience has come a long way from the days of Hodgkin and Huxley who were perform-

ing seminal recordings on the squid giant axon. Single unit recordings have endowed us the

ability to probe and understand that neurons fundamentally communicate using electrical

signals. The challenge moving forward lies in understanding the thesaurus of this communi-

cation between neurons. In recent years, the ability to record from larger numbers of neurons

has become a reality. (Buzsáki, 2004; Grienberger and Konnerth, 2012; Stirman et al., 2014)

We also now know that neurons come in many di↵erent varieties of neurotransmitter

released, morphologies, receptor composition, and genetic markers. (Markram et al., 2004;

McConnell, 1991) This diversity in the cell-autonomous properties are only further com-

pounded when one considers the networks in which these neurons function. The input matrix

or the sum total of all cell-types that a cell receives can have just as much of an e↵ect on its

activity as other cell-intrinsic factors. In addition, the responses of cells even to a standard

input can be dynamically a↵ected by either state or neuromodulatory changes adding further

complexity to the system. (Arnsten et al., 2012; Hasselmo, 1995)A greater understanding
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of these mechanisms would also allow insight into the neuropathologies underlying complex

neuropsychiatric diseases such as autism, depression, and schizophrenia.

Fundamental to understanding the mechanisms of information processing is the ability to

read out and perturb the activity from ensembles of neurons within the context of a circuit.

Over the past several years, there have been tremendous strides made in the ability to record

from multiple neurons using either optical or electrical signal readouts. (Buzsáki, 2004; Free-

man, 2015; Grienberger and Konnerth, 2012) These methods can allow for the simultaneous

recording of 100 neurons across multiple cortical/subcortical areas. Understanding how pat-

terns at an emergent microcircuit and network level are produced represents a fundamental

question in systems neuroscience.

The studies presented in this dissertation represent my e↵orts over the past years to learn

about the mechanisms of information processing at the emergent level of neural circuits and

networks by exploiting high density optical and electrical recording techniques. The goal

of all of these projects is to explore the statistical patterns present at an emergent network

level, explore how these patterns are produced by the intrinsic properties of networks, and

lastly use this knowledge to explore novel biomarkers for neuropsychiatric disease conditions.

The first study presented in chapter 2 represents experiments that laid the ground work

for thinking about some of these questions of emergent statistical properties at the level of

microcircuits as well as troubleshooting for the methods to be used in future studies. This

study was designed to explore the emergent representations of the application of Dopamine

Type 1 (D1) and Dopamine Type 2 (D2) receptor agonists to acute prefrontal slices. In
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order to study the microcircuit level representation of these neuromodulators requires the

ability to assay multiple neurons within the network simultaneously. To achieve this, we

developed a single-photon GCaMP imaging approach which allowed us to record the activity

of 70-100 neurons in a slice over the course of an hour. We also implemented automated

analysis techniques that allowed us to automatically segment these cells, extract the periods

of activity, and generate rasters of network activity for further analysis. While this study

produced mildly interesting results, it really laid the experimental ground work for the work

carried out in chapters 3 and 4.

Chapter 3 explores the control of correlations between neurons in the microcircuit by

cholinergic modulation and identified a convergent deficit in this mechanism that is conserved

across etiologically distinct models of autism. In this study, we identified a cholinergically

mediated decorrelation of pairwise correlations in prefrontal microcircuits. This deficit re-

sults in an increase of functional correlations in autism models compared to WT controls

under normal cholinergic conditions. Importantly this cholinergic deficit is specific to autism

models and not general prefrontal pathologies, highlighting the potential of this deficit to

represent a microcircuit level biomarker of autism.

In chapter 4 we attempt to elucidate the structure/function relationship within a pre-

frontal microcircuit. In this study we identified that functional correlations between pre-

frontal neurons follow a small-world organization during spontaneous activity in isolated

prefrontal microcircuits in-vitro. Small-world networks exhibit higher-order structure sim-

ilar to clustered networks in the correlation matrix but importantly retain the ability to
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pass information between neurons in an e�cient manner analogous to random networks. We

then developed a novel analytical method for generating datasets with arbitrary network

organization of the correlation structure in order to assay the relative e↵ect of small-world

networks on producing patterns of neural activity. We find that small-world networks out-

perform both clustered and random networks in producing these patterns, highlighting the

importance of a small-world organization on the production of neuronal patterns.

In chapters 2-4, we explore the statistics and neuromodulation within microcircuits of

rodent prefrontal cortex. In chapter 5 we transition to examining the network-wide patterns

of activity present in human intracranial ECoG datasets. In this study we attempt to identify

network-wide interactions between multiple regions in the mesolimbic circuit of humans. We

use dimensionality reduction on pairwise coherences between regions to identify patterns of

interactions across multiple regions that account for large amounts of the variance. We term

these patterns subnetworks and show that these subnetworks exhibit redundancy which

allows the activity within subnetworks to be predicted using only a few key interactions

between regions. These key interactions could represent either subnetwork readouts or drivers

of acitivty across multiple mesolimbic brain regions and thus represent foci of interest for

the potential treatment of depression and anxiety using invasive brain stimulation.

Taken together these studies represent many years of work towards understanding the

mechanisms of information processing in neuronal microcircuits and networks. As tech-

nologies for recording and perturbing neuronal activity allow experiments involving more

neurons and more regions, an important question will be how to design models or exper-
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iments to properly assay the emergent properties of neuronal networks. (Marder, 2015)

The experiments and analyses outlined here will hopefully contribute towards this common

goal of understanding the role of neuronal microcircuits and networks in fundamentals of

information processing and how these mechanisms go aberrant in neuropsychiatric disease

states.
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Chapter 2

Patterned activity in prefrontal

networks and modulation by

dopamine

2.1 Introduction

A basic question about neuronal circuits is what patterns of activity do they produce, and

how are these altered under various conditions that are relevant to behavior. In particular,

recurrent networks in deep layers of the neocortex give rise to internally generated activ-

ity (Luczak et al., 2009; Sakata and Harris, 2009; Sanchez-Vives and McCormick, 2000; Shu

et al., 2003; Takeuchi et al., 2011). Such internally generated activity in the prefrontal cortex

(PFC) may form the basis of persistent firing during the delay period of working memory
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tasks (Fuster and Alexander, 1971) and contribute to other PFC-dependent cognitive func-

tions such as set-shifting and decision making (Curtis and Lee, 2010; Durstewitz et al., 2010).

However several questions about internally generated activity in the PFC and elsewhere re-

main. First, are local prefrontal circuits su�cient to generate structured patterns of activity

suitable for the sorts of functions outlined above? A previous study observed persistent

firing in prefrontal slices (Sanchez-Vives and McCormick, 2000), however, this occurred in

the context of network-wide UP states, leaving unclear whether isolated prefrontal networks

generate the sorts of sparse patterns that might subserve functions such as working memory.

A later study observed repetitive sequences of sparse activity in prefrontal slices, however

this was in very young (P13-P22) mice (Ikegaya et al., 2004), leaving unclear whether mature

circuits produce structured activity.

Second, a major hypothesis, based on cellular, clinical, and behavioral studies, is that

dopamine D2 receptors (D2Rs) make internally generated prefrontal activity more variable in

ways that can facilitate behavioral adaptation and, under pathological conditions, contribute

to schizophrenia (Durstewitz and Seamans, 2008; Winterer and Weinberger, 2004). Specifi-

cally, D2R activation may enable prefrontal circuits to explore more possible configurations

of network activity. However, no study has yet demonstrated that these e↵ects actually

occurs, nor defined exactly how such e↵ects might come about. Here, we imaged neuronal

activity in prefrontal slices to answer three questions: (1) can isolated prefrontal networks

generate structured patterns of activity? (2) If so, what is the nature of this structure? (3)

How do D2Rs alter these patterns?
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2.2 Results

We used single-photon, wide field imaging to capture fluorescent signals from the genetically

encoded Ca2+ indicator GCaMP3 (Tian et al., 2009a) in acute brain slices from young adult

(P41-57) mice. We recorded sparse, robust GCaMP3 signals from neurons in layer 5 (L5) of

the medial prefrontal cortex (mPFC; Fig. 2.1; Supplementary Fig. S2.1). All experiments

included a low concentration of the cholinergic agonist carbachol (2 M) in the bath to

model basal cholinergic tone in vivo and promote spontaneous network activity. Using a

combination of independent component analysis and image segmentation (Mukamel et al.,

2009a), we identified the locations of neurons, measured their GCaMP3 signals, and detected

events corresponding to increased activity in these neurons (Fig. 2.1A-C). As in previous

studies using GCaMP3, spiking above a threshold rate produces an approximately linear

increase in GCaMP3 fluorescence which eventually saturates (Fig. 2.1D; Supplementary Fig.

S2.2) (Tian et al., 2009a; Yamada and Mikoshiba, 2012). We further confirmed that during

carbachol-induced spontaneous activity, detectable increases in GCaMP3 signals correspond

to bursts of spikes in individual prefrontal neurons (Fig. 2.1D).

Each experiment recorded signals from 50-80 active L5 neurons over 1̃ hour. Activity in

each neuron varied widely over the course of an experiment, with periods of high activity

lasting tens of seconds interspersed with periods of quiescence (Fig. 2.1C; Supplementary

Fig. S2.3). To determine whether this activity is randomly distributed across the network

and in time, versus organized according to some structure, we measured structure in three

ways: computing correlations between neurons, detecting synchronous bursts of activity
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across the network, and searching for small groups of cells that repeatedly become co-active

over tens of minutes.

For each experiment, we computed correlations between activity in di↵erent neurons, and

found that the distribution of correlations included many more strong correlations than would

be expected by chance (Fig. 2.2A-B). We compared these correlations to those obtained

after shu✏ing our data. Notably, neurons exhibit long-lasting periods of increased activity

interspersed with periods of quiescence such temporal structure could strongly influence

correlations, because neurons whose periods of high activity happen to coincide will have

high correlations. Typical ways of shu✏ing, e.g. rearranging inter-event intervals, would

destroy this temporal structure and thus underestimate the number of strong correlations

expected by chance. Therefore, to preserve this temporal structure in shu✏ed data, we

simply shifted large chunks of each neurons event train in time (Methods). As shown in

Figs. 2.2A-B, we found that real data contained an excess of strong correlations between

di↵erent neurons as compared to this shu✏ed data. Strong correlations were present even

for pairs of neurons separated by large distances (Supplementary Fig. S2.4).

Whereas correlations measure structure at the level of neuron pairs, we have measured

simultaneous activity from many (¿50) neurons, and therefore, sought to characterize activity

at the level of the full network. First, we simply divided each experiment into 1 sec windows,

detected network events, in which more than one neuron was active in the same window,

and defined the event size as the number of active neurons. We found that the distribution

of event sizes followed a power law. Shu✏ed data consistently contained many fewer large
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events (Fig. 2.2C), and the frequency with which events occurred decayed more slowly as

a function of event size, for real vs. shu✏ed data (Fig. 2.2D). Thus network activity has a

scale free structure, i.e. there is no characteristic size for network events.

A common hypothesis about recurrent excitatory networks in L5 of the PFC and in

other brain regions is that they generate stereotyped patterns of activity that may serve to

represent specific decisions or mnemonic information. To test this hypothesis, we divided

each hour long movie into 1 sec windows, and looked for combinations of neurons that were

co-active during the same window. For each combination, we counted the number of times

these neurons became co-active in the same 1 sec window. We found that every experiment

contained many such motifs, small groups of neurons that repeatedly become co-active over

tens of minutes (see example in Fig. 2.2E) 9. We compared the numbers of times that motifs

of various sizes recurred in real and shu✏ed data, and found that most experiments in control

ACSF + carbachol (6/7) contained many motifs that occurred more often than expected by

chance (Fig. 2.2F,G). Moreover, these motifs persist over extremely long timescales, >10

min (Supplementary Fig. S2.5).

Finally, we found that after applying the D2R agonist (-)quinpirole (10 M) for 10 min,

network activity increased (Fig 2.3A,B; n=9 experiments). This increase in the activity of

individual cells was accompanied by a corresponding increase in the number of large network

events, defined as above (Fig. 2.3C). No such increase occurred for experiments maintained

in control ACSF for a similar duration (Supplementary Fig. S2.6; n=7 experiments). Be-

sides increasing the amount of network activity, quinpirole increased the rate at which this
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activity changes, as indicated by an increase in the rate of decay of the autocorrelation (the

normalized dot product between network activity at one time and activity after a delay)

(Fig. 2.3D). It turns out that the specific manner in which quinpirole increases network

activity plays a critical role in accelerating the rate at which this activity evolves. Specifi-

cally, network activity could increase either because the probability that an inactive neuron

becomes active increases, and/or because the duration of each active state increases. Quinpi-

role selectively increased the probability that a neuron becomes active, but did not increase

the duration of active states (Fig. 2.3B). In fact, quinpirole produced a very small, but

statistically significant reduction in the duration of active states (Fig. 2.3B). This selectivity

is important, as the following analysis demonstrates.

For each experiment, we created two surrogate datasets based on the pattern of network

activity recorded in control conditions. Each surrogate dataset was created, as described

below, to match the level of activity observed in each neuron after applying quinpirole

(Methods). For the first surrogate dataset, we simply prolonged each active state observed

in control conditions by a fixed percentage. For the second surrogate dataset, we introduced

additional active states into the control pattern of activity. In this case, we also matched the

distribution of active state durations observed in quinpirole. Remarkably, increasing net-

work activity in these two distinct ways produced markedly di↵erent e↵ects on the stability

of network activity, again measured using the autocorrelation. Prolonging each active state

markedly slowed the decay of the autocorrelation (green line in Fig. 2.3D), corresponding

to a stabilization of network activity. By contrast, increasing the number of active states
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accelerated the decay of the autocorrelation, reproducing the e↵ect of quinpirole (blue line in

Fig. 2.3D). Finally, we measured the e↵ects of quinpirole on motifs. As shown in Fig. 2.3E

and 2.3F, the occurrence of motifs increased dramatically after applying quinpirole (p<10�5;

n=9 experiments). Notably, modifying control datasets to match the level of activity ob-

served in quinpirole by either prolonging active states or randomly adding additional active

states does not reproduce this quinpirole-induced increase in the occurrence of motifs (Fig.

2.3F; p<0.001; n=9 experiments). Thus, this e↵ect of quinpirole is not simply a consequence

of increasing the level of network activity. As a further test, we created a surrogate dataset

based on recordings in quinpirole, by dividing the quinpirole dataset into 30 second win-

dows, identifying all of the active states and quiescent periods within each window, then

rearranging the active states and quiescent periods in each window. Thus, firing rates, dis-

tributions of active state durations, and distributions of quiescent period durations, will all

be preserved for each neuron and each 30 second window. The number of occurrences of

motifs was much greater for quinpirole datasets than for these surrogate dataset (purple line

in Fig. 2.3F; p<10�7; n=9 experiments). Thus, the quinpirole-induced increase in motifs

must reflect coordinated fluctuations in activity across subsets of neurons on relatively rapid

timescales <30 sec.

2.3 Discussion

In summary, we report three main findings. First, single-photon, wide-field imaging of

GCaMP3 signals can simultaneously measure activity in >50 neurons. This approach re-
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solves activity in similar numbers of cells to what has been reported using two-photon imaging

(Borghuis et al., 2011). Second, isolated prefrontal networks generate spontaneous activity

that contains both stereotyped patterns and a scale free structure. Importantly, isolated pre-

frontal networks su�ce to generate the sorts of sparse, metastable patterns hypothesized to

mediate functions such as working memory and decision making. These patterns of network

activity, in which groups of neurons exhibit periods of co-activity interspersed with periods

of quiescence, resemble results from recent modeling studies (Ashok and Doiron, 2012), as

well as the sparse, stereotyped sequences of activity previously observed in very young tissue

(Ikegaya et al., 2004). In addition, we demonstrated that these repetitive motifs of activity

are embedded within larger patterns that have a scale-free structure. This links our study

with a large body of work on cortical networks operating at criticality (Stewart and Plenz,

2006). Importantly, whereas those studies observed neuronal avalanches in LFP recordings,

here we observe similar phenomena (network events) in recordings of simultaneous activity

from ¿50 neurons.

Finally, we demonstrated that, as has long been hypothesized, D2R activation increases

the variability of prefrontal activity, and may enable prefrontal networks to more e↵ectively

sample many possible configurations of network activity. Furthermore we defined exactly

what this means, and how it comes about. D2R activation results in (1) an increase in

the rate at which network activity changes, and (2) a dramatic increase in the number of

motifs, small sets of neurons that are repeatedly coactive. Notably, these e↵ects do not

occur simply because D2R activation increases noise, i.e. randomly distributed activity.
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Rather D2R activation specifically increases the rate at which cells become active, and these

increases in activity are coordinated across neurons on rapid timescales so as to increase

the occurrence of motifs. This elucidates specific mechanisms through which D2Rs modify

network activity in ways that are likely important for both normal and pathological behavior.

Thus, we have demonstrated a new, widely applicable, approach for analyzing patterns of

activity generated by specific circuits. Specifically, the ability to measure simultaneous activ-

ity in large numbers of neurons, even with limited temporal resolution, can yield important

insights about the structure of activity at the network level.
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2.4 Material and Methods

All experiments were conducted in accordance with procedures established by the Adminis-

trative Panels on Laboratory Animal Care at the University of California, San Francisco.

Slice preparation

Wild-type P26 P33 C57BL/6 mice (Charles River) were injected unilaterally with 1 l of

AAV5/2-CaMKII::GCaMP3 (UNC) at the coordinates (in mm) 1.7 anterior-posterior (AP),

0.3 mediolateral (ML), and -2.2 dorsoventral (DV). 350 micron thick coronal slices were

prepared from these animals 15-27 days after injection. Slices preparation followed our

previously described protocol 18. The one notable deviation from the published protocol was

that immediately after brain slices were prepared, they were transferred to an N-Methyl-D-

Glucamine (NMDG)-based recovery solution for 10 min before being transferred to ACSF

for the remainder of their recovery. The NMDG-based solution was maintained at 32� C,

and consisted of the following (in mM): 93 N-Methyl-D-Glucamine (NMDG), 93 HCl, 2.5

KCl, 1.2 NaH2PO4, 30 NaHCO3, 25 glucose, 20 HEPES, 5 Na-ascorbate, 5 Na-pyruvate,

2 thiourea, 10 magnesium sulfate, 0.5 calcium chloride. This NMDG preparation method

was used to improve the overall health of adult slices to ensure su�cient amounts of activity

for analysis. ACSF contained the following (in mM): 126 NaCl, 26 NaHCO3, 2.5 KCl, 1.25

NaH2PO4, 1 MgCl2, 2 CaCl, and 10 glucose. All recordings were at 32.5± 1� C. All drugs

were dissolved in water to make 10mM and 20mM stock aliquots for the (-) quinpirole and

carbachol respectively, which were thawed and diluted into ACSF before each experiment.
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Application of quinpirole began 10-30 min after the start of an experiment and all analysis

was performed on data acquired after quinpirole had been applied for at least 10 minutes.

Intracellular and cell attached recording

We obtained somatic whole-cell and cell attached recordings using di↵erential contrast video

microscopy on an upright microscope (BX51WI; Olympus). Recordings were made using

a Multiclamp 700A (Molecular Devices). Patch electrodes (tip resistance 26 MOhms) were

filled with the following (in mM): 130 K-gluconate, 10 KCl, 10 HEPES, 10 EGTA, 2 MgCl, 2

MgATP, and 0.3 NaGTP (pH adjusted to 7.3 with KOH). Spiking was evoked during current

clamp recordings via depolarizing current pulses (250ms, -250pA to +250pA).

Imaging

GCaMP3 imaging was performed on a Olympus BX51 upright microscope outfitted with a

20x 1.0NA water immersion lens with 0.5x reducer (Olympus) and ORCA-ER CCD Camera

(Hamamatsu Photonics). Illumination was delivered using a Lambda DG4 arc lamp (Sutter

Instruments). Light path was delivered through a 472/30 excitation filter, 495nm single

band dichroic, and a 496nm long pass emission filter (Semrock). GCaMP3 movies consisted

of 36000 frames acquired at 10Hz (1 hr) with 4x4 sensor binning yielding a final resolution of

256 x 312 pixels. Light power during imaging was 100 500 W/mm2 . The open source Micro

Manager software suite (v1.4, NIH) was used to control all camera parameters and acquire

movies Any movies that had significant drift, movement, or lacked significant amounts of
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activity were excluded from further analysis. Specifically, when movies that exhibited drift

greater than 0.25 soma diameters, the experiment was terminated prematurely, and any data

collected was excluded from analysis. Significant movement could also be detected during

ICA by the appearance of elliptical rather than circular segments. Experiments fell into two

categories: most experiments (16/21) contained spontaneous activity in which at least 50

neurons were active during 1-3% of all frames. The remaining experiments (5/21) exhibited

at least an order of magnitude less activity, i.e. most detected neurons were active during

¡0.1% of all frames. Slices that fell into the latter category were presumed to be unhealthy,

and indeed, the morphologies of many cells in these slices had an unhealthy appearance that

was evident under DIC optics. Thus, we excluded experiments in the latter category from

further analysis.

Signal extraction

All analyses and signal extraction was performed using MATLAB (Mathworks). Locations

of cells were automatically identified using a modified version of the published CellSort 1.1

toolbox 13. Signals were extracted from movies and the baseline fluorescence function, , was

calculated for every trace using the mode of the kernel density estimate over a 100s rolling

window, implemented via the MATLAB function ksdensity following the procedure outlined

in 20. All signal traces shown represent normalized versions of the F�F0
F0

trace.

Threshold based event detection was performed on the traces by detecting increases in

F�F0
F0

exceeding 2.5� over one second, and then further thresholding these events by keeping
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only those events which exceeded a 4� increase over two seconds. � is the standard deivation

of F�F0
F0

, calculated over the entire movie. Thus all detected events have a deviation of at

least 4� from baseline. After identifying these events in the calcium signal from a cell, the

cell was considered active during the entire period from the beginning to the peak of the

event. The beginning of the event was defined as the first point for which F�F0
F0

increases by

2.5� within 1 second and by 4� within 2 seconds. The peak of the event was defined as the

local maximum of the entire event, from the beginning of the event until F�F0
F0

returns to the

same baseline value. We then created a matrix in which each row corresponds to a neuron,

and each column corresponds to a frame. Entries in this matrix were 1 if a given neuron was

active during a given frame, and 0 otherwise. All subsequent analyses were performed on this

two-dimensional representation of network activity over time (c.f. Fig. 2.1C). Correlations

between cells were calculated between the event trains corresponding to those two cells after

subtracting the mean level of activity from each event train. Thus the correlation between

two event trains and is where is a rolling mean of the event train calculated by convolving

with a Gaussian kernel with � = 50 sec.

The standard deviation projection in Figure 2.1 was obtained as follows. For each pixel,

we computed the standard deviation of F�F0
F0

over 100 second intervals throughout the movie,

then plotted the maximum value of these standard deviations. In Figure S2.1, we simply

plotted the standard deviation at each pixel over the indicated 30 second time window from

a sample movie.
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Detecting network events/motifs

Network events were detected using a version of the network raster that had been downsam-

pled by a factor of 10, i.e., going from 36000 frames at 10 Hz to 3600 frames at 1 Hz. Network

events were detected simply by measuring how many cells were active at any given point in

this downsampled network raster. Comparisons were made with shu✏ed data, which was

shu✏ed as described in the main text. Briefly, experiments were divided into 100 chunks,

and these chunks were then shifted relative to one another by random amounts, thus pre-

serving the fine temporal structure while breaking temporal structure on longer timescales.

Motifs represent unique configurations of neurons within network events. These motifs were

counted by taking into consideration the unique cell identity of every network event and also

taking into account all of the possible subsets within the network event as well. For example

each occurrence of a specific 5 cell network event would contain within it one 5 cell motif,

five 4 cell motifs, and ten 3 cell motifs. In this iterative way all motifs in a given dataset

were counted and significance was calculated based on comparisons to shu✏ed versions of

the same dataset.

Calculating the autocorrelation

The autocorrelation function was calculated as the normalized dot product between network

activity at one time and activity after a delay. I.e. if the vector x
t

represents network activity

at time t, then the value of the autocorrelation function for a specific delay ⌧ , is given by:

A(⌧) =
x

t

x(t+⌧)

||x
t

||||x(t+⌧)||
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Statistical analysis

We used Students t tests to compare pairs of groups, ANOVA to compare multiple groups,

and the two-tailed Kolmogorov-Smirnov (KS) test to compare pairs of distributions. Error

bars where shown indicate standard error of the mean.
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2.5 Figures
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Figure 2.1: Single photon GCaMP imaging resolves simultaneous activity from many

neurons in prefrontal slices.

a Regions of Interest (ROIs) obtained by an automated algorithm, superimposed on an image
showing the maximum standard deviation projection of each pixel during a movie of GCaMP3
fluorescence. (Methods) b Sample GCaMP3 signals from 12 neurons. The overlaid red lines
indicated times when we detected that each neuron was active. c Example raster of spontaneous
network activity for a single 60 min experiment with 74 neurons. d Simultaneous recording of the
GCaMP3 signal (top trace) and spiking measured in cell-attached mode (bottom trace) for a single
neuron during spontaneous network activity showing that periods during which the GCaMP3 signal
rise correspond to bursts of action potentials.
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Figure 2.2: Spontaneous network activity contains both stereotyped patterns and a

scale free structure.

a-b Distribution of correlations between neurons for a single experiment a, and the average across
all control experiments b i.e. experiments maintained for 60 min in control ACSF with carbachol
(2 M). Real data has fewer zero correlations and is enriched in positive correlations compared to
shu✏ed data (n=7 experiments; p<0.001 by two-tailed KS test). c Semilog plot showing how often
network events, in which several neurons are active simultaneously, occur as a function of their size
in real (black) and shu✏ed (purple) data, again averaged over all control experiments (n=7). d

Population data comparing the slopes of the semilog plot of event frequency vs. event size for each
real vs. shu✏ed control dataset (n=7). e, Example of a motif, i.e. 5 neurons that are repeatedly
co-active. Left: raster of network activity in which the 5 co-active neurons are shown in black.
Red boxes outline three time windows during which these 5 neurons are co-active. Right: These
three time windows are shown on an expanded timescale, and vertical dotted lines indicate times
when the 5 neurons are co-active. f How often di↵erent motifs occur, as a function of their size
(in neurons), for one experiment. Red lines indicate thresholds for significance (p¡0.01) based on
shu✏ed datasets. I.e. if the threshold for N-neuron motifs equals X occurrences, then in 99% of
shu✏ed datasets, the maximum number of occurrences of an N-neuron motif was less than or equal
to X. g, total number of occurrences of statistically significant motifs as a function of motif size.
Each trace corresponds to a di↵erent experiment (n=7).
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Figure 2.3: Activating D2 receptors increases variable activity and motifs.

a Rasters showing 15 min of network activity in control (CON) and quinpirole (QP) conditions for
one experiment. b Levels of neuronal activity increase in quinpirole and this reflects an increase in
the number of active states per neuron, rather than an increased duration of each active state. c

Semilog plot showing how often network events occur as a function of their size in control (black)
and quinpirole (red) conditions. d The autocorrelation function, which measures how quickly
network activity evolves, is plotted for control (black) and quinpirole conditions (red), as well as
for control datasets that have been modified by prolonging each active state (green), or randomly
adding additional active states (blue). e How often di↵erent motifs occur, as a function of their size
(in neurons), for one experiment, in both control conditions (black) and quinpirole (red). f For each
experiment and condition (control or quinpirole), we identified the five most frequently occurring
motifs composed of 3, 4, or 5 neurons. This plot shows the average number of occurrences of these
top five motifs, as a function of size (in neurons) for control datasets (black), quinpirole datasets
(red), control datasets that have been modified by prolonging (green) or adding (blue) active states,
and quinpirole datasets in which active and quiescent states have been shu✏ed (purple). The mean
number of occurrences of these motifs was higher for the quinpirole dataset than for all other
datasets by ANOVA using experiment, motif size, and condition as factors (p<0.001, n=9). *** =
p<0.001.
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Time lapse representation using standard deviation projections of the example movie S1
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Supplementary Figure 2.1: Standard deviation projections from sample experiment.

Still images at various timepoints from the standard deviation projection of a movie of GCaMP3 flu-
orescence in layer 5 neurons in the mPFC. These images illustrate how GCaMP3 signals originating
from distinct neurons fluctuate over time.
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Supplementary Figure 2.2: GCaMP3 signal with corresponding whole cell recording.

The GCaMP3 signal (top trace) measured from a neuron during a whole cell current clamp recording
(bottom trace). Injecting depolarizing current pulses elicits spiking, and spiking above a threshold
rate elicits GCaMP3 signals that increase with the spike rate.
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Supplementary Figure 2.3: Summary of percent time each cell is active.

Cumulative density function showing that most cells are active for less than 5% of the duration of
each experiment.
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Supplementary Figure 2.4: Dependence of correlations on distance.

Correlations between neurons, plotted as a function of distance between those neurons. The cor-
relation between activity in two neurons is weakly related to the distance between them, but high
correlations can be seen even at distances of several hundred microns.
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Supplementary Figure 2.5: Cumulative distribution plot for the intervals between the first

and last occurrences of each motif.
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Supplementary Figure 2.6: Time alone does not reproduce the e↵ects of quinpirole on

network activity.

Same as Fig. 2.3b, but none of the changes seen after applying quinpirole are reproduced by
comparing the early and late portions of datasets that were maintained in control ACSF for the
duration of the experiment (n=7).
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Chapter 3

A microcircuit phenotype in autism

models

3.1 Introduction

Autism reflects disparate genetic and environmental causes, suggesting that common behav-

ioral phenotypes may reflect convergent defects at the level of neuronal circuits controlling

these behaviors. Consistent with this hypothesis, recent analyses have revealed that several

genes linked to autism are co-expressed within deep layer microcircuits in the prefrontal

cortex (PFC) (Chang et al., 2015; Willsey et al., 2013). Identifying convergent abnormali-

ties located within these microcircuits would yield attractive targets for future circuit-based

therapeutic interventions. Until recently, a major barrier to identifying such circuit-level

abnormalities has been recording from large numbers of neurons simultaneously. However,
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advances in imaging and electrophysiological techniques have made it possible to characterize

patterns of circuit-level activity by, for example, calculating correlations between neurons

(Runfeldt et al., 2014; Sadovsky and MacLean, 2013). Despite these advances, cognitive

processes are associated with complex neural dynamics embedded within a high dimensional

state space. Thus, in order to reveal defects in circuit-level activity that are associated

with disorders such as autism, it is valuable to first identify specific neuronal correlates or

signatures for relevant cognitive processes. Identifying these signatures makes it possible

to evaluate whether they are altered in the setting of diseases such as autism. Any such

alterations represent putative pathophysiological mechanisms contributing to cognitive dys-

function in these disease states.

Here, we set out to identify possible microcircuit-level abnormalities associated with

autism. Our approach was to look for convergent abnormalities that are 1) conserved across

multiple, etiologically distinct models of autism, and 2) impact neural correlates of cogni-

tive processes that are known to be abnormal in autism. In particular, two recent studies

identified a possible neural signature of attention using multi-neuronal recording in monkeys

performing a visuospatial attention task (Cohen and Maunsell, 2009; Mitchell et al., 2009).

Both studies observed the same result: during the attended portion of the task, the pairwise

correlations between cortical neurons decreased. This decorrelation would reduce the overall

noise of an output signal that was composed of a sum across the population, in fact, this

pairwise decorrelation accounted for 80% of the total improvement in the signal-to-noise ratio

(Cohen and Maunsell, 2009). This phenomenon is hypothesized to reflect the decorrelation
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of spontaneous network activity by neuromodulation. In particular, cholinergic modulation

plays a well-established role in attention and cortical decorrelation in vivo (Goard and Dan,

2009). Nevertheless, it remains unknown whether cholinergic modulation can induce such

decorrelations by acting directly on cortical microcircuits and if so, whether defects in this

mechanism might be present in autism or other conditions with a high comorbidity of atten-

tional deficits. Notably, in Fragile X syndrome (the most common known single gene cause

of autism), 70% of a↵ected children meet criteria for an attentional deficit (Cornish et al.,

2004). Overall, approximately 50% of children with autism also meet criteria for attention

deficit hyperactivity disorder (Boyle and Kaufmann, 2010; Gadow et al., 2005, 2004). Deficits

in attention have also been observed in FMR1 KO mice (Casten et al., 2011; Dickson et al.,

2013; Moon et al., 2006) and other mouse models of autism (M et al., 2013).

To examine how autism might a↵ect a neural correlate of attention, we studied how

cholinergic modulation a↵ects spontaneous activity generated by deep layer prefrontal mi-

crocircuits under normal conditions and in mouse models of autism. We focused on mi-

crocircuits in deep layers of the PFC because cholinergic modulation within the PFC has

been directly implicated in attention (Dalley et al., 2004; Parikh and Sarter, 2008), and

abnormalities associated with autism are likely to be intrinsic to deep layer prefrontal micro-

circuits (Willsey et al., 2013). Therefore, we isolated these microcircuits in brain slices, and

used single-photon, wide field GCaMP imaging (Tian et al., 2009b) to measure spontaneous

activity in many neurons (50-100) at once. As described below, we found that cholinergic

modulation can indeed act directly on cortical microcircuits to decorrelate spontaneous ac-
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tivity, mimicking the neural signature previously linked to attention in vivo. Furthermore,

this decorrelation, which represents a possible neural substrate for attention, is defective in

two etiologically distinct mouse models of autism.

3.2 Results

We recorded sparse, robust GCaMP signals from neurons in layer 5 (L5) of the medial pre-

frontal cortex (mPFC; Fig. 3.1) in acute brain slices from late adolescent (P41-57) mice (n =

95). Using a combination of independent component analysis (ICA) and image segmentation

(Mukamel et al., 2009b), we located neurons, measured their GCaMP signals, and detected

events corresponding to increased activity in these neurons (Fig. 3.1A-C). Each experiment

recorded from 50-100 active L5 neurons for 1 hour. Table 1 lists all of our experiments,

performed in control mice or mice modeling autism or other manipulations, and using either

carbachol or high K+ ACSF to elicit spontaneous activity. Table 1 also includes summary

statistics for each set of experiments.

We first sought to demonstrate the presence of correlated activity within our datasets.

Experiments contained more strong correlations than shu✏ed datasets, in which the event

train for each neuron is shifted in time by a di↵erent random amount, or scrambled datasets,

in which the neuronal identities associated with each event are randomly reassigned (Fig.

3.1D). Shu✏ed datasets preserve the temporal structure of activity within each neuron,

whereas scrambled datasets preserve the number of neurons active at any given point in time,

thus maintaining the temporal structure of activity at the network level. We set an arbitrary
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threshold of 0.15, and quantified the fraction of correlations exceeding this threshold. As

shown in Fig. 3.1D, correlations exceeding this threshold were present at negligible levels in

shu✏ed or scrambled datasets, so we used this threshold to define strong correlations, i.e.

correlations which exceed those expected simply by chance.

Given the posited link between cholinergic modulation and cortical circuit decorrelation,

we next compared spontaneous prefrontal microcircuit activity elicited by 2 µM carbachol

to activity in hi K+, low Ca2+ active ACSF (Zhao et al., 2011), which contains relatively

high K+ and low Ca2+. Active (or high K+) ACSF elicits similar levels of spontaneous ac-

tivity as 2 µM cabrachol (avg % time active = 4.2 ± 0.3 in carbachol vs. 4.5 ±0.5 in high

K+), making it possible to compare the properties of such activity when cholinergic mod-

ulation is present or absent, independent of changes in activity levels. These experiments,

comparing recordings in carbachol to those in high K+, were all done using WT mice on an

FVB background, which served as controls for experiments with FMR1 KO mice described

below. Consistent with our hypothesis that cholinergic modulation decorrelates prefrontal

microcircuit activity, the distribution of pairwise correlations was shifted to the right in high

K+ compared to carbachol (Fig. 3.2A). This resulted in a marked increase in the fraction of

’strong’ correlations (correlations � 0.15), from 1.2 ± 0.3 % in carbachol to 4.0 ± 0.9 % in

high K+ (Fig. 3.2A inset).

Notably the decrease in correlations observed in carbachol was not an artifact of dif-

ferences in activity. Plotting the fraction of strong correlations against the mean % time

activity for each experiment in carbachol or high K+ shows that the fraction of strong cor-
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relations is increased in high K+ compared to carbachol, for all activity levels (Fig. 3.2D).

To quantitatively and explicitly account for possible confounding e↵ects of activity on the

prevalence of strong correlations, we performed linear regression (Fig. 3.2D), and computed

the di↵erence between the observed fraction of strong correlations and the number expected

based simply on the level of activity. These residual values are shown in Fig. 3.2E, and

confirm that even when activity levels are taken into account, correlations in high K+ are

stronger than those in carbachol. Next, we examined whether this carbachol-induced decor-

relation, which represents a possible biological substrate for attention, might be disrupted

in two etiologically dissimilar mouse models of autism. First, we studied mice exposed to

valproic acid (VPA) in utero at E10.5 (Methods). VPA is an anticonvulsant and mood sta-

bilizer, and there is a markedly elevated rate of autism in the children of mothers treated

with VPA (but not other anticonvulsants) during pregnancy (Moore et al., 2000; Rasalam

et al., 2005). Rodents exposed to VPA in utero exhibit numerous autism-like phenotypes

(Schneider and Przewocki, 2005; Schneider et al., 2008). We also studied FMR1 KO mice,

which model Fragile X syndrome, the most common known genetic cause of autism. In stark

contrast to the carbachol-induced decorrelation described earlier, in both VPA-exposed and

FMR1 KO slices, carbachol failed to elicit a leftward shift of the correlation distribution

(Fig. 3.2B,C). In fact, carbachol increased correlations in the VPA-exposed microcircuits

Fig. 3.2C). A potentially complicating factor is that unlike the case in wild-type slices, in

both VPA-exposed and FMR1 KO slices, levels of activity were lower in carbachol compared

to high K+ ACSF. We calculated correlations using mean subtracted event trains, which
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should minimize activity level-dependent e↵ects. Indeed, as Fig. 3.2D shows, there is at

best a very weak relationship between activity levels and correlations. We also carried out

additional analyses described in the Supplemental Information which confirm that the ab-

sence of a carbachol-induced decorrelation in autism models was not simply an artifact of

di↵erences in activity levels (Fig. S3.1).

We reasoned that this loss of the carbachol-induced decorrelation should cause corre-

lations during carbachol-induced activity to be higher in models of autism compared to

controls. We compared VPA-exposed mice to age-matched controls whose mothers had been

injected with saline at the same timepoint. For FMR1 KO mice, we used age-matched FMR1

WT controls. In carbachol, both autism models exhibit a significant increase in the fraction

of strong correlations relative to controls (Fig. 3.3A,B). Notably, levels of carbachol-induced

activity were essentially identical in FMR1 WT and KO mice (4.2 ± 0.3% and 4.3 ± 0.4% in

WT and KO respectively), demonstrating that the abnormally high correlations we observed

during carbachol-induced activity in FMR1 KO mice are not simply an artifact of di↵erences

in activity. By contrast, levels of carbachol-induced activity were di↵erent for VPA-exposed

mice and their wildtype controls, but once again, accounting for these di↵erences could not

explain the abnormally increased strong correlations observed in VPA-exposed mice (Fig.

S3.2C; SFig. 3.3).

Finally, we evaluated whether this abnormal increase in correlations during carbachol-

induced activity possesses specificity for autism. For this, we examined genetic and phar-

macologic perturbations that a↵ect the PFC but do not model autism: mice expressing a
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dominant negative version of DISC1 in excitatory neurons (CaMKII-TTA / TetO-dnDISC1),

and mice chronically treated with the commonly prescribed selective-serotonin reuptake in-

hibitor fluoxetine. DISC1 disruption models aspects of schizophrenia and depression, in-

cluding behaviors related to PFC dysfunction, e.g. impaired working memory and decreased

social interaction (Clapcote et al., 2007; Hikida et al., 2007; Pletnikov et al., 2008). Chronic

treatment with fluoxetine alters cell proliferation in the mPFC (Kodama et al., 2004) in

ways that may contribute to its e↵ects on depression-like and repetitive behaviors. If the

changes we saw in VPA-exposed and FMR1 KO mice were simply nonspecific consequences

of perturbing PFC microcircuits, then we would expect these other mice to exhibit a similar

increase in correlations during carbachol-induced activity. However, we observed no such

increase in correlations during carbachol-induced activity in either of these cases compared

to controls (Fig. 3.3C, D).

3.3 Discussion

In this study we have identified a putative microcircuit level-phenotype associated with

autism: a defect in the ability of cholinergic modulation to decorrelate spontaneous cortical

circuit activity. We show that this decorrelation, previously observed in vivo, can also be

observed at the level of isolated cortical microcircuits, and that it is lost in two mouse models

of autism. Lastly, we show that this defect is at least somewhat specific for autism, as it is not

present following two other manipulations that a↵ect prefrontal cortex: chronic treatment

with fluoxetine, and expression of a dominant-negative form of DISC1. This suggests that
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the loss of cholinergic-dependent decorrelation observed might represent a microcircuit-level

phenotype with specificity for autism, and thus could constitute an attractive target for novel

circuit level-therapies.

Relationship to in vivo studies

While we have shown the cholinergic decorrelation to be present in vitro, it will be important

to compare our findings to features of activity occurring in vivo. That being said, in vivo

recordings address fundamentally di↵erent questions from those addressed here. Activity in

vivo is strongly influenced by synaptic inputs originating outside the local microcircuit as

well as factors such as behavior state. Thus, while in vivo studies are uniquely able to identify

network phenomena, e.g., decorrelations recruited by attention (Cohen and Maunsell, 2009;

Mitchell et al., 2009) and acetylcholine (Goard and Dan, 2009), they are not well suited for

determining how these phenomena relate to local microcircuit mechanisms. For example,

even if it were possible to precisely control levels of neuromodulation in vivo, doing so

would almost certainly elicit confounding changes in feedforward and feedback inputs. Here,

by studying isolated microcircuits within brain slices, we demonstrate unequivocally that

the decorrelations observed in vivo can emerge as a result of cholinergic modulation acting

directly on microcircuits. (Interestingly, whereas we studied ongoing patterns of spontaneous

network activity similar to those believed to mediate attentional e↵ects in vivo, another

recent in vitro study (Runfeldt et al., 2014) showed that acetylcholine decorrelates the latency

to the first spike in somatosensory neurons responding to thalamic input). We go on to
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demonstrate that the carbachol-induced decorrelation of spontaneous network activity we

found is disrupted in models of autism. If one observed abnormal correlations in models

of autism in vivo, it would be unclear whether these abnormalities reflect the inability of

cholinergic modulation to decorrelate local circuits (as we have found) vs. more macroscopic

deficits, e.g. the inability of these animals to engage the appropriate behavioral state. Our

approach is specifically intended to isolate and examine the integrity of specific microcircuit

mechanisms, in a way that complements in vivo work. Our focus on mechanisms that are

intrinsic to deep layer prefrontal circuits is particularly relevant given that these circuits

represent the single strongest locus of convergence for autism genes (Willsey et al., 2013).

Relevance to autism

Great progress has been made in identifying genes and environmental factors that contribute

to autism. However, it has been challenging to understand how all of these ’add up’ to alter

circuit activity in ways that could impact behavior. Cortical microcircuits, within which

many cell types and synapses interact to generate patterns of neural activity, represent an

attractive locus at which at which many di↵erent genetic, environmental, and developmental

lesions could converge to elicit common phenotypes. Thus, many studies have begun explor-

ing possible circuit-level endophenotypes for complex neuropsychiatric disorders including

autism (Gibson et al., 2008; Goncalves et al., 2013; Markram et al., 2007). As discussed

above, attentional deficits are a major feature of autism generally, and Fragile X syndrome

in particular. The failure of cholinergic modulation to decorrelate PFC microcircuit activity
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in autism models holds face validity as a possible contributor to these deficits. The presence

of this same abnormality in two models of autism with very di↵erent etiologies (but not

in association with other manipulations of prefrontal function) provides additional empiri-

cal validity for the hypothesis that this abnormality plays a role in the pathophysiology of

autism. Importantly, this circuit-level abnormality may come about as a result of multiple,

dissimilar cellular and synaptic e↵ects in FMR1 KO and VPA-exposed mice. Indeed, as

stated earlier, numerous autism-related genes are convergently expressed within the deep

layer PFC circuits we have shown are abnormal (Willsey et al., 2013). This highlights the

importance of identifying microcircuit-level phenotypes, such as the loss of cholinergic decor-

relation, that could represent convergent consequences of disruptions in multiple genes, and

which could plausibly contribute to common aspects of autism, e.g. attentional deficits.

Possible circuit mechanisms

Of course, it will still be important to identify the cellular and/or synaptic actions of cholin-

ergic modulation which normally help desynchronize microcircuit activity, but are abnormal

in VPA-exposed and/or FMR1 KO mice. Various studies have shown that cholinergic modu-

lation can increase the excitability of interneurons which express somatostatin or vasoactive

intestinal peptide (Kawaguchi, 1997; Xiang et al., 1998), hyperpolarize fast-spiking interneu-

rons (36), regulate short-term plasticity at both excitatory and inhibitory synapses (Pafundo

et al., 2013), preferentially elicit persistent firing in subcortically-projecting (vs. callosally-

projecting) L5 pyramidal neurons (Dembrow et al., 2010), and suppress intracortical (but
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not thalamocortical) excitatory synapses (Gil et al., 1997). Of course, it remains unclear

whether each of these e↵ects is present in the prefrontal circuits we have studied, contributes

to the cholinergic-ineduced decorrelation we have found, and/or is altered in FMR1 KO and

VPA-exposed mice. Rather than to explore each of these e↵ects individually, we instead

took the unconventional approach of developing a new assay, using it to examine whether

all the e↵ects of cholinergic modulation add up to exert some net influence on circuit ac-

tivity, and then evaluating whether that net circuit-level influence is altered in a consistent

way across VPA-exposed and FMR1 KO mice. Examining individual cellular and synaptic

e↵ects of cholinergic modulation would be time consuming, and might miss the ’big picture’

of how diverse abnormalities can add up to elicit a common, circuit-level phenotype. By

contrast, the approach demonstrated here can explore how various factors shape pairwise

decorrelation and other emergent network properties. For example, one could combine op-

togenetic inhibition of genetically targeted cell populations with GCaMP imaging to explore

how specific cell types influence network correlation / decorrelation.

Conclusions

By describing a potential new microcircuit-level phenotype for autism, our study builds

a critical foundation for future work to elucidate the detailed pathways, leading from the

FMR1 gene or VPA exposure, to the abnormal response of prefrontal microcircuits to cholin-

ergic modulation we have found. One could also evaluate potential therapies by measuring

how well they improve the ability of cholinergic modulation to decorrelate these circuits,
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this approach might reveal novel therapeutic strategies that bypass the molecular pathways

disrupted in autism, and instead exploit alternative mechanisms to normalize overall circuit

function.

3.4 Material and Methods

All experiments were conducted in accordance with procedures established by the Adminis-

trative Panels on Laboratory Animal Care at the University of California, San Francisco.

Subjects

P26-33 mice of either sex (Charles River) were injected unilaterally with 500 nL of AAV5/2::

synapsin::GCaMP6s (UNC viral vector core) at the coordinates (in mm): 1.7 anterior-

posterior (AP), 0.3 mediolateral (ML), and -2.2 dorsoventral (DV). Experiments studying

the valproic acid (VPA) model of autism used C57BL/6 mice whose pregnant mothers had

been injected with a single dose of VPA (500 mg/kg i.p.) at E10.5. For these experiments,

control mice were C57BL/6 mice whose pregnant mothers had been injected with saline at

E10.5. VPA solution was prepared by dissolving VPA in 0.9 % saline to a final concentration

of 150 mg/mL. Experiments studying a mouse model of Fragile X syndrome used male FMR1

WT or KO mice on a FVB background (Jackson labs). In some cases (active ACSF cohorts),

these FMR1 WT and KO mice were littermates, while others (carbachol cohorts) were not.

For some experiments, C57Bl/6 mice were treated with fluoxetine based on a previously

described protocol (Welch et al., 2007). Fluoxetine was administered (5 mg kg-1, I.P.) once
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daily for 6 days prior to imaging with the final injection coming 24-48 hours before imaging.

Dominant negative DISC1 mutant mice were generated by crossing B6-CamKII::TtA (JAX:

00310) mice with tetO-DISC1dn (JAX: 008790) to yield mice expressing dominant negative

DISC1 in neocortical pyramidal cells.

Slice preparation

In all cases, 350 micron thick coronal slices were prepared from these animals 15-27 days after

injection (6-8 weeks of age). Slices preparation followed our previously described protocol

(17) with one deviation: immediately after brain slices were prepared, they were trans-

ferred to an N-Methyl-D-Glucamine (NMDG)-based recovery solution for 10 min before

being transferred to ACSF for the remainder of their recovery (18). The NMDG-based

solution was maintained at 32� C, and consisted of the following (in mM): 93 N-Methyl-D-

Glucamine (NMDG), 93 HCl, 2.5 KCl, 1.2 NaH2PO4, 30 NaHCO3, 25 glucose, 20 HEPES,

5 Na-ascorbate, 5 Na-pyruvate, 2 thiourea, 10 magnesium sulfate, 0.5 calcium chloride. This

NMDG preparation method was used to improve the overall health of adult slices to ensure

su�cient amounts of activity for analysis. ACSF contained the following (in mM): 126 NaCl,

26 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 1 MgCl2, 2 CaCl, and 10 glucose. All recordings were

at 32.5 ± 1�C. ”Active” ACSF was identical to normal ACSF except with elevated KCl

(3.5mM vs. 2mM) and reduced CaCl (1.2mM vs. 2mM).
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Imaging

GCaMP imaging was performed on an Olympus BX51 upright microscope with a 20x 1.0NA

water immersion lens, 0.5x reducer (Olympus), and ORCA-ER CCD Camera (Hamamatsu

Photonics). Illumination was delivered using a Lambda DG4 arc lamp (Sutter Instruments).

Light was delivered through a 472/30 excitation filter, 495nm single band dichroic, and

496nm long pass emission filter (Semrock). All movies that were analyzed consisted of

36000 frames acquired at 10Hz (1 hr) with 4x4 sensor binning yielding a final resolution of

256 x 312 pixels. Light power during imaging was 100 - 500 W/mm2. The Micro Manager

software suite (v1.4, NIH) was used to control all camera parameters and acquire movies Any

movies that had significant drift (greater than 0.25 soma diameters), movement, or lacked

significant amounts of activity were excluded from further analysis. Significant movement

could be detected during independent components analysis (ICA) by the appearance of

elliptical rather than circular segments. We observed that active, GCaMP-expressing neurons

were found within a discrete layer (c.f. Fig. 3.1A) consistent with the location of layer 5 in

medial prefrontal cortex.

Signal extraction

All analyses and signal extraction was performed using MATLAB (Mathworks). Locations

of cells were automatically identified using a modified version of the published CellSort 1.1

toolbox (Mukamel et al., 2009b). In particular, a factor, µ, specifies the weight between

spatial and temporal sparseness: µ = 0 is purely spatial and µ = 1 is purely temporal. All of
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our analyses used µ = 0.2 which was within the optimal range outlined in (Mukamel et al.,

2009b). Signals were extracted from movies and the baseline fluorescence function, , was

calculated for every trace using the mode of the kernel density estimate over a 100s rolling

window, implemented via the MATLAB function ksdensity following the procedure outlined

in (O’Connor et al., 2010). All signal traces shown represent normalized versions of the F�F0
F0

trace.

Threshold based event detection was performed on the traces by detecting increases in

F�F0
F0

exceeding 2.5� over one second, and then further thresholding these events by keeping

only those events which exceeded a 4� increase over two seconds. � is the standard deviation

of F�F0
F0

, calculated over the entire movie. Thus all detected events have a deviation of at

least 4� from baseline. After identifying these events in the calcium signal from a cell, the

cell was considered ”active” during the entire period from the beginning to the peak of the

event. The beginning of the event was defined as the first point for which F�F0
F0

increases by

2.5� within 1 second and by 4� within 2 seconds. The peak of the event was defined as the

local maximum of the entire event, from the beginning of the event until F�F0
F0

returns to the

same baseline value. We then created a matrix in which each row corresponds to a neuron,

and each column corresponds to a frame. Entries in this matrix were 1 if a given neuron was

active during a given frame, and 0 otherwise. All subsequent analyses were performed on this

two-dimensional representation of network activity over time (c.f. Fig. 3.1C). Correlations

between cells were calculated between the binary event trains corresponding to those two cells

after subtracting the mean level of activity from each event train. The standard deviation
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projection in Figure 1 was obtained as follows. For each pixel, we computed the standard

deviation of F�F0
F0

over 30 second intervals throughout the first 10 minutes of a movie, then

plotted the maximum value of these standard deviations.

Statistical analysis

Unless otherwise noted, we used the Mann Whitney U-test to compare pairs of groups,

repeated measures ANOVA to compare multiple groups, and the two-tailed Kolmogorov-

Smirnov (KS) test to compare pairs of distributions. To compare the number of strong

correlations between conditions, we treated the fraction of strong correlations in each slice

as an observation. Error bars where shown indicate standard error unless otherwise noted.

Cell identification, signal extraction and normalization, event detection, and all other data

analysis was done using fully automated routines that were independent of the investigator

and thus blinded.

Matching levels of activity between datasets

To reduce activity in one group of datasets in order to match levels of activity in another

group of datasets (c.f. Fig. S3.1C,D; Fig. S3.2C), we randomly deleted epochs of activity

until the % time active in a given dataset matched the mean level of activity in the sec-

ond group. For example, to generate Fig. S3.2C, we deleted randomly selected epochs of

activity from saline-exposed datasets until they reached a mean level of activity of 1.4%,

corresponding to the mean level of activity in VPA-exposed datasets. All data shown repre-
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sents an average based on 5 instantiations of this epoch removal algorithm. The upsampling

procedure performed in Figure S3.3 was achieved by overlaying multiple datasets to produce

a single, virtually upsampled dataset. For example, we combined 2, 3, or 4 saline-exposed

datasets or 3, 5, or 7 VPA-exposed datasets to achieve a higher-than-normal density of

events, as indicated in the Fig. S3.3 legend. The correlation distributions represent the

means, computed over all possible combinations of N datasets drawn from the total number

of experiments for each condition. The datasets were combined by simply computing the

union of the two datasets to produce a new dataset with a number of virtual neurons equal to

the lesser of the numbers of cells in the two experiments. E.g. overlaying two VPA datasets,

with 82 neurons and 84 neurons, yields a combined dataset with 82 virtual neurons. In the

combined dataset, virtual neuron i is active at time t if neuron i is active at time t in either

of the original datasets.
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3.5 Figures
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Figure 3.1: Single photon GCaMP imaging resolves simultaneous activity from many

neurons in prefrontal slices.

a, Regions of Interest (ROIs) obtained by an automated algorithm, showing the locations of neurons,
superimposed on the maximum standard deviation projection of a GCaMP6s movie . b, Sample
GCaMP6s signals from 8 neurons (out of 84 total neurons imaged). Overlaid red lines indicate times
when we detected that a neuron was active. c, Example raster of spontaneous network activity for a
single 60 min experiment with 84 neurons. d, Cumulative probability distributions for correlations
in real datasets (black line; n = 29 experiments from wild-type mice) vs. those observed in data
shu✏ed by shifting each neuron’s event train by a di↵erent random amount (shu✏ed, purple line)
or by randomly reassigning the neuronal identity associated with each event (scrambled, blue line).
Inset: the fraction of correlations � 0.15 are shown for real and shu✏ed / scrambled datasets. In
each case, both the individual datapoints as well as the means and standard errors are shown.
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Figure 3.2: Cholinergic modulation decorrelates microcircuit activity in wild-type

mice, but not in models of autism

a, Cumulative distribution of pairwise correlations for FMR1 WT datasets using either 2 M
carbachol (n = 7) or high K+ ACSF to elicit activity (n = 6). Inset: In carbachol, there are fewer
strong correlations (>0.15) compared to high K+ ACSF (p <0.01). b, Cumulative distribution
plot for correlations recorded from FMR1 KO mice in carbachol (green line) or high K+ ACSF
(black line). Inset: In carbachol, there is no reduction in strong correlations (>0.15), compared to
high K+ ACSF. Both individual datapoints as well as the means and standard errors are shown.
c, Cumulative distribution plot for correlations recorded from VPA-exposed mice in carbachol (red
line) or high K+ ACSF (black line). Inset: In carbachol, there are more strong correlations (>0.15),
compared to high K+ ACSF. Both individual datapoints as well as the means and standard errors
are shown. d, Scatterplot of the fraction of strong correlations as a function of the fraction of time
active for WT datasets in carbachol (black O symbols) or high K+ ACSF (brown X symbols). The
gray dashed line represents a linear fit of all points (carbachol and high K+ ACSF). e, Residual
values for the fractions of strong correlations, i.e. the di↵erence between the actual values, and
the fraction expected based on a linear relationship between activity and strong correlations, for
carbachol (black) and high K+ ACSF (brown) datasets. Even after accounting for a possible
relationship between activity and strong correlations, the fraction of strong correlations in high K+
ACSF is still significantly greater than in carbachol. ** p <0.01 by Wilcoxon rank sum test
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Figure 3.3: Autism models, but not DISC1 mutant or fluoxetine-treated mice, exhibit

abnormally elevated correlations in carbachol

a, Left: Plot of the average amount of time each neuron was active for FMR1 WT (filled black
circles, left; n=7) or FMR1 KO slices (filled green circles, right; n=6).
textbfRight: Cumulative distribution of correlations, averaged over all experiments in FMR1 WT
(black; n=7) or FMR1 KO slices (green; n=6). Inset shows fraction of strong correlations, i.e.
values ¿ 0.15 for each condition, and both individual datapoints as well as the means and standard
errors are plotted. b, Similar to a, but compares experiments in saline-exposed (black; n=9) or
VPA-exposed slices (orange; n=12). c, Similar to a, but compares experiments in control (black
circles, left; n=8) vs. dominant negative DISC1 mutant mice (blue circles, right; n=6). d, Similar
to a, but compares experiments in saline-treated (black circles, left; n=6) compared to FLX-treated
mice (purple circles, right; n=7). ** p < 0.01 by Wilcoxon ranksum test.
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Supplementary Figure 3.1: Di↵erences in activity levels do not explain the inability of

cholinergic modulation to decorrelate activity in autism models

a, Scatterplot showing the fraction of strong correlations as a function of the mean % time active
in FMR1 KO mice in carbachol (black) or high K+ ACSF (green). The gray dashed line represents
a linear fit of a linear model to all points (carbachol + high K+ ACSF). b, Residual values for the
fraction of strong correlations in carbachol (black) and high K+ ACSF (green), i.e. the di↵erence
between the actual values and the number expected based on a linear relationship between the level
of activity and the prevalence of strong correlations. Even after accounting a possible relationship
between activity and correlations, there is no carbachol-induced decorrelation in FMR1 KO circuits.
c, Cumulative distribution plot for correlations recorded from FMR1 KO mice in carbachol (green
line) or high K+ ACSF (gray line). The cumulative distribution plot is also shown for datasets
recorded in high K+ ACSF that have had epochs of activity removed to match activity levels
observed in carbachol (dotted gray line). These plots show that removing epochs of activity tends
to decrease, rather than increase, correlations, suggesting that abnormally high correlations in
FMR1 KO mice in carbachol are not an artifact of decreased activity levels. d, An analysis based
on linear regression and residual values was not possible for the VPA datasets, because activity
levels were largely non-overlapping for the carbachol and high K+ conditions, making it impossible
for linear regression to dissociate activity-driven di↵erences in correlations from those driven by
condition (carbachol vs. high K+). Instead, we again removed epochs of activity from VPA-exposed
datasets in high K+ ACSF to match the levels of activity in carbachol. Cumulative distribution
plots are shown for correlations recorded from VPA-exposed mice in carbachol (red line), high K+
ACSF (gray line), and high K+ datasets that have had epochs of activity removed to match activity
levels observed in carbachol (dotted gray line). Our finding that VPA-exposed circuits exhibit a
carbachol-induced increase (rather than decrease) in strong correlations cannot be explained simply
by the fact that activity levels are lower in carbachol than in high K+, since lower activity levels
tend to decrease, rather than increase, correlations.
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Supplementary Figure 3.2: The abnormally increased correlations observed in two mod-

els, relative to controls, in carbachol, are not an artifact of di↵erences in activity levels

a, Scatterplot showing the fraction of strong correlations as a function of the mean % time active
for FMR1 WT mice in carbachol (black O symbols) or FMR1 KO mice in carbachol (green X
symbols). The gray dashed line represents a linear fit of all points . b, Mean activity levels were
almost identical for FMR1 WT (black) and FMR1 KO (green) datasets in carbachol. Nevertheless,
we analyzed residual values based on the linear regression shown in a to confirm that the increased
correlations in FMR1 KOmice in carbachol were not an artifact of di↵erences in activity. We plotted
residual values for the fraction of strong correlations in FMR1 WT (black) and FMR1 KO (green)
datasets in carbachol, i.e. the di↵erences between the actual values and the values expected based
on a linear relationship between the fraction of strong correlations and mean % time active. Even
after accounting for a possible relationship between correlations and activity, residual correlations in
FMR1 KO mice are still significantly greater than those in FMR1 WT mice.. c, Again, an analysis
based on linear regression and residual values was not possible for the VPA-exposed datasets
and saline-exposed controls, because activity levels were largely non-overlapping for these two
conditions, making it impossible for linear regression to dissociate activity-driven di↵erences in
correlations from those driven by condition (VPA-exposed vs. saline-exposed). Instead, we created
surrogate datasets to artificially match levels of activity between these two conditions by either
removing epochs of activity (here), or by overlaying multiple datasets to increase levels of activity
(in Fig. 3.3). Here we have plotted the cumulative distributions for correlations recorded in
carbachol from VPA-exposed (red line) or saline-exposed mice (gray line). Reducing activity in
control datasets, by removing epochs of activity to match the activity levels observed in VPA-
exposed datasets (dotted gray line), tends to decrease correlations and exacerbate the di↵erence
between these two populations. Thus, the increased strong correlations in VPA-exposed datasets,
compared to controls, does not appear to be an artifact of di↵erences in activity levels. * p <0.01
by Wilcoxon rank sum test



CHAPTER 3. A MICROCIRCUIT PHENOTYPE IN AUTISM MODELS 52

-0.1 0 0.35
0

1

pr
ob

ab
ili

ty

correlation

10.6
8.1
5.4

9.2

4.2
6.8

Saline upsampled to % activity

VPA upsampled to % activity

Supplementary Figure 3.3: VPA-exposed datasets continue to exhibit an increase in

strong correlations, even after matching the higher levels of activity in saline-exposed

datasets.

Generating surrogate datasets by overlying multiple actual datasets to artificially increase lev-
els of activity (described in the Methods), shows that regardless of the level of activity, corre-
lations are consistently increased in VPA-exposed datasets in carbachol (orange) compared to
saline-exposed controls in carbachol (black). The legend shows the mean % time active for each
surrogate dataset generated by overlaying multiple VPA-exposed datasets or saline-exposed con-
trols. This provides additional evidence against the idea that the increased correlations observed
in VPA-exposed datasets are simply an artifact of di↵erences in activity levels.
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Chapter 4

Correlations between prefrontal

neurons form a small world network

that optimizes the generation of

multineuron sequences of activity

4.1 Introduction

Many in vivo studies have identified sequential patterns of activity within the prefrontal

cortex and other associational cortices during working memory (Baeg et al., 2003; Fujisawa

et al., 2008; Harvey et al., 2012; Seidemann et al., 1996). The visual cortex generates similar

patterns both in response to visual stimulation as well as spontaneously (Luis et al., 2015).
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However, it remains unclear how such types of patterns are generated. Specifically, do

these sequences depend on a specific functional organization within cortical microcircuits,

or emerge simply as a byproduct of random interactions between neurons? Many studies

have used theory and simulations to show how neural networks resembling local neocortical

circuits can generate the sorts of stereotyped trajectories or sequential patterns of activity

believed to mediate a variety of functions including motor planning and working memory

(Ashok and Doiron, 2012; Ganguli et al., 2008; Goldman, 2009; Hennequin et al., 2014;

Laje and Buonomano, 2013; Sussillo and Abbott, 2009). Nevertheless, it has not yet been

possible to demonstrate that the functional organization of an actual neocortical microcircuit

contributes to its ability to generate meaningful patterns of multineuron activity.

Recent advances in recording techniques have made it possible to collect large datasets

and make important observations, e.g., neurons within isolated cortical networks exhibit cor-

relations that follow a small world organization and can fire in a temporally precise manner

(Sadovsky and MacLean, 2013). However a fundamental unsolved challenge is developing

analytic methods, beyond simulations, that can directly assess how the functional organiza-

tion of a circuit contributes to the production of emergent patterns of activity. Notably, one

study used sophisticated imaging methods to show that isolated neocortical microcircuits

in brain slices spontaneously generate sequential patterns of activity (Ikegaya et al., 2004),

however, later studies showed that even networks of independently firing neurons or with

randomly arranged correlations between neurons could generate similar levels of sequences

(Roxin et al., 2008). Most studies to date have compared emergent patterns observed exper-
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imentally to those expected based on various models using simulations (Roxin et al., 2008;

Sadovsky and MacLean, 2013). Using simulations in this way is complicated, because unlike

shu✏ing experimental data, it requires making assumptions so that simulations will approx-

imately, though not exactly, match experimentally observed levels and temporal patterns

of activity. Conversely, altering the circuit organization in simulations will invariably alter

levels and temporal patterns of activity, making it impossible to disambiguate the individual

contributions of these three factors to the observed patterns of activity.

Maximum entropy models have been used to directly assess how the organization of a

circuit influences its ability to generate patterns of activity. These models predict instanta-

neous patterns of network activity by fitting the mean firing rate for each neuron, as well

as pairwise functional interactions between neurons, without making additional assumptions

(Schneidman et al., 2006). Maximum entropy models can reproduce multineuron patterns

of activity within the isolated retina and cultures of dissociated cortical neurons, and have

shown that in these systems, emergent patterns of multineuron activity do indeed reflect

pairwise functional interactions between neurons. However, these models have been less suc-

cessful for fitting multineuron patterns of activity from cortical networks in brain slices and

in vivo (Ohiorhenuan et al., 2010). In particular, maximum entropy models do not model

sequential patterns of activity observed in cortical networks (Ohiorhenuan et al., 2010), be-

cause they predict the distribution of instantaneous patterns of activity. This underscores the

need for new methods to assess how sequential patterns of activity in experimental datasets

depend on the underlying functional organization of a circuit.
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Here, we outline one such method, which can dissociate the relative contributions of ac-

tivity levels, temporal patterns of activity, pairwise correlations, and higher order structure

such as clustering, to key features of emergent network-level behavior. We use this method,

together with new experimental approaches, to show that the small world functional orga-

nization of local prefrontal microcircuits optimizes the production of stereotyped, sequential

patterns of activity believed to mediate important cognitive functions in vivo. This reveals

a specific, concrete, and important function for small world networks, which are found ubiq-

uitously in the nervous system and throughout nature, and demonstrates a new method for

addressing the critical question of whether knowing the functional organization underlying

a neuronal system helps to understand how it works (Marder, 2015).

4.2 Results

We initially used single-photon, wide field imaging to capture fluorescent signals from the

genetically encoded Ca2+ indicator GCaMP6s (Chen et al., 2013) in acute brain slices from

late adolescent (P41-57) mice (n = 29). We recorded sparse, robust GCaMP signals from

neurons in deep layers of the medial prefrontal cortex (mPFC; Fig. 4.1). We image GCaMP

signals at 10 Hz. Thus, while GCaMP sensors are in principle capable of resolving single

spikes (Chen et al., 2013), the events detected here reflect increases in spike rate rather

than single spikes. We used a low concentration of the cholinergic agonist carbachol (2

M) in the bath to model basal cholinergic tone in vivo and promote spontaneous network

activity (Fellous and Sejnowski, 2000). Using a combination of independent component
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analysis (ICA) and image segmentation (Mukamel et al., 2009a), we identified the locations

of neurons, measured their GCaMP signals, and detected events corresponding to increased

activity in these neurons (Fig. 4.1). Each individual experiment recorded from 58-94 active

neurons over 1 hour. Some of these represent control experiments from a recent study of

neuronal correlations in mice which model autism (Luongo et al., 2015), however that study

only looked at pairwise correlations and did not examine the sequential patterns of activity

which are the subject of this study.

Prefrontal microcircuit activity contains more correlations than

expected by chance

First, we determined whether prefrontal microcircuits generate spontaneous activity that is

randomly distributed versus organized according to some structure, by computing correla-

tions between activity in di↵erent neurons. We found that the distribution of correlations

included more strong correlations than would be expected by chance (Fig. 4.2A). We com-

pared these correlations to those obtained after shu✏ing our data. Notably, neurons exhibit

long-lasting periods of increased activity interspersed with periods of quiescence. To preserve

the autocorrelated temporal structure in shu✏ed data, we first simply shifted large chunks

of each neurons event train in time (Methods). Shu✏ing data in this way preserves the ISI

distribution of each individual neuron (autocorrelation) but should destroy any structure

between neurons. As shown in Fig 4.2A, we found that real data contained an excess of

strong correlations between di↵erent neurons compared to this shu✏ed data.
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To further disentangle the e↵ect of this temporal structure, we also compared the corre-

lations observed to those found in a scrambled version of each dataset. Unlike the shu✏ed

datasets, these scrambled datasets account for any network-wide non-stationarity that may

be present. These represent an important control as correlation measures have been shown

to be particularly sensitive to violations of stationarity (Brody, 1999).

To understand how we generated these scrambled datasets, first note that each original

dataset is composed of a set of epochs of activity, where each epoch is defined by which neuron

was active, when it became active, and how long it remained active. To scramble a dataset,

we simply shu✏ed the list of neuron identities associated with each epoch. As a result, each

neuron has exactly the same number of epochs of activity in the original and scrambled

datasets, i.e. the scrambled dataset is e↵ectively rate-matched. These scrambled datasets,

which maintain both the temporal structure of total network activity and the distribution

of neuronal rates, nevertheless contain significantly fewer correlations than actual datasets

(Fig. 4.2B). Notably, in actual datasets, strong correlations were present even for pairs of

neurons separated by large distances (Fig. 4.2C).

Prefrontal microcircuit activity has a small world organization

Next, to analyze the organization of activity in prefrontal microcircuits we asked are corre-

lations between neurons arranged randomly or do they follow a specific pattern? To address

this question, we examined the structure of a network in which each neuron represents a

node, and the strong correlations between neurons represent edges. We assumed an edge is



CHAPTER 4. SMALL WORLD NETWORKS AND PATTERNED ACTIVITY 59

present between two neurons if the correlation between them exceeds the noise level, and

absent otherwise. Networks constructed in this way, using the correlations between neurons,

describe the functional organization of a neural circuit, rather than the organization of phys-

ical, synaptic connections. Such functional networks have been widely studied and shown

to be powerful tools for exploring the emergent behavior of neuronal circuits (Abeles et al.,

1993; Diesmann et al., 1999; Sadovsky and MacLean, 2013; Schneidman et al., 2006; Watts

and Strogatz, 1998) and in many cases reflect important aspects of physical connectivity

(Aviel et al., 2003; Bassett and Bullmore, 2006; Sporns and Zwi, 2004).

We next calculated clustering coe�cients and path lengths for each functional network.

These measures are used to distinguish between randomly wired networks, small world net-

works, and clustered networks (Yu et al., 2008). These three classes of networks can all have

the same number of edges (strong correlations), but di↵er in how those edges are arranged.

In randomly wired networks, edges (correlations) between neurons are distributed randomly,

whereas in clustered networks, edges are distributed topographically, such that each neuron

is connected (strongly correlated) with other nearby neurons, which also connect to each

other, forming clusters. Small world networks are formed when a small fraction of the edges

in a clustered network are randomly rewired, and are thought to exhibit desirable features

of both clustered and random networks. For example, clustered, but not random networks,

have distributed structure, which can be useful, e.g. for generating stereotyped patterns

of activity as we will show. By contrast, random networks have a short path length, i.e.

the average distance (along edges) from one node to another is relatively short, facilitating
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information flow through the network. Real world networks, e.g. social networks, often

possess a small world organization which maintains some structure while also having short

path lengths typical of random networks.

Clustering coe�cients are defined as follows. Suppose node A is connected to nodes B

and C then the clustering coe�cient is just the probability that B and C are themselves

connected. We find that our datasets all contain (1) clustering coe�cients that are markedly

higher than those found in random networks (Fig. 4.2E; actual clustering coe�cients: 0.30±

0.02 vs. 0.07 ± 0.01 for random networks, p <0.001), and (2) low path lengths, similar to

those in random networks (Fig. 4.2D; actual path lengths: 3.0±0.2 vs. 3.1±0.4 for random

networks, p=0.78). These results do not change if we vary the threshold for detecting

events within Ca2+ signals (Fig. S4.1), or if we determine the threshold for defining strong

correlations on an individual cell basis, instead of using a single threshold for the entire

network (Fig. S4.2).

Our datasets also contain substantially more clustering than is expected simply based on

a random, distance-dependent rule for coupling (Fig. S4.3). Finally, both path length and

clustering were independent of network size (Fig. S4.4). Thus, within prefrontal microcir-

cuits, correlations are arranged non-randomly, forming small world networks.

Prefrontal microcircuits spontaneously generate sequential patterns of activity Given the

bevy of modeling studies that have described ways in which the functional organization

of recurrent networks can shape patterns of emergent activity, we decided to measure the

capacity of prefrontal microcircuits to generate sequential patterns of activity (Abeles et al.,
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1993; Diesmann et al., 1999). We used a template matching algorithm similar to the one

used previously (Ikegaya et al., 2004) to count the number of occurrences of each potential

sequence of activity. As diagrammed in Figure 4.3A, this algorithm identifies every pattern

of activation within a 5 second window following the onset of activity in a neuron, counts the

number of times the same pattern recurs (allowing for a jitter of ± 1 frames, i.e. 0.1 sec),

and counting all sub-patterns within the original pattern. A 5 second window was chosen

for consistency with Ikegaya et al. 2004, however most patterns observed had much shorter,

more biologically plausible durations, less than 0.5 or 1 second (Fig. S4.5). In order to

determine whether these datasets contain more sequential patterns of activity than expected

by chance, we initially made comparisons to the two types of control datasets described

earlier. First, we calculated the number of sequential patterns in datasets that had been

shu✏ed by shifting each neurons activity train in time. Second, we calculated the number

of sequential patterns in a scrambled version of each dataset, in which the cell identities

corresponding to each epoch of activity had been randomly reassigned, while maintaining the

temporal pattern of total network activity and the distribution of activity levels across cells.

Every actual dataset contained more sequential patterns of activity than the corresponding

shu✏ed (Fig. 4.3B, D) or scrambled datasets (Fig. 4.3C, D). Thus, actual datasets generate

more stereotyped sequential patterns of activity (i.e., sequences that were observed multiple

times) than expected simply by chance.
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Understanding how the small world organization of prefrontal

microcircuits contributes to sequence generation

Of course, the critical question we set out to address is whether the functional organization

of prefrontal microcircuits facilitates sequence generation. As described in the Introduction,

previous studies have, in most cases, failed to observe sequential patterns of microcircuit

activity exceeding the number expected based on randomly arranged correlations between

neurons. Naively, one would expect the small world organization we found to facilitate

sequence generation, because the presence of clustering in a network implies that specific

groups of neurons are repeatedly co-active, which should lead to the repeated occurrence of

sequences composed of these neurons. Thus, we would first like to confirm this intuition,

that small world networks generate more sequences than networks in which correlations are

randomly arranged.

We would also like to address two additional questions whose answers are less obvious.

First, does increasing clustering beyond the levels observed in actual datasets further increase

sequence generation, i.e. would maximally clustered networks, in which correlations are

arranged topographically, generate even more sequential patterns of activity than small world

networks? The previously laid out intuition would suggest that more clustered networks

should generate more sequences. On the other hand, stronger clustering implies that once

one or two cells are known to be co-active, the remaining co-active cells should become more

predictable. This might reduce the number of unique sequences that occur in more clustered

networks.
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A second question is whether the temporal pattern of total network activity (i.e. the

number of neurons active as a function of time) together with the functional organization of

the network, i.e. the (undirected) pairwise correlation matrix, are su�cient to explain the

number of sequential patterns of activity we observed? I.e. does a model which includes the

temporal pattern of total network activity and the pairwise correlation matrix, but makes

no additional assumptions, reproduce the levels of sequences observed in actual data? Or do

additional aspects of network activity, e.g. the detailed statistics of activity within individual

neurons or knowledge about whether one neuron tends to be activity before vs. after another,

contribute to sequence generation?

To address the preceding questions, we would ideally be able to compare patterns of

network activity that are similar overall, but reflect specific changes in the arrangement of

correlations. Therefore, we devised a novel method to create surrogate datasets that all

have exactly the same amount and temporal pattern of activity as our original dataset;

i.e. if N neurons were active at time t in the original dataset, then N neurons would be

active at time t in each surrogate dataset as well. However, these surrogate datasets either

preserve or alter the correlations between neurons, and can thereby evaluate how specific

changes in the organization of pairwise correlations would a↵ect the occurrence of sequential

patterns of activity. Note that maximum entropy models can be used in a similar way, to

test whether knowing the mean activity level for each neuron and the pairwise functional

interactions between neurons is su�cient to predict patterns of network activity. However,

as noted earlier, maximum entropy models only predict instantaneous patterns of activity,
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whereas we are interested in sequential patterns of network activity. Therefore, our method

(described below) generates surrogate datasets that capture the evolution of network activity

over time.

To understand how we generated these surrogate datasets, again consider that each origi-

nal dataset can be defined as a set of epochs of activity, where each epoch is defined by which

neuron was active, when it became active, and how long it remained active. Each dataset

is also associated with a set of correlations. As described below, to generate each surrogate

dataset, we simply re-assigned the neuron associated with each epoch of activity, in order to

achieve a new, target set of correlations (this can be thought of as non-randomly shu✏ing the

cell identities). In this way, each surrogate datasets preserved the overall temporal structure

of network activity because the timing and duration of every epoch of activity was the same

in the original dataset and in all the surrogate datasets. Thus, the total number of neurons

active at any given point in time would be the same for all of these datasets. However, the

particular combination of cells active at a given point in time would di↵er across datasets,

and as a result, each surrogate dataset also had a di↵erent set of correlations.

The target correlation matrix could be chosen to preserve the pattern of strong corre-

lations present in our original datasets. Alternatively, the target correlation matrix could

randomly rearrange these correlations, preserving the number of strong correlations but dis-

rupting their organization. The iterative optimization procedure by which we reassigned

the cell identities in order to achieve the target correlation matrix is diagrammed in Fig.

4.4A. First, we randomly selected an epoch of activity, i, whose cell identity had not yet
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been re-assigned. Second, we found all the other epochs of activity j which (1) overlap in

time with epoch i and (2) already have had a new cell identity assigned. Third, for each cell

assigned to an epoch j which overlaps with epoch i, we computed the di↵erence between the

target correlation vector corresponding to that cell, and the current value of that correlation

vector based on the partially constructed surrogate dataset. (This step can be thought of as

guessing which cell should be assigned to a particular epoch of activity by first figuring out

what other cells are active at the same time, then choosing cells which are strongly correlated

with these known active cells). Next, we multiplied each di↵erence vector by the amount

of overlap between epoch j and epoch i and computed a weighted sum of all the di↵erence

vectors. (This step can be thought of as tallying up all of the guesses about which cells

should be assigned to the epoch of activity being considered). Finally, we selected a new

cell identity for epoch i by simply choosing the cell corresponding to the maximum value of

this weighted di↵erence vector, excluding all cells that were already active during any part

of epoch i (i.e. we chose the cell that represents the consensus based on tallying up all of the

guesses). If the di↵erence vector was empty, e.g. because there were no overlapping epochs

of activity that have had new cell identities assigned, then we simply used the cell identity

of this epoch of activity from the original dataset.

Of course, although the target matrices were used to generate the surrogate datasets, the

resulting surrogate datasets had slightly di↵erent correlation matrices (this reflects both the

stochastic nature of the algorithm and the constraint that the temporal pattern of activity

is fixed). Examples of correlation matrices for surrogate datasets are shown alongside their
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target correlation matrices in Fig. 4.4B. As Fig. 4.4B shows, the surrogate datasets had the

desired properties, i.e., correlation matrices for the surrogate datasets were very similar to

the target matrices. For example, the correlation matrices for surrogate datasets designed

to preserve the arrangement of correlations present in the original datasets were very similar

to the original correlation matrices, as evidenced by a normalized dot product of 0.96± 0.02

(mean± std dev). This original arrangement of correlations was lost in the surrogate datasets

generated from correlation matrices that had been randomly rearranged, as the normalized

dot product in this case was markedly lower: 0.21 ± 0.14 (p<0.001). Further examples

of activity rasters and correlation matrices are shown in supplementary Figures S4.6 and

S4.7. Notably, for the randomly rearranged case, the surrogate datasets did have correlation

matrices very similar to their (randomly rearranged) target matrices, as evidenced by a

normalized dot product of 0.95 ± 0.01. Thus, our method creates surrogate datasets that

conform to the training correlation matrices.

Small world networks generate more sequences than either

random or clustered networks

For each of our 29 datasets, we used the method described above to generate surrogate

datasets which either preserved the small world organization of pairwise correlations, ran-

domly rearranged these correlations, or rearranged these correlations topographically, re-

sulting in a maximally clustered network (c.f. Fig. 4.4B). We confirmed that the network

properties of each surrogate dataset matched the respective network type clustered, ran-
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dom, or small world (Fig. S4.9). Then we counted the number of sequential patterns of

activity (as a function of sequence length) for each actual dataset, shu✏ed dataset, scram-

bled dataset, surrogate dataset based on randomly rewiring the correlation matrix, surrogate

dataset which preserved the original small world correlation matrix, and surrogate dataset

based on a maximally clustered correlation matrix (Fig. 4.5A). Fig. 4.5B summarizes the

total number of sequential patterns of activity for each case. As shown in Fig. 4.5, surrogate

datasets that preserve the original small world pattern of correlations contain the same num-

ber of sequences as our original datasets, and generate significantly more sequential patterns

of activity than either random or maximally clustered networks. These findings directly

address the two questions raised earlier. First, a model which preserves the overall pattern

of network activity (i.e. the timing and duration of each epoch) and the pairwise correlation

matrix, but makes no additional assumptions is su�cient to reproduce the levels of sequen-

tial patterns of activity observed in actual data. Second, the small world organization of

pairwise correlations we found in prefrontal microcircuits optimizes the production of these

sequential patterns.

An important question is whether our method simply renames the cells. I.e., perhaps

small world surrogate datasets match the performance of the actual datasets because each

neuron in a surrogate dataset e↵ectively mimics the activity pattern of a neuron in the origi-

nal dataset? To address this question, we calculated the correlation between the event train

of each surrogate dataset neuron and the most similar event train in the original dataset.

The correlation was 0.2 for random/clustered surrogate datasets, and 0.3 for small world
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surrogate datasets (Fig. 4.8A). Thus, cells in the small world surrogate datasets are not

simply renamed versions of cells in the original datasets. Furthermore, this slight increase in

correlation for small world surrogate datasets relative to random/clustered surrogate datasets

could be eliminated simply by generating surrogate datasets using an activity pattern from

one experiment together with a correlation matrix from a di↵erent experiment. In this case,

the correlation between each surrogate neuron and the most similar neuron in each original

dataset was 0.1 for random, clustered, and small world surrogate datasets (Fig. 4.8B). Fur-

thermore, even when we generated surrogate datasets in this way, using the activity pattern

from one experiment together with the correlation matrix from a di↵erent experiment, small

world surrogate datasets continued to reproduce the number of sequences observed in actual

datasets, and to outperform random or clustered datasets (Fig. 4.10).

Having shown that small world networks generate more sequential patterns of activity

than random or clustered ones, we next explored sequence generation for surrogate datasets

with intermediate degrees of small-worldness. We created these networks by starting with

the original (small-world) or maximally clustered correlation matrices, then randomly rear-

ranging 10% of the strong correlations. We then quantified the small-worldness of each of

these two types of intermediate networks, as well as our three original types of surrogate

datasets (random, maximally clustered, or small-world), using the widely used metric

sw =
C

C

er

L

er

L

, where C and L are the clustering coe�cient and path length of the network, and C

e

r and

L

e

r are the average clustering coe�cient and path length for erdos-renyi random networks
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(Humphries and Gurney, 2008).

We observed a strong correlation between the number of sequential patterns of activity

generated by a network and its small-worldness (p <0.001; Fig. S4.11). Finally, although our

scrambled datasets represent random datasets that match both the distribution of activity

levels across cells and the temporal distribution of overall activity levels, we also explored

sequence generation within networks composed of rate-matched homogenerous or inhomo-

geneous Poisson neurons. Networks composed of Poisson neurons lack the large numbers of

short sequences (3 neurons) that recur many times (>10-15 times / hour) in actual datasets

and small-world surrogate datasets (Fig. S4.12). They also lack the intermediate-sized

sequences (4-6 neurons) which recur >5 times / hour in actual datasets and small-world

surrogate datasets. By contrast, networks of Poisson neurons generate extremely large se-

quences (>10 neurons) which repeat a small number of times by contain numerous subse-

quences. Such large sequences are never observed in actual datasets or small-world surrogate

datasets.

4.3 Discussion

This study evaluated how the functional organization of prefrontal microcircuits, i.e. the

small world correlation matrix, contributes to an important function of these circuits: their

ability to generate multineuron sequences of activity. We found that pairwise correlations

between prefrontal neurons form a small world network that optimizes the production of

a diverse set of such sequences. Conversely, this small world organization is su�cient to
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explain the occurrence of sequential patterns of activity in these circuits. We also outline a

general method for generating surrogate datasets that makes minimal assumptions about the

structure of the underlying data, maintains the temporal structure of total network activity,

and either preserves the pattern of pairwise correlations or alters it in specific ways. This

method will complement other approaches, e.g. theory, simulations, and maximum entropy

models, for linking the functional organization of a circuit to the emergence of complex

multineuronal patterns of activity.

Small world neural networks

Small world networks were first formalized to describe diverse real world networks that com-

bine desirable features of both highly structured and randomly connected networks clustering

and short path lengths, respectively (Watts and Strogatz, 1998). These features have been

hypothesized to reflect an ability of small world networks to process information on both

local and global scales. Small world topologies have been described for inter- and intra-areal

functional connectivity in cat, monkey, and human cortex (Bassett and Bullmore, 2006;

Sporns and Zwi, 2004). Small-world topologies have also been identified for microcircuits

in neuronal culture (Downes et al., 2012), rat and cat visual cortex (Yu et al., 2008), deep

layers of monkey cortex (Gerhard et al., 2011), and various cortical microcircuits of mice

(Sadovsky and MacLean, 2013). Introducing higher order interactions such as clustering

into a model of otherwise randomly connected cortical neurons nicely recapitulates the dou-

bly stochastic nature of cortical spike trains, further supporting the presence of small world
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topologies within cortical microcircuits (Ashok and Doiron, 2012).

Our results not only support the idea that small world networks represent a common

organizing principle for neural systems, but more importantly demonstrate a specific and

concrete way in which such an organization actually impacts neural circuit function. Small

world networks have been hypothesized to e↵ectively balance local and global modes of com-

putation, but until now, applications of these ideas to neural networks have been largely

abstract. Here we show exactly how this balance enables prefrontal microcircuits to gener-

ate stereotyped temporal patterns of activity, while also maximizing the diversity of such

patterns. This solves a challenging tradeo↵ between the tendencies of random networks to

produce multitudes of patterns that fail to repeat, and highly clustered networks to produce

a small number of extremely repetitive patterns. Neural circuits that need to generate these

patterns in order to reliably and flexibly support a diverse repertoire of behaviors must bal-

ance these two regimes, and here we show that the small world functional organization of

actual prefrontal microcircuits achieves this balance. In this way, prefrontal microcircuits

can contribute to the stereotyped patterns of activity that have been associated with flexible

behavior in vivo (Baeg et al., 2003; Fujisawa et al., 2008; Harvey et al., 2012; Seidemann

et al., 1996).

Remarkably, surrogate datasets based on a small world network of pairwise correlations

between neurons and the temporal pattern of total network activity we observed are suf-

ficient to largely reproduce the levels of sequential patterns observed in actual recordings.

Naively, one might have expected undirected pairwise correlations to be extremely limited
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in their ability to capture temporally structured activity, and that adequately describing

sequential patterns of activity would require knowledge about the underlying, asymmetric

pattern of neural connections, or at least which cell in a correlated pair tends to be active

first. However, we find that at the level of cortical microcircuits, the undirected pairwise

correlation matrix, with its small world topology, captures the key features of network or-

ganization involved in sequence generation. This is reminiscent of other studies that have

used coupling between neurons to explain complex features of activity in actual neural cir-

cuits (Stevenson et al., 2012). Interesting, a distance-dependent, random coupling rule was

not su�cient to reproduce the level of small-worldness we found in prefrontal microcircuits.

Consistent with previous studies of cultured neurons (Downes et al., 2012), this implies that

additional mechanisms, besides a local random connection rule, give rise to the small world

organization present in actual neural networks.

Relationship to in vivo studies

Of course, it will be important to compare our findings to features of activity occurring in

vivo. That being said, in vivo recordings would address fundamentally di↵erent questions

from those addressed here. Activity in vivo is strongly influenced by synaptic inputs origi-

nating outside the PFC. Thus, if we found that correlations follow a small world organization

in vivo, it would be unclear whether this reflects the organization of the local circuits vs.

the pattern of incoming input. Furthermore, one major goal of our study was to determine

whether prefrontal microcircuits are themselves su�cient to generate sequential patterns of
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activity at meaningful levels. This question, which must be answered to understand whether

these sequences emerge at the microcircuit level vs. as a result of functional interactions

between brain regions, can only be addressed by studying isolated microcircuits, e.g. in

brain slices. Two other recent studies similarly used brain slices to establish the presence of

small world topologies and temporally precise firing in cortical microcircuits (Sadovsky and

MacLean, 2013).

The importance of higher order interactions in modeling neuronal

ensembles

Unsurprisingly, neural representations involving populations of cortical neurons are more

robust and carry more information than individual spike trains (Averbeck et al., 2006).

While most studies have focused on the information gained by population averaging to

remove noise, recent studies suggest that some information may be encoded by the actual

ensembles of neurons that are activated (Fujisawa et al., 2008; Harvey et al., 2012; Luis et al.,

2015). However, understanding the factors that lead to the emergence of neuronal ensembles

requires methods that are able to determine whether specific factors, e.g. the organization of

pairwise correlations between neurons, are necessary and/or su�cient to explain the observed

levels and complexity of these ensembles. Maximum entropy models have proven extremely

useful for addressing this question in the context of instantaneous patterns of multineuron

activity observed within the retina or cultures of dissociated cortical neurons (Schneidman

et al., 2006), but do not always reproduce sequential patterns of activity in cortical networks.
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Furthermore, we explored how hypothetical forms of network organization, e.g. random or

maximally clustered networks, would impact neuronal ensembles. Similar analyses would be

challenging with widely used versions of maximum entropy models, in which the relationship

between pairwise functional interactions and network activity is highly nonlinear. As a

result, rearranging pairwise functional interactions to model di↵erent network topologies

would likely alter overall levels of activity, confounding any attempt to dissociate changes

in ensembles due to alterations in network organization from those due to altered activity

levels.

As more studies record patterns of activity from large populations of neurons, either

in vivo or in reduced preparations, a critical question will be whether those patterns are

simply a byproduct of randomly arranged correlations between neurons, or whether they

depend on more complex patterns of functional interactions. A closely related question is

whether knowing the functional organization of a network, helps to understand how that

circuit actually works (Marder, 2015). The computational method presented here represents

a powerful new tool for answering both of these questions. This method reassigns the cell

identities associated with activity in the original dataset, rather than simulating new patterns

of activity. This is critical, because this method preserves the exact pattern of total network

activity present in the original dataset, making it possible to directly probe and dissociate the

relative contribution of activity levels, temporal patterns of activity, pairwise correlations,

and higher order structure such as clustering, to key features of emergent network-level

behavior.
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Conclusions

Understanding the relationship between organization and function in neural networks is a

central challenge of modern neuroscience, but until now has been addressed largely using

theory and simulations. Here we investigate this relationship in actual cortical microcircuits

and find that correlations between prefrontal neurons form a small world network that opti-

mizes the ability of prefrontal microcircuits to generate sequential patterns of activity which

have been linked to important behavioral functions. This reveals an important function

for small world neural networks, and illustrates a novel approach for linking the functional

organization of a neural network to the patterns of activity it generates.

4.4 Material and Methods

All experiments were conducted in accordance with procedures established by the Adminis-

trative Panels on Laboratory Animal Care at the University of California, San Francisco.

Slice preparation

Wild-type P26 P33 C57BL/6 mice (Charles River) were injected unilaterally with 1 l of

AAV5/2-CaMKII::GCaMP3 (UNC) at the coordinates (in mm) 1.7 anterior-posterior (AP),

0.3 mediolateral (ML), and -2.2 dorsoventral (DV). 350 micron thick coronal slices were

prepared from these animals 15-27 days after injection. Slices preparation followed our

previously described protocol 18. The one notable deviation from the published protocol was
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that immediately after brain slices were prepared, they were transferred to an N-Methyl-D-

Glucamine (NMDG)-based recovery solution for 10 min before being transferred to ACSF

for the remainder of their recovery. The NMDG-based solution was maintained at 32� C,

and consisted of the following (in mM): 93 N-Methyl-D-Glucamine (NMDG), 93 HCl, 2.5

KCl, 1.2 NaH2PO4, 30 NaHCO3, 25 glucose, 20 HEPES, 5 Na-ascorbate, 5 Na-pyruvate,

2 thiourea, 10 magnesium sulfate, 0.5 calcium chloride. This NMDG preparation method

was used to improve the overall health of adult slices to ensure su�cient amounts of activity

for analysis. ACSF contained the following (in mM): 126 NaCl, 26 NaHCO3, 2.5 KCl, 1.25

NaH2PO4, 1 MgCl2, 2 CaCl, and 10 glucose. All recordings were at 32.5± 1� C. All drugs

were dissolved in water to make 10mM and 20mM stock aliquots for the (-) quinpirole and

carbachol respectively, which were thawed and diluted into ACSF before each experiment.

Application of quinpirole began 10-30 min after the start of an experiment and all analysis

was performed on data acquired after quinpirole had been applied for at least 10 minutes.

Imaging

GCaMP3 imaging was performed on a Olympus BX51 upright microscope outfitted with a

20x 1.0NA water immersion lens with 0.5x reducer (Olympus) and ORCA-ER CCD Camera

(Hamamatsu Photonics). Illumination was delivered using a Lambda DG4 arc lamp (Sutter

Instruments). Light path was delivered through a 472/30 excitation filter, 495nm single

band dichroic, and a 496nm long pass emission filter (Semrock). GCaMP3 movies consisted

of 36000 frames acquired at 10Hz (1 hr) with 4x4 sensor binning yielding a final resolution of
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256 x 312 pixels. Light power during imaging was 100 500 W/mm2 . The open source Micro

Manager software suite (v1.4, NIH) was used to control all camera parameters and acquire

movies Any movies that had significant drift, movement, or lacked significant amounts of

activity were excluded from further analysis. Specifically, when movies that exhibited drift

greater than 0.25 soma diameters, the experiment was terminated prematurely, and any

data collected was excluded from analysis. Significant movement could also be detected

during ICA by the appearance of elliptical rather than circular segments.

Signal extraction

All analyses and signal extraction was performed using MATLAB (Mathworks). Locations

of cells were automatically identified using a modified version of the published CellSort 1.1

toolbox 13. Signals were extracted from movies and the baseline fluorescence function, , was

calculated for every trace using the mode of the kernel density estimate over a 100s rolling

window, implemented via the MATLAB function ksdensity following the procedure outlined

in (Mukamel et al., 2009b). All signal traces shown represent normalized versions of the

F�F0
F0

trace.

Threshold based event detection was performed on the traces by detecting increases in

F�F0
F0

exceeding 2.5� over one second, and then further thresholding these events by keeping

only those events which exceeded a 4� increase over two seconds. � is the standard deivation

of F�F0
F0

, calculated over the entire movie. Thus all detected events have a deviation of at

least 4� from baseline. After identifying these events in the calcium signal from a cell, the
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cell was considered active during the entire period from the beginning to the peak of the

event. The beginning of the event was defined as the first point for which F�F0
F0

increases by

2.5� within 1 second and by 4� within 2 seconds. The peak of the event was defined as the

local maximum of the entire event, from the beginning of the event until F�F0
F0

returns to the

same baseline value. We then created a matrix in which each row corresponds to a neuron,

and each column corresponds to a frame. Entries in this matrix were 1 if a given neuron was

active during a given frame, and 0 otherwise. All subsequent analyses were performed on this

two-dimensional representation of network activity over time (c.f. Fig. 2.1C). Correlations

between cells were calculated between the event trains corresponding to those two cells after

subtracting the mean level of activity from each event train. Thus the correlation between

two event trains and is where is a rolling mean of the event train calculated by convolving

with a Gaussian kernel with � = 50 sec.

Distance dependent surrogates

For figure S4.3, the distance dependent surrogates were constructed by first measuring the

correlations as a function of distance across all experiments as shown in figure 4.2C. These

correlations were then binned into 50 micron bins and then a random draw was made for

each pair of neurons from a the distribution of correlations corresponding to that pair of

neurons physical distance. This resulted in construction of surrogate correlation matrices

where correlation was purely distance dependent.
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Creating and analyzing functional networks

Edges or functional connections between neurons were determined on the basis of significant

correlation. First all datasets were shu✏ed 100 times and from this a null distribution of

correlations was estimated and the threshold for an edge, ⌃, was set as any correlation was

above the 99% threshold of the null distribution. While the correlation distributions were

mean subtracted and thus two tailed, rarely were there any significant negative correlations

and thus only positive correlations were considered. In the case of fig. S4.2 where the thresh-

old was done on a per cell basis, networks were shu✏ed 500 times and the 99% threshold was

used for each individual interaction to determine significance. The clustering coe�cient for

each node was calculated by considering the subgraph of the k nodes connected to a given

node then calculating where is the total number of edges between the k nodes connected to

the principal node divided by the total possible number of edges between all k nodes which

is . So a clustering coe�cient of 1 would mean that all possible edges between k neigh-

bors exist whereas a clustering coe�cient of 0 would indicate that none of the k neighbors

share an edge. Networks used as benchmarks for random networks were generated using an

erdos-renyi random model. In this model, all possible edges are equally likely and networks

were generated to match the number of nodes and edge probability of a given dataset. Ran-

dom path length/clustering coe�cients denoted in Fig 4.2D/E represent the average of 100

random networks.
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Creating surrogate datasets

As described in more detail in the Results, we created surrogate datasets using the times and

durations of active states observed in the original dataset, but reassigned the cell identities

associated with each active state. The cell identities were reassigned based on an iterative

process and a target correlation matrix, C. To create a surrogate dataset based on the

original pattern of correlations, we simply used the correlation matrix obtained from the

original dataset, C
i

,orig. To obtain C

i,rand

we randomly re-arranged the values in C

i,orig

(while maintaining the symmetry of the correlation matrix). Based on the target correlation

matrices, defined above, we re-assigned the cell identities associated with each active state.

Specifically, we randomly selected an active state, i. We then found all the active states

that overlapped with this active state. Next, we selected the subset of these active states for

which new cell identities had already been assigned. Call this set X. Let r

j

represent the

number of timepoints over which active state j 2 X overlaps with active state i, and let n
j

represent the identity of the cell assigned to active state j 2 X. L

i

and L

j

are the lengths

of active states i and j, respectively. Then we constructed a vector,

~

P

i

=
0X

j2X

r

jq
L

i

L

j

~

C

nj

~

C

0
nj

where ~

C

nj represents row j of the target correlation matrix, i.e. the target correlations

between neuron n

j

and the other neurons, and ~

C

0
nj

contains the current values of the cor-

relations between neuron n

j

and the other neurons based on the re-assigned portion of the

surrogate dataset. We set elements of~P
i

to zero if the corresponding neuron had already
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been assigned to an active state that overlaps with active state i, i.e. element n
j

of ~

P

i

was

set to zero 8j 2 X. Finally, we assigned active state i to the neuron corresponding to the

maximum value of ~

P

i

. If all the elements of ~

P

i

were zero, e.g. because there are no overlap-

ping active states that have had new cell identities assigned, then we simply used the cell

identity of this active state from the original dataset. For surrogate datasets that were fit

to correlation matrices from other experiments, if there was a mismatch in the number of

cells in the two experiments, the experiment with more cells was downsampled by randomly

choosing a subset of those neurons. For example if activity from dataset A with 80 neurons

was going to be fit to a matrix from dataset B with 70 neurons, only 70 randomly chosen

neurons from dataset A would be fit to dataset B.

Detecting and quantifying temporal sequences of activity

We implemented a template-matching algorithm to identify stereotyped patterns of sequen-

tial activity [14,15]. Briefly, we began with a reference event in a given cell i and then

identified all of the other cells that became active in a 5 sec (50 frame) window following

the reference event. This was stored as a ”template vector” of cell IDs and activation times

relative to the reference event (i.e. o↵set times). This template was then shifted to each

subsequent event of cell i. Any events that align with the template constitute a pattern. One

frame of jitter was allowed when matching event times. We identified all possible patterns of

sequential activation that begin with the reference event. For example, if a reference event

in cell 1 was followed sequentially by events in cells 5, 17, and 37, then we would identify
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both a four-cell sequence (1 ) 5 ) 17 ) 37) and 3 three-cell sequences (1 ) 5 ) 17,

1 ) 5 ) 37, 1 ) 17 ) 37) as illustrated in figure 4.3. A pattern vector containing the cell

IDs and o↵set times of each matched event was stored for each identified sequence. If this

pattern vector matched an existing pattern vector - again allowing one frame of jitter - then

it was counted as an additional incidence of that pattern; otherwise, it was stored as a new

pattern. For the purpose of defining unique patterns, patterns had to repeat at least three

times in data to be counted. This process was repeated iteratively, and every active state in

every cell was used as a reference event. The algorithm was not parallelized and required 4

h per dataset running on a 2.0 GHz dual-core processor.

Statistical analysis

Unless otherwise noted, we used the Mann Whitney U-test to compare pairs of groups,

repeated measures ANOVA to compare multiple groups, and the two-tailed Kolmogorov-

Smirnov (KS) test to compare pairs of distributions. Error bars where shown indicate stan-

dard error unless otherwise noted. Cell identification, signal extraction and normalization,

event detection, and all other data analysis was done using fully automated routines that

were independent of the investigator and thus blinded.
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4.5 Figures

30%  dF/F
100s

200s

b

c

a 150 um

Figure 4.1: Single photon imaging of GCaMP signals resolves simultaneous activity

from many neurons in prefrontal slices

a, Regions of Interest (ROIs) obtained by an automated algorithm, superimposed on an image
showing the maximum standard deviation projection of each pixel during a movie of GCaMP
fluorescence. b, Sample GCaMP signals from 8 neurons. The overlaid purple lines indicated times
where in we detected that each neuron was active. c, Example raster of spontaneous network
activity for a single 60 min experiment with 82 neurons.
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Figure 4.2: Spontaneous prefrontal network activity is enriched in positive correlations

and events in which multiple neurons are co-active.

a, Cumulative probability distributions for correlations in real datasets (black line; n = 29 ex-
periments) vs. those observed in data shu✏ed by shifting each neurons event train by a di↵erent
random amount (shu✏ed, purple line) b, Cumulative probability distributions for correlations in
real datasets (black line; n = 29 experiments) vs. randomly reassigning the neuronal identity as-
sociated with each event (scrambled, green line). c, Correlations between neurons, plotted as a
function of distance between those neurons. The correlation is weakly related to the distance be-
tween two neurons, but high correlations occur even at large distances. d, The average path length
(right) and average path length of a random erdos-renyi connected network of the same number of
nodes and edge probability (left). e, The average clustering coe�cient (right) and average cluster-
ing coe�cient of a random erdos-renyi connected network of the same number of nodes and edge
probability (left). *** p <0.001 by Wilcoxon rank sum test.
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Figure 4.3: Prefrontal microcircuits spontaneously generate many more stereotyped

sequences of activity than expected by chance.

a, Schematic outlining the detection of temporal patterns. Briefly, a reference event was chosen,
and from that event a template was constructed, based on all the active events that occurred
during the following 5 seconds. This template was counted as an existing pattern if it matched a
previously generated template (allowing for up to 1 frame of jitter), or a new pattern otherwise.
Each subpattern contained within the original template was similarly compared. This process was
repeated iteratively using all events in all cells as the reference event. b, For each dataset (n =
29), the number of unique temporal patterns is plotted against the number of patterns in a shu✏ed
version of the same dataset. Each dataset was shu✏ed by shifting the activity raster for each neuron
over in time by a random amount (di↵erent for each neuron). All 29 points lie above the unity line,
indicating that actual datasets always contain more unique temporal patterns than expected by
chance. c, For each dataset (n = 29), the number of unique temporal patterns is plotted against
the number of patterns in a scrambled version of the same dataset. Each scrambled dataset was
generated from the original dataset by randomly re-assigning the identity of the cell associated with
each epoch of activity. Again, all 29 points lie above the unity line, indicating that actual datasets
always contain more unique temporal patterns than expected by chance. d, Bar plot summarizing
the data plotted in b and c. *** p <0.001 by Wilcoxon rank sum test
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a
Network structure reassignment algorithm

3. For each overlapping epoch, calculate the 
di!erence vector (black outline) between the current 
correlation vector (blue) and the target vector(red). 

4. Compute a weighted average of all the
di!erence vectors.

5. Reassign the cell id for this epoch (red)
to the cell corrsponding to the max value
of this di!erence vector.

6. Repeat for the next randomly chosen epoch

1. Identify epoch to be reassigned (red)

2. Identify all overlapping epochs (blue)
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Figure 4.4: Generation of surrogate datasets with various functional organizations.

a, Overview of our method for generating each surrogate dataset. The method re-assigns the cell
identities associated with each epoch of activity in the original dataset based on a target correlation
matrix. b, Example of the correlation matrices used for generating surrogate datasets (left) and
the correlation matrices for the resulting surrogate datasets (right). Top: Training correlation
matrix based on the original pattern of correlations. Middle: Training correlation matrix based
on a randomly rearranged correlation matrix. Bottom: Training correlation matrix based on a
maximally clustered correlation matrix.
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Figure 4.5: Small world networks outperform clustered and random networks, and

reproduce the levels of sequences observed in actual data.

a, The average number of unique temporal sequences is plotted as a function of the sequence
length (in neurons) for surrogate datasets representing various types of networks, as well as our
experimentally recorded datasets. For each experimental dataset (n = 29), we generated one
surrogate dataset of each type, such that all of these surrogate datasets conformed to the temporal
pattern of activity in the experimental dataset. b, Bar graph summarizing the total number of
unique temporal sequences within various types of datasets. *** p <0.001, * p <0.05 by Wilcoxon
rank sum test
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Supplementary Figure 4.1: The small-world organization of correlations is robust to

changes in the event detection threshold.

We re-analyzed our original datasets using thresholds of either 3, 4, 5, or 6 standard deviations for
event detection, then constructed networks based on the pairwise correlation matrix in each case.
In every case, the significant correlations form a small world network. Each dot represents the ratio
of either the Clustering Coe�cient, C, or the Path Length, L, relative to the Clustering Coe�cient
or Path Length for an erdos-renyi network (C

e

r or L
e

r, respectively), matched to the number of
nodes and edge probability. For every threshold, the corresponding network shows non-random
clustering and random path-lengths, characteristic of a small world topology.
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Supplementary Figure 4.2: The small world organization is maintained even after

determining a unique threshold for strong correlations for each cell.

We generated networks based on the pattern of strong correlations between neurons, but determined
a unique threshold for strong correlations for each cell (rather than using a single threshold for all
cells in one experiment as was done in our original analysis). Specifically, we defined the threshold
for strong correlations as the 99.5th percentile of the shu✏ed correlation distribution for each
individual cell. Each dot represents the ratio of either the Clustering Coe�cient, C, or the Path
Length, L, relative to the Clustering Coe�cient or Path Length for an erdos-renyi network (C

e

r or
L
e

r, respectively), matched to the number of nodes and edge probability. Networks generated in
this way display non-random clustering and random path-lengths, characteristic of a small world
topology.
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Supplementary Figure 4.3: Prefrontal microcircuits are more clustered than expected

based on a random, distance-dependent coupling rule

We generated networks by randomly assigning edges between nodes based on the distance-
dependent distribution shown in figure 2C. Networks generated in this manner (Distance) exhibit
much less clustering than do networks based on the actual pattern of correlations we observed
(Real).
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Supplementary Figure 4.4: Path lengths and clustering coe�cients are both independent

of network size

Neither path length nor clustering coe�cient correlate with network size (bootstrapped p-values of
0.17 and 0.15, respectively).
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Supplementary Figure 4.5: Durations of identified multineuron sequences

Plot showing the distribution of durations for repetitive multineuron sequences identified within
actual datasets (blue line), shu✏ed data (dashed red line), and scrambled data (dashed green line).
Each plot has been averaged over all experiments. Most sequences observed in real data have
durations <0.5 seconds.
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Supplementary Figure 4.6: Sample activity rasters from surrogate datasets.

Examples of the three di↵erent types of surrogate datasets, each generated for three di↵erent
experiments. For each experiment, we generated surrogate datasets based on the original pattern of
activity, and either a randomly rewired correlation matrix (left), the original small world correlation
matrix (middle), or a maximally clustered correlation matrix (right). Thus all three of the datasets
in each row, which correspond to di↵erent network topologies, nevertheless have the same temporal
level of total network activity. I.e. at each point in time, the same number of neurons will be active
in all three networks. Each raster represents 600 seconds of data.
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Supplementary Figure 4.7: Example correlation matrices from surrogate datasets.

Correlation matrices corresponding to each of the activity rasters presented in Figure S4.6.
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Supplementary Figure 4.8: Distribution of correlations between neurons in surrogate

datasets and the most similar neurons in actual datasets.

a, For each neuron in a surrogate dataset, we found the maximum correlation between its event
train and the event train of a neuron in the original (actual) dataset, i.e. the correlation with
the most similar actual neuron. The distribution of these correlations is plotted for each type of
surrogate dataset. In all cases, these correlations tend to be substantially <1, indicating neurons
in the surrogate datasets are not just renamed versions of the original neurons. Note however that
neurons in small-world surrogate datasets (red) tend to have slightly higher correlations wih actual
neurons than neurns in either maximally clustered (blue) or randomly rewired (green) datasets.
b, Same as in a), except that surrogate datasets have now been generated using the correlation
matrix from one experiment, and the activity raster from a di↵erent experiment. This procedure
eliminates the slightly higher correlations between simulated neurons and real neurons observed in
the small world surrogate datasets shown in a).
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Supplementary Figure 4.9: Path lengths and clustering coe�cients for surrogate datasets

a, Path length (left) and clustering coe�cient (right) for surrogate datasets fit to randomly rewired
correlation matrices as compared to erdos-renyi random networks. Randomly rewired networks
match the path lengths and clustering coe�cients of erdos-renyi networks. b, Path length (left) and
clustering coe�cient (right) for surrogate datasets fit to maximally clustered correlation matrices
as compared to erdos-renyi random networks. Clustered networks have greater path lengths and
clustering than erdos-renyi random networks. c, Path length (left) and clustering coe�cient (right)
for surrogate datasets fit to small world correlation matrices as compared to erdos-renyi random
networks. Small world networks have similar path lengths and greater clustering compared to
erdos-renyi random networks.



CHAPTER 4. SMALL WORLD NETWORKS AND PATTERNED ACTIVITY 96

0

5000

nu
m

be
r o

f u
ni

qu
e 

pa
tt

er
n

Real

SWClust

Rand

* **

Supplementary Figure 4.10: Small world surrogate datasets based on correlation matrices

from one experiment and activity rasters from another outperform clustered and

random networks.

Surrogates datasets generated using activity rasters from one experiment and correlation matrices
from di↵erent experiments exhibit maximal numbers of sequential patterns of activity when the
correlation matrix is small world than when the correlation matrix is maximally clustered or ran-
domly rewired. For this analysis we generated 3 surrogate datasets of each type (each one based
on a correlation matrix from a di↵erent experiment) for each activity raster. ** p <0.01, * p <0.05
by Wilcoxon rank sum test
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Supplementary Figure 4.11: Number of patterns increases as a function of small-worldness.

For each of 7 original datasets, 5 surrogate datasets were generated: small-world, clustered, and
random datasets, as well as 2 intermediate datasets generated by randomly reshu✏ing 20% of
the connections from either the small world or clustered datasets. The small-worldness of each
datasets was defined as sw = C

Cer

Ler
L

, where C and L are the clustering coe�cient and path length
of the network, and C

e

r and L
e

r are the average clustering coe�cient and path length for erdos-
renyi random networks thus yielding a continuous metric of small-worldness and a continuum
of networks with varying degrees of small-worldness. The Y axis shows the number of patterns
observed in each surrogate dataset, normalized by the maximal number of patterns observed across
any of the 5 surrogate datasets generated from the same original dataset. The number of patterns
is plotted as a function of the small-worldness of each dataset (on the X axis). The dotted line was
obtained from these points by linear regression and has an R value of 0.44, and a bootstrapped
p-value of 0.0041.
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Supplementary Figure 4.12: Distribution of number of sequence length vs. number of

repeats across all experiments.

a, Heatmap representing the number of sequences that were of a certain length and certain number
of repetitions across all experiments. The colormap is represented on a logarithmic scale. (n=29)
b, Heatmap representing the number of sequences that were of a certain length and certain number
of repetitions across in small world surrogates. (n=29) c, Heatmap representing the number of
sequences that were of a certain length and certain number of repetitions across in clustered surro-
gates. (n=29) d, Heatmap representing the number of sequences that were of a certain length and
certain number of repetitions in random surrogates. (n=29) e, Heatmap representing the number
of sequences that were of a certain length and certain number of repetitions in rasters generated
form rate-matched homogenous independent poisson neurons. (n=29) e, Heatmap representing
the number of sequences that were of a certain length and certain number of repetitions in rasters
generated form rate-matched inhomogenous independent poisson neurons. (n=29) g, Plot of the
number of sequences that repeat a certain amount of time across all datasets in experimental data
(black line), small-world surrogates (red-line), rate matched homogenous poisson neurons (yellow
line), and rate matched inhomogenous poisson neurons (green line). Poisson neurons fail to capture
the patterns that repeat >5 times.
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Supplementary Figure 4.13: Datasets exposed to active ACSF instead of carbachol also

exhibit a small-world organization.

Experiments on slices driven using a high potassium/low calcium active acsf instead of carbachol
also display random path lengths and non-random clustering. ** p <0.01 by Wilcoxon rank sum
test



100

Chapter 5

Extracting and reducing network wide

structure in chronic intracranial

electrocorticographic (ECoG)

recordings

5.1 Introduction

Information processing at the level of networks in our brains endows us with the capacity

to perform specific yet fundamental tasks in our everyday lives. One major challenge to

studying information processing at this emergent level has been that the ability to record

from multiple neurons or regions has been historically limited. Recent advances in functional
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magnetic resonance imaging (fMRI) have enabled neuroscientists to probe communication

across multiple brain regions simultaneously albeit with limited temporal resolution (Harri-

son et al., 2015; Smith et al., 2013). fMRI studies have begun to identify multiple distinct

resting state networks such as the default mode network and dorsal/ventral attentional net-

works (RSNs) (Fox et al., 2006). These networks have begun to shed light on how information

is processed in the human brain and hold promise in the study of neuropsychiatric disease

(Greicius, 2008; Zhou et al., 2010).

However, identifying such networks using fMRI has the noted caveats that only slow-

varying networks can be identified due to the slow nature of the BOLD signal being recorded.

Absent from these datasets is the ability to observe high frequency brain rhythms that have

been posited to be important for multiple social and cognitive processes, as well as represent

an important substrate for information processing between brain areas (Fries, 2009; von

Stein and Sarnthein, 2000). Chronic intracranial electrocortigographic (ECoG) recordings

can record local electrical signals with much higher spatial and temporal frequency than

fMRI. This is of vital importance especially given recent evidence that rhythms at di↵erent

frequencies may subserve distinct roles in how and where information is routed (Watrous

et al., 2013). Thus identifying frequency specific subnetworks represents an important step

towards understanding how information is flexibly routed in the brain and how dysfunction

in this information processing might underlie neuropsychiatric disease conditions.

Recent developments in analytical as well as experimental methods have started to enable

the study of time varying brain wide dynamics as well as start to identify putative network-
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level biomarkers of neuropsychiatric disease (Calhoun et al., 2014). However these studies

have been limited to the slow dynamics of fMRI and thus have not been able to explore net-

works as defined by higher frequency rhythms in the brain. Here we present a novel analysis

of chronic intracranial ECoG recordings across various areas in the mesolimbic circuit. Using

pairwise signal coherence and dimensionality reduction techniques, we show that indeed sig-

nificant interactions across distant brain areas exist and that these dynamics are surprisingly

low dimensional. We also show that these identified subnetworks contain a large amount of

redundancy that allows these networks to be summarized by one or a few highly predictive

key interactions thus further reducing the dimensionality. We also show that these identi-

fied subnetworks are frequency specific and that similar results can be obtained using either

principal components analysis (PCA) or independent components analysis (ICA) suggest-

ing that brain wide coherences can be broadly approximated by the first two cumulants of

their distributions and lack significant higher order cumulants. The approach outlined here

could serve as a template for future studies of brain-wide network function and highlights

the low-dimensional nature of seemingly complex brain-wide interactions.

5.2 Results

We analyzed data acquired from medically refractory epilepsy patients chronically implanted

with a combination of surface and depth electrodes over multiple areas in the mesolimbic

circuit. Cortical coverage was generally comprised of some subset of cingulate, insula, or-

bitfrontal, fronto-parietal, and temporal coverage. Subcortical coverage generally comprised
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of amygdala and/or hippocampal coverage. Despite diversity of electrode locations between

patients, most patients had ¿110 electrodes covering various parts of mesolimbic areas. Due

to this variability in electrode placement across patients, we focused largely on global metrics

of organization but will also present data from individual patients. Coverage across all 8

patients summarized in this study is included in 5.1.

ECoG signals were collected from these patients continuously over the course of 10-21

days and patients underwent neuropsychiatric testing including a Beck Depression Index

(BDI) and Beck Anxiety Index (BAI) presented in table 5.2. In addition, some of these

patients were asked to perform immediate mood scalar (IMS) tests to measure their within

and across day variability in mood state. This mood data will be the focus of a later study

in which we attempt to identify a neural biomarker for variations in mood state. Instead

in this study we focus on more global statistics of the data such as the dimensionality of

such datasets and how to identify key interactions between brain regions to target for future

closed-loop control of neuropsychiatric disease conditions.

Extracting relevant network structure

In order to identify network-wide interactions we started by computing pairwise magnitude

squared coherences across electrodes. Signal coherence in this context is defined as the cross

spectral density over the product of the auto-spectral densities of the two ECoG signals.

This measure can also be thought of as a linear correlation between two signals in the

frequency domain. Thus coherence between two signals varies as a function of frequency and



CHAPTER 5. EXTRACTING NETWORK STRUCTURE FROM ECOG DATA 104

we analyzed coherences separately for several frequency bands of interest namely delta (�,

1-4 Hz), theta (✓, 4-7 Hz), alpha (↵, 7-15 Hz), beta (�, 15-30 Hz), low gamma (�, 30-70 Hz),

and high gamma (�, 70-120 Hz).

Given that electrodes from the same grid or strip tend to have much higher correlation

in their coherences due largely to spatial proximity, we further reduced the dimensionality of

the coherences to one value between two regions by taking the average of all the electrodes for

a given region. For example the single value representing the coherence between amygdala

and hippocampus represents the mean coherence across the 12 di↵erent combinations of

coherences between the 4 amygdala electrodes and the 4 hippocampal electrodes. Since the

coherence measured between two regions lacks directionality, the matrix representing the

network-wide interactions at a given point in time is mirror symmetric about the diagonal

and values along the diagonal correspond to the average coherence across all electrodes

within a given region (Fig. 5.1A). For future reference, we will call this matrix the network

interaction matrix.

Computing this network interaction matrix in non-overlapping 10 second bins over time

lets us compute a time series with momentary estimates of network-wide interactions over

time. In order to identify network-wide interactions, we applied Principal Components

Analysis (PCA) to the data to identify the principal component (PC) vectors that accounted

for the largest amount of the variance in our data subject to relative orthogonality. Examples

of such principal components are shown in supplementary figures 5.4, 5.5, 5.6. The first PC

accounts generally accounted for 35% of the total variance in the data depending on the
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frequency band. (Fig. 5.1B) These PCs representing covarying interactions within and

between regions that can be thought of as representing distinct subnetworks of activity or

di↵erent modes of activity across subsets of regions.

One way to test whether the structure present in these PCs is a trivial consequence of

the statistics of the coherences or whether it represents real network-wide interactions is

to compare the eigenvalue distribution of real data with that of shu✏ed surrogates. We

generated shu✏ed surrogates by splitting the entirety of the data into 5 segments and then

randomly shu✏ing those segments relative to each other as diagrammed in supplementary

figure 5.1. This method preserves the overall mean, variance, and autocorrelation of each

coherence signal but should disrupt any cross-correlation between areas. We performed PCA

on these shu✏ed surrogates and find that in general you only observe 1-2 non-zero loadings

per PC in contrast to the real data where we observe many more non-zero loadings.

To estimate the number of relevant PCs, we compared the eigenvalue distribution of the

real data compared to that obtained from shu✏ed data and asked how many PCs exceed the

eigenvalue of the corresponding shu✏ed surrogate (Fig. 5.1C; Supplementary figure 5.2).

At lower frequency bands there were 4 significant PCs on average for delta band PCs,

decreasing with increasing frequency to 3 significant PCs in the high gamma range (Fig.

5.1C). The significant PCs in each dataset accounted for 45-60% of the total variance of the

datasets depending on frequency (Fig. 5.1D). Thus, PCA can extract PCs that represent

network-wide interactions and a large amount of the variance can be accounted for with only

the first few PCs.
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Further reduction: identifying key interactions

The identification of network-wide interactions in PCs that account for large amounts of

variance in our data opens the possibility of exploring the behavior within these di↵erent

PCs. Figure 5.2 illustrates the first alpha band PC of a given patient that shows strong

interactions between subtemporal, amygdala, insula, and cingulate electrodes. In the case of

the example patient presented in figure 5.2, PC1 represents a subtemporal, insula, cingulate,

amygdala subnetwork, PC2 represents a cingulate, insula, amygdala subnetwork, and PC3

would represent an amygdala and hippocampus subnetwork.

If we now consider the subtemporal, amygdala, insula and cingulate subnetwork defined

by PC1 we wondered whether we could assay how active this or any other subnetwork was

at any given point in time. To this end we computed the linear projection of the original

coherence data onto the PC vectors identified producing a single value that provides a scalar

readout for how well the state of the network of coherences at a given point in time is

aligned with a given subnetwork (Fig 5.2A/B). This linear projection can be thought of as

the amount of activation of a subnetwork defined by a given PC.

While this single scalar is a proxy for the amount of activation within a given subnetwork,

it is a value that requires us to observe activity across the full set of regions to calculate.

In future experiments, we wondered whether the e↵ective activation of a subnetwork could

be inferred from one or a few of the corresponding interactions so as to limit surgical in-

tervention in future patients. In an attempt to build this reduced representation of the

state of the subnetwork, we started by asking how correlated each interaction was with the
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projection onto that subnetwork. A sample distribution of correlations between interactions

and the projection onto PC1 is illustrated in figure 5.2B. What you can see is that while

most interactions carry very little information about the state of the subnetwork, a few key

interactions are highly informative of the state of the network with some of them such as

the INSaST interaction having an R

2 value of 0.7 (Fig. 5.2B). These highly informative key

interactions also display a high amount of redundancy as evidenced by the similarity between

the aST-aST, iCIN-AMY, and aST-pINS, highlighting that one does not need to know the

coherences in all of these regions to estimate the state of that subnetwork at any given point

in time (Fig. 5.2B). Thus for the example patient in the alpha band illustrated in figure

5.2, all 3 of the subnetwork projections can be approximated well using a linear combination

of the top 3 key interactions as determined by those with the highest predictability with

respect to the projection of that subnetwork (Fig. 5.2C). Further example of this approach

of identifying subnetworks and then reducing these subnetworks to a few key interactions

are shown in supplementary figures 5.4, 5.5, 5.6.

Importantly, there exists a basal amount of correlation that will be introduced by the

loading of a given interaction within that PC. To control for this, we computed the correlation

of a given coherence over time with the projection onto a PC that excluded that interaction,

thus removing any e↵ect of loading value on the ultimate projection. Doing so, still allows

certain key interactions to account for 70% of the variance observed in the EC71 alpha PC1

subnetwork over time (Fig. 5.3A). Importantly, in shu✏ed surrogates, the predictability of

coherence signals against projections excluding that interaction falls to zero (Fig. 5.3B).
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While thus far we have illustrated this result for the alpha band for patient EC71, this

same result holds in the alpha band across all patients (Fig. 5.3C, D, E). Lastly, this result

holds across frequency bands suggesting that the ability to reduce the activity of these

subnetworks to key interactions represents something fundamental about the organization

of neural activity in meso-scale circuits (Supplementary figures. 5.7, 5.8). Thus, meso-

scale networks are organized in a low-dimensional manner in which there exists significant

redundancy between areas that allows the observation of the state of a given subnetwork by

focusing on just one or a few key interactions. What sort of underlying statistical structure

can produce such patterns will be an important question for future studies.

Frequency specific subnetworks

Given that the advantage of ECoG signals as compared to fMRI BOLD signals lies in the

ability to probe higher frequency information, we explored whether the subnetworks we ob-

served represented broad band networks present at multiple frequencies or whether they were

isolated to specific frequencies. To answer this question we computed pairwise coherences

and performed PCA to extract the top 3 subnetworks for each of the 6 frequency bands

mentioned previously: delta (�, 1-4 Hz), theta (✓, 4-7 Hz), alpha (↵, 7-15 Hz), beta (�,

15-30 Hz), low gamma (�, 30-70 Hz), and high gamma (�, 70-120 Hz). We asked whether

there was any similarity between the subnetworks identified in the di↵erent frequencies by

computing the R

2 between the top 3 PCs in one frequency band as compared to the top 3

PCs in another frequency band (Fig. ??A). We then matched PCs across frequency band
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by assigning PC from a given frequency to its matched PC from another frequency band by

simply assigning it to the PC with which it had the highest correlation. The distribution of

matched correlations and unmatched correlations were largely non-overlapping, suggesting

that there existed a fair amount of consistency in PCs across frequency (Fig. ??B). We next

computed the mean correlation of the matched PCs between all of the di↵erent frequency

bands as a measure of how similar or dissimilar the subnetworks in the di↵erent bands were

with respect to each other. We found that subnetworks in closer frequency bands e.g. alpha

and beta, were more similar than those from distant frequency bands e.g. delta and gamma

(Fig. ??C). Quantifying more systematically this frequency dependent bias, PCs were most

similar for neighboring frequency bands (1 band di↵erence) at a mean of 0.7 and dropped

systematically as a function distance in frequency space to 0.4 for bands separated by 5

other bands e.g. delta and high gamma (Fig. ??D).

Lastly, we wondered how well this approach would generalize to other dimensionality

reduction techniques. In using PCA, the PCs extracted represent the largest sources of

variance subject to the constraint of linear orthogonality to other PCs. Another commonly

used method for identifying individual sources of variance is independent components anal-

ysis (ICA) which yields independent components (ICs) representing independent sources of

variance. We repeated our dimensionality reduction of the pairwise coherences as discussed

previously except using the ICA algorithm to identify subnetworks instead of PCA and found

remarkably similar results (Fig. 5.5). Dimensionality reduction of the coherences using ICA

instead of PCA yields ICs that are qualitatively very similar to the previously computed
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PCs (Fig. 5.5A/B). In addition, the ICs can be used interchangeably with the PCs, with

key interactions identified using PCA having very high predictability against subnetworks

defined using ICA (Fig. 5.5C/D). This analysis argues that the specific dimensionality re-

duction technique used is not as important and reflects that global brain dynamics e.g.

pairwise coherences can be largely described using only the first two cumulants e.g. mean

and variance.

5.3 Discussion

In this study, we sought to extract and characterize network-wide structure in chronic in-

tracranial ECoG recordings across the mesolimbic circuit. Using time-varying spectral co-

herence and PCA, we were able to define functional subnetworks, representing groups of

covarying interactions within and between brain regions. We also show that within these

subnetworks there exist highly informative key interactions, which can be used to infer the

current state of that subnetwork with great precision. Importantly, these key interactions

were present in multiple patients and across multiple frequency bands suggesting that this

low-dimensional representation represents a global principle of networks in the mesolimbic

circuit.

Of course, one limitation of our findings is that these networks are defined functionally

and not anatomically, however studies have shown the two to be intimately linked (Sta↵ord

et al., 2014; Wang et al., 2013). It will be important to verify any novel identified subnet-

works, but many of the recurring interactions extracted in our analyses such as the amygdala
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and hippocampal interactions, have been previously shown to exist (Pitkanen et al., 2000).

Functional studies can thus be an important tool to explore patterns of neural information

processing as well as guide future anatomical studies.

Dimensionality of functionally defined ECoG networks

Most sensory and cognitive functions are carried out in concert by large numbers of neurons.

With the advent of multi-neuron recording techniques that grant experimenters access to

the simultaneous activity of ensembles of neurons, statistical techniques for understanding

emergent properties have become critically important. Here we took advantage of one of the

more common dimensionality reduction techniques, PCA, and show that functionally defined

ECoG networks are low-dimensional in nature. While a similar result can be obtained using

ICA, it should be noted that many other assumptions can be made about the nature of the

data and that other dimensionality techniques could be equally applicable (Cunningham and

Yu, 2014). It is possible that rather than assuming a linear manifold of underlying states

as is the assumption, a non-linear technique such as linear discriminant analysis might yield

better identification of subnetworks (Scholkopft and Mullert, 1999). Exploration of multiple

dimensionality reduction techniques in extraction of network topology from coherences will

be an important aspect of future studies.
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Implications for frequency-specific subnetworks

Meso-scale neural signals such as the BOLD signal recorded in fMRI or ECoG signals have

enabled simultaneous measurement of multiple human brain areas simultaneously with the

noted caveat that such signals represent the collective activity of hundreds to thousands of

neurons. The ECoG signals studied here likely represent a heterogenous mix of neurons and

signals, and thus a key question becomes how to extract these individual signals? These

signals could be existing in distinct frequency bands, be coupled to distinct areas, or some

combination thereof. The fact that we are able to extract frequency specific subnetworks

suggests that it is indeed possible to separate out distinct signals present in the global

ECoG signal by examining specific frequency bands and across region interactions. As

more studies seek to identify neuropsychiatric disease biomarkers, it will be important to

develop analytical techniques, such as the approach presented here, for demixing the many

heterogenous signals present in the global neural ECoG signal.

Towards closed-loop control

Neuropsychiatric disease remains one of the toughest human conditions to adequately treat.

This is likely due to the fact these diseases rather than reflecting gross anatomical changes

or aberrations are often belied by subtle changes to the networks and patterns involved

in information processing in the brain. With the advent of new molecular, genetic, as

well as electrical tools we are now able to both study and treat some of these diseases with

greater precision. One such promising approach is the development of closed loop stimulation
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paradigms for neural circuits in the brain. However, if networks in the brain are inherently

high dimensional this could prove di�cult as it would require multiple distributed inputs

and readouts for the system. The identification here of key interactions, which allow for

the readout of an instantaneous network state across multiple distributed regions opens up

the possibility for sensing and a↵ecting distributed subnetworks, given that you can identify

these key interactions a-priori. Further analysis could help disentangle whether these key

interactions are drivers or simply readouts of network activity but this could also be assayed

directly through stimulation experiments. Regardless of the result, the low dimensionality

of the networks in the mesolimbic circuit coupled with identifying key interactions opens up

the possibility of developing closed loop control of network state in a circuit level treatment

of neuropsychiatric disease.

As systems neuroscience moves in a direction of recording with higher density, increased

spatial resolution, increased temporal resolution, and simultaneously across multiple areas

we will face constraints on the data analysis front. One challenge for the field will be to find

ways to make sense of such large volumes of data and glean reasonable biological insights.

The approach outlined here illustrates that under certain assumptions, networks in the brain

can be quite low-dimensional. In addition, this low dimensional nature can be characterized

quite e↵ectively using coherence and dimensionality reduction to identify subnetworks of

interactions.
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5.4 Materials and Methods

Data collection

Data were collected from eight subjects with intractable epilepsy who were implanted with

chronic subdural grid electrodes as part of a pre-operative procedure to localize the epilep-

togenic focus. The surgeons determined electrode placement and treatment based solely on

the clinical needs of each patient. Data were recorded at the University of California, San

Francisco (UCSF) hospital. All subjects gave written informed consent to participate in the

study in accordance with the University of California, San Francisco Institutional Review

Board. ECoG data were acquired using a omega system and sampled at either 256 or 512

Hz. ECoG data were individually referenced to the average potential across all electrodes in

a given grid, strip, or electrode. Electrode locations and general coverage is listed in table

5.1.

Electrophysiology pre-processing

All electrophysiological data were analyzed in PYTHON using custom scripts. ECoG data

were individually referenced to the average potential across all electrodes in a given grid,

strip, or electrode. Signals were also bandpass filtered at 60 and 120 Hz with a bandwidth

of 4Hz. Movement and signal artifacts were removed using an independent components

analysis (ICA) approach. Signals were decomposed into X independent components then

components corresponding to noise were identified using a support vector machine (SVM)
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trained on the power spectra of the signals. The SVM training set was based on training

data that was labeled by a human observer and this technique yielded >95% accuracy in

training data. The signals were then recomposed from the signal components excluding the

noise components resulting in a largely artifact free signal.

Coherence calculations

We calculated pairwise coherences between all electrode pairs in 10-second non-overlapping

intervals. The coherence between two time varying signals x and y was defined as

C

xy

=
P

xy

2

P

xx

P

yy

where P
xy

is the cross spectral density and P

xx

/ P
yy

are the auto-spectral densities. From this

measurement we subtracted an estimated noise floor by computing the coherence of a phase-

randomized signal generated by computing the discrete fourier transform or decomposing

the signal into the form of

X(f) =
N�1X

n=0

x(t
n

)e2⇡ifn�t

This form can also be rewritten as

X(f) = A(f)ei�(f)

where A(f) is the amplitude and �(f) is the phase component of each frequency component

f . A ’phase-randomized’ version of this signal would simply be permuting all of the �(f) for

each frequency and assigning them randomly across frequency, then computing the inverse

fourier transform, yielding a signal with the same distribution of A(f) across frequencies but
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a new random �(f) and thus controlling for any residual coherence expected from signals of

the corresponding power spectra.

Dimensionality reduction/predictability analysis

Coherences computed across all electrode pairs were then averaged within each region to

reduce the dimensionality from nElectrodes x nElectrodes, to nRegions x nRegions, where the

entry for each region to region interaction represents the mean coherence across all electrode

pairs from the two regions. This is also diagrammed in figure 5.1. We then subdivided these

coherence measurements into several frequency bands of interest namely delta (�, 1-4 Hz),

theta (✓, 4-7 Hz), alpha (↵, 7-15 Hz), beta (�, 15-30 Hz), low gamma (�, 30-70 Hz), and high

gamma (�, 70-120 Hz). This resulted in time series that were nRegions x nRegions x Time

and PCA was performed on this resulting representation for each frequency band separately.

Coherences were mean-subtracted prior to performing PCA. Principal components analysis

was carried out using the singular value decomposition (SVD) built into the sklearn python

package. Shu✏ed surrogates were generated by subdividing the coherence measurements

into 5 separate chunks of random length and then permuting the chunks relative to each

other as diagrammed in figure 5.1.

We defined the projection onto each principal component as the linear projection of the

coherence matrix onto the axis defined by each principal component, this represents the

sum total activity along that axis at a given point in time. Predictability of each coherence

against the total projection was computed as the square of the pearson correlation coe�cient
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between the Z scored versions of the projection and the coherence at a given point in time.

The pearson correlation value is defined as

⇢ =
A · B

||A||||B||

where A · B is the dot product and ||A|| and ||B|| are the magnitudes of those two signals.
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5.5 Figures
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Figure 5.1: Extracting network wide structure in ECoG data use pairwise coherence

and dimensionality reduction.

a, Schematic diagramming the workflow for processing of neural ecog data into principal compo-
nents. Pairwise coherences are calculated from filtered and artifact-removed ECoG data across all
possible electrode pairs in 10 second intervals (bottom left). This large representation is then re-
duced by grouping electrodes from the same grid or depth electrode as representing the same point
in space (bottom right). PCA is performed on that resulting reduced dataset in di↵erent frequency
bands resulting in example PCs like the ones shown (top right). b, Percentage of variance explained
for each PC as function of rank of the PC. Each line corresponds to the mean across 8 patients and
colored according to frequency band as indicated in the legend. c, Number of significant compo-
nents, defined as the number of PCs with eigenvalues above that expected from shu✏ed data as a
function of frequency band. On average, data exhibits about 3-4 significant PCs. d, Percentage of
variance explained by significant components as a function of frequency bands. On average about
50
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Figure 5.2: Analyzing principal component projections and extracting lower dimen-

sional representations.

a, PC1 from alpha band of EC71 with accompanying linear projection of coherences onto that PC,
i.e. a representation of what is happening in those groups of interactions at any given point in time.
Red demarcation denotes time period blown up in part B. b, R2 value of the coherence value of
each given interaction with the PC1 projection. Example traces showing 3 highly correlated traces
(top; aST-aST, AMY-iCIN, aST-pINS) and 2 uncorrelated traces (bottom; HP-HP, pINS-sCIN)
with the PC1 projection (black) c, Top: Principal components (from left to right) PC1, PC2, and
PC3 of alpha band coherences. Bottom: Reconstruction of projections onto (from top to bottom)
PC1, PC2, and PC3 using just the top 3 most informative key interactions for that given PC
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Figure 5.3: Key interactions present across patients.

a, R2 value of each coherence interaction against the projection onto PC1 (green), PC2 (red), and
PC3 (purple) for either the full projection on the Y axis, or a version of the projection excluding
that interaction on the X axis. Most points that have high Y values initially, maintain high X values.
b, Same plot as in A except for shu✏ed surrogates. Interactions with high R2 against the original
projection, have no predictability against projections excluding that interaction. Highlighting that
shu✏ed data loses the redundancy observed in real data. c, Same plot as in A but for the first
3 PCs across all patients in the alpha band. d, Same plot as in B but for the first 3 PCs across
all patients in the alpha band. e, Distribution of X axis values from C (Blue), and the X axis
values from D (green), highlighting that the redundancy and this high predictability against the
projections excluding that interaction are only present in real data.
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Figure 5.4: Subnetworks identified via PCs are frequency specific.

a, Schematic illustrating how a top 3 PC from one frequency band can be matched to its equivalent
in another frequency band by computing the correlation between the two components. PCs that are
determined to be the same and considered matched are outlined in green and represent the largest
correlation between a seed PC and the top 3 PCs from another frequency band. b, Distribution of
R2 values for all of the matched (green) or unmatched (black) PCs. The distribution of matched
vs. non-matched PCs are largely non-overlapping. c, Mean of the correlation between Matched
PCs from each of the 6 frequency bands. Stronger correlations are viewed towards the diagonal,
indicating that closer frequency bands share more similar PCs. d, Quantification of mean correla-
tion between matched PCs as a function of either 1,2,3, 4, or 5 frequency bands of di↵erence. PCs
computed from neighboring frequency bands more closely resemble each other than those computed
from distant frequency bands.
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Figure 5.5: PCA and ICA yield similar subnetworks.

a, Example first 3 principal components computed from patient EC79 in the alpha band b, Ex-
ample first 3 independent components computed from patient EC79 in the alpha band c, Mean
correlation of interactions with the top 3 principal components (X axis) and the mean correlation
with the projection of the closest matching independent component (Y axis) for patient EC79 in
the alpha band. Due to the similarity between principal components and independent components,
interactions with high correlation to one, retain a high correlation to the other. d, Same plot as in
C, except showing only the top 3 key interactions as determined from the principal components, and
their correlation with the most closely matched independent components (Y axis). Data plotted
represents top 3 key interactions for each of the top 3 principal components across all frequencies
and patients.
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Real Coherence

Shu!ed Surrogate
Supplementary Figure 5.1: Method for generating shu✏ed surrogates.

Schematic for generating shu✏ed surrogates. Coherences are divided into 5 epochs of random
length and then randomly permuted resulting in a coherence surrogate that has the same mean,
variance, and autocorrelation but any cross-correlation is broken.

0.0

0.2

0.4

0.6

0.8

1.0

Ț
/Ț
1

Į ȗ ĭ ȓ Ȕ Ī

100 101 102
PCrank

Supplementary Figure 5.2: Eigenvalue distributions of real vs. shu✏ed data across

patients.

Eigenvalues of real data (black) vs. shu✏ed (green). All traces are normalized by the top eigenvalue
from real data for each individual experiment. Shading represents SEM. Each panel corresponds to
the distributions computed from a given frequency band (from left to right): delta (1-3 Hz), theta
(4-7 Hz), alpha (8-15 Hz), beta (15-30 Hz), low gamma (30-70 Hz), and high gamma (70-120 Hz).
In most cases 3-4 PCs have eigenvalues above that expected from shu✏ed surrogates.



CHAPTER 5. EXTRACTING NETWORK STRUCTURE FROM ECOG DATA 125

S
G

O
F

C
aS

T
m

S
T

pS
T

A
M

Y
H

P
aI

N
S

pI
N

S
sC

IN
iC

IN

iCIN
sCIN
pINS
aINS

HP
AMY
pST
mST
aST
OFC

SG
EC71 alpha Means

0.15

0.30

0.45

0.60

S
G

O
F

C
aS

T
m

S
T

pS
T

A
M

Y
H

P
aI

N
S

pI
N

S
sC

IN
iC

IN

iCIN
sCIN
pINS
aINS

HP
AMY
pST
mST
aST
OFC

SG
EC71 alpha variances

0.0025

0.0050

0.0075

0.0100

0.0125

Supplementary Figure 5.3: Descriptive statistics for patient EC71 alpha band data.

Left: Mean of coherence for each given interaction corresponding to data presented in figure 2,
Right: Variance of coherence for each given interaction corresponding to data presented in figure
2
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Supplementary Figure 5.4: Example alpha band PC data from EC77.

Top: Principal components (from left to right) PC1, PC2, and PC3 of alpha band coherences.
Bottom: Reconstruction of projections onto (from top to bottom) PC1, PC2, and PC3 using just
the top 3 most informative key interactions for that given PC
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Supplementary Figure 5.5: Example alpha band PC data from EC80.

Top: Principal components (from left to right) PC1, PC2, and PC3 of alpha band coherences.
Bottom: Reconstruction of projections onto (from top to bottom) PC1, PC2, and PC3 using just
the top 3 most informative key interactions for that given PC
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Supplementary Figure 5.6: Example alpha band PC data from EC81.

Top: Principal components (from left to right) PC1, PC2, and PC3 of alpha band coherences.
Bottom: Reconstruction of projections onto (from top to bottom) PC1, PC2, and PC3 using just
the top 3 most informative key interactions for that given PC
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Supplementary Figure 5.7: Explained variance from top 3 key interactions in each

principal component across frequencies and patients.

a, R2 value of the original PC projection with that generated using only the top 3 interactions for a
given PC in the delta band (1-3 Hz) b, R2 value of the original PC projection with that generated
using only the top 3 interactions for a given PC in the theta band (4-7 Hz) c, R2 value of the
original PC projection with that generated using only the top 3 interactions for a given PC in the
alpha band (7-15 Hz) d, R2 value of the original PC projection with that generated using only
the top 3 interactions for a given PC in the beta band (15-30 Hz) e, R2 value of the original PC
projection with that generated using only the top 3 interactions for a given PC in the low gamma
band (30-70 Hz) f, R2 value of the original PC projection with that generated using only the top
3 interactions for a given PC in the high gamma band (70-120 Hz)
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Supplementary Figure 5.8: Key interactions present across multiple frequencies.

a, Distribution of R2 values of each interaction against a projection excluding that interaction for
real data (blue) and shu✏ed data (green) in the delta frequency band b, Distribution of R2 values
of each interaction against a projection excluding that interaction for real data (blue) and shu✏ed
data (green) in the theta frequency band c, Distribution of R2 values of each interaction against
a projection excluding that interaction for real data (blue) and shu✏ed data (green) in the alpha
frequency band d, Distribution of R2 values of each interaction against a projection excluding that
interaction for real data (blue) and shu✏ed data (green) in the beta frequency band e, Distribution
of R2 values of each interaction against a projection excluding that interaction for real data (blue)
and shu✏ed data (green) in the low gamma frequency band f, Distribution of R2 values of each
interaction against a projection excluding that interaction for real data (blue) and shu✏ed data
(green) in the high gamma frequency band
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5.6 Tables
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pat ient L ong region name S hort  region name

EC6 3        Subdural grid         SG
        inf Frontal         iFRON

        lat Temporal         lTEMP
        OFC         OFC

        ant ST         aST
        mid ST         mST
        pos ST         pST
        inf CIN         iCIN

        sup CIN         sCIN
        INS         INS

        Amygdala         AMY
        Hippocampus         HP

EC7 1  Subdural grid         SG
        OFC         OFC

        ant ST         aST
        mid ST         mST
        pos ST         pST

        Amygdala         AMY
        Hippocampus         HP

        ant INS         aINS
        pos INS         pINS
        sup CIN         sCIN
        inf CIN         iCIN

EC7 2 Subdural grid         SG
        ant OFC         aOFC
        pos OFC         pOFC

        ST A         ST A
        ST B         ST B
        ST C         ST C
        ST D         ST D

        Amygdala         AMY
        Posterior depth         PD

EC7 7  Subdural grid         SG
        ant OFC         aOFC
        pos OFC         pOFC

        ITG         ITG
        pos Temporal         pTEMP

        ant ST         aST
        mid ST         mST
        pos ST         pST

        INS         INS
        sup CIN         sCIN
        inf CIN         iCIN

        Amygdala         AMY
        Hippocampus         HP

EC7 9 Subdural grid         SG
        right Temporal         rTEMP

        ant ST         aST
        mid ST         mST
        pos ST         pST

        ant OFC         aOFC
        pos OFC         pOFC

        Amygdala         AMY
        Hippocampus         HP

        sup CIN         sCIN
        inf CIN         iCIN

        INS         INS

EC8 0 Amygdala         AMY
        ER-Ctx         ER-CTX

        Hipp-head         Hipp-head
        Hipp-body         Hipp-body

        Hipp-tail         Hipp-tail
        Cuneus         CUNEUS

        Calcarine         CAL
        inf CIN         iCIN

        INS         INS
        sup CIN         sCIN

        OFC         OFC
        Lingual-gyrus         LIN-GYR

EC8 1         Subdural grid         SG
        lat Frontal         lFRON

        ant OFC         aOFC
        pos OFC         pOFC

        ITG         ITG
        ant ST         aST
        mid ST         mST
        pos ST         pST

        INS         INS
        ant MES         aMES

pat ient L ong region name S hort  region name

        mid MES         mMES
        pos Temporal         pTEMP

EC8 2         Subdural grid         SG
        ant Frontal         aFrontal

        ant HP         aHP
        pos HP         pHP
        ant ST         aST
        mid ST         mST
        pos ST         pST

        ITG         ITG
        sup OFC         sOFC
        inf OFC         iOFC

        med Frontal         mFrontal

Table 5.1: Summary of ECoG coverage in each patient
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pID BDI BA I
EC6 3 b 36 22
EC7 1 9 7
EC7 2 5 6
EC7 7 5 7
EC7 9 28 8
EC8 0 8 2
EC8 1 18 16
EC8 2 ? ?

Table 5.2: Summary of the baseline depression index (BDI) and the baseline anxiety index (BAI)
for each patient. Values between 0-10 are considered normal, 10-20 are considerate moderate
depression/anxiety, and over 20 is considered severe anxiety/depression
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Delta

{SG -X- SG}
{AMY -X- AMY}

{AMY -X- HP}

{INS -X- HP}
{iCIN -X- iCIN}
{iCIN -X- INS}

{iCIN -X- sCIN}
{AMY -X- AMY}

{HP -X- HP}

{AMY -X- iCIN}
{AMY -X- pINS}
{pINS -X- iCIN}

{iCIN -X- iCIN}
{sCIN -X- sCIN}
{aINS -X- sCIN}

{aINS -X- aINS}
{aINS -X- sCIN}
{sCIN -X- sCIN}

{aOFC -X- pOFC}
{PD -X- PD}

{pOFC -X- pOFC}

{ST C -X- PD}
{PD -X- PD}

{AMY -X- PD}

{SG -X- pOFC}
{aOFC -X- aOFC}
{aOFC -X- pOFC}

{pOFC -X- sCIN}
{sCIN -X- iCIN}

{pOFC -X- iCIN}

{pOFC -X- pST}
{pOFC -X- AMY}
{sCIN -X- sCIN}

{aST -X- AMY}
{mST -X- AMY}
{AMY -X- HP}

{sCIN -X- iCIN}
{pST -X- sCIN}
{aST -X- sCIN}

{aOFC -X- iCIN}
{iCIN -X- iCIN}
{sCIN -X- iCIN}

{mST -X- mST}
{pOFC -X- pOFC}
{mST -X- pOFC}

{CAL -X- sCIN}
{CAL -X- OFC}
{iCIN -X- sCIN}

{OFC -X- LIN-GYR}
{INS -X- LIN-GYR}

{CAL -X- CAL}

{AMY -X- HP-head}
{HP-head -X- HP-head}

{AMY -X- AMY}

{pTEMP -X- pTEMP}
{INS -X- pTEMP}

{aMES -X- pTEMP}

{INS -X- mMES}
{aST -X- mMES}
{mST -X- mMES}

{aOFC -X- aOFC}
{lFRON -X- pOFC}
{aOFC -X- pOFC}

{pHP -X- pHP}
{aHP -X- aHP}
{aHP -X- pHP}

{aFrontal -X- sOFC}
{aFrontal -X- ITG}

{aFrontal -X- mFrontal}

{iOFC -X- iOFC}
{aFrontal -X- mST}

{iOFC -X- mFrontal}

Table 5.3: Top 3 key interactions, ordered from top to bottom for each patient for each of the top
3 principal components in the Delta (1-3Hz) band
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Theta

{SG -X- SG}
{AMY -X- AMY}

{AMY -X- HP}

{INS -X- HP}
{HP -X- HP}

{iCIN -X- INS}

{INS -X- INS}
{iCIN -X- INS}

{HP -X- HP}

{aST -X- iCIN}
{aST -X- pINS}
{pINS -X- iCIN}

{aINS -X- aINS}
{aINS -X- sCIN}
{sCIN -X- sCIN}

{HP -X- HP}
{HP -X- iCIN}
{AMY -X- HP}

{aOFC -X- aOFC}
{aOFC -X- pOFC}
{pOFC -X- pOFC}

{ST C -X- PD}
{PD -X- PD}

{AMY -X- PD}

{ST B -X- AMY}
{aOFC -X- pOFC}
{aOFC -X- aOFC}

{SG -X- sCIN}
{pST -X- iCIN}

{pOFC -X- iCIN}

{mST -X- HP}
{AMY -X- HP}

{mST -X- AMY}

{sCIN -X- sCIN}
{sCIN -X- AMY}
{iCIN -X- iCIN}

{aST -X- sCIN}
{sCIN -X- iCIN}
{pST -X- sCIN}

{rTEMP -X- AMY}
{aST -X- AMY}

{rTEMP -X- aST}

{iCIN -X- INS}
{iCIN -X- iCIN}
{sCIN -X- iCIN}

{sCIN -X- OFC}
{iCIN -X- OFC}
{iCIN -X- sCIN}

{AMY -X- Hipp-head}
{CAL -X- iCIN}
{CAL -X- CAL}

{CUNEUS -X- CUNEUS}
{AMY -X- AMY}

{Hipp-head -X- Hipp-head}

{INS -X- pTEMP}
{aMES -X- pTEMP}

{pTEMP -X- pTEMP}

{mST -X- mST}
{INS -X- INS}
{mST -X- INS}

{pOFC -X- pOFC}
{aOFC -X- aOFC}
{aOFC -X- pOFC}

{pHP -X- aST}
{aHP -X- pHP}
{pHP -X- mST}

{aHP -X- pHP}
{aFrontal -X- iOFC}
{iOFC -X- mFrontal}

{aST -X- mST}
{iOFC -X- mFrontal}
{aFrontal -X- iOFC}

Table 5.4: Top 3 key interactions, ordered from top to bottom for each patient for each of the top
3 principal components in the Theta (4-7Hz) band
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Alpha

{HP -X- HP}
{AMY -X- AMY}

{AMY -X- HP}

{HP -X- HP}
{iCIN -X- iCIN}
{iCIN -X- INS}

{INS -X- INS}
{AMY -X- AMY}

{HP -X- HP}

{aST -X- AMY}
{aST -X- iCIN}
{aST -X- pINS}

{iCIN -X- iCIN}
{aINS -X- aINS}
{aINS -X- sCIN}

{aST -X- HP}
{HP -X- HP}

{AMY -X- HP}

{ST C -X- AMY}
{aOFC -X- pOFC}
{pOFC -X- pOFC}

{ST C -X- AMY}
{ST C -X- PD}
{AMY -X- PD}

{ST A -X- ST C}
{aOFC -X- aOFC}
{aOFC -X- pOFC}

{pOFC -X- iCIN}
{pOFC -X- pST}
{pST -X- iCIN}

{mST -X- HP}
{mST -X- AMY}
{AMY -X- HP}

{AMY -X- AMY}
{iCIN -X- iCIN}
{sCIN -X- sCIN}

{aST -X- HP}
{AMY -X- HP}

{sCIN -X- iCIN}

{aST -X- pST}
{aST -X- AMY}

{rTEMP -X- aST}

{mST -X- pST}
{pOFC -X- pOFC}
{mST -X- pOFC}

{sCIN -X- OFC}
{iCIN -X- OFC}
{iCIN -X- sCIN}

{HP-head -X- HP-head}
{AMY -X- AMY}

{AMY -X- HP-head}

{CAL -X- sCIN}
{CAL -X- CAL}
{CAL -X- iCIN}

{mST -X- mST}
{INS -X- INS}
{mST -X- INS}

{aST -X- mST}
{SG -X- aST}

{pTEMP -X- pTEMP}

{pOFC -X- pOFC}
{aOFC -X- aOFC}
{aOFC -X- pOFC}

{aHP -X- mST}
{pHP -X- mST}
{aHP -X- pHP}

{iOFC -X- iOFC}
{aFrontal -X- iOFC}
{iOFC -X- mFrontal}

{iOFC -X- mFrontal}
{aST -X- aST}

{mST -X- mST}

Table 5.5: Top 3 key interactions, ordered from top to bottom for each patient for each of the top
3 principal components in the Alpha (8-15Hz) band
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Beta

{AMY -X- AMY}
{iCIN -X- iCIN}
{iCIN -X- INS}

{iCIN -X- INS}
{AMY -X- AMY}

{AMY -X- HP}

{AMY -X- HP}
{AMY -X- AMY}

{HP -X- HP}

{HP -X- HP}
{AMY -X- AMY}

{AMY -X- HP}

{aST -X- AMY}
{OFC -X- aST}
{aST -X- aST}

{aINS -X- aINS}
{aST -X- aST}

{iCIN -X- iCIN}

{ST C -X- PD}
{ST C -X- AMY}

{AMY -X- PD}

{PD -X- PD}
{aOFC -X- aOFC}
{pOFC -X- pOFC}

{ST B -X- ST C}
{AMY -X- AMY}

{ST B -X- PD}

{mST -X- HP}
{mST -X- AMY}
{AMY -X- HP}

{SG -X- sCIN}
{pST -X- iCIN}

{pOFC -X- iCIN}

{iCIN -X- iCIN}
{AMY -X- AMY}
{sCIN -X- sCIN}

{AMY -X- HP}
{aST -X- HP}
{pST -X- HP}

{pST -X- iCIN}
{aST -X- pST}

{pST -X- sCIN}

{rTEMP -X- pOFC}
{pOFC -X- pOFC}
{mST -X- pOFC}

{iCIN -X- OFC}
{iCIN -X- INS}

{iCIN -X- sCIN}

{AMY -X- AMY}
{Hipp-head -X- Hipp-head}

{AMY -X- Hipp-head}

{CAL -X- sCIN}
{CAL -X- CAL}
{CAL -X- iCIN}

{mST -X- mST}
{INS -X- INS}
{mST -X- INS}

{mST -X- mMES}
{mMES -X- mMES}

{mMES -X- pTEMP}

{aOFC -X- pOFC}
{pOFC -X- pOFC}

{pTEMP -X- pTEMP}

{aHP -X- pHP}
{aHP -X- mST}
{pHP -X- mST}

{iOFC -X- iOFC}
{pST -X- pST}

{iOFC -X- mFrontal}

{pHP -X- aST}
{aST -X- mST}
{aST -X- aST}

Table 5.6: Top 3 key interactions, ordered from top to bottom for each patient for each of the top
3 principal components in the Beta (15-30Hz) band
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Gamma

{iCIN -X- iCIN}
{AMY -X- AMY}

{iCIN -X- INS}

{iCIN -X- iCIN}
{iCIN -X- INS}

{AMY -X- AMY}

{OFC -X- AMY}
{INS -X- AMY}

{iCIN -X- AMY}

{pINS -X- iCIN}
{sCIN -X- iCIN}
{iCIN -X- iCIN}

{AMY -X- AMY}
{HP -X- HP}

{AMY -X- HP}

{mST -X- pST}
{mST -X- pINS}
{pST -X- pINS}

{ST C -X- PD}
{ST C -X- AMY}

{AMY -X- PD}

{AMY -X- AMY}
{PD -X- PD}

{pOFC -X- pOFC}

{AMY -X- AMY}
{SG -X- SG}
{PD -X- PD}

{SG -X- sCIN}
{mST -X- mST}

{pOFC -X- iCIN}

{AMY -X- HP}
{AMY -X- AMY}

{HP -X- HP}

{sCIN -X- sCIN}
{mST -X- iCIN}
{mST -X- INS}

{pST -X- iCIN}
{pST -X- sCIN}
{sCIN -X- iCIN}

{aST -X- HP}
{HP -X- HP}
{pST -X- HP}

{rTEMP -X- pOFC}
{pOFC -X- pOFC}
{mST -X- pOFC}

{iCIN -X- sCIN}
{CAL -X- OFC}
{iCIN -X- OFC}

{INS -X- LIN-GYR}
{CAL -X- CAL} {CAL -X- 

iCIN}

{AMY -X- AMY}
{HP-head -X- HP-head}
{AMY -X- Hipp-head}

{mST -X- mST}
{INS -X- INS}
{mST -X- INS}

{INS -X- pTEMP}
{pTEMP -X- pTEMP}

{mST -X- pTEMP}

{SG -X- pTEMP}
{SG -X- mST}

{mMES -X- mMES}

{aHP -X- pHP}
{aHP -X- mST}
{pHP -X- mST}

{iOFC -X- iOFC}
{iOFC -X- mFrontal}

{mFrontal -X- mFrontal}

{sOFC -X- sOFC}
{pST -X- pST}
{ITG -X- ITG}

Table 5.7: Top 3 key interactions, ordered from top to bottom for each patient for each of the top
3 principal components in the low Gamma (30-70Hz) band
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GammaHi

{SG -X- AMY}
{iCIN -X- INS}

{AMY -X- AMY}

{iCIN -X- iCIN}
{INS -X- INS}
{iCIN -X- INS}

{INS -X- AMY}
{OFC -X- iCIN}
{iCIN -X- AMY}

{mST -X- pST}
{mST -X- pINS}
{pST -X- pINS}

{sCIN -X- iCIN}
{sCIN -X- sCIN}
{iCIN -X- iCIN}

{HP -X- HP}
{SG -X- sCIN}

{AMY -X- sCIN}

{AMY -X- AMY}
{ST C -X- AMY}

{AMY -X- PD}

{ST C -X- PD}
{AMY -X- PD}

{pOFC -X- pOFC}

{AMY -X- PD}
{PD -X- PD}
{SG -X- SG}

{SG -X- sCIN}
{SG -X- iCIN}

{pOFC -X- iCIN}

{sCIN -X- sCIN}
{HP -X- HP}

{AMY -X- AMY}

{mST -X- pST}
{mST -X- iCIN}
{mST -X- INS}

{pST -X- sCIN}
{sCIN -X- sCIN}
{sCIN -X- iCIN}

{rTEMP -X- aOFC}
{pOFC -X- AMY}
{aOFC -X- AMY}

{mST -X- mST}
{rTEMP -X- mST}
{mST -X- pOFC}

{CAL -X- OFC}
{iCIN -X- sCIN}
{iCIN -X- OFC}

{OFC -X- LIN-GYR}
{INS -X- LIN-GYR}

{CAL -X- iCIN}

{sCIN -X- LIN-GYR}
{CAL -X- sCIN}
{sCIN -X- sCIN}

{SG -X- INS}
{INS -X- INS}

{mST -X- INS}

{INS -X- pTEMP}
{pTEMP -X- pTEMP}

{mST -X- pTEMP}

{SG -X- pTEMP}
{SG -X- mST}

{mST -X- mST}

{aHP -X- aHP}
{aHP -X- mST}
{aHP -X- pHP}

{aFrontal -X- ITG}
{aFrontal -X- aFrontal}

{ITG -X- ITG}

{mFrontal -X- mFrontal}
{ITG -X- ITG}

{aFrontal -X- aFrontal}

Table 5.8: Top 3 key interactions, ordered from top to bottom for each patient for each of the top
3 principal components in the high Gamma (70-120Hz) band
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Chapter 6

Concluding remarks

Population calcium imaging studies

The studies outlined here reveal some novel ways in which neural circuits can represent

and process information. In the first 3 studies we were able to exploit the high spatial

and temporal resolution a↵orded by calcium imaging to study statistical patterns at the

level of individual neurons. These studies inform us about the emergent representations

generated by neuromodulators such as dopamine and acetylcholine. Our preparation using

acute prefrontal slices is advantageous in that we can isolate specific microcircuits and assay

various neuromodulatory conditions in isolation. The major downside of this preparation is

that we do not know for sure how well these patterns observed might be mimicked in the

behaving animal. Indeed temporally stereotyped sequences of activation similar to those

observed have been shown in-vivo (Fujisawa et al., 2008; Harvey et al., 2012). In addition,

a cholinergic dependent decorrelation can be elicited in visual cortex in the awake mouse
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(Goard and Dan, 2009). Thus future work will hopefully leverage large-scale recordings in

the behaving animal to observe these neuromodulatory e↵ect in-vivo and ascertain how these

emergent properties might contribute to behavior.

Despite this limitation, an in-vitro assay as well as a recapitulation of the patterns and

statistics observed in-vivo opens up the exploration of the specific mechanisms these com-

putations. In much the same way that slice electrophysiology has allowed for the careful

dissection of cell-intrinsic biophysics, similar studies could be used to elucidate the cell-

autonomous and network interactions underlying the cholinergic dependent decorrelation.

Many modeling studies have posited a role for inhibition in the decorrelation of activity,

this is a theory that could in fact be directly tested using our preparation (Bernacchia and

Wang, 2013; Tetzla↵ et al., 2012; Wiechert et al., 2010). In addition, the top-down e↵ects

in visual circuits have been shown to be mediated via VIP positive interneurons suggesting

that perhaps the decorrelation acts via similar mechanisms (Fu et al., 2014). Lastly, abnor-

malities in acetylcholine receptors have been noted in post-mortem autistic human tissue

(Deutsch et al., 2010; Lee et al., 2002). While these deficiencies were noted in a nicotinic

receptor while we used a muscarinic agonist, it seems likely from other data in our lab that

carbachol likely has nicotonic e↵ects as well at the concentrations that we used in our ex-

periments. Ultimately, neuropsychiatric disease conditions likely have multiple biological

underpinnings that converge at the level of microcircuits. Finding circuit level biomarkers

(such as the deficit in cholinergically dependent decorrelation) for such diseases will likely not

only help shed light on disease mechanisms, but hopefully also aid in drug development as
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such biomarkers could be used in the high throughput screening of novel drugs or compounds

for treatment.

Chroic ECoG network analysis conclusions

The final study presented here examined how one could reduce network-wide interactions

across multiple mesolimbic regions and summarize them as the linear combination of one or a

few key-interactions. This finding highlights that mesolimbic networks have the potential to

be quite low-dimensional in nature. This in turn is advantageous in the context of attempting

to treat dysfunction that results from abnormalities in network-wide information processing.

These key interactions that we identified in multiple patients represent plausible foci for

either stimulating or reading out the activity within a given brain subnetwork that may

have dysfunction in neuropsychiatric disease conditions such as depression and anxiety.

Of interest now, will be to perform stimulation experiments in relevant regions and as-

say the e↵ect on coherence at these key-interactions. Can stimulation at one region drive

coordinated and dispersed changes across the whole entirety of the network? What are the

optimal stimulation parameters for a↵ecting many distributed regions within that network?

Lastly, it is important to recall that the original purpose of our coherence study was an

attempt to identify a neural signature for depression and anxiety conditions for use in a

closed-loop environment. The interactions identified here represent excellent candidates for

identifying a neural signature but more data from patients must be collected to see whether

the interactions identified do indeed contain a neurally based signature of a depressed or
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anxious state. Identification of such a signature is a crucial next step in the development of

any closed-loop therapy of neuropsychiatric disease.

As technologies enable experimentalists to record from more and more neurons we will be

able to further probe the computations that take place in the circuits of the brain. However

this deluge of data and exploding of experimental capacity will require clever analytical

methods to be able to glean simple and actionable insight from these experiments. The

work outlined in this thesis is one such attempt to try to think about these problems and

develop some analytical tools to deal with these kinds of datasets and hopefully inform future

experiments and studies on the mechanisms of information processing at the level of neuronal

networks and how such mechanisms might become aberrant in a disease state.
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